
Hydra: Automatically Configuring Algorithms
for Portfolio-Based Selection

Lin Xu and Holger H. Hoos and Kevin Leyton-Brown
Department of Computer Science, University of British Columbia

2366 Main Mall, Vancouver, B.C., Canada, V6T 1Z4
{xulin730, hoos, kevinlb}@cs.ubc.ca

Abstract
The AI community has achieved great success in designing
high-performance algorithms for hard combinatorial problems,
given both considerable domain knowledge and considerable
effort by human experts. Two influential methods aim to au-
tomate this process: automated algorithm configuration and
portfolio-based algorithm selection. The former has the advan-
tage of requiring virtually no domain knowledge, but produces
only a single solver; the latter exploits per-instance variation,
but requires a set of relatively uncorrelated candidate solvers.
Here, we introduce Hydra, a novel technique for combin-
ing these two methods, thereby realizing the benefits of both.
Hydra automatically builds a set of solvers with complemen-
tary strengths by iteratively configuring new algorithms. It is
primarily intended for use in problem domains for which an
adequate set of candidate solvers does not already exist. Never-
theless, we tested Hydra on a widely studied domain, stochas-
tic local search algorithms for SAT, in order to characterize its
performance against a well-established and highly competitive
baseline. We found that Hydra consistently achieved major
improvements over the best existing individual algorithms, and
always at least roughly matched—and indeed often exceeded—
the performance of the best portfolios of these algorithms.

Introduction
Computationally hard combinatorial problems are ubiquitous
in AI. While these problems are intractable in the worst case,
in practice they can often be solved by sophisticated heuris-
tic techniques. Work has now progressed to a point where
good algorithms can usually be developed for a particular do-
main given two key ingredients: (i) domain knowledge about
the structure that arises in the domain, and the algorithmic
techniques that most effectively exploit such structure (e.g.,
codified in the research literature); (ii) the effort of human
experts (e.g., introducing or modifying algorithm compo-
nents; evaluating them to determine which are effective in
the domain). Such algorithms have achieved many notable
successes; however, their development has been extremely
expensive in terms of human time.

Recently, researchers have focused on automated methods
for designing algorithms for new domains, thereby reducing
reliance on domain knowledge and/or human experts. Ex-
amples include algorithm synthesis (Minton 1993; Gaspero

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Schaerf 2007; Monette, Deville, and van Hentenryck
2009) as well as parallel portfolios and online selection (Hu-
berman, Lukose, and Hogg 1997; Gomes and Selman 2001;
Carchrae and Beck 2005; Gagliolo and Schmidhuber 2006;
Streeter, Golovin, and Smith 2007). Two further techniques
are particularly relevant to our work.

The first such technique is automated algorithm config-
uration (Gratch and Dejong 1992; Fukunaga 2002; Bal-
aprakash, Birattari, and Stützle 2007; Hutter et al. 2007;
2009; Ansótegui, Sellmann, and Tierney 2009). This ap-
proach takes as input a highly parameterized algorithm,
a set of benchmark instances, and a performance metric,
and then optimizes the algorithm’s empirical performance
automatically. One prominent application of this idea is
SATenstein (KhudaBukhsh et al. 2009), which makes use
of a large space of stochastic local search (SLS) algorithms
for SAT. Automatically configured algorithms from this space
were shown to outperform state-of-the-art SLS algorithms
on six well-known distributions of SAT instances. Overall,
automated configuration is appealing because it requires no
domain knowledge beyond a parameterized algorithm frame-
work, and no human effort to target a new domain. However,
it produces only a single algorithm, which is designed to
achieve high performance overall, but which may perform
badly on many individual instances. This drawback is particu-
larly serious when the instance distribution is heterogeneous.

A second influential technique is portfolio-based algorithm
selection (Rice 1976; Leyton-Brown et al. 2003b; Guerri
and Milano 2004; Leyton-Brown, Nudelman, and Shoham
2009). Under this approach, predictive models are used to
select among a portfolio of existing algorithms on a per-
instance basis. This design framework has been used to build
very practical algorithms, notably the SATzilla portfolios
(Nudelman et al. 2004; Xu et al. 2008) that won 10 medals
in the 2007 and 2009 SAT competitions. This approach has
the advantage that it exploits per-instance variation across
solvers, but the drawback that it requires relatively significant
domain knowledge, including especially a set of relatively
uncorrelated candidate solvers.

Once a state-of-the-art portfolio exists for a domain—such
as SATzilla for various SAT distributions—how should
new research aim to improve upon it? One approach is to
build new stand-alone algorithms either by hand or using
automatic configuration, with the goal of replacing the port-

210

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



folio. This approach has the drawback that it reinvents the
wheel: the new algorithm must perform well on all the in-
stances for which the portfolio is already effective, and must
also make additional progress. Alternatively, we might try to
build a new algorithm to complement the portfolio, which has
been dubbed “boosting as a metaphor for algorithm design”
(Leyton-Brown et al. 2003a). The boosting algorithm in ma-
chine learning builds an ensemble of classifiers by focusing
on problems that are handled poorly by the existing ensemble.
The proposal is to approach algorithm design analogously,
focusing on problems for which the existing portfolio per-
forms poorly. In particular, the suggestion is to use sampling
(with replacement) to generate a new benchmark distribu-
tion that will be harder for an existing portfolio, and for new
algorithms to attempt to minimize average runtime on this
benchmark. Indeed, such a method was shown to be very ef-
fective for inducing new, hard distributions. While we agree
with the core idea of aiming explicitly to build algorithms
that will complement a portfolio, we have come to disagree
with its concrete realization as described most thoroughly
by Leyton-Brown, Nudelman, and Shoham (2009), realizing
that average performance on a new benchmark distribution is
not always an adequate proxy for the extent to which a new
algorithm would complement a portfolio.

We note that a region of the original distribution that is
exceedingly hard for all candidate algorithms can dominate
the new distribution, leading to stagnation. A further problem
is illustrated in the following, more complex example (due to
Frank Hutter). Consider a uniform distribution over instance
types A, B, and C. The current portfolio solves C instances
in 0.01 seconds, and A and B instances in 20 seconds each.
The new distribution S thus emphasizes instance types A and
B. There are three kinds of algorithms. X algorithms solve
A instances in 0.1±ε seconds and B instances in 100±ε
seconds each, where ε is a number between 0 and 0.01; the
actual runtime varies randomly within this range across given
algorithm–instance pairs. Y algorithms solve B instances in
0.1±ε seconds and A instances in 100±ε seconds each. Z
algorithms solve both A and B instances in 25±ε seconds
each. All three algorithm types solve C instances in 10±ε
seconds each. The best average performance on S will be
achieved by some Z algorithm, which we thus add to the
portfolio. However, observe that this new Z algorithm is
dominated by the current portfolio. Thus our new distribution
S′ will be the same as S. The process thus stagnates (endless
algorithms of type Z exist), and we never add any X or Y
algorithm to the portfolio, although adding any pair of these
would lead to improved overall performance.

In this paper we introduce Hydra, a new method for au-
tomatically designing algorithms to complement a portfolio.
This name is inspired by the Lernaean Hydra, a mytholog-
ical, multi-headed beast that grew new heads for those cut
off during its struggle with Greek hero Heracles. Hydra,
given only a highly parameterized algorithm and a set of
instance features, automatically generates a set of configura-
tions that form an effective portfolio. It thus does not require
any domain knowledge in the form of existing algorithms or
algorithm components that are expected to work well, and
can be applied to any problem. Hydra is an anytime algo-

rithm: it begins by identifying a single configuration with
the best overall performance, and then iteratively adds al-
gorithms to the portfolio. It is also able to drop previously
added algorithms when they are no longer helpful.
Hydra differs in key respects from stochastic offline

programming (SOP), another recent method that performs
instance-specific selection from an automatically generated
set of search algorithms (Malitsky and Sellmann 2009).
Firstly, SOP assumes that each of these algorithms has a
particular structure, iteratively (i) sampling from a distribu-
tion over heuristics and (ii) using the sampled heuristic for
one search step. In contrast, Hydra works with any parame-
terized algorithm. Secondly, SOP clusters the instances based
on features and then builds one algorithm for each cluster,
while Hydra considers all instances at each iteration and
uses features solely for portfolio-based selection. Finally,
SOP builds its set of algorithms using a custom optimiza-
tion method, while Hydra can make use of any algorithm
configuration procedure and portfolio building technique.

We also note that CPHYDRA (O’Mahony et al. 2008) has a
name similar to our Hydra. CPHYDRA is a portfolio-based
solver for constraint programming problems that uses case-
based reasoning to determine a sequential schedule, which
specifies how long to run each solver from a portfolio. It
can be viewed as an approach for algorithm selection in a
particular domain. In contrast, Hydra is a general method
for combining portfolio-based algorithm selection with auto-
mated algorithm configuration.
Hydra offers the greatest potential benefit in domains

where only one highly parameterized algorithm is competi-
tive (e.g., certain distributions of mixed-integer programming
problems), and the least potential benefit in domains where
a wide variety of strong, uncorrelated solvers already exist.
Nevertheless, we chose to evaluate Hydra on SAT—possibly
the most extreme example of the latter category—effectively
building a SATzilla of SATensteins. We did so for
several reasons. Most of all, to demonstrate the usefulness
of the approach, we considered it important to work on a
problem for which the state of the art is known to be very
strong. SLS-based SAT algorithms have been the subject
of a large and sustained research effort over the past two
decades, and the success of SATzilla demonstrates that
existing SAT algorithms can be combined together to form
very strong portfolios. The bar is thus set extremely high in
this domain. Further, studying SLS for SAT also offered sev-
eral pragmatic benefits: a wide variety of datasets exist and
are agreed to be interesting; effective instance-based features
are available; and SATenstein is a suitable configuration
target. Finally, because SAT is an important problem, even
small improvements are significant.

In our experiments, Hydra consistently achieved signif-
icant improvements over the best existing individual algo-
rithms designed both by human experts and automatic con-
figuration methods. More importantly, it always at least
roughly matched—and indeed often exceeded—the perfor-
mance of the best portfolio of such algorithms. We be-
lieve that Hydra’s performance on SAT is suggestive of
its promise in other domains, in which there is no strong
incumbent portfolio against which we could compare.

211



Hydra
The key idea behind Hydra is that a new candidate algorithm
should be preferred exactly to the extent that it improves upon
the performance of a (slightly idealized) portfolio. Hydra
is thus implemented by changing the performance measure
given to the algorithm configuration. A candidate algorithm
is scored with its actual performance in cases where it is
better than the existing portfolio, but with the portfolio’s
performance in cases where it is worse. Thus an algorithm
is not penalized for bad performance on instances for which
it should not be selected anyway, but is only rewarded to
the extent that it outperforms the portfolio. The examples
given earlier would be handled properly by this approach: the
presence of intractable instances does not lead us to ignore
performance gains elsewhere, and X and Y algorithms would
be chosen in the first two iterations.

As shown in pseudocode, Hydra takes five inputs: a pa-
rameterized solver s, a set of training problem instances I , an
algorithm configuration procedure AC with a performance
metric m to be optimized, and a procedure PB for building
portfolio-based algorithm selectors.

In its first iteration, Hydra uses configurator AC to pro-
duce a configuration of s, dubbed s1, that is optimized on
training set I according to performance metric m. Solver
s1 is then run on all instances of I in order to collect data
that can eventually be input to PB; runs performed during
the earlier configuration process can be cached and reused
as appropriate. We define portfolio P1 as the portfolio that
always selects s1, and solver set S1 as {s1}.

Then, in each subsequent iteration k ≥ 2, Hydra defines
a modified performance metric mk as the better of the per-
formance of the solver being assessed and the performance
of the current portfolio, both measured according to per-
formance metric m. The configurator AC is run to find a
configuration sk of s that optimizes mk on the entire training
set I . As before, the resulting solver is evaluated on the entire
set I and then added to the solver set S. We then use PB to
construct a new portfolio Pk from the given set of solvers. In
each iteration of Hydra, the size of the candidate solver set
Sk grows by one; however, PB may drop solvers that do not
contribute to the performance of portfolio Pk (this is done,
e.g., in SATzilla (Xu et al. 2008)). Slightly modifying
the second example we gave earlier, if Z algorithms have
slightly better performance on A and B instances than the
current portfolio, some Z algorithm will be chosen in the
first iteration. However, X and Y algorithms are chosen in
the next two iterations, at which point the Z algorithm will
be dropped, because it is dominated by the pair of X and Y
algorithms.
Hydra can be terminated using various criteria, such as

a user-specified bound on the number of iterations and/or a
total computation-time budget.

The algorithm configuration procedure AC used within
Hydra must be able to deal efficiently with configurations
having equal performance on some or all instances, because
such configurations can be expected to be encountered fre-
quently. (For example, all configurations dominated by port-
folio Pk−1 will have equal performance under performance
metric mk.) It is also possible to exploit mk for computa-

Procedure Hydra(s, I , AC, m, PB)
Input: Parametric solver s; Instance set I;

Algorithm configurator AC;
Performance metric m;
Portfolio builder PB

Output: Portfolio P

k := 1; m1 = m ;
obtain a solver s1 by running configurator AC on parametric
solver s and instance set I with performance metric m1;
measure performance of s1 on all instances in I , using
performance metric m;
let P1 by a portfolio that always selects s1;
let S1 := {s1};
while termination condition not satisfied do

k := k + 1;
define performance metric mk as the better of the
performance of the solver being assessed and the
performance of portfolio Pk−1, both measured using
performance metric m;
obtain a new solver sk by running configurator AC on
parametric solver s and instance set I with performance
metric mk;
measure performance of sk on all instances in I , using
performance metric m;
Sk = Sk−1 ∪ {sk};
obtain new portfolio Pk by running portfolio builder PB
on S;

return P

tional gain when optimizing runtime (as we do in our ex-
perimental study below). Specifically, a run of s on some
instance i ∈ I can be terminated during configuration once
its runtime reaches portfolio Pk−1’s runtime on i. (See anal-
ogous discussion of capping in algorithm configuration by
Hutter et al. (2009).)

We note that Hydra need not be started from an empty
set of algorithms, or only consider one parameterized algo-
rithm. For example, it is straightforward to initialize S with
existing state-of-the-art algorithms before running Hydra,
or to optimize across multiple parameterized algorithms.

Experimental Setup
We chose inputs for Hydra to facilitate comparisons with
past work, setting s, I , AC, and m as in KhudaBukhsh et al.
(2009), and taking PB from Xu et al. (2008). Inputs s, I
and m define the application context in which Hydra is run.
In contrast, AC and PB are generic components; we chose
these “off the shelf” and made no attempt to modify them to
achieve domain-specific performance improvements. We do
not expect that an end user would have to vary them either.

Parametric Solver: SATenstein-LS
As our parametric solver s, we chose SATenstein-LS,
a generalized, highly parameterized stochastic local search
(SLS) framework (KhudaBukhsh et al. 2009). It includes
components taken from or inspired by a wide range of

212



state-of-the-art SLS algorithms. SATenstein-LS has
41 parameters that control the selection and behavior of
its components, leading to a total configuration space of
size 4.82× 1012. Automatically-identified configurations of
SATenstein-LS have been shown to achieve better per-
formance than existing state-of-the-art SLS algorithms on
several well-known instance distributions.

Instances
We investigated the effectiveness of Hydra on four distri-
butions, drawing on well-known families of SAT instances.
Because no state-of-the-art SLS algorithms are able to prove
unsatisfiability, we considered only satisfiable instances. We
identified these by running all complete algorithms that won
a SAT competition category between 2002 and 2007 for
one hour. First, the BM data set is constructed from 500
instances taken from each of the six distributions used by
KhudaBukhsh et al. (2009) (QCP, SWGCP, FACT, CBMC,
R3FIX, and HGEN), split evenly into training and test sets.
Second, the INDU data set is a mixture of 500 instances
from each of the CBMC and FACT distributions, again split
evenly into training and test sets. Third and fourth, the HAND
and RAND data sets include all satisfiable instances from the
Random and Handmade categories of the SAT Competitions
held between 2002 and 2007; we split the data 1141:571 and
342:171 into training and test sets, respectively.

Algorithm Configurator: FocusedILS
As our algorithm configurator AC, we chose the
FocusedILS procedure from the ParamILS framework,
version 2.3 (Hutter et al. 2009). This is the only existing
method able to deal with extremely large configuration spaces
such as SATenstein-LS’s, and indeed was the method
used to identify the high-performing SATenstein-LS con-
figurations mentioned previously. FocusedILS compares
a new configuration with an incumbent by running on in-
stances one at a time, and rejects the new configuration as
soon as it yields weakly worse overall performance on the set
of instances than the incumbent. Because we expect many
ties in Hydra’s modified performance measures mk, partic-
ularly in later iterations, we changed this mechanism so that
new configurations are rejected only once they yield strictly
worse overall performance. We also modified FocusedILS
to cap all runs at the corresponding runtime for the portfolio
Pk−1, as discussed previously.

Performance Metric: PAR
As our performance metric we would have liked to use mean
runtime. However, the mean is not defined when long runs are
capped during configuration, which is necessary in practice.
We thus followed KhudaBukhsh et al. (2009), capping runs
at 5 seconds and setting our performance metric m to be
Penalized Average Runtime–10 (PAR-10); PAR-k of a set of
r runs is the mean over the r runtimes, where capped runs are
counted as having taken k times the captime. We performed
10 independent FocusedILS runs on training data with
different instance orderings and with a one-day time bound.1

1SATenstein-LS’s parameter space is divided into two dis-
joint parts; we performed half of our FocusedILS runs on each.

We kept the parameter configuration that yielded the best
PAR score on training data.

Portfolio Builder: SATzilla

As our portfolio builder PB we used the SATzilla frame-
work (Xu et al. 2008). In brief, SATzilla works as follows.
Let S denote a set of algorithms, let I denote a set of training
instances, let D represent performance data for each algo-
rithm from S run on each instance in I , and let F represent
features computed for each instance in I . First, up to two
solvers from S are selected as “presolvers” using on a local-
search-based subset selection technique, with a fixed time
budget taken from {0s, 2s, 5s, 10s}. We use forward selec-
tion to reduce the set of features, perform a quadratic basis
function expansion, and then again perform forward selec-
tion; call the resulting feature set F ′. For each solver in S, we
then use a variant of ridge regression to predict D given F ′;
that is, we build a mapping from the features in F ′ to a real
value predicting performance. The ridge regression variant
deals correctly with censored data and exploits hierarchical
hardness models, as described by Xu et al. (2008). At run-
time, the portfolio first runs the presolver(s) sequentially. If
the instance remains unsolved it then computes the features,
evaluates the performance predictor for each algorithm, and
runs the algorithm predicted to perform best.

Because performance prediction is imperfect, portfolio
performance can improve if a solver is excluded from S.
We use solver subset selection to determine the set S that
achieves the best performance on the training data, building
the portfolio as described above for each candidate set S.

We computed the same set of features as Xu et al. (2009).
For BM and INDU, we only used 40 very efficently com-
putable features (with average feature computation time of
0.04 seconds in both cases) since initial, exploratory experi-
ments showed us that Hydra could achieve performance on
the order of seconds on these data sets. For the same reason,
we also reduced the time allowed for subset selection on
these distributions by a factor of 10, allowing time budgets
taken from {0s, 0.2s, 0.5s, 1s}. For RAND and HAND, we
used all features except the most expensive ones (LP-based
and clause-graph-based features); the average feature compu-
tation times were 4.2 seconds and 4.9 seconds, respectively.

Challengers

As previously explained, one reason that we studied SLS for
SAT is that a wide variety of strong solvers exist for this do-
main. In particular, we identified 17 such algorithms, which
we dub “challengers.” Following KhudaBukhsh et al. (2009),
we included all 7 SLS algorithms that won a medal in any of
the SAT Competitions between 2002 and 2007, and also 5
additional prominent high-performance algorithms. We also
included the 6 SATenstein-LS configurations introduced
by KhudaBukhsh et al. (2009). While in some sense this set
a high bar for Hydra (it had to compete against strong con-
figurations of its own parametric solver) we included these
configurations because they were shown to outperform the
previous state of the art.

213



Experimental Environment
We collected training data and performed ParamILS runs
on two different compute clusters. The first had 55 dual
3.2GHz Intel Xeon machines with 2MB cache and 2GB
RAM, running OpenSuSE Linux 11.1; the second had 384
dual 3.0GHz Intel Xeon E5450 quad-core machines with
16GB of RAM running Red Hat Linux 4.1.2. Although
the use of different machines added noise to the runtime
observations in our training data, it had to be done to leverage
additional computational resources. To ensure that our results
were meaningful, we gathered all test data using only the first
cluster; all results reported in this paper were collected using
this data, and the data was used for no other purpose. Runtime
was always measured as CPU time.

Results
To establish a baseline for our empirical evaluation, we first
ran all 17 challenger algorithms on each of our test sets. The
best-performing challengers are identified in the third column
of Table 1, and their PAR-10 scores are shown in the fourth
column. We also report the percentages of instances that each
algorithm solved.

Next, we used SATzilla to automatically construct port-
folios, first from the 11 manually crafted challenger algo-
rithms, and then from the full set of 17 challengers that also
included the 6 SATenstein-LS solvers. As can be seen
from column 6 of Table 1, the latter portfolios perform much
better than the best individual challenger, and the same holds
for the former, more limited portfolios (column 5) as com-
pared to the best of their 11 handcrafted component solvers.
As one would expect, the performance gain was particu-
larly marked for instance set BM, which is highly heteroge-
neous. In all cases, the inclusion of the 6 SATenstein-LS
solvers, which were derived by automatic configuration on
the six instance distributions considered by KhudaBukhsh
et al. (2009), led to improved performance. While this was
expected for BM and INDU, which are combinations of the
instance distributions for which the 6 SATenstein-LS
solvers were built, we were more surprised to observe the
same qualitative effect for RAND and HAND.

In column 7, Table 1 shows the performance of the single
SATenstein-LS configuration that was obtained in the
initial phase of Hydra. Comparing these results to those the
portfolio obtained after 7 iterations (column 8), we see that
Hydra is indeed able to automatically configure solvers to
work well as components of a portfolio. Furthermore, in all
cases the Hydra portfolio outperformed the portfolio of 11
challengers. The Hydra portfolio outperformed the portfolio
of 17 challengers in RAND and HAND, and effectively tied
with it in BM and INDU. Note that these latter distributions are
those for which SATenstein-LS solvers were specifically
built; indeed, we found that the 17-challenger portfolios
relied very heavily on these solvers. Furthermore, we note
that KhudaBukhsh et al. (2009) devoted about 240 CPU
days to the construction of the 6 SATenstein-LS solvers,
while the construction of the entire Hydra[D,7] portfolio
required only about 70 CPU days.

Overall, recall that the success of the challenger-based

portfolios depends critically upon the availability of domain
knowledge in the form of very strong solvers (some hand-
crafted, such as 11 of the challengers, and some constructed
automatically based on clearly-delineated instance distribu-
tions, such as the 6 SATenstein-LS solvers). In contrast,
Hydra always achieved equivalent or significantly better
performance without relying on such domain knowledge.

Figure 1 shows the PAR-10 performance improvements
achieved in each Hydra iteration, considering both training
and test data for BM and INDU. (The plots for HAND and
RAND are not shown here, but closely resemble that for BM.).
In all cases, test performance closely resembled training
performance. Hydra’s test performance improved mono-
tonically from one iteration to the next. Furthermore, on
BM, HAND and RAND, Hydra achieved better performance
than the best challenger after at most two iterations. On
INDU, Hydra took five iterations to outperform the best
challenger, SATenstein-LS[CBMC]. While this might
seem surprising considering that the latter is a configura-
tion of SATenstein-LS, it is explained by the fact that
each Hydra iteration was allowed much less CPU time than
KhudaBukhsh et al. (2009) allocated for the construction of
SATenstein-LS[CBMC].

Figure 2 compares the test-set performance of
Hydra[D,1] and Hydra[D,7] for BM and INDU. (The plots
for HAND and RAND are not shown here, but resemble the
BM plot.) Note that Hydra[D,7] is substantially stronger
than Hydra[D,1], particularly on hard instances. The fact
that Hydra[D,1] sometimes outperforms Hydra[D,7] is
due to the facts that the feature-based selection does not
always choose the best solver from the given portfolio, and
that the algorithms are randomized.

Table 2 shows, over each of the 7 iterations, the fraction
of training instances solved by each Hydra portfolio com-
ponent. Obviously, a total of k solvers are available in each
stage k. Note that solver subset selection does lead Hydra
to exclude solvers from the portfolio; this happens, e.g., on
RAND, where the third solver was dropped in iteration 7.
Another interesting effect can be observed in iteration 3 on
INDU, where the second solver was effectively replaced by
the third, whose instance share is marginally higher. Had we
allowed the algorithm configurator to run longer in iteration 2,
it would eventually have found this latter solver. The fact that
it was found in the subsequent iteration illustrates Hydra’s
ability to recover from insufficient allocation of runtime to
the algorithm configurator. A similar phenomenon occurred
in iterations 6 and 7 on INDU. The solver found in iteration 6
turned out not to be useful at all, and was therefore dropped
immediately; in the next round of algorithm configuration
a useful solver was found. (However, we see in Figure 1
that the overall benefit derived from using this latter solver
turned out to be quite small.) Finally, we note that for all
four distributions, the Hydra[D,7] portfolios consisted of
at least 5 solvers, each of which were executed on between
6.8 and 41.8% of the instances. This indicates that the indi-
vidual solvers constructed by Hydra indeed worked well on
sizeable subsets of our instance sets, without the explicit use
of problem-dependent knowledge (such as instance features)
for partitioning these sets.

214



Dataset Metric Best Challenger Chall. Perf Portf. 11-Chall. Portf. 17-Chall. Hydra[D,1] Hydra[D,7]
BM PAR Score SATenstein-LS[FACT] 224.53 54.04 3.06 249.44 3.06

Solved (%) 96.4 99.3 100 96.0 100
INDU PAR Score SATenstein-LS[CBMC] 11.89 135.84 7.74 33.49 7.77

Solved (%) 100 98.1 100 100 100
RAND PAR Score gNovelty+ 1128.63 897.37 813.72 1166.66 631.35

Solved (%) 81.6 85.5 86.9 80.8 89.8
HAND PAR Score adaptG2WSAT+ 2960.39 2670.22 2597.71 2915.22 2495.06

Solved (%) 50.9 55.8 56.9 51.7 58.7

Table 1: Performance comparison between Hydra, SATenstein-LS, challengers, and portfolios based on 11 (without 6
SATenstein-LS solvers) and 17 (with 6 SATenstein-LS solvers) challengers. All results are based on 3 runs per algorithm
and instance; an algorithm solves an instance if its median runtime on that instance is below the given cutoff time.

Figure 1: Hydra’s performance progress after each iteration, for BM (left) and INDU (right). Performance is shown in terms of
PAR-10 score; the vertical lines represent the best challenger’s performance for each data set.

Conclusions
In this work we introduced Hydra, a new automatic algo-
rithm design approach that combines portfolio-based algo-
rithm selection with automatic algorithm configuration. We
applied Hydra to SAT, a particularly well-studied and chal-
lenging problem domain, producing high-performance port-
folios based only on a single highly parameterized SLS al-
gorithm, SATenstein-LS. Our experimental results on
widely-studied SAT instances showed that Hydra signif-
icantly outperformed 17 state-of-the-art SLS algorithms.
Hydra reached, and in two of four cases exceeded, the
performance of portfolios that used all 17 challengers as
candidate solvers, 6 of which had been configured automati-
cally using domain knowledge about specific types of SAT
instances. At the same time, the total CPU time used by
Hydra to reach this performance level for each distribu-
tion was less than a third of that used for configuring the 6
automatically-configured challengers.

One obvious direction for future work is to use Hydra to
build portfolios of complete SAT solvers. We also intend to
apply Hydra to mixed integer programming problems, for
which there are very few strong solvers. Finally, we are inter-
ested in studying versions of Hydra that leverage different
algorithm configuration and portfolio building methods.

References
Ansótegui, C.; Sellmann, M.; and Tierney, K. 2009. A
gender-based genetic algorithm for the automatic configura-
tion of algorithms. In Proc. CP, 142–157.
Balaprakash, P.; Birattari, M.; and Stützle, T. 2007. Im-
provement strategies for the F-race algorithm: Sampling
design and iterative refinement. In Hybrid Metaheuristics,
108–122.
Carchrae, T., and Beck, J. C. 2005. Applying machine learn-
ing to low knowledge control of optimization algorithms.
Computational Intelligence 21(4):373–387.
Fukunaga, A. S. 2002. Automated discovery of composite
sat variable-selection heuristics. In Proc. AAAI, 641–648.
Gagliolo, M., and Schmidhuber, J. 2006. Learning dynamic
algorithm portfolios. Annals of Mathematics and Artificial
Intelligence 47(3-4):295–328.
Gaspero, L. D., and Schaerf, A. 2007. EasySyn++: A tool
for automatic synthesis of stochastic local search algorithms.
In Proc. SLS, 177–181.
Gomes, C. P., and Selman, B. 2001. Algorithm portfolios.
Artificial Intelligence 126(1-2):43–62.
Gratch, J., and Dejong, G. 1992. COMPOSER: A proba-

215



Figure 2: Performance comparison between Hydra[D,7] and Hydra[D,1] on the test sets, for BM (left) and INDU (right).
Performance is shown in terms of PAR-10 score.

s1 s2 s3 s4 s5 s6 s7

P1 100 0 0 0 0 0 0
P2 45.1 54.9 0 0 0 0 0
P3 27.4 44.4 28.2 0 0 0 0
P4 18.1 31.0 21.6 29.4 0 0 0
P5 13.9 25.9 19.8 26.1 14.3 0 0
P6 12.5 22.9 16.8 23.2 13.2 11.5 0
P7 12.5 23.9 0 22.8 13.2 13.2 14.4

s1 s2 s3 s4 s5 s6 s7

P1 100 0 0 0 0 0 0
P2 50.0 50.0 0 0 0 0 0
P3 49.0 0 51.0 0 0 0 0
P4 47.8 0 42.8 9.4 0 0 0
P5 35.8 0 42.6 9.4 12.2 0 0
P6 35.8 0 42.6 9.4 12.2 0 0
P7 31.2 0 41.8 9.2 11.0 0 6.8

Table 2: The percentage of instances for each solver chosen by algorithm selection at each iteration for RAND (left) and INDU
(right). Pk and sk are respectively the portfolio and algorithm instantiation obtained in iteration k.

bilistic solution to the utility problem in speed-up learning.
In Proc. AAAI, 235–240.

Guerri, A., and Milano, M. 2004. Learning techniques
for automatic algorithm portfolio selection. In Proc. ECAI,
475–479.

Huberman, B.; Lukose, R.; and Hogg, T. 1997. An eco-
nomics approach to hard computational problems. Science
265:51–54.

Hutter, F.; Babić, D.; Hoos, H. H.; and Hu, A. J. 2007.
Boosting verification by automatic tuning of decision proce-
dures. In Proc. FMCAD, 27–34.

Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: An automatic algorithm configuration
framework. JAIR 36:267–306.

KhudaBukhsh, A. R.; Xu, L.; Hoos, H. H.; and Leyton-
Brown, K. 2009. SATenstein: Automatically building
local search SAT solvers from components. In Proc. IJCAI,
517–524.

Leyton-Brown, K.; Nudelman, E.; Andrew, G.; McFadden,
J.; and Shoham, Y. 2003a. Boosting as a metaphor for
algorithm design. In Proc. CP, 899–903.

Leyton-Brown, K.; Nudelman, E.; Andrew, G.; McFadden,
J.; and Shoham, Y. 2003b. A portfolio approach to algorithm
selection. In Proc. IJCAI, 1542–1543.

Leyton-Brown, K.; Nudelman, E.; and Shoham, Y. 2009.

Empirical hardness models: Methodology and a case study
on combinatorial auctions. Journal of the ACM 56(4):1–52.
Malitsky, Y., and Sellmann, M. 2009. Stochastic offline
programming. In Proc. CP, 784–791.
Minton, S. 1993. An analytic learning system for specializ-
ing heuristics. In Proc. IJCAI, 922–929.
Monette, J.; Deville, Y.; and van Hentenryck, P. 2009. Aeon:
Synthesizing scheduling algorithms from high-level models.
In INFORMS Computing Society Conference, 43–59.
Nudelman, E.; Leyton-Brown, K.; Devkar, A.; Shoham, Y.;
and Hoos, H. 2004. Understanding random SAT: Beyond
the clauses-to-variables ratio. In Proc. CP, 438–452.
O’Mahony, E.; Hebrard, E.; Holland, A.; Nugent, C.; and
O’Sullivan, B. 2008. Using case-based reasoning in an
algorithm portfolio for constraint solving. In Proc. Irish
Conf. on Artificial Intelligence and Cognitive Science.
Rice, J. R. 1976. The algorithm selection problem. Ad-
vances in Computers 15:65–118.
Streeter, M.; Golovin, D.; and Smith, S. F. 2007. Combining
multiple heuristics online. In Proc. AAAI, 1197–1203.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
SATzilla: portfolio-based algorithm selection for SAT. JAIR
32:565–606.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2009.
SATzilla2009: An automatic algorithm portfolio for SAT.
Solver description, 2009 SAT Competition.

216


