
HYDI: a language for symbolic hybrid systems
with discrete interaction

Alessandro Cimatti
Fondazione Bruno Kessler

Email: cimatti@fbk.eu

Sergio Mover
Fondazione Bruno Kessler

Email: mover@fbk.eu

Stefano Tonetta
Fondazione Bruno Kessler

Email: tonettas@fbk.eu

Abstract—Complex embedded systems consist of software and
hardware components that operate autonomous devices inter-
acting with the physical environment. The complexity of such
systems makes the design very challenging and demands for
advanced validation techniques.

Hybrid automata are a clean and consolidated formal language
for modeling embedded systems which include discrete and
continuous dynamics. They are based on a finite-state automaton
structure enriched with invariant and flow conditions to model
the continuous dynamics.

In this paper, we propose a new language, HYDI, for modeling
Hybrid systems with Discrete Interaction. The purpose of the
language is to apply state-of-the-art symbolic model checkers for
infinite-state systems to the verification of complex embedded
systems design. HYDI extends the standard symbolic language
SMV with timing and synchronization aspects. The language dis-
tinguishes between discrete and continuous variables. Variables
inside SMV modules evolve synchronously. Top-level modules
represent the asynchronous components of a network and use
explicit events to synchronize. The new language is automatically
compiled into equivalent discrete-time infinite-state transition
systems.

I. I NTRODUCTION

Complex Embedded Systems(CES) consist of software
and hardware components that operate autonomous devices
interacting with the physical environment. They are now part
of our daily life and are used in many industrial sectors
including automotive, aerospace, consumer electronics, com-
munications, medical and manufacturing. CES are used to
carry out highly complex and often critical functions. They
are used to monitor and control industrial plants, complex
transportation equipment, and communication infrastructure.
The development process of CES is widely recognized as a
highly complex task. A thorough validation and verification
activity is necessary to enhance the quality of the CES and,
in particular, to fulfill the quality criteria mandated by the
relevant standards.

CES are composed of many heterogeneous components,
interacting with external environments, and deal with con-
tinuous and discrete dynamics. They may include multiple
computation units, with possibly multiple cores per unit, and
customizable hardware to implement computationally inten-
sive functions. CES are often the result of a tight integration of
hardware and software, with different families of applications
for the same platform, communication ASICs specialized in
the interaction with complex network protocols, and control
ASICs for the acquisition of data from analog sensors.

Networks of communicatingHybrid Automata[26] (HAs)
are increasingly used as a formal framework to model the
interaction between discrete and continuous components. The
architecture is typicallyGlobally Asynchronous/Locally Syn-
chronous(GALS), where the global asynchronicity takes into
account the communication of shallowly connected modules,
while the local synchronicity refers to the programming
paradigm for each of the modules.

Historically, most of the formal verification tools have
focused on either aspect. Some privilege an asynchronous
semantics, with a language oriented to the representation
of asynchronous components, and implementing variants of
(extensions of) explicit-state search; examples are SPIN [28],
UPPAAL [11], HYTECH [25], and PHAVER [22]. Others priv-
ilege the representation of synchronous modules, and rely on
a synchronous engine, making substantial use of symbolic
techniques. Examples are SMV and VIS.

In this paper we address the problem of symbolically
representing complex hybrid systems for formal verification.
Our work is motivated by the experience with the NUSMV
model checker, that has been widely used as back-ends in
many formal verification flows for GALS, either in its discrete
version [3], [32], and in its timed/hybrid extension [1], [2]. All
these translations to NUSMV have required similar activities,
such as dealing with synchronization primitives and with
timing aspects, that must be encoded into formulas over
symbolic variables. Furthermore, the translational approach
is often unsatisfactory, since the resulting models lost the
structure of the original problem, and that can not be exploited
by the model checker.

In this paper, we propose a novel language, called HYDI,
that has been specifically designed to raise the abstractionlevel
for modeling hybrid GALS in a fully symbolic manner. HYDI
(HYbrid systems with Discrete Interaction) can be seen as an
extension of the SMV language, able to represent networks
of hybrid systems. In particular, the SMV language has been
extended into two directions: on one hand, we introduced
timing aspects such continuous variables and flow conditions;
on the other hand we define a top-level structure to specify
the network and the synchronization of the components.

HYDI has the following distinguishing features. First, it has
a symbolic definition of flow conditions which are attached to
symbolic predicates rather than states. This may allow for a
compact representation of complex systems, where the same

flow condition applies to a large number of states. Second,
it allows for the definition of symbolic transition relations,
which allows an easy encoding of macro transition or parallel
composition. Third, in the spirit of GALS, HYDI provides
the generic primitives for specifying an application-specific
scheduler definition, which allows the encoding of different
scheduling strategies.

The HYDI language comes with four semantics. These
are obtained by combining two orthogonal dimensions: the
way time is treated (global- vs local-time), and asynchronicity
(interleaving vs step). Although the semantics are equivalent
from the reachability point of view, they induce different
translations into the SMV language and enhance different
verification techniques so that we can tailor the choice to the
analyzed system. The semantics are obtained by combining
two orthogonal dimensions: the way time is treated (global-
vs local-time), and asynchronicity (interleaving vs step). In
addition to providing a fully formal account of the language,
these semantics induce different translations into the SMV
language.

Support for HYDI has been fully implemented on top of
NuSMV3, a “synchronous” extension of the publicly avail-
able NuSMV2, extended with continuous variables and SMT
techniques. Two HYDI-based verification flows are supported.
The first one is based on a translation to a monolithic SMV
program and relies on the SMT-based verification engine that
exploit the MathSAT SMT solver to deal with infinite-domain
variables. The second, more advanced one, allows to exploit
the structure of the network of the system under analysis [14].
The HYDI language was used to encode a comprehensive set
of benchmarks (publicly available at http://es.fbk.eu/people/
mover/hydi) and as back-end for translations of languages such
as MatLab StateFlow/SymulLink and Altarica [2].

The rest of this paper is structured as follows. In Section II,
we overview the features of HYDI. In Section III, we introduce
some background notions, namely, syntax and semantics of
SMV and hybrid automata. In Section IV, we define the
abstract syntax and semantics of the language. In Section
VI, we overview the HYDI-based verification techniques and
flows. In Section VII, we discuss the related work, and in
section VIII, we draw some conclusions.

II. OVERVIEW OF THE LANGUAGE

A HYDI program is given by a set ofmodules, a set of
processes, a set ofsynchronizationconstraints. Figure 1 shows
a small example of communicating tanks specified in HYDI.
Each tank has an input and output flow of water. When a tank
is full, the input flow of the other tank may be doubled.

A. Modules

HYDI modules (e.g.,Tank) extend SMV modules in
order to specify explicitly the events used for synchronization
and timing aspects such as continuous variables and flow
conditions. The SMV language has been widely used to
specify complex finite-state systems. The system description
is typically decomposed into modules. Essentially, a module is

MODULE main
VAR
tank1: Tank;
tank2: Tank;

SYNC tank1, tank2 EVENTS filled, doubling;
SYNC tank1, tank2 EVENTS unfilled, halving;
SYNC tank2, tank1 EVENTS filled, doubling;
SYNC tank2, tank1 EVENTS unfilled, halving;

MODULE Tank
EVENT filled, unfilled, doubling, halving, tau;
VAR
state: {empty, emptying, filling, full};
flow: {single, double};
level: continuous;
INIT
state!=full & flow=single
INVAR
level>=0 & level<=100
INVAR
state=empty -> level=0
INVAR
state=full -> level=100
TRANS
EVENT=doubling <-> (flow=single & next(flow)=double)
TRANS
EVENT=halving <-> (flow=double & next(flow)=single)
TRANS
EVENT=filled <-> (state=filling & next(state)=full)
TRANS
EVENT=unfilled <-> (state=full & next(state)=emptying)
TRANS
state=emptying -> next(state)!=full
TRANS
state=filling -> next(state)!=empty
TRANS
next(level)=level
FLOW
flow=single -> (der(level)>=-10 & der(level)<=10)
FLOW
flow=double -> (der(level)>=-10 & der(level)<=20)
FLOW
state=emptying -> (der(level)<=0)
FLOW
state=filling -> (der(level)>=0)
URGENT
state=emptying & level=0
URGENT
state=filling & level=100

Fig. 1. A small HYDI example.

a set of declarations and constraints on the declared variables.
Modules can be instantiated several times and nested to form
a complex synchronous hierarchy.

In particular, modules may contain aVAR section with the
declaration of variables;INIT constraints defining the initial
states;INVAR constraints restricting the valid assignments
to the variables; andTRANS constraints defining the valid
transitions from one state to another.

HYDI modules inherits all the constructs of SMV modules
and add three main new features:

• events, a list of symbols used in the synchronizations;
these are introduced with the keywordEVENT; the key-
word can be also used in theTRANS constraints as it was
an input variable; intuitively, transitions are distinguished
by the event which is being fired;

• continuousvariables, a new type of variables declared
with the keyword continuous; these are variables
which are allowed to change in a timed transitions and
evolve according to some function continuous in time;

• flow conditions, used to constrain the continuous evo-
lution of continuous variables; the constraints are intro-
duced with the keywordFLOW and may refer to the
derivative of the continuous variables, denoted withder.

B. Processes

HYDI processes are instantiation of HYDI modules (in
the example,tank1 andtank2 are processes). Differently
from SMV processes, they can run both asynchronously
or synchronize on shared events. Processes are declared in
the main module of a HYDI program. They represent the
components a network whose topology is defined by the syn-
chronizations. The network is not hierarchical in that there is
no further asynchronous decomposition of a process, although
the modules may contain synchronous instantiation of other
modules.

Variables and events of a module are renamed in the process
by prefixing the name of the process itself (with the classic
dot notation). In the example, the variablestate of module
Tank is renamed intank1.state by the processtank1.

Processes can share variables through the passage of param-
eters in the instantiations. However, they are limited to reading
the variables of other processes while writing is not allowed.
This permits an easy identification of when the variables
do not change even if the transitions are described with a
generic relation (compared to a more restrictive functional
description).

C. Synchronizations

Synchronizations specify if two events of two processes
must happen at the same time. If two events are not syn-
chronized, they must interleave. Such synchronization is quite
standard in automata theory and process algebra. It has been
generalized with guards to restrict when the synchronization
can happen.

In order to capture the semantics of some design languages,
it is necessary to enrich the synchronization with further

singlestart double

doubling

halving

Fig. 2. LTS example.

constraints that specify a particular policy scheduling the
interaction of the processes. For this reason, it is possible to
enrich the main module of the HYDI program with ascheduler
specified in terms of state variables, initial and transition
conditions. These conditions may predicate over the events
of the processes.

III. B ACKGROUND NOTIONS

A. Labeled Transition Systems

Labelled Transition Systems(LTSs) are a standard formal-
ism to represent the semantics of languages, either based on
automata, algebras or other higher-level description of com-
putation. In particular, LTSs are used to define the semantics
of Hybrid Automata.

An LTS is a tuple〈Q,A,Q0, R〉 where

• Q is the set of states,
• A is the set of actions/events (also called alphabet),
• Q0 ⊆ Q is the set of initial states,
• R ⊆ Q×A×Q is the set of labeled transitions.

A traceis a sequence of eventsw = a1, . . . , ak ∈ A∗. Given
A′ ⊆ A, the projectionw|A′ of w onA′ is the sub-trace ofw
obtained by removing all events inw that are not inA′.

A path π of S over the tracew = a1, . . . , ak ∈ A∗ is
a sequenceq0

a1→ q1
a2→ . . .

ak→ qk such thatq0 ∈ Q0 and,
〈qi−1, ai, qi〉 ∈ R for all i such that1 ≤ i ≤ k. We say thatπ
acceptsw. Given a predicatep ⊆ Q we say thatπ terminates
in p iff qk ∈ p.

A pathπ of S is a sequenceq0
a1→ q1

a2→ . . .
ak→ qk such that

q0 ∈ Q0 and,〈qi−1, ai, qi〉 ∈ R for all i such that1 ≤ i ≤ k.
Given a predicatep ⊆ Q we say thatπ terminates inp iff
qk ∈ p.

The languageL(S) of an LTSS is the set of traces accepted
by some run ofS. Given a predicatep ⊆ Q, the language
Lp(S) of an LTSS is the set of traces accepted by some run
of S terminating inp.

Example 1:Consider the simple LTS of Figure 2. The
system has two states,single and double, and two events,
doubling andhalving. The system alternates between the two
states. The only possible path loops over the eventsdoubling
andhalving.

The parallel compositionS1||S2 of two LTSs S1 =
〈Q1, A1, Q01, R1〉 and S2 = 〈Q2, A2, Q02, R2〉 is the LTS
〈Q,A,Q0, R〉 where

• Q = Q1 ×Q2,
• A = A1 ∪A2,

• Q0 = Q01 ×Q02,
• R := {〈〈q1, q2〉, a, 〈q′1, q

′
2〉〉 | 〈q1, a, q′1〉 ∈

R1, 〈q2, a, q′2〉 ∈ R2}
∪{〈〈q1, q2〉, a, 〈q

′
1, q2〉〉 | 〈q1, a, q

′
1〉 ∈ R1, a 6∈ A2}

∪{〈〈q1, q2〉, a, 〈q1, q′2〉〉 | 〈q2, a, q
′
2〉 ∈ R2, 1a 6∈ A1}.

The parallel composition of two or more LTSsS1|| . . . ||Sn

is also called anetwork. If an event is shared by two or more
components, we say that the event is a synchronization event;
otherwise, we say that the event is local. Thereachability
problem for a network of LTSs consists of checking if there
exists a pathπ reaching a given conditionp.

Remark 1:The set of events is not restricted to be finite.
Thus, it is possible to model also variable sharing where the
two systems may synchronize the value of the variables on
a common event. In fact, it is sufficient to encode the value
of the variable in the event itself: for example, if on eventa
two systems synchronize the value of the real variablex, we
use the set of events{〈a, x〉}x∈R and force that a transition
〈q, 〈a, x〉, q′〉 exists only if the value ofx in q is x.

In the parallel composition presented above the local events
of the components are interleaved. We refer to this semantics
also asinterleavingsemantics of the composition. However,
since the interaction among automata happens only on the
shared events, the local actions are independent. Following
[23], we now define an alternative equivalent semantics, called
step semantics, where independent transition can be fired at
the same time.

More formally, with the step semantics, the parallel com-
positionS1|| . . . ||Sn of n LTSs is defined as:

• Q = Q1 × . . .×Qn,
• A = Aǫ

1 × . . .×Aǫ
n, whereAǫ

ii = Ai ∪ {ǫ},
• Q0 = Q01 × . . .×Q0n,
• R := {〈q, a, q′〉 ∈ Q×A×Q′ | for 1 ≤ i ≤ n〈qi, ai, q

′
i〉 ∈

Ri and for all 1 ≤ i < j ≤ n, if ai 6= aj then ai 6∈
Aj , aj 6∈ Ai}.

Theorem 1 (Step semantics [23]):A predicatep is reach-
able in the interleaving semantics iff it is reachable in thestep
semantics.

B. Symbolic representation

When the system is too large, instead of storing states and
transitions explicitly, it is wiser to represent them symbolically
by means of symbolic formulas. The systemS is described
with a setV of state variables. We useV ′ to denote the set
of next state variables{v′}v∈V , wherev′ represents the next
value of v. A state of the system becomes an assignment to
the variablesV and a proposition is seen as a predicate over
the variablesV . A set of states is represented by a formula
α(V) over the variablesV : a states belongs to the set ifs, as
an assignment, makes the formula true (namely,s |= α(V)).

A Symbolic Transition System (STS)S is a tuple
〈V,W, I, T, Z〉 where:

• V is the set of symbolic variables representing the states,
• W is the set of symbolic variables representing the events,
• I(V) is the initial formula,

MODULE main
VAR
flow: {single, double};
IVAR
event: {doubling, halving};
INIT
flow=single
TRANS
(event=doubling <-> (flow=single & next(flow)=double)) &
(event=halving <-> (flow=double & next(flow)=single))

Fig. 3. A small SMV example.

• T (V,W, V ′) is the transition formula,
• Z(V) is the invariant formula.

Every STSS corresponds to a LTSC(S):

• Q is the set of assignments to the variablesV ,
• A is the set of assignments to the variablesW ,
• Q0 = {s ∈ Q | s |= I},
• R = {(s1, a, s2) ∈ Q×A×Q | s1, a, s′2 |= T }.

Example 2:The LTS of Example 1 can be represented with
one state variableflow and one input variableevent. The
corresponding STS would be:

• V := {flow},
• W := {event},
• I := (flow = single),
• T := (event = doubling ↔ (flow = single ∧ flow′ =
double)) ∧ event = halving ↔ (flow = double ∧
flow′ = single))

C. SMV

The SMV language [30] is widely used to describe complex
finite-state STSs. It is mostly known as the input language of
two of the most famous symbolic model checkers, namely Ca-
dence SMV http://www.kenmcmil.com/smv.html and NuSMV
http://nusmv.fbk.eu.

The state of a system is described with a set of sym-
bolic variables. Set of states and transitions are represented
by formulas. Symbolic variables are grouped intomodules.
Modules can be instantiated several times and composed
synchronously1. We refer to each instantiation as a component.
The transition relations of the components are conjoined.
Therefore, each step of the composition is equivalent to the
conjunction of a step in each component.

We consider as baseline the version of SMV described in
[15] (thus with input and frozen variables) extended with real
variables. Figure 3 shows an SMV example representing part
of the discrete component of the tank defined in the HYDI
example of Figure 1.

An SMV program consists of a set of
modules. Each moduleM can be seen as tuple
〈PARAM, VAR, IVAR , INIT , TRANS, INVAR 〉, where:

• PARAM is a setP of formal parameters,
• VAR is a set of variable declaration defining a setV of

variables and for each variablev a typeτ(v),

1Also asynchronous composition without synchronization ispossible but is
deprecated and not considered here.

• IVAR is a set of input variable declaration defining a set
W of variables and for each variablew a typeτ(w),

• INIT is a set of initial condition declaration defining a
formula I over the variablesV ∪ P ,

• TRANS is a set of transition condition declaration defining
a formulaT over the variablesV ∪ P ∪W ∪ V ′ ∪ P ′,

• INVAR is a set of invariant condition declaration defining
a formulaZ over the variablesV ∪ P .

The VAR declaration may contain also module instantiations,
i.e., variables whose type is in the form〈M,β〉, whereM is
a module andβ associates each formal parameter to an actual
parameter. For every parameterp ∈ P , the actual parameter
β(p) must evaluate to the same type ofp.

A SMV program always has amain module, which is the
root node of a hierarchy given by the instantiations.

The semantics of SMV is defined in terms of Sym-
bolic Transition Systems (STSs). An STSS is a tuple
〈V,W, I, T, Z〉 where:

• V is the set of symbolic variables representing the states,
• W is the set of symbolic variables representing the events,
• I(V) is the initial formula,
• T (V,W, V ′) is the transition formula,
• Z(V) is the invariant formula.

Every STSS corresponds to a Labelled Transition System
(LTS) C(S):

• Q is the set of assignments to the variablesV ,
• A is the set of assignments to the variablesW ,
• Q0 = {s ∈ Q | s |= I},
• R = {(s1, a, s2) ∈ Q×A×Q | s1, a, s′2 |= T }.

The semantics of a module is defined recursively on the
hierarchical structure assuming that there is no circular de-
pendency in the hierarchy (see [30] for further details). If
a moduleM does not contain any module instantiation, its
semantics is given by the STS〈V ∪ P,W, I, T, Z〉. If the
variable declaration contains the module instantiationsI such
that, for all i ∈ I, τ(i) = 〈Mi, βi〉, let us consider the STS
SMi

= 〈VMi
,WMi

, IMi
, TMi

, ZMi
〉 recursively defined for

Mi. Let Si be the STS associated to the instancei of type
〈Mi, β〉, defined as〈Vi,Wi, Ii, Ti, Zi〉, where:

• Vi is obtained byVMi
by removing the formal parameters

of Mi and renaming the other variablesv ∈ VMi
with i.v,

• Wi is obtained byWMi
by renaming each variablew ∈

WMi
with i.w,

• Ii is obtained byIMi
renaming each variablev with i.v

and substituting each parameterp of Mi with β(p),
• Ti is obtained byTMi

renaming each variablev with i.v
and substituting each parameterp of Mi with β(p),

• Zi is obtained byZMi
renaming each variablev with i.v

and substituting each parameterp of Mi with β(p).

The STSS of M is defined as the tuple〈V \ I ∪ {i.v | i ∈
I, v ∈ Vi}∪P,W, I∧

∧
i∈I Ii, T ∧

∧
i∈I Ti, Z∧

∧
i∈I Zi〉. The

semantics of an SMV program is given by the STS associated
to the main module.

D. Hybrid automata

Hybrid automata are a mathematical model to represent
hybrid systems such as embedded systems involving both
continuous and discrete dynamics. There are several variants
of hybrid automata. In this paper, we refer to the formalism
introduced in [6] and surveyed in [26]. Intuitively, they are
finite-state automata enriched with continuous variables whose
dynamics change from node to node of the automata.

A Hybrid Automaton(HA) [26] is a tuple
〈Q,A,Q0, R,X, µ, ι, ξ, θ〉 where

• Q is the set of states,
• A is the set of events,
• Q0 ⊆ Q is the set of initial states,
• R ⊆ Q×A×Q is the set of discrete transitions,
• X is the set of continuous variables,
• µ : Q→ P (X, Ẋ) is the flow condition,
• ι : Q→ P (X) is the initial condition,
• ξ : Q→ P (X) is the invariant condition,
• θ : R → P (X,X ′) is the jump condition,

whereP represents the set of predicates over the specified
variables.

A Linear HA (LHA) is an HA such that:
• the initial, invariant, flow, and jump conditions are

Boolean combinations of linear inequalities;
• the flow conditions contain variables iṅX only.

Moreover, we assume that the invariant conditions of linear
HA contain only conjunctions of inequalities.

Example 3:

−10 ≤ ˙level ≥ 10
0 ≤ level ≤ 100

start
−10 ≤ ˙level ≥ 20
0 ≤ level ≤ 100

level′ = level
doubling

level′ = level
halving

A networkH of HAs is the parallel composition of two
or more HAs. We consider two semantics for networks of
HAs: the global-time semantics where all the components syn-
chronize on timed events, and the local-time (or time-stamps)
semantics where the timed events are local and components
must synchronize the time on shared events.

Consider a networkH = H1|| . . . ||Hn of HAs with Hi =
〈Qi, Ai, Q0i, Ri, Xi, µi, ιi, ξi, θi〉. The global-time semantics
(or time-action semantics) [26] ofH is the network of LTSs
NGLTIME (H) = S1|| . . . ||Sn with Si = 〈Q′

i, A
′
i, Q

′
0i, R

′
i〉

where

• Q′
i = {〈q, x〉 | q ∈ Qi, x ∈ R

|Xi|},
• A′

i = Ai ∪ {〈TIME, δ〉 | δ ∈ R},
• Q′

0i = {〈q, x〉 | q ∈ Q0i, x ∈ ιi(q)},
• R′

i =
{〈〈q, x〉, a, 〈q′, x′〉〉 | 〈q, a, q′〉 ∈ Ri, 〈x, x

′〉 ∈

θi(q, a, q
′), x ∈ ξi(q), x

′ ∈ ξi(q
′)}∪

{〈〈q, x〉, 〈TIME, δ〉, 〈q, x′〉〉 | there existsf satisfying
µi(q) s.t. f(0) = x, f(δ) = x′, f(ǫ) ∈ ξ(q), ǫ ∈ [0, δ]}.

Consider a networkH = H1|| . . . ||Hn of HAs with Hi =
〈Qi, Ai, Q0i, Ri, Xi, µi, ιi, ξi, θi〉. The local-time semantics
(or time-stamps semantics) [10] ofH is the network of LTSs
NLOCTIME (H) = S1|| . . . ||Sn with Si = 〈Q′

i, A
′
i, Q

′
0i, R

′
i〉

where
• Q′

i = {〈q, x, t〉 | q ∈ Qi, x ∈ R
|X|, t ∈ R},

• A′
i = {〈a, t〉 | a ∈ Ai, t ∈ R} ∪ {TIMEi},

• Q′
0i = {〈q, x, 0〉 | q ∈ Q0i, x ∈ ιi(q)},

• R′
i =

{〈〈q, x, t〉, 〈a, t〉, 〈q′, x′, t〉〉 | 〈q, a, q′〉 ∈ Ri, 〈x, x
′〉 ∈

θi(q, a, q
′), x ∈ ξi(q), x

′ ∈ ξi(q
′)}∪

{〈〈q, x, t〉, TIMEi, 〈q, x
′, t′〉〉 | there existsf satisfying

µi(q) s.t. f(t) = x, f(t′) = x′, f(ǫ) ∈ ξi(q), ǫ ∈ [t, t′]}.
Given a state〈q, x, t〉 ∈ Qi we denote withtime(〈q, x, t〉) the
componentt of the state.

Theorem 2 (Equivalence of two semantics [10]):Let
pt the set of states 〈q1, q2, . . . , qn〉 of a NLOCTIME

where the states of the components have the same time
(time(q1) = time(q2) = . . . = time(qn)). Then, for every
predicate p, p is reachable inNGLTIME (H) iff p ∧ pt is
reachable inNLOCTIME (H).

IV. H YDI

A. UntimedHYDI programs

In this section we present the semantics of an HYDI
program without continuous variables and flow conditions
(untimed). In particular, we focus on the specification of
processes and process synchronizations.

1) Syntax and semantics:A HYDI program is composed
of a set of module declarations and amain module. Themain
module declares a set of process instancesI and constraints
over the variables of the processes. In particular, we use the
constraints in the main module to encode the synchronization
constraints of the processes and ad-hoc scheduler policies.

In HYDI, each process contains an enumerative event input
variable ǫ (EVENT in the concrete syntax), which is used
as guard for the transitions of the process. To model the
asynchronous behavior we add the stutter actionS to the
domain ofǫ. Then, we force a process to not change its state
when it performs the actionS. The constraints in themain
module can predicate over of the variables of an instance,
thus forcing stuttering and synchronizations.

We identify the set of instances of an HYDI program with
I. We useIVAR S

i when referring to the set of input variables
IVAR i of an instancei, where ǫ is enriched with the action
S, namelyIVAR i[〈ǫ, τ(ǫ)〉/〈ǫ, τ(epsilon) ∪ {S}〉]. We identify
the set of all the variables of a program withVARH = (VAR \
I) ∪

⋃
i∈I i.VARi, whereVAR is the set of variables declared

in the main module.
An untimed HYDI programH is a tuple〈M,main〉 where:
• M = {M1, . . . ,Mm}, such that eachMi =

〈PARAMi, VARi, IVAR i, INIT i, TRANSi, INVAR i〉 is a mod-
ule declaration,

• main = 〈PARAM, VAR, IVAR , INIT , TRANS, INVAR〉 is the
main module such that:

– PARAM is an empty set of parameters,
– VAR is a set of declarations defining the set of

variablesV ,
– IVAR is a set of declarations defining the set of input

variablesW ,
– INIT is the set of initial conditions declarations which

defines a formulaI over VARH ,
– TRANS is a set of transition conditions declaration

defining a formulaT over variables declared in
VARH ∪ IVAR H ∪ VAR ′

H ,
– INVAR is the set of invariant conditions declarations

which defines a formulaZ over VARH .

• for all the instancesi ∈ I = {i|i ∈ V andτ(i) =
〈Mi, β〉}:

– Mi ∈ M,
– TRANSi of Mi is a transition condition declaration

defining the formulaTi over the variablesV ∪ P ∪
W ∪ V ′ (i.e. all the input parameters can only be
read by the processi).

– ǫ ∈Wi,
– τ(ǫ) = {a1, . . . , aj}, such thatak 6= S is an

enumerative value, for1 ≤ k ≤ j,

Note that we allow to modelshared variablesbetween
different instances, with the restriction that only the process
which declares a variable can write its value, while the
other processes can only read the value of the variable. The
restriction is expressed in the constraints enforced on the
TRANSi formula for each processi, which can only change
its next state variablesV ′.

As explained in III-C, we associate a STS to every instance
i ∈ I of type 〈Mi, β〉. However, to enforce the stuttering
condition, we first add toτ(ǫ) the valueS and then we add
to theTi formula the frame condition when the action isS.
The frame condition forces each state variablev ∈ Vi not
to change its value during a transition. Thus, given the STS
Si = 〈Vi,Wi, Ii, Ti, Zi〉 associated to a process instancei ∈ I
of type 〈Mi, β〉 defined as in III-C, we define the STSSS

i =
〈V S

i ,W
S
i , I

S
i , T

S
i , Z

S
i 〉 as follows:

• V S
i := Vi,

• W S
i := Wi, whereτ(ǫ) = {a1, . . . , ak} ∪ {S},

• IS
i (V

S
i) := I(Vi),

• T S
i (V S

i ,W
S
i , V

S′

i) := Ti(Vi,Wi, V
′
i)∧ (ǫ = S →∧

v∈Vi
v′ = v),

• ZS
i (V

S
i) := Zi(Vi).

The STS associated to themain module of the HYDI
program H = 〈M,main〉 is defined as STSH =
〈V \ I,W, I ∧

∧
i∈I I

S
i , T ∧

∧
i∈I T

S
i , Z ∧

∧
i∈I Z

S
i 〉. The se-

mantic of an HYDI program is given by the STS associated
to its main module.

2) Synchronization constraints:The constraints in themain
module of an HYDI program allows to express general
synchronization policies between the processes. We enable
the modeling of point-to-point synchronizations between pro-

cesses. We add the synchronization declarationsSYNC to the
main module of the HYDI program〈M,main〉. A synchro-
nization in SYNC is a tuple 〈i, j, ai, aj〉, where i, j ∈ I,
ai ∈ τ(i.ǫ) and aj ∈ τ(j.ǫ). The synchronization enforces
the instancesi andj to perform a transition labelled with the
eventai andaj at the same time.

Since the synchronization constraints are declared between
couples of processes, we define the transitive synchronization
relation SYNC∗ from SYNC. The tuple 〈i, j, ai, aj〉 is in
SYNC* iff there exists a sequence of instancesl1, l2, . . . , ln
such that〈lk, lk+1, alk , alk+1

〉 ∈ SYNC for 1 ≤ k ≤ n, i = l1
andj = ln.

Example 4:Consider three instancesi, j, k with the syn-
chronization constraints〈i, j, ai, aj〉 and 〈j, k, aj , ak〉. When
the instancei synchronizes with the instancej on the events
ai and aj , also the instancek synchronizes with the in-
stancej on the eventak. Thus, in this exampleSYNC∗ =
{〈i, j, ai, aj〉, 〈j, k, aj , ak〉, 〈i, k, ai, ak〉}.

To encode the synchronization declarations we define the
following constraints:

γ =
∧

〈i,j,ai,aj〉∈SYNC∗

i.ǫ = ai ↔ j.ǫ = aj , ψ =
∨

i∈I

i.ǫ 6= s,

φINT =
∧

i,j∈I,
i6=j

∧

aj∈τ(j.ǫ)

j.ǫ = aj →
∧

ai∈τ(i.ǫ),
〈i,j,ai,aj〉/∈SYNC∗

i.ǫ = s.

The synchronization constraintsγ enforces the synchroniza-
tion between the processes. The interleaving constraintφINT

enforces that a processi performs the stutter event if another
process moves with a local event or with an event that does
not synchronize withi. Theψ constraints ensures that at least
one process does not perform the stutter action.

A HYDI program which contains theSYNC constraints is
compiled in a correspondent program withoutSYNC, which
are encoded in the constraints of themainmodule. We present
two different compilation processes, which corresponds tothe
standardinterleavingsemantics and to thestepsemantics [23].

Given the HYDI programH = 〈M,main〉, with main =
〈PARAM, VAR, IVAR , INIT , TRANS, INVAR , SYNC〉 we define
the interleaving HYDI programHINT 〈M,mainINT 〉 where
mainINT = 〈PARAM, VAR, IVAR , INIT , TRANSINT , INVAR 〉 and
TRANSINT = TRANS∧ γ ∧ ψ ∧ φINT .

Given the HYDI program P = 〈M,main〉, with
main = 〈PARAM, VAR, IVAR , INIT , TRANS, INVAR , SYNC〉
we define the step HYDI program HSTEP as
the tuple 〈M,mainSTEP〉, where mainSTEP =
〈PARAM, VAR, IVAR , INIT , TRANSSTEP, INVAR 〉 and TRANSSTEP

= TRANS∧ γ ∧ ψ.
The interleaving(step) semantics of a HYDI program with

SYNC constraints is given by the STS associated to the module
mainINT (mainSTEP).

Remark 2:Note that in the step semantics theTRANSSTEP

does not contain theφINT constraint, enabling independent
local actions and different synchronizations to be executed
by different processes at the same time. Moreover, thestep

semantic can be applied only if the processes do not share
any variable (i.e. for alli ∈ I, τ(i) = 〈Mi, β〉, the module
Mi is such thatPARAMi = ∅).

B. Hybrid processes

HYDI processes extend SMV processes with continuous
variables and flow conditions. In particular, an HYDI module
is a tuple 〈PARAM, VAR, IVAR , INIT , TRANS, INVAR , FLOW〉,
where:

• PARAM,IVAR ,INIT ,TRANS,INVAR are defined as before,
• VAR is a set of variable declaration where an additional

type, calledcontinuous, is allowed; thus, the declaration
defines a setV of discrete variables and a setX of
continuous variables,

• FLOW is a set of flow condition declaration defining a
formulaF over the variablesV ∪W ∪ Ẋ.

The semantics of HYDI modules is defined in terms of
Symbolic Hybrid Systems (SHSs). An SHSS is a tuple
〈V,X,W, I, T, Z, F 〉 where:

• V is the set of symbolic discrete variables representing
the states,

• X is the set of symbolic continuous variables representing
the states,

• W is the set of symbolic variables representing the events,
• I(V,X) is the initial formula,
• T (V,X,W, V ′, X ′) is the transition formula,
• Z(V,X) is the invariant formula,
• F (V, Ẋ) is the flow formula.

If the domain of the variablesV is finite, a SHSH
corresponds to the HA〈Q,A,Q0, R,X, µ, ι, ξ, θ〉 where

• Q is the set of assignments toV ,
• A is the set of assignments toW ,
• Q0 = {s ∈ Q | s, x |= I for some assignmentx to X},
• R = {(s1, a, s2) ∈ Q×A×Q | s1, x1, a, s

′
2, x

′
2 |= T for

some assignmentx1, x
′
2 to X,X ′},

• µ(s) = F |s(V),
• ι(s) = I|s(V),
• ξ(s) = Z|s(V),
• θ(s1, a, s2) = T |s1(V),a(W),s′

2(V ′).

The semantics of an HYDI module is defined recursively
on the hierarchical structure of the instantiation as for SMV
modules (see Section III-C). If a moduleM does not contain
module instantiations, its semantics is given by the SHS
〈V ∪ P,X,W, I, T, Z, F 〉. The semantics of a HYDI module
instantiation extends straightforwardly the semantics ofan
SMV module instantiation, by renaming each variablev in
the flow condition withi.v and substituting each parameterp
of Mi with β(p).

If a module M contains the instantiations
I, its semantics is defined as the tuple
〈V \ I ∪ P,W, I ∧

∧
i∈I Ii, T ∧

∧
i∈I Ti, Z ∧

∧
i∈I Zi, F ∧

∧
i∈I Fi〉.

The semantics of an HYDI program extends the definition
of the un-timed case given in Section IV-A1 in the straight-
forward way.

C. Untiming compilation

We describe a compilation that maps a HYDI program into
an equivalent un-timed program. The compilation depends on
the semantics of the represented network of hybrid automata.
Moreover we restrict theINIT , TRANS, INVAR and FLOW

declarations of every module as follows:
• the corresponding formulasI, T , Z, andF are Boolean

combinations of assignment to the discrete variables and
linear constraints over the continuous variables (in the
form

∑
j cjxj ⊲⊳ c, where⊲⊳∈ {≤,≥, <,>,=} where

cj , c are constants andxj are variables, or next variables
or derivatives),

• for all assignments to the discrete variablesV , the
formulas Z and F restricted tos are conjunctions of
linear constraints (thus,v = d → (ẋ ≥ 0 ∧ ẋ ≤ 1)
is allowed, while v = d → (ẋ ≥ 1 ∨ ẋ ≤ 0) or
v = d→ (ẋ 6= 0) are not allowed).

The restrictions is such that the constraints in the untimed
model are linear, and thus we consider LHA. The untimed
program may correspond either to the global-time or to the
local-time semantics.

1) Global time: Let H be the HYDI program〈M,main〉
and letSi be the SHS corresponding to the process instance
i of the main. We define the un-timed HYDI programU =
〈MU ,mainU〉 as follows:

• MU = {MU}M∈M, where, if M =
〈PARAM, VAR, IVAR , INIT , TRANS, INVAR , FLOW〉, then
MU = 〈PARAMU , VARU , IVAR U , INITU , TRANSU , INVAR U ,
FLOWU 〉 is defined as follows:

– PARAMU is obtained from PARAM by adding a
further parameterδ,

– VARU is obtained fromVAR by changing the type of
continuous variables fromcontinuousto real,

– IVAR U is obtained from IVAR by extending the
domain ofǫ with an additional symbolT,

– INIT U = INIT ,
– TRANSU is obtained from TRANS and FLOW as

follows: if T andF are the corresponding formulas,
TRANSU defines the formula((ǫ 6= T) → T) ∧
((ǫ = T) → FU) where FU is obtained fromF
by replacing the predicates of the form

∑
j ẋj ⊲⊳ c

with
∑

j x
′
j − xj ⊲⊳ c× δ,

– INVAR U = INVAR .
• if main = 〈PARAM, VAR, IVAR , INIT , TRANS, INVAR , SYNC〉,

thenmainU = 〈PARAMU , VARU , IVAR U , INITU , TRANSU ,
INVAR U , SYNCU defined as follows:

– PARAMU = PARAM,
– VARU is obtained fromVAR by passing to each

process instance the additional argumentδ,
– IVAR U is obtained fromIVAR by adding the decla-

ration of δ of type real,
– INIT U = INIT , TRANSU = TRANS, INVAR U =

INVAR ,
– SYNCU is obtained fromSYNC by adding the syn-

chronizations〈i, j, T, T〉, for every pair of process

instances.

2) Local time: In case of local time, the HYDI program
U = 〈MU ,mainU 〉 is defined as follows:

• MU = {MU}M∈M, where, if M =
〈PARAM, VAR, IVAR , INIT , TRANS, INVAR , FLOW〉, then
MU = 〈PARAMU , VARU , IVAR U , INITU , TRANSU , INVARU 〉
is defined as follows:

– PARAMU = PARAM,
– VARU is obtained fromVAR by changing the type of

continuous variables fromcontinuousto real and by
adding the declaration oft of type real,

– IVAR U is obtained from IVAR by extending the
domain of ǫ with an additional symbolT and by
adding the declaration ofδ of type real,

– INITU = INIT ,
– TRANSU is obtained from TRANS and FLOW as

follows: if T andF are the corresponding formulas,
TRANSU defines the formula((ǫ 6= T) → (T ∧ t′ =
t)) ∧ ((ǫ = T) → (FU ∧ t′ = t + δ), whereFU is
obtained fromF by replacing the predicates of the
form

∑
j ẋj ⊲⊳ c with

∑
j x

′
j − xj ⊲⊳ c× δ,

– INVAR U = INVAR .

• if main = 〈PARAM, VAR, IVAR , INIT , TRANS, INVAR , SYNC〉,
thenmainU = 〈PARAMU , VARU , IVARU , INITU , TRANSU ,
INVARU , SYNCU defined as follows:

– PARAMU = PARAM, VARU = VAR, IVAR U = VAR,
INITU = INIT , INVAR U = INVAR , SYNCU = SYNC.

– TRANSU is obtained fromTRANS by adding the con-
dition i.ǫ = a→ i.t = j.t for every synchronization
〈i, j, a, b〉 of main.

D. Urgency

When modeling complex timing constraints, it is usually
useful to specify that a certain state is urgent, in the sense
that we do not allow time elapsing in that state. HYDI has
a syntactic sugar to specify such condition. The syntax is
given by a new declarationURGENT followed by a predicate
φ over variables and parameters. The semantics is given by
a new conditionφ → (ǫ 6= T), implicitly conjoined with the
transition condition.

V. VALIDATION OF THE LANGUAGE

We validated the use of the language modeling several hy-
brid automata benchmarks proposed in the literature [25], [27],
[29], [33], [44]. The models exploit the HYDI features such
as the symbolic representation, the discrete interaction among
processes, the continuous variables and flow conditions and
urgent transitions. Moreover, we generate benchmarks with
an increasing number of components. In total, we modeled
12 different families of benchmarks, which are available at
http://es.fbk.eu/people/mover/hydi.

To support the HYDI language we extended the state-of-
the-art model checker NUSMV3. First, we added the support
of parsing the HYDI language, then we added the support for
compiling an HYDI program to a SMV program (with infinite

state variables). The compilation is divided in two step, the
first performs the “untiming” of the model while the second
performs the composition of the processes.

VI. FORMAL VERIFICATION

A. SMT-based techniques

HYDI programs are compiled into STSs (as described in
Section IV-C) and analyzed with techniques based onSatisfi-
ability Modulo Theory(SMT) [37]. An SMT problem is the
satisfiability problem for Boolean combination of predicates
in particular decidable first-order theories. Given a formula
ψ, the satisfiability problem consists of deciding whether
there exists a model, an assignment to the free variables
in ψ, which satisfiesψ. For example, the formulax <=
y ∧ x + 3 = z ∨ z >= y, with x, y, z ∈ R, is in the theory
of Linear Rational Arithmetic(LRA) and it is satisfiable (e.g.
x := 5, y := 6, z := 8 is a model which satisfies the formula).

The theory used in the verification of hybrid systems is
the theory of reals. In the restricted case of linear hybrid
automata [26], the predicates lie in the theory of LRA, for
which efficient solvers exist.

Several formal verification techniques for STSs relies on
SMT solvers. Among them, one the most successful tech-
niques is Bounded Model Checking (BMC), first proposed
for finite-state systems [13], later extended to software [8]
and hybrid systems [19]. BMC determines if the model of a
systemS violates a propertyφ up to a bounded number of
stepsk. In BMC the behavior of the system up tok steps
and the formulaφ are encoded in a Boolean formula. The
satisfiability of the formula is checked using a SMT solver. If
the formula is satisfiable thenφ is violated byS, otherwise
S does not violatesφ up to k steps. The BMC approach was
also extended in order to perform unbounded model checking,
overcoming the drawback of the incompleteness. Methods
used to perform unbounded model checking with a SMT solver
are k-induction [18], [34], [38], interpolation-based model
checking [31], [43], and abstraction refinement [16].

B. Exploiting the network

The HYDI input language enables the development of
formal verification techniques which exploits the structure of
the hybrid automata network.

In particular, we developed a new BMC encoding which
exploit an efficient local encoding of the components and
superimpose compatibility constraints resulting from thesyn-
chronizations [14]. This paradigm has been pushed forward
by considering the structure mandated by scenarios speci-
fied by means of sequence message charts: we constructed
an encoding which exploits the events of the scenario and
enables the incremental use of the SMT solver; moreover,
we simplify the encoding with invariants discovered applying
discrete model checking on an abstraction of the network [4].
Finally, we conceived a new compositional algorithm, which
combine over- and under-approximation of the components to
effectively build a trace in the network [5].

VII. RELATED WORK

Several languages have been proposed to model Hybrid
Systems. A first key difference is in the kind of representation,
symbolic or explicit, used for specifying the discrete locations
of the system.

Most languages that describe Hybrid Systems use an explicit
representation of the discrete locations and transitions,which
are explicitly enumerated in the model. For this reason they
cannot specify flow and invariant conditions for a set of
locations. Most of the model checker for timed and hybrid
automata, have an input language with an explicit representa-
tion for the discrete evolution of the system. UPPAAL [11]
models a network of timed automata via message passing
over communication channels. Relevant features are urgent
channels and locations, commited locations and bounded
integer variables. Instead, the input languages of HYTECH

[25] and PHAVER [22] allow to specify a network of Linear
Hybrid Automata. HYTECH assumes the parallel composition
of all automata, which synchronize on labels with the same
name. In PHAVER, the user can specify which automata
synchronize, enabling compositional verification [21].D/DT

models affine continuous dynamics with inputs, while guards
and invariants are convex polyhedra. The continuous dynamic
for each location is defined using a matrix. Also HSOLVER

enables non-linear constraints over continuous variablesand
it is not compositional. UPPAAL, HYTECH, PHAVER, D/DT

and HSOLVER do not allow rich types for discrete variables,
such as Boolean, Enumeration, Word, Unbounded Integer
and Unbounded Real. Both CHARON [7] and MASACCIO

[24] have an explicit representation for the discrete state
space. The first focuses on hierarchical specification, the latter
on compositionality. CHECKMATE modelsthreshold event-
driven hybrid systems(TEHS) using a subset of the standard
MATLAB STATEFLOW/SIMULINK blocks and a set of cus-
tom blocks. TheHybrid Systems Interchange Format(HSIF)
[39] and theCommon Interchange Format(CIF) [42] were
proposed as standards to represent and interchange models
of Hybrid Systems. HSIF does not allow hierarchical state
machines, while CIF allows to write rich constraints (DAE,
Differential Algebraic Equations), which mix variables and
derivatives.

Other languages represent symbolically the entire Hybrid
System.
The Hybrid System Description Language (HYSDEL) [41]
uses a symbolic representation also for the discrete modes
and switches. However, HYSDEL describes only discrete time
Hybrid Systems and allows the communications of multiple
components only via shared variables.
Hybrid SAL [40] extends the language of the SAL [12]
model checker to model hybrid systems. It allows arbitrary
polynomials over continuous variables and affine dynamics,
but it forces to define flow conditions and invariants explicitly
for each mode of the system. Moreover, since components in
SAL communicates through shared variables, it not easy to
express the synchronization of asynchronous components via

discrete interaction, as in the hybrid automata case.
The language HLANG [20] is very close to HYDI and
was developed in the project area H of AVACS as
intermediate input language for several verification tools
(e.g. HYSAT [19], FOMC [17]). The language employs
a symbolic representation for hybrid automata and enables
very expressive constraints for continuous variables, also
affine and non-linear. The language allows to express the
composition of hybrid automata. However, the automata
communicates through shared variables and automata are
composed interleaving their transitions. Thus, there is no
native support for event-based synchronizations.

Hybrid programs [9], [35] are similar to programs for
discrete systems, but they add the description of the continuous
evolution. [9] extends the synchronous language Quartz [36]
with continuous variables. The user specifies in the program
when the continuous evolution can happen. The semantic is
such that the discrete statements in the program are istanta-
neous, while the statements over continuous variables allow
the elapse of time. The continuous evolution is specified using
ODE (Ordinary Differential Equations). Assignments in the
program are expressed in a functional form, thus they are
less expressive than the relational representation of HYDI.
Two blocks of statements can run in parallel (synchronous
composition), while there is no support for asynchronous
composition. These hybrid programs are then translated into
a monolithic extended finite state machine. Also the hybrid
programs defined by Platzer [35] allow rich constraints over
continuous variables, sequences, loops and non-deterministic
choiches of statetements. However, they miss the possiblity
of expressing the parallel execution of programs. Hybrid
programs are very different in nature from the representation
used in HYDI.

VIII. C ONCLUSIONS

We described HYDI, a novel language that has been specif-
ically designed in order to support the verification of hybrid
synchronized processes with symbolic techniques. HYDI ex-
tends the SMV language into two directions: on one hand,
we introduced timing aspects such as continuous variables
and flow conditions; on the other hand we define a top-level
structure to specify the network and the synchronization of
the components. The language has been used as back-end
for translations of languages such as MatLab StateFlow/Sy-
mulLink and Altarica [2]. We are working on new efficient
verification techniques that scale up the analysis by takinginto
account the timing and synchronizing aspects [4], [5], [14].

REFERENCES

[1] http://compass.informatik.rwth-aachen.de/.
[2] http://www.missa-fp7.eu/.
[3] http://www.sti.uniurb.it/bernardo/twotowers/.
[4] Cimatti A., Mover S., and Tonetta S. Compositional reachability of

hybrid systems. Technical report, Fondazione Bruno Kessler, 2010.
https://es.fbk.eu/people/mover/hybridcompositional.

[5] Cimatti A., Mover S., and Tonetta S. Efficient scenario-based verification
of hybrid systems. Technical report, Fondazione Bruno Kessler, 2010.
https://es.fbk.eu/people/mover/hybridscenario.

[6] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems. InHybrid Systems, pages 209–229, 1992.

[7] R. Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee. Modular specification
of hybrid systems in charon. InHSCC, pages 6–19. Springer, 2000.

[8] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying
Industrial Hybrid Systems with MathSAT.ENTCS, 119(2):17–32, 2005.

[9] K. Bauer and K. Schneider. From synchronous programs to symbolic
representations of hybrid systems. InHSCC, pages 41–50, 2010.

[10] J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partial Order Reductions
for Timed Systems. InCONCUR, pages 485–500, 1998.

[11] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UPPAAL
— a Tool Suite for Automatic Verification of Real–Time Systems. In
Hybrid Systems, pages 232–243. Springer–Verlag.

[12] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Muoz, S. Owre, H.Rue,
J. Rushby, V. Rusu, H. Sadi, N. Shankar, E. Singerman, and A. Tiwari.
An Overview of SAL. InLFM, pages 187–196, 2000.

[13] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic Model
Checking without BDDs. InTACAS, pages 193–207, 1999.

[14] L. Bu, A. Cimatti, X. Li, S. Mover, and S. Tonetta. Model checking
of hybrid systems using shallow synchronization. InFMOODS/FORTE,
pages 155–169, 2010.

[15] R. Cavada, A. Cimatti, E. Olivetti C.A. Jochim, G. Keighren, M. Pistore,
M. Roveri, and A. Tchaltsev.NuSMV 2.1 User Manual, 2002.

[16] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
Guided Abstraction Refinement. InCAV, pages 154–169, 2000.

[17] W. Damm, S. Disch, H. Hungar, S. Jacobs, J. Pang, F. Pigorsch,
C. Scholl, U. Waldmann, and B. Wirtz. Exact state set representations in
the verification of linear hybrid systems with large discrete state space.
In ATVA, pages 425–440, 2007.

[18] N. Eén and N. Sörensson. Temporal induction by incremental SAT
solving. Electr. Notes Theor. Comput. Sci., 89(4), 2003.

[19] M. Fränzle and C. Herde. HySAT: An efficient proof engine for bounded
model checking of hybrid systems.Formal Methods in System Design,
30(3):179–198, 2007.

[20] M. Fränzle, H. Hungar, C. Schmitt, and B. Wirtz. Hlang:Compositional
representation of hybrid systems via predicates. Reports of SFB/TR 14
AVACS 20, July 2007. ISSN: 1860-9821, http://www.avacs.org.

[21] G. Frehse. Compositional verification of hybrid systems with discrete
interaction using simulation relations. InCACSD, 2004.

[22] G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past
HyTech. International Journal on Software Tools for Technology
Transfer (STTT), 10(3), June 2008.

[23] K. Heljanko and I. Niemelä. Bounded LTL model checkingwith stable
models.Theory and Practice of Logic Progr., 3(4-5):519–550, 2003.

[24] T. A. Henzinger. Masaccio: A formal model for embedded components.
In IFIP TCS, pages 549–563. Springer-Verlag, 2000.

[25] T. A. Henzinger and P. Ho. Hytech: The cornell hybrid technology tool.
In Hybrid Systems II, pages 265–293. Springer-Verlag, 1995.

[26] T.A. Henzinger. The Theory of Hybrid Automata. InLICS, pages 278–
292. IEEE Computer Society, 1996.

[27] C. Herde, A. Eggers, M. Fränzle, and T. Teige. Analysisof Hybrid
Systems Using HySAT. InICONS, pages 196–201, 2008.

[28] G. Holzmann. Spin model checker, the: primer and reference manual.
Addison-Wesley Professional, 2003.

[29] S.K. Jha, B.H. Krogh, J.E. Weimer, and E.M. Clarke. Reachability
for Linear Hybrid Automata Using Iterative Relaxation Abstraction. In
HSCC, pages 287–300, 2007.

[30] K. L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.
[31] K. L. McMillan. Interpolation and sat-based model checking. In CAV,

pages 1–13, 2003.
[32] S.P. Miller, M.W. Whalen, and D.D. Cofer. Software model checking

takes off. Commun. ACM, 53(2):58–64, 2010.
[33] Olaf Mller, Olaf M Uller, and Thomas Stauner. Modellingand ver-

ification using linear hybrid automata - a case study.Mathematical
and Computer Modelling of Dynamical Systems: Methods, Tools and
Applications in Engineering and Related Sciences, 71, 2000.

[34] L. Pike. Real-Time System Verification byk-Induction. Technical
Report TM-2005-213751, NASA Langley Research Center, 2005.

[35] A. Platzer. Differential-algebraic dynamic logic fordifferential-algebraic
programs. J. Log. Comput., 20(1):309–352, 2010. Advance Access
published on November 18, 2008.

[36] K. Schneider. The synchronous programming language quartz. Technical
report, Department of Computer Science, University of Kaiserslautern,
Kaiserslautern, Germany, 2009. Internal Report 375.

[37] R. Sebastiani. Lazy Satisability Modulo Theories.JSAT, 3(3-4):141–
224, 2007.

[38] M. Sheeran, S. Singh, and G. Stålmarck. Checking Safety Properties
Using Induction and a SAT-Solver. InFMCAD, pages 108–125, 2000.

[39] MoBIES team. Hsif semantics. Technical report, University of Penn-
sylvania, 2002.

[40] A. Tiwari. Hybridsal: Modeling and abstracting hybridsystems. Tech-
nical report, Computer Science Laboratory, SRI International, 2003.

[41] F.D. Torrisi and A. Bemporad. Hysdel-a tool for generating compu-
tational hybrid models for analysis and synthesis problems. Control
Systems Technology, IEEE Transactions on, 12(2):235 – 249, 2004.

[42] D.A. van Beek, M.A. Reniers, R.R.H. Schiffelers, and J.E. Rooda.
Foundations of a Compositional Interchange Format for Hybrid Systems.
In HSCC, pages 587–600, 2007.

[43] Y. Vizel and O. Grumberg. Interpolation-sequence based model check-
ing. In FMCAD, pages 1–8, 2009.

[44] J. Zhao, X. Li, T. Zheng, and G. Zheng. Removing Irrelevant Atomic
Formulas for Checking Timed Automata Efficiently. InFORMATS,
pages 34–45, 2003.

