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Abstract—Complex embedded systems consist of software and Networks of communicatingdybrid Automata[26] (HAS)
hardware components that operate autonomous devices inter gre increasingly used as a formal framework to model the
acting with the physical environment. The complexity of sub jytaraction between discrete and continuous componehts. T

Z)é?/tae:;zdnlzlﬁgzﬁt:ﬁ tg;?:]gijgu;/:ry challenging and demands forarchitecture is typicallyGlobally Asynchronous/Locally Syn-

Hybrid automata are a clean and consolidated formal languag  Chronous(GALS), where the global asynchronicity takes into
for modeling embedded systems which include discrete and account the communication of shallowly connected modules,
continuous dynamics. They are based on a finite-state autorttn  \yhijle the local synchronicity refers to the programming
structure enriched with invariant and flow conditions to model paradigm for each of the modules.

the continuous dynamics. Hi icall f the f | ificai Is h
In this paper, we propose a new language, MDI, for modeling Istorically, most of the formal verification tools have

Hybrid systems with Discrete Interaction. The purpose of te focused on either aspect. Some privilege an asynchronous
language is to apply state-of-the-art symbolic model cheeks for semantics, with a language oriented to the representation

infinite-state systems to the verification of complex embedstl  of asynchronous components, and implementing variants of
systems design. MDI extends the standard symbolic language (extensions of) explicit-state search; examples arev$28],

SMV with timing and synchronization aspects. The language id- :
tinguishes between discrete and continuous variables. Viables UPPAAL [11], HYTECH [25], and FHAVER [22]. Others priv-

inside SMV modules evolve synchronously. Top-level modue ilege the representation of synchronous modules, and rely o
represent the asynchronous components of a network and usea synchronous engine, making substantial use of symbolic
explicjt evgnts to synchronizg. The new Iangugge is autorrigglly techniques. Examples are SMV and VIS.
(s;;)gt]grl:? into equivalent discrete-time infinite-state transition In this paper we address the problem of symbolically
' representing complex hybrid systems for formal verificatio
|. INTRODUCTION Our work is motivated by the experience with theySIMV

Complex Embedded SysteSES) consist of software model checker, that has been widely used as back-ends in
and hardware components that operate autonomous devitesy formal verification flows for GALS, either in its disceet
interacting with the physical environment. They are nowt paversion [3], [32], and in its timed/hybrid extension [1]][All
of our daily life and are used in many industrial sectorthese translations to MV have required similar activities,
including automotive, aerospace, consumer electronimsi-c such as dealing with synchronization primitives and with
munications, medical and manufacturing. CES are used timing aspects, that must be encoded into formulas over
carry out highly complex and often critical functions. Theyymbolic variables. Furthermore, the translational appho
are used to monitor and control industrial plants, compleg often unsatisfactory, since the resulting models log th
transportation equipment, and communication infrastmgct structure of the original problem, and that can not be exgtbi
The development process of CES is widely recognized asg the model checker.
highly complex task. A thorough validation and verification In this paper, we propose a novel language, calletDH
activity is necessary to enhance the quality of the CES ariat has been specifically designed to raise the abstrdetieh
in particular, to fulfill the quality criteria mandated byeth for modeling hybrid GALS in a fully symbolic manner.+DI
relevant standards. (HYbrid systems with Discrete Interaction) can be seen as an

CES are composed of many heterogeneous componestdension of the SMV language, able to represent networks
interacting with external environments, and deal with comf hybrid systems. In particular, the SMV language has been
tinuous and discrete dynamics. They may include multipextended into two directions: on one hand, we introduced
computation units, with possibly multiple cores per uniida timing aspects such continuous variables and flow condition
customizable hardware to implement computationally inteon the other hand we define a top-level structure to specify
sive functions. CES are often the result of a tight integrabf the network and the synchronization of the components.
hardware and software, with different families of applioas HYDI has the following distinguishing features. First, it has
for the same platform, communication ASICs specialized im symbolic definition of flow conditions which are attached to
the interaction with complex network protocols, and cohtreymbolic predicates rather than states. This may allow for a
ASICs for the acquisition of data from analog sensors. compact representation of complex systems, where the same



flow condition applies to a large number of states. Second,
it allows for the definition of symbolic transition relatisn
which allows an easy encoding of macro transition or pdralle
composition. Third, in the spirit of GALS, #DI provides
the generic primitives for specifying an application-sfiec
scheduler definition, which allows the encoding of diffdrer
scheduling strategies.

The HyDI language comes with four semantics. Thes
are obtained by combining two orthogonal dimensions: tt
way time is treated (global- vs local-time), and asyncheipi
(interleaving vs step). Although the semantics are eqeial
from the reachability point of view, they induce different
trar_15_;|ati_0ns into _the SMV language an_d enhance_ differefSou e nai n
verification techniques so that we can tailor the choice ® tivar
analyzed system. The semantics are obtained by combintankl: Tank;
two orthogonal dimensions: the way time is treated (globe 2"k?: Tanki
vs local-time), and asynchronicity (interleaving vs stefs) SYNC tank1, tank2 EVENTS filled, doubling;
addition to providing a fully formal account of the languageSYNC tankl, tank2 EVENTS unfilled, halving;
rhese semantics induce different translations into the Sl\/gmg tzﬂtg Egglﬁ Exgﬂg L'nlf: ﬁjéd’doﬁg: Ling’g;
anguage.

Support for H'DI has been fully implemented on top ofMODULE Tank _ _ _
EVENT filled, unfilled, doubling, halving, tau;

NuSMV3, a “synchronous” extension of the publicly avail,,g

able NuSMV2, extended with continuous variables and SNstate: {enpty, enptying, filling, full};
techniques. Two MDI-based verification flows are supportedf! ow. {single, double};

The first one is based on a translation to a monolithic SM'I ﬁﬁl - continuous;

program and relies on the SMT-based verification engine thstate! =ful | & f1 ow=si ngl e

exploit the MathSAT SMT solver to deal with infinite-domair! NVAR

variables. The second, more advanced one, allows to exp'I eN\\//ileo & level <=100

the structure of the network of the system under analysik [1sst at e=enpty -> | evel =0

The HyDI language was used to encode a comprehensive ! NVAR _

of benchmarks (publicly available at http:/es.fbk.eofple/ Spae '~ ' eve! =00

mover/hydi) and as back-end for translations of languagels S EVENT=doubl i ng <-> (fl owssi ngl e & next(f| ow) =doubl e)
as MatLab StateFlow/SymulLink and Altarica [2]. TRANS _ .

The rest of this paper is structured as follows. In Section I?éimg_hal ving <-> (flowsdouble & next(flow =single)
we overview the features of ¥DI. In Section Ill, we introduce EVENT=filled <-> (state=filling & next(state)=full)
some background notions, namely, syntax and semanticsgj/émi_ filled <> Ll & _ _
SMV and hybrid automata. In Section IV, we define tthRANS'“n e (state=fu next(state)=enptying)
abstract syntax and semantics of the language. In Sectst at e=enptyi ng -> next(state)!=full

VI, we overview the H DI-based verification techniques ancTRANS

. . state=filling -> t(state)! =enpt
flows. In Section VII, we discuss the related work, and ijpans 0 X (state)!=enpty
section VIII, we draw some conclusions. next (| evel ) =l evel
FLOW
II. OVERVIEW OF THE LANGUAGE flowssingle -> (der(level)>=-10 & der(level)<=10)
FLOW

A HYDI program is given by a set ahodules a set of flow=doubl e -> (der(level)>=-10 & der(l evel ) <=20)
processesa set ofsynchronizatiorconstraints. Figure 1 showsFLOW . _
a small example of communicating tanks specified inCH. 2} & &=€"PtYIng -> (der(level)<=0)
Each tank has an input and output flow of water. When a tastate=filling -> (der(l evel )>=0)

is full, the input flow of the other tank may be doubled. = URGENT _
state=enptying & | evel =0

URGENT
A. Modules state=filling & | evel =100
HyDI modules (e.g.,Tank) extend SMV modules in
order to specify explicitly the events used for synchrotiaa Fig. 1. A small H/DI example.

and timing aspects such as continuous variables and flow
conditions. The SMV language has been widely used to
specify complex finite-state systems. The system desonipti

is typically decomposed into modules. Essentially, a medl



a set of declarations and constraints on the declared Vesiab doubling

Modules can be instantiated several times and nested to form
a complex synchronous hierarchy.

In particular, modules may contain\éAR section with the stan=
declaration of variabled; NI T constraints defining the initial
states;| NVAR constraints restricting the valid assignments
to the variables; and’RANS constraints defining the valid
transitions from one state to another. Fig. 2. LTS example.

Hy DI modules inherits all the constructs of SMV modules
and add three main new features:

. events a list of symbols used in the synchronizationgtonstraints that specify a particular policy scheduling th
these are introduced with the keywoBWENT; the key- interaction of the processes. For this reason, it is posdibl
word can be also used in tA&RANS constraints as it was €nrich the main module of the¥D| program with ascheduler
an input Variab'e; intuitive'y, transitions are d|st|nghed Specified in terms of state Variables, initial and trangitio
by the event which is being fired; conditions. These conditions may predicate over the events

« continuousvariables, a new type of variables declare@f the processes.
with the keywordconti nuous; these are variables
which are allowed to change in a timed transitions and
evolve according to some function continuous in time; A. Labeled Transition Systems

« flow conditions, used to constrain the continuous evo- |abelled Transition Systen{sTSs) are a standard formal-
lution of continuous variables; the constraints are intrgsm to represent the semantics of languages, either based on
duced with the keywordsLOW and may refer to the automata, algebras or other higher-level description @h-co
derivative of the continuous variables, denoted wi#r .  putation. In particular, LTSs are used to define the semsntic

of Hybrid Automata.

An LTS is a tuple(Q, A, Qo, R) where

e ( is the set of states,

halving

I1l. BACKGROUND NOTIONS

B. Processes

HyYDI processes are instantiation ofy®! modules (in
the examplet ank1l andt ank2 are processes). Differentl : :
from SME)/ érocesses, they can rEn both a)synchronoa/sly' g |sCtP22e ize*tth(éf Saeitlgfnisn/i(:éelzr;ttzt(:lslso called alphabet),
or synchronize on shared events. Processes are declared i:n ROC_Q « A x Q is the set of Iabe’Ied transitions
the main module of a H DI program. They represent the - .
components a network whose topology is defined by the syn,—A traceis a sequence of evenis= @1, ..., 0k € Ar. Given
chronizations. The network is not hierarchical in that ther 4 & 4. the projectionw; . of w on A" s the sub-_trai:e ofv
no further asynchronous decomposition of a process, ajihoPPt@ined by removing all events in that are not inA’.
the modules may contain synchronous instantiation of other® Path @ of S over the tracew = ay,...,ax € A" is
modules. a sequencey — ¢q1 — ... — ¢ such thatgy, € Qo and,

Variables and events of a module are renamed in the procé‘é’sl’ ai, ¢i) € R for all i such thatl < < k. We say thatr
by prefixing the name of the process itself (with the classRECEPISw. Given a predicate C Q we say thatr terminates
dot notation). In the example, the varialsleat e of module N 7 1ff ax €p. o e
Tank is renamed irt ank1. st at e by the process ank1. A Pathw of S'is a sequencgy = ¢i = ... = g, such that

Processes can share variables through the passage of pafér- @0 @nd, {¢i-1, i, ¢;) € R for all i such thatl < i < k.
eters in the instantiations. However, they are limited amieg CVen @ predicatep C @ we say thatr terminates inp iff

the variables of other processes while writing is not alldwe %+ < P )
This permits an easy identification of when the variables N€languagel(S) of an LTSS is the set of traces accepted
do not change even if the transitions are described withPy Some run ofS. Given a predicate C @, the language
generic relation (compared to a more restrictive functionk»(5) of an LTS.S is the set of traces accepted by some run
description). of S terminating inp. _ _
Example 1:Consider the simple LTS of Figure 2. The

C. Synchronizations system has two statesjngle and double, and two events,

Synchronizations specify if two events of two processekubling andhalving. The system alternates between the two
must happen at the same time. If two events are not syitates. The only possible path loops over the evéntsling
chronized, they must interleave. Such synchronizatioruiseq and halving.
standard in automata theory and process algebra. It has beehhe parallel composition 51|[S> of two LTSs 51 =
generalized with guards to restrict when the synchrorsrati (21, A1, Qo1, [21) and Sz = (Q2, A2, Qoz, R2) is the LTS
can happen. (Q, A, Qo, R) where

In order to capture the semantics of some design languages, Q = Q1 x Q2,
it is necessary to enrich the synchronization with further ¢ A = A; U As,



MODULE mai n

e Qo = Qo1 X Qoz, VAR
« R = {{g,@)alq,a) | (aaed) € flow {single, double};
R17<q27aaql2> ERQ} . .
event: {doubling, halving};
U{<<q17q2>aa7 <QiaQ2>> | <Q1aa’7qi> ERlaagAQ} INIT { g o
U{<<Q17 QQ>5 a, <Q17 ql2>> | <q27 a, QQ> € RQa la ¢ Al} f1 owssi ngl €
The parallel composition of two or more LTSK]| ... ||S, TRANS

. ) (event =doubl ing <-> (fl ow=single & next(flow) =double)) &
is also called anetwork If an event is shared by two or more(event =hal vi ng <-> (f1 onw=doubl e & next(fl ow) =si ngl e))

components, we say that the event is a synchronization jevent

otherwise, we say that the event is local. Tieachability Fig. 3. A small SMV example.
problem for a network of LTSs consists of checking if there
exists a pathr reaching a given conditiop. o T(V,W, V") is the transition formula,

Remark 1: The set of events is not restricted to be finite. « Z (V) is the invariant formula.
Thus, it is possible to model also variable sharing where thegyery STSS corresponds to a LTE!(S)
two systems may synchrqni;e thg yalue of the variables on, Q is the set of assignments to the variablés
a common evept. In fact, it is sufficient to enche the vaIue. A'is the set of assignments to the variables
of the variable in the event itself: for example, if on event « Qo={scQ|sE1}
two systems synchronize the value of the real variableve « R={(s1,a,85) € Q >< AXQ|s1,a,8 =T}
use the set of event§la, z)}.cr and force that a transition 7 2 '
(q, (a,z),q") exists only if the value of: in ¢ is z.

In the parallel composition presented above the local eve .
of the components are interleaved. We refer to this Semmﬁprrespondmg STS would be:
also asinterleavingsemantics of the composition. However, ¢ V = {flow},
since the interaction among automata happens only on the W := {event},
shared events, the local actions are independent. Folipwin ¢ I := (flow = single),
[23], we now define an alternative equivalent semanticsedal * 7 := (event = doubling < (flow = single A flow" =
step semantics, where independent transition can be fired at double)) A event = halving < (flow = double N

Example 2: The LTS of Example 1 can be represented with
Qne state variablg'low and one input variablevent. The

the same time. flow" = single))
More formally, with the step semantics, the parallel corrE SMV
position S1]| ... ||S, of n LTSs is defined as: :
_ The SMV language [30] is widely used to describe complex
P Q=@ X Qn fini STSs. Iti ly k he input | f
e A= ASx ... x A5, whereASi = A; U {e}, inite-state s. It is mostly known as the input language o
e Qo=Qo1 X ... % Qons two of the most famous symbolic model checkers, namely Ca-

« R:={(3,0,7) € QxAxQ' |for1 <i < n{gi, a;,q.) € dence SMV http://www.kenmcmil.com/smv.html and NuSMV

Riandforalll < i< j <n, if a; # a; thena; ¢ NtP//nusmv.ibk.eu. _ _ _

Aja; & Al The s‘gate of a system is descrlbed_yvlth a set of sym-
e bolic variables. Set of states and transitions are repteden
by formulas. Symbolic variables are grouped imtwdules
Modules can be instantiated several times and composed
synchronously. We refer to each instantiation as a component.
B. Symbolic representation The transition relations of the components are conjoined.

When th . | . d of . Therefore, each step of the composition is equivalent to the
en the system is too large, instead of storing states alga junction of a step in each component.

transitions explicitly, it is wiser to represent them syribally We consider as baseline the version of SMV described in

by means of symbolic formulas. The systefnis described [15] (thus with input and frozen variables) extended withlre

H H /
Wf'th a setV’ of Sj[aé? va/nables. \:1Ve us}é to denote ;he St \ariables. Figure 3 shows an SMV example representing part
of next state variablegv'},cv, wherev’ represents t € next ot the discrete component of the tank defined in thelH
value ofv. A state of the system becomes an as&gnmentégample of Figure 1

the variables\” and a proposition is seen as a predicate over \ " sMmv program  consists of a set  of
the variablesV. A set of states is represented by a formulﬁ,]Odules Each moduleM can be seen as tuple
a(V) over the variabled’: a states belongs to the set i, as (PARAM 'VAR VAR, INIT, TRANS, INVAR ), where:

an assignment, makes the formula true (nameby a(V)). _
o PARAM is a setP of formal parameters,

A Symbolic Transition System (STS)S is a tuple X : i .
(V,W,1,T,Z) where: e VAR is a set of variable declaration defining a $étof

variables and for each variablea typer(v),

Theorem 1 (Step semantics [23]x predicatep is reach-
able in the interleaving semantics iff it is reachable in $skep
semantics.

« V is the set of symbolic variables representing the states,
o Wis t.he Set.0]_° .SymbOHC variables representing the eventslAIso asynchronous composition without synchronizatiopdassible but is
o I(V) is the initial formula, deprecated and not considered here.



e IVAR is a set of input variable declaration defining a sdd. Hybrid automata

W of variables and for each variable a typer(w), Hybrid automata are a mathematical model to represent
e INIT is a set of initial condition declaration defining nybrid systems such as embedded systems involving both
formula I over the variables” U P, continuous and discrete dynamics. There are several yarian
« TRANSIs a set of transition condition declaration defining hybrid automata. In this paper, we refer to the formalism
a formulaT over the variabled” U PUW UV'UP', introduced in [6] and surveyed in [26]. Intuitively, theyear
« INVAR is a set of invariant condition declaration defininginjte-state automata enriched with continuous variablesse
a formulaZ over the variables” U P. dynamics change from node to node of the automata.

The vaR declaration may contain also module instantiations, A Hybrid Automaton(HA) [26] is a tuple
i.e., variables whose type is in the fortd/, 3), whereM is (@, A, Qo, R, X, p1,¢,§,6) where

a module ands associates each formal parameter to an actuale @ is the set of states,

parameter. For every parameterc P, the actual parameter « A is the set of events,

B(p) must evaluate to the same typeof e Qo C Q is the set of initial states,
A SMV program always has main module, which is the ¢« R C Q x A x @ is the set of discrete transitions,
root node of a hierarchy given by the instantiations. « X is the set of continuous variables,

The semantics of SMV is defined in terms of Sym- ° MiQ*P(leX) is the flow condition,
bolic Transition Systems (STSs). An STS is a tuple e t:Q — P(X) is the initial condition,
(V,W,1,T,Z) where: e £:Q — P(X) is the invariant condition,

e §: R— P(X,X’) is the jump condition,

« V is the set of symbolic variables representing the statesh p ts th t of dicat th ified
« W isthe set of symbolic variables representing the even¥¥, ere I” represents the set of predicales over the specitie

o I(V) is the initial formula, variablles. .
. T((V? W, V") is the transition formula, A Linear HA (LHA) is an HA such that:
« Z(V) is the invariant formula. « the initial, invariant, flow, and jump conditions are

» Boolean combinations of linear inequalities;
Every STSS corresponds to a Labelled Transition System | e flow conditions contain variables ik only.

(LTS) C(S): Moreover, we assume that the invariant conditions of linear

« Q is the set of assignments to the variablés HA contain only conjunctions of inequalities.

« As the set of assignments to the variabl&s Example 3:

« Qu={s€Q|skE I},

e R={(s1,0,82)€Q xAXQ|s1,a,85 ET}.

The semantics of a module is defined recursively on the
hierarchical structure assuming that there is no circulr d
pendency in the hierarchy (see [30] for further details). If
a moduleM does not contain any module instantiation, it§gy_,| —10 < level > 10 —10 < level > 20
semantics is given by the STS/ UP,W,I,T,Z). If the 0= fevel < 100 0 fevel < 100
variable declaration contains the module instantiatibrssich
that, for alli € Z, 7(i) = (M;, 5;), let us consider the STS

level’ = level
doubling

level’ = level

Sn, = Vo, Wi, Ing,, Tnr,, Zag,) recursively defined for halving
M;. Let S; be the STS associated to the instamosf type . .
(M;, 3), defined agV;, W;, I, T;, Zi), where: A network H of HAs is the parallel composition of two

or more HAs. We consider two semantics for networks of
» Vi is obtained by, by removing the formal parametersyas: the global-time semantics where all the components syn
of M; and renaming the other variablese Vs, with i.v,  chronize on timed events, and the local-time (or time-s&mp
« Wi is obtained by, by renaming each variable €  semantics where the timed events are local and components

W, with i.w, . _ _ must synchronize the time on shared events.
« I; is obtained byl,,, renaming each variable with i.v Consider a netword{ = H,||...||H, of HAs with H; =
and substituting each parameteof M; with 5(p),  (Q;, 4;, Qui, Ry, Xi, s, 14, &, 0;). The global-time semantics
« Ti is obtained byl renaming each variable with i.v (or time-action semantics) [26] d# is the network of LTSs
and substituting each paramegeof M; with 5(p), Notwe (H) = Si|l...[|S, with S; = (Q}, AL, Q). R.)
o Z;is obtained byZ,,, renaming each variable with i.v  \yhere
and substituting each paramegeof M; with 5(p). e Q'={{g,7) | g€ Q1,7 € RN

The STSS of M is defined as the tupl& \Z U {i.v|i € o A=A, U{(TIME,J) | § € R},
I,ve ‘/i}UP, WvI/\/\ieIIi’T/\/\ieZ nvZ/\/\ieI Z1> The ® QIOz = {<QvT> | q € Qui,T € Li(q)}'
semantics of an SMV program is given by the STS associatete R =
to the main module. {{g,T),a,(¢,T)) | (g.a,¢) € R (TT) €



91(q7 a, q/)vf € gz(q)vf/ € gz(q/)}u

{{{q,T), (TIME, 0), {(q,T')) | there existsf satisfying

pi(q) st. f(0) =7, f(0) =, f(e) € £(q), € € 0,4]}.

Consider a netword{ = H,||...||H, of HAs with H; =

(Qi, Ai, Qoi, Riy X, iy 14, i, 0;). The local-time semantics
(or time-stamps semantics) [10] &f is the network of LTSs
NLOCTIME(H) = Sl||---||Sn with Si = < ;aAngIOi’RD
where

o main = (PARAM, VAR, IVAR, INIT, TRANS, INVAR) is the
main module such that:

— PARAM is an empty set of parameters,

— VAR is a set of declarations defining the set of
variablesV,

— IVAR is a set of declarations defining the set of input
variablesiV,

— INIT is the set of initial conditions declarations which

o Qi =1{{q,7,

o Aj={(a,t)

o Qo =1(¢,7,0) | ¢ € Qoi, T € 1i(q)},
R/

t) | q € Q;, T € RXl ¢t € R}, defines a formuld over VAR,
|a € A;,t € RYU{TIME;}, — TRANS is a set of transition conditions declaration
defining a formulaT over variables declared in

e R, = VAR i U IVAR g U VAR,
{{g, T, t),{(a,t), (¢, T, t)) | (¢,a,¢') € R;,(T,T') € — INVAR is the set of invariant conditions declarations
0i(q,a,q"),T € &(q), T € &(¢') U which defines a formul& over vAR .

{{q, T, t), TIME;, {(q,T',t')) | there existsf satisfying
pi(q) st f(t) ==, f(t') =7, f(e) € &ilq), e € [t, t']}. (M, B)}:
Given a statdg, 7, t) € @; we denote withtime({q, T, t)) the — M, e M,
component of the state. _ — TRANS; of M; is a transition condition declaration
Theorem 2 (Equivalence of two semantics [1QJet defining the formulal; over the variabled” U P U

pe the set of states{gi,qz,...,qn) Oof a Moctme W UV’ (i.e. all the input parameters can only be
where the states of the components have the same time read by the process.

(time(q1) = time(q2) = ... = time(g,)). Then, for every —eeW,
predicatep_, p is reachable inNgrwe (H) iff p A p; is - 7(¢) = {a1,...,a;}, such thata;, # s is an
reachable inViocrime (H). enumerative value, fot < k < 7,

IV. HYDI Note that we allow to modeshared variablesbetween
A. UntimedHyDI programs different instances, with the restriction that only the qess
In this section we present the semantics of amDH which declares a variable can write its value, while the
program without continuous variables and flow condition%ther processes can only read the value of the variable. The

(untimed. In particular, we focus on the specification 0]restriction is expressed in the constraints enforced on the
processes and process’ synchronizations. TRANS; formula for each process which can only change

1) Syntax and semanticsA HyDI program is composed ItS Next state variableg”. _ _
of a set of module declarations andrain module. Themain As explained in 11l-C, we associate a STS to every instance
module declares a set of process instarBemd constraints ¢ € £ Of type (M;, 5). However, to enforce the stuttering
over the variables of the processes. In particular, we use {fPndition, we first add ta(e) the values and then we add
constraints in the main module to encode the synchronizatitp the 7i formula the frame condition when the actionss
constraints of the processes and ad-hoc scheduler policies' '€ frame condition forces each state variables V; not

In HYDI, each process contains an enumerative event ing@tchange its value during a transition. Thus, given the STS
variable ¢ (EVENT in the concrete syntax), which is used® = (Vi Wi, Ii, Ti, Z;) associated to a process instance
as guard for the transitions of the process. To model t9% tyPe (M;, 5) defined as in 1lI-C, we define the ST =
asynchronous behavior we add the stutter actioto the (Vi» W7 17T, Z7) as follows:
domain ofe. Then, we force a process to not change its states V;° = V;,

. for all the instances € 7 = {i|i € V and7(i) =

when it performs the actiors. The constraints in thenain o W2 =W, wherer(e) = {ay,...,ar} U{s},
module can predicate over of the variables of an instances 17(V;°) := I(Vi),
thus forcing stuttering and synchronizations. o TH(VE,WRVE) = Ti(Vi, Wi, V)N (e = s —

We identify the set of instances of anvyB| program with Noev, V' =),
7. We uselVAR? when referring to the set of input variables « Z2(V;°) = Z;(Vi).
IVAR; of an instance, wheree is enriched with the action The STS associated to thmain module of the FDI
S, namelyIVAR ;[(e, 7(€))/ (e, T(epsilon) U {s})]. We identify program H = (M,main) is defined asSTSy =
the set of all the variables of a program withR iz = (VAR\  (V\Z, W, I AN,c7 I, T AN Niez T2, Z N N\;ez Z3). The se-
T) UU;ez i-VAR;, WhereVAR is the set of variables declaredmantic of an HDI program is given by the STS associated
in the main module. to its main module.
An untimed Hr DI programH is a tuple{M, main) where: 2) Synchronization constraintdhe constraints in thenain
e M = {M,...,M,}, such that eachM; = module of an FDI program allows to express general
(PARAM;, VAR;, IVAR ;, INIT,;, TRANS;, INVAR;) iS @ mod- synchronization policies between the processes. We enable
ule declaration, the modeling of point-to-point synchronizations betweeo-p



cesses. We add the synchronization declarat®sc to the semantic can be applied only if the processes do not share
main module of the K DI program (M, main). A synchro- any variable (i.e. for ali € Z, 7(i) = (M;, 3), the module
nization in syNnC is a tuple (i, 7, a;,a;), wherei,j € Z, M, is such thaPARAM; = 0)).

a; € 7(i.e) anda; € 7(j.€). The synchronization enforces

the instances andj to perform a transition labelled with the B. Hybrid processes

eventa; anda; at the same time. HYDI processes extend SMV processes with continuous
Since the synchronization constraints are declared b&tw&g, jahjes and flow conditions. In particular, arv Bl module
couples of processes, we define the transitive synchrcmmrzatiS a tuple (PARAM, VAR, IVAR,, INIT, TRANS, INVAR , FLOW),

relation sync* from syNC. The tuple (i,j, a;,a;) is in

where:
SYNC* iff there exists a sequence of instandeds, ..., [, defined bef
such that(ly, 41, i, ai,.,) € SYNCTor 1 < k < n, i = Iy * PARAM,IVAR,INIT, TRANS,INVAR are defined as before,
andj = | e VAR is a set of variable declaration where an additional
=1,.

type, calledcontinuousis allowed; thus, the declaration
defines a sefl” of discrete variables and a séf of
continuous variables,

o FLOW is a set of flow condition declaration defining a
formula F' over the variabled” U W U X.

Example 4:Consider three instancesj, k& with the syn-
chronization constraint$i, j, a;, a;) and (j, k, a;, ax). When
the instance synchronizes with the instangeon the events
a; and a;, also the instancé: synchronizes with the in-
stancej on the eventa,. Thus, in this examplesyNC* =

{0, 4, aisa5), (4, k, aj, ax), (i, k, ai, ax) }. The semantics of MDI modules is defined in terms of
To encode the synchronization declarations we define thgmbolic Hybrid Systems (SHSs). An SHS is a tuple
following constraints: (V,X,W,I,T,Z F) where:
1= /\ fe=ai o je=a;, = \/ i€ s, chésSttQteeSs:et of symbolic discrete variables representing
(i ai,05)€sve? i « X is the set of symbolic continuous variables representing
the states,
Pint = /\ /\ je=aj— /\ i€ =s. « W is the set of symbolic variables representing the events,
1J€T, a;€7(j.€) o ai€r(ie), o I(V, X) is the initial formula,
1#£] (4,4,ai,a;) ESYNC

o« T(V,X, W, V' X') is the transition formula,
The synchronization constraints enforces the synchroniza- . 7z(V, X) is the invariant formula,
tion between the processes. The interleaving consteajint « F(V,X) is the flow formula.
enforces that a pr_ocessperforms the stu_tter event if another If the domain of the variabled” is finite, a SHS H
process moves Wl_th' a local event or with an event that do&?rresponds to the HAQ, A, Qo, R, X, 11, 1, £, 0) where
not synchronize with. The constraints ensures that at least ] )
one process does not perform the stutter action. « Qs the set of assignments 16,

A HYDI program which contains theyNnc constraints is ~ * <} iS the set of assignments &,
compiled in a correspondent program with@xnc, which ¢ Qo = {s € @[ s,z |= I for some assignment to X},
are encoded in the constraints of thainmodule. We present  * 1= {(s1,0,52) € Q X/A xQ | 51,21, 4 s3, 05 [= T for
two different compilation processes, which correspondio some assignment;, r3 to X, X'},
standardnterleavingsemantics and to th@epsemantics [23]. ¢ p(s) = Flsvy,

Given the H/ DI program H = (M, main), with main = o us) =15y,
(PARAM, VAR, IVAR, INIT, TRANS, INVAR, SYNC) we define o &(s) = Zlsqvy,
the interleaving HYDI program Hy: (M, mainy:) where o 0(s1,0,52) = Tlsy(v)aw),sh(v1)-
mainyr = (PARAM, VAR, IVAR, INIT, TRANS;yT, INVAR) and The semantics of an ¥DI module is defined recursively

TRANSt = TRANSA YA Y A Pinr- on the hierarchical structure of the instantiation as for\6M
Given the HDI program P = (M,main), with modules (see Section IlI-C). If a modulé does not contain
main = (PARAM, VAR, IVAR, INIT, TRANS, INVAR, SYNC) module instantiations, its semantics is given by the SHS
we define the step ¥DI program Hser as (VUPX,W,I,T,Z F). The semantics of a ¥DI module
the tuple (M,mainsep), Where mainsrep — instantiation extends straightforwardly the semanticsaof
(PARAM, VAR, IVAR, INIT, TRANSstep, INVAR) @nd TRANSsrep  SMV module instantiation, by renaming each variablén
= TRANS Ay A 2. the flow condition with:;.v and substituting each parameter

The interleaving(step) semantics of a MDI program with  of M; with 5(p).
SYNC constraints is given by the STS associated to the moduldf a module M contains the instantiations
mainr (Mmainsrep). 7, its semantics is defined as the tuple
Remark 2:Note that in the step semantics theANSsree (VNZUP W, IAN,c7 Li, T ANz Tis Z A Njer Zis E N Njer Fi)-
does not contain the)y; constraint, enabling independent The semantics of an ¥DI program extends the definition
local actions and different synchronizations to be exatutef the un-timed case given in Section IV-Al in the straight-
by different processes at the same time. Moreover,stie forward way.



C. Untiming compilation instances.

We describe a compilation that maps aBll program into  2) Local time: In case of local time, the ¥DI program
an equivalent un-timed program. The compilation depends bh= (My, mainy) is defined as follows:

the semantics of the represented network of hybrid autamata, A1, = {MuYnem, where, if M =
Moreover we restrict theNIT, TRANS, INVAR and FLOW (PARAM, VAR, IVAR, INIT, TRANS, INVAR, FLOW),  then
declarations of every module as follows: My = (PARAMy, VAR, IVAR 7, INIT 7, TRANSy, INVAR /)
« the corresponding formulag T, Z, and F' are Boolean is defined as follows:
combinations of assignment to the discrete variables and  _ paraM; = PARAM,
linear constraints over the continuous variables (in the — VARy is obtained fromvar by changing the type of
form 3°; ¢jz; 4 ¢, where<e {<, >, <,>,=} where continuous variables fromontinuousto real and by
¢;, ¢ are constants and; are variables, or next variables adding the declaration df of type real,
or derivatives), — IVARy is obtained fromivar by extending the
. for all assignments to the discrete variable$’, the domain of ¢ with an additional symbolr and by
formulas Z and F' restricted tos are conjunctions of adding the declaration af of type real,
linear constraints (thusy = d — (¢ > 0A % < 1) — INITy = INIT,
is aIIowed., whilev = d — (& > 1vi < 0) or — TRANSy is obtained fromTRANS and FLOW as
v=d— (& # 0) are not allowed). follows: if T and F" are the corresponding formulas,
The restrictions is such that the constraints in the untimed TRANSy defines the formuld(e # 1) — (T At =
model are linear, and thus we consider LHA. The untimed HA(e=T) — (Fy At =t+6), where Fy; is
program may correspond either to the global-time or to the obtained fromF by replacing the predicates of the
local-time semantics. form >, @ >ac with 3 -, 2 — x5 e x4,
1) Global time: Let H be the H/ DI program (M, main) — INVARy = INVAR.
and letS; be the SHS corresponding to the process instance, i ,,,qin — (PARAM, VAR, IVAR, INIT, TRANS, INVAR, SYNC)
i of the main. We define the un-timedvl! programU = thenmainy = (PARAMy, VARy, IVARy/, INIT 7, TRANSy,
(My, mainy) as follows: . INVAR 7, SYNCy defined as follows:
« My = {Mu}tryerm, where, if M = — PARAMy = PARAM, VAR = VAR, IVARy = VAR,
(PARAM, VAR, IVAR, INIT, TRANS, INVAR, FLOW), then INITy = INIT, INVAR; = INVAR, SYNCy = SYNC.
My = (PARAMy, VARy, IVARy, INIT 17, TRANS, INVAR 17, — TRANSy is obtained fronTRANS by adding the con-

FLOWy) is defined as follows: . dition i.c = a — i.t = j.t for every synchronization
— PARAMy is obtained frompPARAM by adding a (i, j,a,b) of main.

further parameted,
— VARy is obtained fromvar by changing the type of D. Urgency

continuous variables frorontinuousto real, When modeling complex timing constraints, it is usually
— IVARy is obtained fromivar by extending the yseful to specify that a certain state is urgent, in the sense
domain ofe with an additional symbof, that we do not allow time elapsing in that statey Bi has
— INITy = INIT, a syntactic sugar to specify such condition. The syntax is

— TRANSy is obtained fromTRANS and FLOW as gjven by a new declarationRGENT followed by a predicate
follows: if 7" and F' are the corresponding formulas, over variables and parameters. The semantics is given by

TRANSy defines the formula(e # T) — T) A a new conditionp — (e # T), implicitly conjoined with the
((e = T) — Fy) where Fy is obtained fromF  transition condition.

by replacing the predicates of the forEj Z; ¢
with 3 2 — x> X, V. VALIDATION OF THE LANGUAGE

_~ INVARy = INVAR. We validated the use of the language modeling several hy-
o if main = (PARAM, VAR, IVAR, INIT, TRANS, INVAR, SYNC)brid automata benchmarks proposed in the literature [25], [
thenmainy = (PARAMy, VAR, IVARy, INITy7, TRANSy,  [29], [33], [44]. The models exploit the ¥DI features such

INVAR 77, SYNCy defined as follows: as the symbolic representation, the discrete interactioorsy

— PARAMy = PARAM, processes, the continuous variables and flow conditions and

— VARy is obtained fromVAR by passing to each urgent transitions. Moreover, we generate benchmarks with
process instance the additional argumé&nt an increasing number of components. In total, we modeled

— IVARy is obtained fromvAr by adding the decla- 12 different families of benchmarks, which are available at
ration of § of type real, http://es.fbk.eu/people/mover/hydi.

— INITy = INIT, TRANSy = TRANS, INVARy = To support the MDI language we extended the state-of-
INVAR, the-art model checker BISMV3. First, we added the support

— SYNCy is obtained fromsyNc by adding the syn- of parsing the DI language, then we added the support for
chronizations(i, j, T, T), for every pair of process compiling an H DI program to a SMV program (with infinite



state variables). The compilation is divided in two stege th VII. RELATED WORK
first performs the “untiming” of the model while the second

performs the composition of the processes. Several languages have been proposed to model Hybrid
Systems. A first key difference is in the kind of representati
V1. FORMAL VERIFICATION symbolic or explicit, used for specifying the discrete lbocas

A. SMT-based techniques of the system. . . -
Most languages that describe Hybrid Systems use an explicit
HYDI programs are compiled into STSs (as described {apresentation of the discrete locations and transitiaufch
Section IV-C) and analyzed with techniques basedSalisfi- are explicitly enumerated in the model. For this reason they
ability Modulo Theory(SMT) [37]. An SMT problem is the cannot specify flow and invariant conditions for a set of
satisfiability problem for Boolean combination of predesit |gcations. Most of the model checker for timed and hybrid
in particular decidable first-order theories. Given a folanu gytomata, have an input language with an explicit represent
¥, the satisfiability problem consists of deciding whethgjon for the discrete evolution of the systempeAAL [11]
there exists a model, an assignment to the free variablggdels a network of timed automata via message passing
in ¢, which satisfiesy. For example, the formulaz <= oyer communication channels. Relevant features are urgent
yAx+3=2zVz>=y withzy zeR,isinthe theory channels and locations, commited locations and bounded
of Linear Rational ArithmetidLRA) and it is satisfiable (e.qg. integer variables. Instead, the input languages ofTECH
x =5,y := 6,z := 8 is a model which satisfies the formula).[25] and PHAVER [22] allow to specify a network of Linear
The theory used in the verification of hybrid systems igybrid Automata. F TECH assumes the parallel composition
the theory of reals. In the restricted case of linear hybrigk all automata, which synchronize on labels with the same
automata [26], the predicates lie in the theory of LRA, fohame. In RAVER, the user can specify which automata
which efficient solvers exist. synchronize, enabling compositional verification [2bJDT
Several formal verification techniques for STSs relies amodels affine continuous dynamics with inputs, while guards
SMT solvers. Among them, one the most successful tecind invariants are convex polyhedra. The continuous dynami
niques is Bounded Model Checking (BMC), first proposegr each location is defined using a matrix. Also ®ASER
for finite-state systems [13], later extended to softwark [&nables non-linear constraints over continuous variaates
and hybrid systems [19]. BMC determines if the model of & js not compositional. BPAAL, HYTECH, PHAVER, D/DT
systemsS violates a property) up to a bounded number ofand HS®LvER do not allow rich types for discrete variables,
stepsk. In BMC the behavior of the system up fosteps such as Boolean, Enumeration, Word, Unbounded Integer
and the formulag are encoded in a Boolean formula. Theqnd Unbounded Real. Both HBRON [7] and MASACCIO
satisfiability of the formula is checked using a SMT solvér. [24] have an explicit representation for the discrete state
the formula is satisfiable theq is violated by S, otherwise space. The first focuses on hierarchical specification,atter!
S does not violateg up to k steps. The BMC approach wason compositionality. CHECKMATE modekreshold event-
also extended in order to perform unbounded model checkirfiiven hybrid systeméTEHS) using a subset of the standard
overcoming the drawback of the incompleteness. Metho@gati AB STATEFLOW/SIMULINK blocks and a set of cus-
used to perform unbounded model checking with a SMT solv@§m blocks. TheHybrid Systems Interchange FormgtsiF)
are k-induction [18], [34], [38], interpolation-based n&dd [39] and theCommon Interchange FormdCiF) [42] were
checking [31], [43], and abstraction refinement [16]. proposed as standards to represent and interchange models
of Hybrid Systems. I4IF does not allow hierarchical state
machines, while G allows to write rich constraints (DAE,
The HyDI input language enables the development ddifferential Algebraic Equations), which mix variablesdan
formal verification techniques which exploits the struetwf derivatives.
the hybrid automata network. Other languages represent symbolically the entire Hybrid
In particular, we developed a new BMC encoding whicBystem.
exploit an efficient local encoding of the components arnthe Hybrid System Description Language Y$DEL) [41]
superimpose compatibility constraints resulting from fy@- uses a symbolic representation also for the discrete modes
chronizations [14]. This paradigm has been pushed forwaadd switches. However, ¥$DEL describes only discrete time
by considering the structure mandated by scenarios spdditbrid Systems and allows the communications of multiple
fied by means of sequence message charts: we construcieponents only via shared variables.
an encoding which exploits the events of the scenario ahtybrid SAL [40] extends the language of the SAL [12]
enables the incremental use of the SMT solver; moreoverpdel checker to model hybrid systems. It allows arbitrary
we simplify the encoding with invariants discovered apptyi polynomials over continuous variables and affine dynamics,
discrete model checking on an abstraction of the network [4]ut it forces to define flow conditions and invariants exgplyci
Finally, we conceived a new compositional algorithm, whicfor each mode of the system. Moreover, since components in
combine over- and under-approximation of the components$&\L communicates through shared variables, it not easy to
effectively build a trace in the network [5]. express the synchronization of asynchronous componeats vi

B. Exploiting the network



discrete interaction, as in the hybrid automata case.
The language HANG [20] is very close to WDiI and
was developed

in the project area H of AVACS asg

(5]

intermediate input language for several verification tools
(e.g. HYSAT [19], FOMC [17]). The language employs

a symbolic representation for hybrid automata and enabldd
very expressive constraints for continuous variablesp alsg
affine and non-linear. The language allows to express the
composition of hybrid automata. However, the automat#!

communicates through shared variables and automata ate

composed interleaving their transitions. Thus, there is no
[11] J.Bengtsson, K. G. Larsen, F. Larsson, P. PetterssoiaYi. UPPAAL

native support for event-based synchronizations.

Hybrid programs [9], [35] are similar to programs foriz]
discrete systems, but they add the description of the contis
evolution. [9] extends the synchronous language Quartk [
with continuous variables. The user specifies in the program

%)

when the continuous evolution can happen. The semantic|is
such that the discrete statements in the program are istanta

neous, while the statements over continuous variablesvall
the elapse of time. The continuous evolution is specifiedgusi

fs)

ODE (Ordinary Differential Equations). Assignments in thél6]
program are expressed in a functional form, thus they a[rlei]

less expressive than the relational representation 9DH

Two blocks of statements can run in parallel (synchronous

composition), while there is no support for asynchrono
composition. These hybrid programs are then translated i

o

a monolithic extended finite state machine. Also the hybrijgo]
programs defined by Platzer [35] allow rich constraints over

continuous variables, sequences, loops and non-detatiaini
choiches of statetements. However, they miss the possib

e

of expressing the parallel execution of programs. Hybrid
programs are very different in nature from the represeomati (21]

used in HD1.

VIIl. CONCLUSIONS

[22]

[23]

We described MDI, a novel language that has been specif-

ically designed in order to support the verification of hybri

synchronized processes with symbolic techniquesDHex-

[25]

tends the SMV language into two directions: on one hand,
we introduced timing aspects such as continuous variabléd
and flow conditions; on the other hand we define a top-levgl,
structure to specify the network and the synchronization of
the components. The language has been used as backlg#gG. Holzmann. Spin model checker, the: primer and reference manual
for translations of languages such as MatLab StateFIow/E‘[yg]

mulLink and Altarica [2]. We are working on new efficient

verification techniques that scale up the analysis by takita

account the timing and synchronizing aspects [4], [5], [14]
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