
UC Irvine
ICS Technical Reports

Title
HYDRA : a noise-tolerant relational concept learning algorithm

Permalink
https://escholarship.org/uc/item/5ns189z8

Authors
Ali, Kamal M.
Pazzani, Michael J.

Publication Date
1992-12-17

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5ns189z8
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

HYDRA.: A Noise-tolerant Relational
Concept Learning Algorithm

Kamal M Ali
ali@ics.uci.~u::::-

Michael J Pazzani

pazzani@ics.uci.edu

Technical Report 92-85

December 17, 1992

HYDRA: A Noise-tolerant Relational
Concept Learning Algorithm

Kamal M Ali Michael J Pazzani
Department of Information and Computer Science

University of California
Irvine, CA 92717

{ ali, pazzani }@ics.uci.edu

Many learning algorithms form concept descriptions composed of

clauses, each of which covers some proportion of the positive training

data and a small to zero proportion of the negative training data. This

paper presents a method for attaching likelihood ratios to clauses and a

method for using such ratios to classify test examples. This paper pre

sents the relational concept learner HYDRA that learns a concept de

scription for each class. Each concept description competes to classify

the test example using the likelihood ratios assigned to clauses of that

concept description. By testing on several artificial and "real world"

domains, we demonstrate that attaching weights and allowing concept

descriptions to compete to classify examples reduces an algorithm's

susceptibility to noise.

Area: Learning (Induction from noisy data; First order Learning)

1. Introduction

Concept learners that form DNF concept descriptions have been shown to be prone to

the small disjuncts problem (Holte et al., 1989). This is the problem where a large pro

portion of the overall classification error on an independent training set can be attribut

ed to learned disjuncts1 that cover a small number of positive examples. On noisy data

sets, DNF concept learners typically learn a few reliable disjuncts (large disjuncts) and

many more unreliable disjuncts, each of which covers a small number of positive exam

ples (small disjuncts).·

Previous work on learning first-order concept descriptions from noisy data has concen

trated on using MDL approaches (Rissanen, 1978) to pre-prune the concept being

learned (Quinlan's (1990) minimum encoding length algorithm for FOIL and Muggle

ton et al.' s (1992) HP-compression algorithm for GO LEM). Other work has concentrat

ed on over-fitting noisy data but using flexible matching to tolerate noise (the POSEI

DON system by Bergadano et al., 1992), learning discriminant descriptions with cer

tainty-factor attachment (Bergadano, Giordana and Saitta, 1988), using significance

tests (Dzeroski and Bratko, 1992) or cross-validation (Brunk and Pazzani, 1991). This

paper proposes an approach based on learning one probabilistic concept description per

class and allowing such concept descriptions to compete to classify test examples. We

also present a method for estimating the reliability of learned clauses that is based on

our experience in reducing the effect of small disjuncts (Ali and Pazzani, 1993).

This paper presents the system HYDRA that builds concept descriptions consisting of

Horn clauses with associated likelihood ratios. We empirically show that such concept

descriptions have low error rates and reduce the effect of small disjuncts on noisy rela

tional and attribute-value data.

HYDRA builds probabilistic relational clauses by attaching likelihood ratios (ratios of

1. We will refer to clauses and disjuncts interchangeably.

1

probabilities) to each clause. This gives clauses that cover few positive examples (usu

ally the unreliable clauses) smaller weights in classifying test examples. HYDRA learns

clauses in a manner similar to FOIL (Quinlan, 1990) and FOCL (Pazzani & Kibler,

1992). It then estimates the reliability of each clause and uses this information to

increase its tolerance to noise. In the following sections, we briefly explain how FOIL

learns. We will also review Reduced-Error Pruning (REP, Quinlan, 1987), a post

processing method designed to deal with noise (implemented for FOIL by Brunk and

Pazzani, 1990). Section 2 presents HYDRA and the semantics associated with our for

mulation of clause reliability. Finally, in Section 3 we present the results of our experi

ments and compare HYDRA to related work.

1.1 FOIL

FOIL builds a concept description for the target relation in terms of a conjunction of

Hom clauses2 over a pre-supplied set of "background" relations. The input to FOIL

consists of positive and negative examples of the target relation and full extensional

definitions of background relations. FOIL learns clauses one at a time. FOIL starts to

learn a clause body by finding the literal with the maximum information gain, and

continues to add literals to the clause body until the clause does not cover any negative

examples or until there is no literal with positive information gain. After learning a

clause, FOIL removes the positive examples covered by that clause from further

consideration. FOIL continues to build new clauses in this manner until each positive

example has been covered by at least one clause.

On noisy data sets, -over-fitting the training data leads to concept descriptions with high

error rates. Quinlan (1990) introduced a noise-tolerant extension to FOIL that compared

the length of an encoding of a clause to an encoding of the training examples covered

by that clause. This algorithm stops conjoining literals to the clause if the encoding

length of the clause exceeds the encoding length of the data. However, Brunk and Paz-

2. Some authors prefer to view such concept descriptions as DNF. Strictly speaking, the body of the
description (aAb~)A(dAe~) is the DNF expression (aAb)v(dAe).

2

zani (1991) experimentally showed that the encoding length approach applied to FOIL

is ineffective because it results in less accurate concepts on noisy data sets. They also

show that REP (as applied to FOIL) yields more accurate concept descriptions. Accord

ingly, in this paper we will compare HYDRA to REP.

1.2 Reduced-Error Pruning (REP)

REP splits the training data into two sets which we will call the learning data and the

pruning data. FOIL is used to create a concept description using only the learning data.

REP takes the concept description and applies operators to make small transformations

to the concept description. It measures the merit of each operator application by

comparing the numbers of correct classifications (on the pruning data) before and after

application of the operator. The transformations resulting from the best operator appli

cation are kept and the process is repeated until the application of any operator would

result in a decrease in accuracy. Brunk and Pazzani used two operators in their work:

delete the last literal of a clause (delete-last-literal) and delete an entire clause (delete

clause).

2.HYDRA

HYDRA was developed to learn concept descriptions that reduce the small disjuncts

problem by attaching weights to clauses. HYDRA also reduces errors of commission by

building concept descriptions for each class and allowing them to compete to classify

test examples. Finally, HYDRA uses a metric that trades off coverage against fit more

highly in favor of coverage. Thus HYDRA is a pre-pruning algorithm that builds fewer,

more reliable clauses than FOIL.

2.1 Knowledge Representation and Classification

The method of learning probabilistic relational concept descriptions will be presented in

Section 2.2. Here, we discuss how such descriptions are used to represent concepts and

used for classification. HYDRA forms a concept description for each class. Each clause

of each concept description has an associated likelihood ratio with values in [0,oo). A

3

few such annotated clauses for some classes are shown below:

a(X,Z) A a(Z,X)--+ Classi(X,Z) [LS= 2.3]

a(X, Y) A c(X, Y)-+Classi(Y,X) [LS=l4. 7]

d(X,Z,Z) /\ b(Z,X)-+Classj(X,Z) [LS = 1. 8]

To classify a new example t, HYDRA ranks its estimates for

p(t e ClassilCDi('t)=true) (the probability that tis an element of classi given that it sat-

isfies the i-th concept description) and attributes t to the concept description (CD) that

maximizes this posterior probability.

The following discussion explains how HYDRA computes p(t e ClassilCDi('t)=true)

for each class. p(t e ClassilCDi('t)=true) can be rewritten as

p(te classilCDi('t)=true) = p(te classil(clauseil (t)=true)v· · ·V(clausem('t)=true)) [1]

FOIL and HYDRA aim to learn clauses that partition the positive examples so ideally

there should only be one clause per concept description that is satisfied for a given t. In

practice, more than one clause (from one concept description) may be satisfied. In this

case, we choose the clause that is most indicative of the hypothesis te classi:

p(t e ClassilCDi('t)=true) = MAXciause;ieCD; p(t e Classilclauseij('t)=true)] [2]

where the maximum is taken over clauses of CDi satisfied by t. In order to calculate

p(t e Classilclauseij('t)=true) -we use the notion of odds. Following Duda et al. (1979) we

define the odds of a hypothesis Has odds(H) = p(H)/(1-p(H)). Recasting Bayes rule into

odds form (Duda et al., 1979), it then follows that:

p(clausei ·(t)=truelte Classi)
odds(te classilclauseij('t)=true) = J xprior-odds(te Classi)

p(clauseij('t)=truelt~ Classi) [3]

Because odds and probabilities are positively monotonically related, the clause with the

highest value for p(t e Classi lclaUlieij (t)=true) (our goal) is also the clause with the high

est value for odds(te classilclaUlieij('t)=true). HYDRA estimates all the quantities on the

right hand side using frequencies over the training data3• In particular, the ratio on the

right side is the weight (called LS) associated with clauseij and is referred to as the suffi

ciency measure (Duda et al., 1979). In summary, HYDRA uses these weights to assign t

to the class for which p(t e Classi ICDi(t)=true) is maximal. When a test example satis-

3. Empirically, we find that if we estimate the prior odds p('teClassi)/p('tEClassj) from the data,
HYDRA performs worse than if we assign, uniform, uninformative priors to all the classes.

4

fies no clause of any concept description, HYDRA guesses the most frequent class.

Classification of an example proceeds as follows. For each clause that is true for the cur

rent test example HYDRA considers the product of the LS of that clause and the prior

odds of the class to which that clause belongs. HYDRA attributes the test example to the

class that had a clause with the maximal product4. The product of the LS and the prior

odds represents the posterior odds of the test example belonging to that class (equation 3).

As odds and probabilities are positively monotonically related, the class with the highest

odds will be the class with the highest posterior probability. When a test example satisfies

no clause of any class, HYDRA guesses the most frequent class.

2.2 Learning in HYDRA

HYDRA differs from FOIL in three major way~. First, HYDRA learns a concept descrip

tion for each class so that each description can compete to classify a test example

according to the posterior probabilities p(t e ClassilLCDr=true,t). This is accomplished

by treating the training examples of each class in turn as positive training examples and

the examples of all other classes as negative examples.

Second, after all the clauses have been learned, HYDRA forms an estimate of the logical

sufficiency odds multiplier lSij associated with each clause. The entire training data is

used when estimating lSij- We use Laplace's law of succession to compute estimates for

the two conditional probabilities in lsi} According to Laplace's law of succession, if a

random variable X , whose domain consists of 2 values, has been observed to take on a

value v n; times out of N trials, the least biased estimate for P(X=v) is (ni+ 1)/(N+2). In

order to estimate the numerator of lsij we note that the positive examples can be split into

two classes: those that satisfy the clause and those that do not Similarly using the

Laplace estimate for the denominator gives us:
(p+l)/(po+2)

lSjj = ls(p,n,po,no) = (n+l)/(no+2) [4]

where p0 and no respectively denote the numbers of positive and negative examples (of

4. Ties occur very infrequently and are broken randomly.
5

Classi) in the training data and p and n denote the numbers of examples covered by the

clause.

The third difference between HYDRA and FOIL is that HYDRA uses a hill-climbing

metric that is aimed at learning probabilistic concept descriptions. We call this metric ls

content and it is defined as follows. If a literal of the j-th clause covers p positive exam

ples and n negative examples, and there were Pj,O and nj,O examples uncovered after the

firstj -1 clauses, its ls-content is defined as:

ls-content(p,n,pj,o.nj,o) = ls(p,n,pj,o,nj,o) x p [5]

Using this metric HYDRA compares the ls-content before addition of the literal to that

after addition of the literal. If there are no literals that cause an increase in ls-content or

if the clause no longer covers any negative examples, HYDRA completes the clause,

otherwise it conjoins the literal and the current clause and resets p and n to reflect the

numbers of examples that satisfy the clause with the new literal ccmjoined. HYDRA

performs better using ls-content than it does using information gain (see section 3.6).

3. Experimental Results

In this section, we show that the three major changes we have made to transform FOIL

into HYDRA significantly reduce classification error rates in noisy domains although

they slightly increase error rates when learning a necessary and sufficient target con

cept. Our experiments compare HYDRA, FOIL and two noise-tolerant relational learn

ers: REP (with FOIL) and mFOIL (Dzeroski and Bratko, 1992). The experiments were

done on two artificial domains: the King-Rook-King chess end-game domain (KRK.,

Muggleton et al., 1989) and the King-Rook King-Pawn domain (KPa7KR, Holte et al.,

1989). We also used the natural data sets of breast cancer recurrence, lymphography

and E-Coli DNA promoters. Finally, in this section, we also do a step by step analysis

of how FOIL is converted to HYDRA.

3.1 Description of the domains

In the KRK domain, it is white's turn to move and there are three pieces: a white king,

6

white rook and a black king. A chess board is classified as illegal if either king is in

check or if more than one piece occupies the same square. For all four algorithms we

compare here, the board was represented as a 6 tuple consisting of the file and rank co

ordinates of each piece (Pazzani and Kibler, 1991). In order to form a description for

illegal(V1 .. v6;, HYDRA uses the relations near(X,Y) (X= Y+l or X = Y-1),

between(X,Y,Z) (X<Y<.Z or X>Y>Z) and equal. For this domain, we only considered

constant-free concept descriptions.

For all the natural data sets, HYDRA forms concept descriptions containing constants

and includes the relation equal in addition to domain-specific relations. This allows at

tribute-attribute comparisons in addition to attribute-value comparisons (which have

been proven to be useful in these domains). We converted the data sets which are repre

sented as attribute vectors into tuples of the same length as the attribute vectors. For do

mains where some attributes were ordered, we included the relations <, >, s; and ~ .

Missing values were represented by a special value, unknown. The only domain with

domain-specific relations was the DNA domain. The relations used for this domain

were = and equal-family. The four bases {A,G,T,C} are split into two families: {A,G}

and {T,C}.

3.2 Experimental methodology

We trained all of the algorithms on the identical randomly selected training data and

tested them on the identical randomly selected testing data. This process was repeated

twenty times. For the artificial domains where we could generate examples (KRK) or

where we could draw examples from a large data set (KPa7KR) we used 1000 testing

examples. For domains where the data was more limited, we trained on two-thirds of

the data and tested on the remaining one-third. For the promoters domain, we used

leave-one-out testing to allow comparability with other work on this domain. In all of

the experiments in this section the expression "significantly better" means better as in

dicated by a paired two-tailed t-test with a confidence level of 0.95.

7

100

90

• FOIL accuracy
--0- HYDRA accuracy

* REP accuracy
70

60 ._..__......., _,.. _________, _,.. ________ _,. __ _

0 20 40 60 80 100 120 140 160 180 200 220
Number of training examples

Figure 1. Comparison of HYDRA, REP and FOIL on noise-free examples from the KRK domain.

The height of each vertical bar is equal to two standard deviations.

3.3 Comparison of HYDRA and FOIL

Table 1 and Figure 1 compare FOIL's accuracy rate to that of HYDRA, first on noise

free KRK examples and then on noisy data sets. The natural data sets are considered

noisy as their target concepts may not be expressible in DNF form using the available

attributes or relations. FOIL is able to attain lower error rates only for noise-free data of

the concept illegal from the KRK domain because that concept is easily expressible

using first-order Horn clauses. On the noise-free KRK data set, FOIL is assured of an

accuracy equal to the base rate of -70% even if it builds a null concept description.

FOIL and FOIL using REP only build concept descriptions for the positive class (illegal

for the KRK domain)5. As the class legal occurs with frequency approximately equal to

0.7, FOIL and REP can attain -70% accuracy by not building any clauses. HYDRA is

significantly more accurate than REP on noise-free data because REP is tailored to do

well on noisy domains by assuming errors due to noise cannot be correlated between

the learning and the pruning sets. For small, noise-free data sets, REP prunes significant

clauses because such a clause may not cover any examples in the small pruning set. On

noise-free data, HYDRA learns clauses that do not cover negative examples and conse

quently have high LS values leading to a concept description that approximates a DNF

form without weights. This can be seen in Table 1 by comparing the numbers of

5. Experiments we conducted showed that concept descriptions built by FOIL for legal are less
accurate than those for illegal because the backfound relations are tailored to learn illegal.

Domain Number of FOIL FOIL HYDRA HYDRA

training accuracy #of accuracy #of

examples clauses clauses

Without noise

KRK 10 74.4 (9.8) 2.0 67.7 (11.1) (2.0,1.3)

KRK 20 79.8 (10.6) 2.8 78.6 (9.0) (3.0,2.5)

KRK 30 86.9 (5.6) 3.8 82.5 (6.7) (3.8,3.2)

KRK 50 90.7 (3.9) 5.0 87.8 (4.5) (4.9,4.4)

KRK 100 95.9 (3.6) 6.1 96.8 (2.2) (6.2,5.8)

KRK 200 99.1 (1.2) 7.3 98.5 (1.3) (7.3,7.5)

With 20% Cl~ noise

KRK 10 68.8 (11.1) 2.0 68.9 (14.6) (2.1,1.8)

KRK 20 74.4 (9.9) 3.7 71.9 (11.2) (3.6,3.1)

KRK 30 78.4 (8.3) 4.9 78.7 (7.1) (4.6,4.0)

KRK 50 81.3 (6.9) 7.4 81.0 (6.7) (6.8,5.8)

KRK 80 82.7 (5.8) 11.0 85.8 (4.3) (9.1,7.4)

KRK 160 83.7 (5.0) 21.1 90.6 (3.5) (8.8,8.1)

KRK 320 82.4 (2.5) 38.7 93.8 (2.8) (11.4,9.9)

KRK 480 83.1 (2.7) 54.3 95.6 (2.6) (11.5,13.4)

Natural data sets

-Cancer 190 63.5 (4.3) 29.5 66.6 (5.2) (5.3,7.8)

Lymph. 99 79.4 (4.3) (l.1,8.0,8.4, 1.0) 81.4 (4.2) (l.6,8.4,7.6,1.0)

KPa7KR 200 90.3 (2.5) 7.6 94.7 (1.1) (7.6,8.3)

Promoters 105 73.6 4.0 76.4 (5.0,6.1)

Table 1. Comparison of ''vanilla" FOIL and HYDRA on various data sets. Values in bold type indi·

cate a statistically significant accuracy difference. Standard deviation is indicated in parentheses

for the accuracies columns. Standard deviation is not indicated for the promoters domain because

leave-one-out testing was used on that domain. Entries in the last column are vectors because

HYDRA builds a set of clauses for each cl~. A variant of FOIL {algorithm 2 in section 3.6) was

run instead of FOIL on the lymphography data because that data set contains more than two class

es which ''vanilla" FOIL cannot handle.

clauses learned by FOIL to the numbers of clauses learned by HYDRA for class illegal.

Table 1 also compares HYDRA and FOIL on noisy training data from the KRK

domain6• A 20% level of class noise means the probability of randomly reassigning the

class label is 0.2. A 5% level of tuple (attribute) noise means the probability of

randomly reassigning each attribute is 0.05. For noisy data from the KRK domain,

FOIL's accuracy quickly climbs to -82% as the number of training examples are

increased but fails to increase substantially above that figure. The number of clauses

6. For domains (such as KRK) where we could artificially generate examples, we tested on noise

free test data.
9

built increases linearly with the number of noisy training examples, indicating FOIL is

over-fitting the data. HYDRA fits the data more than REP but less than FOIL. Because

it builds multiple concept descriptions that may overlap in the instance space, it resolve

conflicts in the overlapped region by examining posterior odds of the contending class

es. Experiments we conducted with other noise levels for the KRK domain reaffirm the

basic result that HYDRA performs significantly better than FOIL on noisy data.

100

c
80 0

u;
U)

e
0 60 (.)

0
f!
e 40 ..
w
Cl)

~
20 ti

'3
E
:::i

(.) 0
0

El FOIL Cumulative Error

• HYDRA Cumulative Error

Unbiased Error Distribution

20 40 60 80
Cumulative Matches on Test Set

100

Figure 2. Clauses matching a small proportion or the test set contribute disproportionately to er·

rors of commission. Both algorithms were trained on 160 examples from the KRK domain with 5%

tuple noise.

Figure 2 illustrates one reason for HYDRA' s accuracy on noisy data sets: its ability to

reduce the small disjuncts problem. To produce this figure, we analyzed the output of

FOIL and HYDRA as follows. The clauses learned were sorted according to the number

of examples in the test data that satisfy the clause. Next, starting with clauses that cover

the least number of examples, we added clauses to a set and recorded both the

percentage of test examples that were matched by the clauses in the set, and the

percentage of total errors that were committed by clauses in the set. Small disjuncts

cause a problem in a system when disjuncts that cover a given percentage of examples

are responsible for a greater percentage of the errors. In a system without such a

problem, all disjuncts would be equally accurate so one would expect that the disjuncts

that cover a given percentage of the examples would be responsible for that same

10

percentage of the errors.

Because the cUIVes for FOIL and HYDRA are above the diagonal, they indicate that

clauses that match small proportions of the test examples contribute disproportionately

to errors of commission. However, this problem is less severe in HYDRA than FOIL.

For example, Figure 2 shows that clauses matching 40% or less of the test examples are

responsible for about 80% of the errors in FOIL while they are responsible for about

50% of the error in HYDRA. This occurs because HYDRA assigns smaller weights to

clauses that cover few examples and are likely to be unreliable.

90

--0-- HYDRA Accuracy

* REP accuracy

70

0 100 200 300
Number of Training examples

100

90

--0-- HYDRA accuracy

* REP accuracy

70

0 100 200 300
Number of Training examples

Figures 3a and 3b. Comparison of HYDRA and REP on KRK with 20% c~ noise and 5% tuple

noise, respectively. Standard-deviation bars are shown.

11

Number HYDRA HYDRA HYDRA HYDRA REP REP REP REP

of eg.s Acc. Accuracy #of cpu Acc. Acc. #of cpu

cpt.s clauses sec. cpt.s clauses sec.

With 20 % class noise

KRKlO 68.9 (14.6) (55,76) (2.1,1.8) 2.02 63.0 (13.4) (22,83) 0.3 0.82
KRK20 71.9 (11.2) (64,76) (3.6,3.1) 5.98 69.6 (8.9) (31,89) 0.9 2.98
KRK30 78.7 (7.1) (70,82) (4.6,4.0) 9.24 75.4 (8.5) (37,94) 1.2 5.98
KRK50 81.0 (6.7) (78,82) (6.8,5.8) 26.7 78.0 (8.7) (55,90) 2.2 20.9
KRK80 85.8 (4.3) (83,87) (9.1,7.4) 53.4 82.2 (7.0) (67,90) 2.8 67.9
KRK160 90.6 (3.5) (84,94) (8.8,8.1) 111 91.2 (4.4) (80,97) 4.3 l(i()
KRK320 93.8 (2.8) (89,97) (11.4,9.9) 252 92.7 (3.3) (88,95) 6.5 1705
KRK480 95.6 (2.6) (90,98) (11.5,13.4) 340 96.3 (2.3) (93,98) 6.9 7950
With 5% tuple noise

KRKlO 71.3 (11.6) (55,79) (1.9,1.7) 67.5 (10.0) (18,93) 0.4
KRK20 78.l (7.9) (62,86) (3.1,2.6) 74.3 (8.1) (32,95) 1.0
KR.IGO 83.6 (7.1) (75,88) (4.3,3.9) 74.9 (7.9) (34,96) 1.1
KRK50 86.8 (4.8) (77,92) (5.5,5.2) 81.7 (7.9) (56,95) 1.9

KRK80 91.5 (3.4) (86,94) (8.0,6.7) 85.5 (7.3) (70,93) 2.9
KRK160 93.3 (3.3) (89,96) (10.1,8.9) 91.7 (3.5) (81,97) 3.9
KRK320 96.1 (1.2) (92,98) (13.3,11.5) 95.7 (2.1) (90,98) 5.7
KRK480 97.5 (1.2) (96,98) (17.6,16.3) 97.l (1.9) (93,99) 7.0
Natural data sets

cancer 66.6 (5.2) (45,76) (5.3,7.8) 67.9 (4.5) (33,83) 3.4
lymph. 81.4 (4.2) (71,71, (1.6,8.4, 75.8 (6.8) (14,59, (0.4,2.5, -

89,100) 7.6,1.0) 94,0) 2.6,0.2)

KPa7KR 94.7 (1.1) (97,92) (7.6,8.3) 91.1 (2.3) (91,91) 2.9
Promoters 76.4 (42.7) (83,70) (5.0,6.1) 78.0 (4.7) (81,74) 1.9

Table 2. Comparison of HYDRA and REP. Figures in parentheses for accuracies columns indi-

cate standard deviation. Accuracy components (cpt.s) indicate the breakdown of the overall ac-

curacy by class. Accuracy figures in bold indicate statistically significant advantage over the

other algorithm.

3.4 Comparison of HYDRA and REP

Brunk and Pazzani show that on noisy data sets from the the KRK. domain, REP per

forms better than FOIL and Quinlan's minimum encoding length algorithm. Accord

ingly, this section compares HYDRA to REP and shows that a pre-pruning method

with weights performs better than REP (on the domains we tested) despite the prob

lem of local information that besets pre-pruning methods. Figures 3a and 3b compare

HYDRA and REP on noisy data from the KRK domain. HYDRA is significantly

more accurate than REP on noisy data when there are a limited number of training ex

amples because the pruning set must exceed a critical size for REP to be effective.

Table 2 illustrates that for small numbers of examples from the KRK domain, REP

12

prunes away almost all the concept description (column 8) so its reasonable accuracy

is a result of the fact thateven the null concept description attains -70% accuracy in

this domain (REP is highly accurate on test examples of legal and highly inaccurate

on test examples of illegal). Asymptotically, both algorithms approach 100%

accuracy on the noisy data sets from the KRK domain. However, in the range where

both algorithms are approx-imately equal in accuracy, REP is much more expensive

in terms of learning cost. Although Table 2 measures complexity in cpu seconds, the

differences in complexity are large enough such that a first order approximation is

sufficient here. This is substantiated by Cohen (1992) who demonstrates that REP has

an asymptotic time complexity of Q(n4). HYDRA by comparison, only needs to eval-

uate each learned clause over the training set once, in order to estimate the LS values.

Level of mFOIL using mFOIL HYDRA HYDRA

noise Laplace m =0.01 accuracy #clauses

Class noise

0% 95.1 95.6 96.8 (2.2) (6.2,5.8)

5% 92.7 94.3 91.9 (3.6) (8.0,6.8)

10% 88.9 92.0 91.0 (4.4) (9.3,7.9)

15% 86.4 90.0 88.9 (3.5) (9.9,7.8)

20% 84.6 88.1 88.9 (3.1) (10.3,8.4)

Tuple noise

5% 90.1 91.9 90.0 (3.1) (9.1,7.9)

10% 80.4 84.6 86.8 (3.7) (9.9,7.5)

15% 78.3 80.1 83.0 (4.9) (10.2,8.0)

20% 73.7 75.0 79.7 (5.1) (10.2,8.3)

Table 3. Comparison of mFOIL to HYDRA on the KRK domain. All results are for 100 examples

from the KRK domain. Figures in parentheses for HYDRA accuracies are standard deviations.

Accuracies for mFOIL represent averages over S trials. Dzeroski and Bratko did not give standard

deviations.

3.5 Comparison of HYDRA and mFOIL

mFOIL (Dzeroski and Bratko, 1992) is a noise-tolerant relational learning algorithm,

based on FOIL. mFOIL can use either the Laplace or them estimate (Cestnik, 1990) of

expected accuracy in place of information gain and it uses beam search with a beam

width of 5. If p and n respectively denote the numbers of positive and negative

examples covered by a literal, m denotes a parameter to the system and P + denotes the

prior of the positive class, then the Laplace estimate is (p+l)/(p+n+2) and the m-esti-

13

mate is (p+mp ~/(p+n+m). Table 3 presents an empirical comparison of HYDRA and

mFOIL. HYDRA does significantly better than mFOIL using Laplace. For mFOIL

using m = 0.01 (empirically determined to be the best value for the KRK domain by Dz

eroski. and Bratk:o, 1992), HYDRA does approximately as well as mFOIL for class

noise and does a little better for tuple noise.

3.6 Analysis of the progression from FOIL and HYDRA

In this section, we do a step by step analysis of a progression from FOIL to HYDRA.

There are three major differences between FOIL and HYDRA

• FOIL learns Horn clauses for positive examples of a single class. HYDRA learns a

set of Horn clauses for each class.

• FOIL uses information gain to select literals while HYDRA uses ls-content.

• Hydra associates weights (ls values) with each clause.

Figure 4 shows the comparisons that we will make. For each comparison, the impact of

only one difference will be assessed. In the first three comparisons, we present a pro

gression of configurations from FOIL to HYDRA that allows one to see what impact

each change had in the light o_f preceding changes.

Concept

descriptions

for each class
Using ls-content Adding ls weights

to select literals to each clauses

Using i-gain

to select literals

Figure 4. A progre~ion or changes that converts FOIL into HYDRA, (followed by algorithm S, that

differs from HYDRA only in the use or information gain to select literals)

Note that the comparison between algorithm 3 and HYDRA (algorithm 4) is a "lesion"

study, because exactly one component of HYDRA (the conflict resolution method used

to determine the class when clauses from more than one class are satisfied) is changed

14

to form algorithm 3. Similarly, the comparison between HYDRA and algorithm 5 is a

lesion study in which another component of HYDRA (the literal selection metric) is

changed.7

First, we compare FOIL (algorithm 1 in Figure 4) to a version of FOIL (algorithm 2 in

Figure 4) that only differs from FOIL in that it learns a concept description for each

class. When classifying an example, if an example satisfies a clause of more than one

concept description, algorithm 2 needs to estimate the reliability of the contending

clauses in order to resolve this conflict HYDRA resolves such conflicts by selecting the

class with the highest posterior odds. Algorithm 2 resolves conflicts by selecting the

class corresponding to the clause that covers the greater number of positive training

examples, breaking ties randomly. When a test example satisfies no clause of any class,

algorithm 2 guesses the most frequent class.

As Table 4 indicates, algorithm 2 is significantly more accurate than FOIL on noisy

data. It makes fewer errors of commission than FOIL. Consider the KRK domain. FOIL

only learns a definition for the concept illegal so an error of commission occurs when it

classifies an example of class legal as belonging to illegal. Algorithm 2 may not make

such an error in the same situation if that example also satisfies a clause of legal that is

more reliable than the contending clause from illegal. Thus, algorithm 2's conflict reso

lution strategy would correctly award that example to legal. For the noisy KRK, cancer

and lymphography data sets, such conflicts occur on approximately 20% of the test

examples. On approximately 1-2% of the test examples in these domains, it has to guess

the most frequent class. However, in the promoters domain algorithm 2 has to guess the

most frequent class on about 30% of the test examples. Since both classes are approxi

mately equally frequent in this data set, algorithm 2 concedes errors on 15% of the test

data from just this source of error. This explains why algorithm 2 has a low accuracy

rate (61.3%) (Table 4) on the promoters data set. The promoters concept is hard to learn

7. Note that although there are three differences between HYDRA an FOIL, it does not make sense
to consider a third lesion (not learning a concept definition for each class), because this change
alone is not meaningful (since it also eliminates the need for a conflict resolution strategy).

15

for both algorithm 2 and HYDRA because it is highly disjunctive with respect to the

available relations. In summary, learning a concept description for each class helps on

all the noisy data sets except for the highly disjunctive DNA promoters data set.

Domain Number FOIL HYDRA

or eg.s 1 2 3 4 5

Noise-free:

KRK 100 97.0 95.9 95.0 96.8 97.1

KRK 200 99.1 98.2 97.9 98.5 98.6
With 20% cl~ noise

KRK 160 83.9 87.3 85.9 90.6 88.0

KRK 320 83.8 90.9 81.5 93.8 91.4

With 5% tuple noise

KRK 160 90.6 91.0 89.6 93.3 92.4

KRK 320 90.7 94.0 89.0 96.1 94.9

Natural data sets

Cancer 190 63.5 66.4 62.S 66.6 63.8

Lymph. 99 79.4 80.5 81.4 78.8

Kpa7KR 200 90.3 94.l 94.7 94.7 94.2

Promoters 105 73.6 61.3 76.4 76.4 70.8

Table 4. Progr~ion from FOIL to HYDRA. The ragures in the third column are the accuracy of

FOIL and the ragures in the remaining columns are the increase or decrease in accuracy when

compared to the column immediately to the left. Figures in bold indicate statistically significant

differences (using a paired t-test at 0.95) as measured with respect to the column immediately to

the left. All ragures represent accuracies averaged over 20 trials.

Now we consider the effect of replacing information gain by ls-content and learning a

concept description for each class (The transition from algorithm 2 to algorithm 3 in

Figlire 4). Algorithm 3 leads to a decrease in accuracy on all the variants of the KRK

domain and the cancer domain. The drop in accuracy on the noise-free KRK data is

due to the fact that ls-content weighs coverage more highly than fit, leading it to build

fewer clauses, each of which may cover some negative examples. Interestingly, ls

content helps on the highly disjunctive DNA and the lymphography data sets. On

these sets, we observed that when using information gain, there were many cases

where test examples were uncovered by any clause of any concept description. On

such occasions, algorithm 2 has to guess the most frequent class. Algorithm 3, using

ls-content builds clauses with greater coverage so its has to guess less frequently and

consequently has a higher accuracy on these data sets.

Next, we consider the impact of adding LS weights to the concept description learned

16

by algorithm 3. This is algorithm 4, which we call HYDRA. Table 4 shows that add

ing weights helps for the KRK and some other domains and does not hurt in other

cases. This increase in accuracy is due not to building a different concept description

(HYDRA uses the same concept description as algorithm 3). Rather, the increased

accuracy is due to weighing clauses according to a measure of their reliability. Note

that the only source that can cause differences in accuracies between algorithm 3 and

HYDRA is the conflict resolution mechanism. Algorithm 3 resolves conflicts by

using positive coverage and HYDRA resolves conflicts using the product of LS and

prior odds. These two methods only differ when comparing clauses covering negative

examples in the training data. Thus, Table 4 shows that HYDRA is more accurate

than algorithm 3 on noisy data sets from the KRK domain because both algorithms

learned clauses covering negative examples in that domain. This also occurs for the

cancer domain. By contrast, both algorithms do not learn many clauses covering neg

ative examples in the DNA and lymphography data sets. Thus, changing the conflict

resolution mechanism by adding weights causes little or no change in accuracy.

Finally, we consider the impact of changing the literal selection metric from 1s

content in HYDRA to information gain, creating algorithm 5. HYDRA using ls-con

tent is often significantly more accurate than algorithm 5. On none of the domains we

used, was HYDRA significantly less accurate than algorithm 5. On noisy data, the av

erage accuracy of HYDRA was always higher than that of algorithm 5. The compari

son of HYDRA and algorithm 5 indicates that the system of weighing reliability must

be . supported by clauses that do not over-fit the data. Another reason algorithm 5 is

significantly less accurate than HYDRA is that it uses the same concept description

that algorithm 2 uses, hence it too makes many errors of omission through frequently

having to guess the most frequent class.

4. Conclusions and Future Work

We have presented a method using likelihood multipliers that demonstrably reduces

the small disjuncts problem and thereby increases predictive accuracy on noisy do-

17

mains. This method has been tested on domains requiring relational concept descrip

tions and those requiring attribute-value concept descriptions. HYDRA demonstrates

the utility of learning a concept description for each class that compete to classify ex

amples, and the utility of estimating the reliability of decision components (such as

clauses). This method does better than REP which has been the most accurate algo

rithm to date on noisy relational data such as the KRK data.

We plan to extend HYDRA to build several independent concept descriptions per

class and then combine evidence from these models. This has been referred to as av

eraging multiple models (Buntine, 1991). We feel that learning multiple models will

help HYDRA to further reduce the problems that hill-climbing systems like FOCL

experience in noisy domains.

Acknowledgements

We would like to like to acknowledge Matjaz Zwitter and Milan Soklic of the Insti

tute of Oncology at the University Medical Center, Ljubljana, Yugoslavia for the

breast cancer recurrence data. Thanks also to William Cohen, Dennis Kibler and Do

nato Malerba for reviews of this paper and to Cliff Brunk for suggestions on HYDRA

References

Ali K. and Pazzani M. (forthcoming). Reducing the small disjuncts problem by learning

probabilistic concept descriptions. In T. Petsche (ed.), Computational Learning Theory

and Natural Learning Systems, Vol. 3. Cambridge, Massachusetts. MIT Press.

Bergadano F., Giordana A. and Saitta L. (1988). Automated concept acquisition in noisy

environments. In IEEE Pattern Analysis and Machine Intelligence, 10.

Bergadano F., Matwin S., Michalski R.S. and Zhang J. Leaming Two-Tiered Concept Descrip

tions of Flexible Concepts: The POSEIDON System. Machine Learning, 8, 1. 5-43.

Brunk C., Pazzani M. (1991). An Investigation of Noise-Tolerant Relational Concept Leaming

Algorithms. In Proceedings of the Eighth International Workshop on Machine Learning .

Evanston, IL. Morgan Kaufmann.

Buntine W. (1991). Classifiers: A Theoretical and Empirical Study. In Proceedings of the

Eleventh International Joint Conference on Artificial Intelligence. Sydney, Australia. Mor

gan Kaufmann.
18

Cestnik B. (1990). Estimating probabilities: A crucial task in machine learning. In Proceedings

of the European Conference on Artificial Intelligence. Stockholm, Sweden. Pitman Press.

Cohen W. Efficient Pruning Methods for Rule Induction. Submitted to the Twelfth International

Joint Conference on Artificial Intelligence.

Duda R., Gaschnig J. and Hart P. (1979). Model design in the Prospector consultant system for

mineral exploration. In D. Michie (ed.), Expert systems in the micro-electronic age.

Edinburgh, England. Edinburgh University Press.

Dzeroski S. and Bratko I. (1992). Handling noise in Inductive Logic Programming. In

Proceedings of the International Workshop on Inductive Logic Programming (/LP

92). Tokyo, Japan. ICOT.

Holte R., Acker L. and Porter B. (1989). Concept Learning and the Problem of Small Disjuncts.

In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence.

Detroit, MI. Morgan Kaufmann.

Muggleton S., Bain M., Hayes-Michie J. and Michie D. (1989). An experimental comparison of

human and machine-learning formalisms. Sixth International Workshop on Machine

Learning. Ithaca, NY. Morgan Kaufmann.

Muggleton S., Srinivasan A. and Bain M. (1992). Compression, Significance and Accuracy. In

Proceedings of the Ninth International Workshop (ML92). Aberdeen, Scotland. Morgan

Kaufmann.

Pazzani M. and Kibler D. (1991). The utility of knowledge in inductive learning. Machine

Learning, 9, J, 57-94.

Rissanen I. (1978). Modeling by Shortest Data Description. Automatica, 14.

Quinlan R. (1987). Simplifying decision trees. International Journal of Man-Machine Studies,

27, 221-234.

Quinlan R. 1990. Learning logical definitions from relations. Machine Learning, 5, 3.

Silverstein G. and Pazzani M. (1991). Relational cliches: Constraining constructive induction

during relational learning. In Proceedings of the Eighth International Workshop on Ma

chine Learning. Evanston, IL. Morgan Kaufmann.

Spackman K. (1988). Learning Categorical Decision Criteria in Biomedical Domains. In

Proceedings of the Fifth International Conference on Machine Learning. Ann Arbor, MI.

Morgan Kaufmann.

19

1111111111111111111~~1 1 1rnim1m~~r1111111111111111111 .

MAY 2 7

3 1970 01005 6445 .

