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HYDRA: Hybrid Deep Magnetic Resonance Fingerprinting1

Pingfan Song1 Yonina C. Eldar2 Gal Mazor3 Miguel R. D. Rodrigues42

Abstract3

Purpose: Magnetic resonance fingerprinting (MRF) methods typically rely on dictio-4

nary matching to map the temporal MRF signals to quantitative tissue parameters.5

Such approaches suffer from inherent discretization errors, as well as high computa-6

tional complexity as the dictionary size grows. To alleviate these issues, we propose a7

HYbrid Deep magnetic ResonAnce fingerprinting approach, referred to as HYDRA.8

Methods: HYDRA involves two stages: a model-based signature restoration phase9

and a learning-based parameter restoration phase. Signal restoration is implemented10

using low-rank based de-aliasing techniques while parameter restoration is performed11

using a deep nonlocal residual convolutional neural network. The designed network is12

trained on synthesized MRF data simulated with the Bloch equations and fast imaging13

with steady state precession (FISP) sequences. In test mode, it takes a temporal MRF14

signal as input and produces the corresponding tissue parameters.15

Results: We validated our approach on both synthetic data and anatomical data16

generated from a healthy subject. The results demonstrate that, in contrast to conven-17

tional dictionary-matching based MRF techniques, our approach significantly improves18

inference speed by eliminating the time-consuming dictionary matching operation, and19

alleviates discretization errors by outputting continuous-valued parameters. We further20

avoid the need to store a large dictionary, thus reducing memory requirements.21

Conclusions: Our approach demonstrates advantages in terms of inference speed,22

accuracy and storage requirements over competing MRF methods.23

24
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Hybrid Deep MRF page 1

I. Introduction40

Magnetic Resonance Fingerprinting (MRF)1,2,3,4,5,6,7,8 has emerged as a promising Quan-41

titative Magnetic Resonance Imaging (QMRI) approach, with the capability of providing42

multiple tissue’s intrinsic spin parameters simultaneously, such as the spin-lattice magnetic43

relaxation time (T1) and the spin-spin magnetic relaxation time (T2). Based on the fact44

that the response from each tissue with respect to a given pseudo-random pulse sequence is45

unique, MRF exploits pseudo-randomized acquisition parameters to create unique temporal46

signal signatures, analogous to a "fingerprint", for different tissues. A dictionary matching47

operation is then performed to map an inquiry temporal signature to the best matching48

entry in a precomputed dictionary, leading to multiple tissue parameters directly.49

The temporal signatures are generated by varying the acquisition parameters of a50

pseudo-random excitation pulse sequence, such as repetition time (TR), time of echo (TE),51

and radio frequency flip angle (FA) over time. The dictionary is composed of a large number52

of entries that are usually simulated by the Bloch equations given pseudo-random pulse se-53

quences. Each entry represents a unique temporal signature associated with a specific tissue54

and its quantitative parameters, such as the T1 and T2 relaxation times. Thus, once the55

best matching (i.e. most correlated) entry is found, it directly leads to multiple quantitative56

parameters simultaneously via a lookup-table operation.57

MRI physics and physiological constraints make the MR scanning procedure time-58

consuming. To shorten acquisition time, subsampling is commonly performed in k-space59

(a.k.a conjugate Fourier transform domain) in order to reduce the number of samples and60

accelerate imaging speed. However, such k-space subsampling results in temporal signatures61

that are corrupted by aliasing, blurring and noise. This hampers the accuracy associated62

with estimation of the tissue parameters using a dictionary matching procedure. In order63

to alleviate the impact of such distortion and corruption, de-aliasing operations are often64

exploited to restore cleaner signatures before performing signature-to-parameter mapping.65

Therefore, MRF reconstruction usually involves two operations: signature restoration and66

parameter restoration.67

Inspired by the successful application of sparsity-driven image processing approaches in68

MRI reconstruction9,10,11,12, several works3,4,5,6 suggest to incorporate prior knowledge such69

as sparsity and low-rank to attenuate distortion and corruption, improving the signature70

I.. INTRODUCTION
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page 2 P. Song

restoration performance, during the initial MRF reconstruction stage. This is then followed71

by a dictionary matching operation, performing mapping from purified temporal signatures72

to tissue’s quantitative parameters. However, such dictionary matching based signature-73

to-parameter mapping exhibits several drawbacks13,14. Since the simulated dictionary and74

lookup-table contain a finite number of elements, they can only cover a limited number75

of discrete values for each type of tissue parameter. We refer to the difference between a76

continuous-valued tissue parameter and its closest available discrete value on a lattice as the77

discretization error. For example, a pair of dictionary and lookup-table that contain 10178

elements will lead to a discretization error of maximum 25 ms if they cover the range of 0 ms79

- 5000 ms with a fixed interval of 50 ms for a specific tissue parameter, e.g. T1. To reduce80

the discretization error, a huge dictionary that is composed of a large number of entries is81

needed to represent tissues with fine granularity over the entire value range of target tissue82

parameters. However, storing a large dictionary becomes prohibitively memory-consuming,83

as the dictionary size and density often increase exponentially with the number of tissue84

parameters. Specifically, the number of entries in a dictionary will be P s for s parameters85

each containing P values, since every combination of these s parameters determines a specific86

tissue which is characterized by a specific signature. For example, given T1, T2 relaxations,87

i.e. s = 2, if each of them contains 1000 values, the dictionary will have 10002 entries.88

In addition, finding the best matching entry becomes computationally intense for a large89

dictionary, considerably limiting the inference speed.90

In this paper, we propose an alternative approach to dictionary matching based on deep91

neural networks (a.k.a. deep learning)15,16, which we refer to as HYDRA: HYbrid Deep mag-92

netic ResonAnce fingerprinting. The motivation derives from the fact that a well designed93

and tuned deep neural network is capable of approximating complex functions, leading to94

state-of-the-art results in a number of tasks such as image classification, super-resolution,95

speech recognition, and more17,18,19,20,21,22,23. Recent work13,14 proposed to exploit neural96

networks to replace the dictionary and lookup-table used in conventional MRF reconstruc-97

tion approaches. These proposed neural networks suffer from two limitations: First, these98

approaches are based on neural network models containing only 3-layers, thus suffer from99

limited capacity of capturing complex mapping functions. Second, these methods focused100

exclusively on parameter restoration stage (the second stage in MRF reconstruction), but not101

on signature restoration (the first stage in MRF reconstruction). Therefore, these techniques102

I.. INTRODUCTION

This article is protected by copyright. All rights reserved. 



A
c

c
e

p
te

d
 A

r
ti

c
le

Hybrid Deep MRF page 3

rely on fully-sampled data instead of typically available sub-sampled k-space data.103

Different from Cohen et al.’s fully-connected feed-forward neural network13, and Hoppe104

et al.’s vanilla convolutional neural network (CNN)14, the proposed HYDRA involves both105

a signature restoration and a parameter restoration phase. Signature restoration is im-106

plemented using a low-rank based de-aliasing method adapted from Mazor et al.6 while107

parameter restoration is implemented using a deep nonlocal residual convolutional neural108

network developed for this purpose. Our key contributions with respect to prior work are:109

• HYDRA is, to the best of our knowledge, the first deep network approach to combine110

model-based de-aliasing and learning-based parameter mapping. HYDRA eliminates111

the requirement for the memory and time-consuming dictionary matching operation,112

thus significantly improving inference speed without compromising on reconstruction113

performance.114

• A 1D nonlocal residual convolutional neural network is designed to capture the map-115

pings from temporal MRF signals to tissue parameters. Owing to residual learning116

and a self-attention mechanism, our network is deeper and more sophisticated than117

competing network models. This allows to capture complex parameter mappings more118

effectively, and output continuous parameters to alleviate discretization issues.119

• The designed network is trained on synthesized MRF data simulated with the Bloch120

equations, but is still applicable to anatomical data. This contributes to eliminating121

the requirement for a large amount of real MRF data.122

• A low-rank based de-aliasing technique is developed in order to take advantage of123

temporal similarity for signature restoration.124

• The low-rank based signature restoration is organically combined with the learning-125

based parameter restoration to achieve fast and accurate MRF reconstruction. Such126

strategy enables HYDRA to handle both fully-sampled k-space data and more impor-127

tantly sub-sampled k-space data.128

• A series of numerical experiments are conducted to evaluate the proposed approach129

on both synthetic and anatomical data. The results demonstrate improved inference130

speed, accuracy and discretization errors over competing methods1,2,3,4,5,6,13,14.131

The rest of the paper is organized as follows. In Section II., we formulate the MRF132

reconstruction problem, introduce related methods, and present our approach, involving the133

I.. INTRODUCTION
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page 4 P. Song

use of a low-rank based signature restoration procedure together with a deep network for134

parameter restoration. Section III. is devoted to experimental results, followed by a discussion135

in Section IV. and a conclusion in Section V..136

II. Materials and Methods137

II.A. The MRF Problem Formulation138

MRF data is composed of multiple frames sampled in k-space over time. A series of such139

frames are vectorized and then stacked together along the temporal dimension to construct140

a measurement matrix Y ∈ CQ×L, where Q is the number of k-space samples in each frame,141

and L is the number of frames. Due to k-space subsampling, every column vector Y:,i142

represents a subsampled Fourier transform of a vectorized image frame X:,i:143

Y = [Y:,1, · · · ,Y:,L] = [Fu{X:,1}, · · · , Fu{X:,L}] , (1)144

where Fu{·} denotes a subsampled 2D Fourier transform.145

Each column X:,i represents a MR contrast acquired with RF sequence parameters:146

ΘTRE
:,i = [TRi, TEi, FAi]T , i ∈ [1, L] (2)147

where TRi and TEi denote the repetition time and echo time, respectively, and FAi denotes148

the flip angle of the RF pulse during sampling the i-th contrast. Every row Xj,: represents149

a temporal signature, i.e. temporal signal evolution of a specific tissue at the j-th image150

pixel. The signature depends on the tissue’s relaxation times, such as T1 and T2, grouped151

as a row vector:152

ΘT12
j,: = [T1j, T2j], j ∈ [1, N ] (3)153

where, N denotes the number of pixels in each image frame. Note that, j is the spatial154

index while i is the temporal index throughout. Given RF sequence parameters ΘTRE, and155

parameters ΘT12
j,: of a specific tissue, its temporal signature Xj,: can be derived as:156

Xj,: = f(ΘT12
j,: ,ΘTRE) (4)157

where f(·) denotes the Bloch equations. This MR contrast matrix X is associated with the158

k-space measurements Y per column by the subsampled Fourier transform, and it is related159

to tissue parameters ΘT12 per row by the Bloch equations, as illustrated in Fig. 1.160

II.. MATERIALS AND METHODS

This article is protected by copyright. All rights reserved. 



A
c

c
e

p
te

d
 A

r
ti

c
le

Hybrid Deep MRF page 5

Given RF sequence parameters ΘTRE and k-space measurements Y, the goal of MRF161

reconstruction is to estimate the tissue parameters ΘT12. Typically, the image stack X is162

first reconstructed from Y, referred to as signature restoration, and then mapped to tissue163

parameters ΘT12 via dictionary matching, referred to as parameter restoration1,2,3,4,5,6. This164

process is illustrated in Fig. 2.165

The dictionary is a collection of temporal signatures that are usually simulated by the166

Bloch equations for various typical tissues, given the pseudo-random RF pulse sequences and167

tissue parameters. Given an inquiry temporal signature, dictionary matching computes the168

inner product between the temporal signature with each dictionary entry, selecting the entry169

in the dictionary exhibiting the highest correlation with the inquiry one as the best matching170

signature. Once the best entry is found, it directly leads to multiple tissue parameters, such171

as T1, T2, simultaneously, via searching a lookup-table.172

Let LUT ∈ RK×2 denote a lookup-table composed of K tissues, each containing 2173

parameters, i.e., T1 and T2 relaxation times1. Let D ∈ CK×L denote the corresponding174

dictionary simulated using Bloch equations given the RF sequence parameters ΘTRE, for-175

mulated as Dk,: = f(LUTk,:,Θ
TRE). Since each temporal signature Dk,: is linked with the176

k-th tissue’s parameters LUTk,:, the choice of a large dictionary size K can in principle177

provide enough granularity to capture a range of possible tissue values.178

In conclusion, existing MRF reconstruction approaches involve two stages: signature179

restoration and parameter restoration, that can be succinctly written as180

ΘT12
j,: = g(h(Y)j,:|Θ

TRE), j ∈ [1, N ], (5)181

where the function X = h(Y) represents the signature restoration operation such as sparsity182

or low-rank based de-aliasing and denoising methods, whereas g(Xj,:|Θ
TRE) denotes the183

parameter restoration operation, such as dictionary matching based methods1,2,3,4,5,6.184

Our approach aims to perform signature restoration via low-rank based de-aliasing and185

parameter restoration via a neural network in order to achieve improved MRF reconstruction186

performance. We highlight that our method only requires a simulated dictionary during187

network training. Once the network is trained, the dictionary is not needed anymore. In188

1Note that the off resonance parameter, which appeared in the original MRF paper1, has been omitted
here, since the sequence used in our experiments is derived from the FISP sequence, which is insensitive to
off resonance effects2,6.

II.. MATERIALS AND METHODS
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page 6 P. Song

Algorithm 1 Original MRF method1

Input:

A set of subsampled k-space images: Y

A pre-simulated dictionary: D

An appropriate lookup-table: LUT

Output:

Magnetic parameter maps: T̂1, T̂2

Step 1. Restore signatures:

X̂:,i = FH
u {Y:,i}, ∀i

Step 2. Restore parameters for every j via dictionary matching:

k̂j = argmax
k

Re
〈
Dk,:, X̂j,:

〉

‖Dk,:‖
2
2

, T̂
j
1 , T̂

j
2 = LUT(k̂j)

addition, our approach also eliminates a simulated dictionary for signature restoration, which189

is a key difference from FLOR5,6 during signature restoration.190

II.B. Previous Methods191

Dictionary Matching based MRF approaches. The original MRF reconstruction al-192

gorithm1 is based on dictionary matching, as presented in Algorithm 1. It finds the best193

matching dictionary entry for the acquired temporal signature according to their inner prod-194

uct and then searches the lookup-table to obtain corresponding tissue parameters. Here,195

FH
u {·} denotes the inverse Fourier transform operating on the zero filled k-space data where196

zeros are filled at the unknown frequencies and symbol Re 〈a,b〉 represents the real part of197

the inner product of two vectors a and b.198

Exploiting the nature of signals, by using appropriate prior knowledge, can often con-199

tribute to improved signal processing performance. In this spirit, later works suggested200

to incorporate sparsity in MRF reconstruction to further improve performance, inspired201

by successful applications of sparsity in MRI reconstruction9,10,11. Davies et al.3 proposed202

BLoch response recovery via Iterative Projection (BLIP) which exploits sparsity in the dic-203

tionary domain. BLIP consists of iterating between two main steps: (a) a gradient step204

which enforces consistency with the measurements, based on the Projected Landweber Al-205

gorithm (PLA) generalized from the iterative hard thresholding method; (b) a projection206

which matches each row of X to a single dictionary atom. Instead of exploiting sparsity in207

II.. MATERIALS AND METHODS
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Hybrid Deep MRF page 7

the dictionary domain, Wang et al.4 suggested to leverage sparsity in the wavelet domain of208

each imaging frame, X:,i. They further replaced the Euclidean norm with the Mahalanobis209

distance for dictionary matching. Considering that adjacent MR image frames along the210

temporal dimension should exhibit high resemblance, Mazor et al.5,6 proposed a magnetic211

resonance Fingerprint with LOw-Rank prior for reconstructing the image stack and quanti-212

tative parameters, referred to as FLOR, which achieved state-of-the-art performance. The213

algorithm, described in Algorithm 2, relies on two priors: a low rank prior on the the matrix214

X, and the fact that the rows of X lie in the column space of the dictionary D.215

Algorithm 2 FLOR6

Input:

A set of subsampled k-space images: Y; A pre-simulated dictionary: D; An appropriate lookup-
table: LUT; Parameters µ for gradient step and λ for regularization
Output:

Magnetic parameter maps: T̂1, T̂2

Initialization:

X̂
0 = 0, P = D

†
D, where D

† is the pseudo-inverse of D.
Step 1. Restore signatures via iterating until convergence:

• Gradient step for every i:

Ẑ
t+1
:,i = X̂

t
:,i − µFH

u {Fu{X̂
t
:,i} −Y:,i} (6)

where the superscript t represents the index of iterations.

• Project onto the dictionary subspace:

[U,S,V] = svd(Ẑt+1
P) (7)

where svd denotes the singular-value decomposition operation, and S = diag({σj}) is a
rectangular diagonal matrix with singular values {σj} on its diagonal.

• Soft-threshold the non-zero singular values with λµ and reconstruct signatures X̂
t+1:

σ′
j = max{σj − λµ, 0} , X̂

t+1 = US
′
V

H (8)

where S
′ = diag({σ′

j}).

Step 2. Restore parameters for every j via dictionary matching:

k̂j = argmax
k

Re
〈
Dk,:, X̂j,:

〉

‖Dk,:‖
2
2

, T̂
j
1 , T̂

j
2 = LUT(k̂j)

Learning-based MRF approaches. The above techniques all use dictionary matching216

II.. MATERIALS AND METHODS
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to perform mapping from temporal signatures to tissue parameters. Therefore, these meth-217

ods suffer from drawbacks such as discretization error, slow inference speed and memory-218

consuming storage. In order to alleviate these issues, recent works13,14 propose to exploit219

neural networks to replace dictionaries and lookup-tables used in conventional MRF recon-220

struction approaches. Cohen et al. suggest a fully-connected feed-forward neural network221

(FNN)13. Since the input layer of the FNN is fully connected with the input temporal222

signature, the number of neurons in the input layer corresponds to the length of the input223

temporal signature. This makes the network structure less flexible, as a FNN network trained224

on temporal signatures with a certain length is not applicable to temporal signatures with225

a different length. In addition, the fully-connected structure results in rapid increase in the226

number of parameters along with the growth of depth, making the network more suscepti-227

ble to overfitting. Hoppe et al.14 propose a 3-layer vanilla CNN for parameter restoration.228

Both13 and14 focus exclusively on learning the signature-to-parameter mapping from a pair229

of dictionary and lookup-table simulated using the Bloch equations. During the validation,230

they assume that clean temporal signatures are available as input into the trained networks.231

However, since temporal signatures obtained from k-space subsampled MRF data are al-232

ways contaminated by aliasing and noise, their approaches, when applied directly in such233

k-space subsampling situations, suffer from heavy artifacts introduced during the signature234

restoration phase, leading to poor performance.235

II.C. Proposed Methods236

The proposed hybrid deep magnetic resonance fingerprinting (HYDRA) approach, summa-237

rized in Algorithm 3, consists of two stages: signature restoration and parameter restoration,238

(see also (5)). As illustrated in Fig. 3, a low-rank based de-aliasing method is used to restore239

signatures, and then a 1D nonlocal residual convolutional neural network is used to map240

each restored signature to corresponding tissue parameters.241

In particular, given ΘTRE and k-space samples Y, in our proposed approach, the func-242

tion X = h(Y) in (5) represents a signature restoration operation using low-rank based243

de-aliasing techniques without requiring a dictionary. The function ΘT12
j,: = g(Xj,:|Θ

TRE)244

in (5) represents a parameter restoration operation that exploits a trained neural network to245

map each restored signature Xj,: to corresponding tissue parameters ΘT12
j,: directly. In the246

subsequent sections, we provide a detailed description of both stages of our technique.247

II.. MATERIALS AND METHODS
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II.C.1. Low-rank based signature restoration248

Since MRF data consists of multiple frames exhibiting temporal similarity, the imaging249

contrasts matrix X is typically a low-rank matrix6. Therefore, h(·) leverages a low-rank250

prior for denoising and de-aliasing, formulated as251

h(Y) = argmin
X

1
2

∑
i ‖Y:,i − Fu{X:,i}‖

2
2

s.t. rank(X) < r
(9)252

where the parameter r is the rank of the matrix, a fixed pre-chosen parameter. Since typically253

r is not known in advance, we consider a relaxed regularized version:254

h(Y) = argmin
X

1

2

∑
i
‖Y:,i − Fu{X:,i}‖

2
2 + λ ‖X‖∗ (10)255

where ‖X‖∗ denotes the nuclear norm24 of X, defined as the sum of the singular values of256

X, and λ is the Lagrangian multiplier manually selected for balancing data fidelity and the257

rank. Problem (10) can be solved using the incremental subgradient proximal method25,258

similar as to FLOR6. The procedure for solving (5) is shown in Algorithm 3.259

One of differences from FLOR6 is the fact that we removed the operation of project-260

ing the temporal signal onto a dictionary. This allows to eliminate the requirement for a261

simulated dictionary in the signature restoration stage, which also alleviates the memory262

consumption issue. In addition, the computational complexity is reduced by N ·L2 floating-263

point operations in each iteration, where L is the dimension of a dictionary element, and N264

is the number of pixels in each image frame. On the other hand, the gained benefits are at265

the price of requiring more iterations to converge. Another difference from FLOR6 is that266

we exploit a network, instead of dictionary matching, for signature-to-parameter mapping.267

II.C.2. Learning-based parameter restoration268

Once the imaging contrasts matrix X is recovered from the k-space samples Y, each temporal269

signature Xj,: is input into the trained network for parameter restoration, formulated as:270

ΘT12
j,: = g(Xj,:|Θ

TRE), j ∈ [1, N ] (11)271

where g(·) denotes the trained network, ΘTRE denotes the fixed RF sequence parameters.272

We next describe the network structure, training and testing procedures.273

Network structure.274

II.. MATERIALS AND METHODS
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Algorithm 3 Proposed MRF reconstruction approach: HYDRA
Input:

A set of subsampled k-space images: Y

The trained network: g

Parameters µ for gradient step and λ for regularization
Output: Magnetic parameter maps T̂1, T̂2

Initialization: X̂
0 = 0

Step 1. Restore signatures via iterating until convergence:

• Gradient step for every i, the same as (6).

• Perform SVD:
[U,S,V] = svd(Ẑt+1)

• Soft-threshold the non-zero singular values {σj} of S with parameter λµ and reconstruct

signatures X̂
t+1, the same as (8).

Step 2. Restore parameters for every j via the trained network:

T̂
j
1 , T̂

j
2 = g(X̂j,:)

The proposed network has a 1D nonlocal residual CNN architecture with short-cuts275

for residual learning and nonlocal operations for achieving a self-attention mechanism. As276

illustrated in Fig. 3, it starts with two 1D convolutional layers before connecting with 4277

residual / non-local operation blocks, and finally ends with a global-average-pooling layer278

followed by a fully-connected layer. Every residual block is followed by a non-local operation279

block. Four such blocks are interspersed with each other.280

Each residual block contains a max-pooling layer with stride 2, two convolution layers281

and a shortcut that enforces the network to learn the residual content. The filter size is set282

to be equal to 21 throughout convolutional layers. The number of channels, a.k.a feature283

maps, in the first two convolutional layers is set to 16 and then is doubled in subsequent four284

residual blocks until 128 in the final residual block. The size of feature maps in the next285

block halves in contrast with the previous one due to max-pooling. In this way, we gradually286

reduce temporal resolution while extract more features to increase content information.287

Inspired by the self-attention scheme and nonlocal neural networks26,27, non-local op-288

erations are incorporated into the designed network to achieve the attention mechanism, in289

order to capture long-range dependencies with fewer layers. In contrast to the progressive290

behavior of convolutional operations that process one local neighborhood at a time, the non-291
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local operations compute the response at a position as a weighted sum of the features at all292

positions in the feature maps. Formally, the nonlocal operation is formulated as27:293

yi =
1

C(x)

∑

∀j

f(xi,xj)g(xj) . (12)294

Here, i is the index of an output position and j is the index that enumerates all possible295

temporal positions, x is the input temporal signal or its features and y is the output signal296

of the same size as x. A pairwise function f computes a scalar between i and all j to297

represent the affinity relationship of these two positions. The unary function g computes a298

representation of the input signal at position j. The response is normalized by a factor C(x).299

There exists a few instantiations for function f and g. For simplicity, the unary function300

g is chosen as a linear embedding: g(xj) = Wg(xj), where Wg is a weight matrix to be301

learned. Regarding the affinity matrix f , we adopt the embedded Gaussian to compute302

similarity in an embedding space, which is formulated as: f(xi,xj) = eθ(xi)
⊤φ(xj). Here,303

θ(xi) = Wθxi and φ(xj) = Wφxj are two learned embeddings. The normalization factor is304

set as C(x) =
∑

∀j f(xi,xj). For a given i, 1
C(x)

f(xi,xj) becomes the softmax computation305

along the dimension j, which leads to y = softmax(x⊤W⊤
θ Wφx)g(x), which is the self-306

attention form26.307

The non-local behavior in (12) is due to the fact that all positions (j) are considered in308

the operation. As a comparison, a convolutional operation sums up the weighted input in309

a local neighborhood27. It implies that the non-local operation directly captures long-range310

dependencies in the temporal dimension via computing interactions between any two points,311

regardless of their positional distance. In this way, the network is able to extract global312

features and take advantage of the full receptive field in each layer.313

The global-average-pooling layer is used to average each feature map in order to integrate314

information in every channel for improved robustness to corrupted input data. This global-315

average-pooling layer also reduces the number of parameters significantly, thus lessening the316

computation cost as well as preventing over-fitting. The last fully-connected layer outputs317

estimated parameters – T1 and T2 relaxation times. The designed network contains around318

0.27 million parameters. The weights are initialized using He-normal-distribution28. The319

max-norm kernel constraint29 is exploited to regularize the weight matrix directly in order to320

prevent over-fitting. The designed network can also be adapted for various MRF sequences,321

such as the original MRF sequence – inversion-recovery balanced steady state free-precession322
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(IR-bSSFP) sequence, that depends also on the intrinsic df parameter. It is possible to adjust323

the number of outputs to adapt to more parameters, such as proton density, B0.324

To summarize, our network is motivated and inspired by recent successful applications325

of convolutional neural networks and variants. Convolutional neural networks have been326

proved to be a powerful model to capture useful features from signals and images. By327

introducing convolution, local receptive field and weight sharing design, a CNN is capable328

of taking advantage of local spatial coherence and translation invariance characteristics in329

the input signal, thus become especially well suited to extract relevant information at a low330

computational cost17,18,19,20,21,22. On the other hand, the residual network architecture18,19
331

provides an effective way to design and train a deeper model, since it alleviates the gradient332

vanishing or exploding problems by propagating gradients throughout the model via short-333

cuts, a.k.a skip connections. By leveraging non-local operation based attention mechanism,334

neural networks are endowed with capability of extracting global features and capturing335

long-range dependencies.336

Network training.337

The designed network is trained on a synthesized dictionary D and corresponding338

lookup-table LUT to learn the signature-to-parameter mappings LUTk,: = g(Dk,:|Θ
TRE).339

The training dataset is synthesized as follows. First, we determine the range of tissue340

parameters. For example, one may set T1 relaxation times to cover a range of [1, 5000] ms341

and T2 relaxation times to cover a range of [1, 2000] ms with an increment of 10 ms for both.342

Thus, the T1 and T2 values constitute a grid with dimension 500 × 200, in which each point343

represents a specific combination of T1 and T2 values, and hence characterizes a specific344

tissue. Points corresponding to T1 < T2 have been excluded as such combinations have no345

physical meaning. All the valid points are stacked together to generate a lookup-table. For346

instance, the above setting for T1 and T2 leads to a lookup-table of dimension 80100 × 2.347

The RF pulse sequences used in our work are fast imaging with steady state precession348

(FISP) pulse sequences with parameters that have been used in previous publications in the349

field of MRF2,6,8. Given the lookup-table and RF pulse sequences, dictionary entries can be350

synthesized by solving the Bloch equations using the extended phase graph formalism30,31.351

When the training dataset is ready, the dictionary entries are used as input signals and352
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corresponding lookup-table entries serve as the groundtruth. All the dictionary entries are353

input into the designed network batch by batch which outputs estimated parameters. The354

root mean square errors (RMSE) of the outputs are calculated with respect to corresponding355

groundtruth. The resulting RMSE loss is then backpropagated from the output layer to the356

first layer to update the weights and bias by using Adam32 as the optimization algorithm.357

More training details are provided in the subsequent experiment section. Once the training358

procedure is completed, given an inquiry signal evolution Xj,:, it is able to map such a time359

sequence directly to corresponding tissue parameters, as formulated in (11), implying that360

no dictionary or lookup-table are required during the inference. Since we only need to store361

the trained network which is a compact model, it consumes less memory than storing the362

dictionary and lookup-table.363

We emphasize that even though the network is trained on a grid of tissue values, it is364

expected to capture the mapping function from temporal signatures to tissue parameters.365

Thus the trained network is capable of outputting tissue values not existing in the grid366

of training values. Detailed results can be found in Fig. 7 and Table 2. This feature is367

favorable, as it implies that well designed and trained networks have an ability to overcome368

discretization issues. The overall procedures for solving (10) and (11) are shown in Algorithm369

3.370

III. Experimental Results371

In this section, we conduct a series of experiments to evaluate our approach, comparing it372

with other state-of-the-art MRF methods1,3,6,13,14.373

The experiments are categorized into a few types: training, testing on synthetic data,374

testing on anatomical data using variable density Gaussian sampling patterns and spiral375

sampling patterns at different sampling ratios and number of time frames, as described in376

Table 1. For the network training, synthesized temporal signatures, i.e. simulated dictionary377

entries of D shown as Fig. 4, are used as input signals and corresponding parameter values378

in the lookup-table LUT serve as the groundtruth. The proposed network is trained to379

capture the signature-to-parameter mappings. For testing on synthetic data, synthesized380

temporal signatures in X are used as input signals and corresponding parameter values in381

ΘT12 serve as the groundtruth. The aim is to test the parameter restoration performance382

III.. EXPERIMENTAL RESULTS

This article is protected by copyright. All rights reserved. 



A
c

c
e

p
te

d
 A

r
ti

c
le

page 14 P. Song

only. For testing on anatomical data, the k-space measurements Y which are derived from383

the Fourier transform (for Gaussian patterns) or non-uniform FFT (for spiral trajectories)33
384

of X, are used as input and corresponding parameter values in ΘT12 serve as reference. When385

there is no k-space subsampling, the aim is to test the parameter restoration performance386

only. When there exists k-space subsampling, the aim is to test the overall performance,387

including both signature restoration and parameter restoration. More detailed descriptions388

are provided in each subsection.389

III.A. Training390

As mentioned in Section II.C.2., the designed network is trained on a pair of synthesized391

dictionary D and lookup-table LUT, simulated using Bloch equations and FISP pulse se-392

quences2,6.393

The FISP pulse sequence used in our experiments was designed with parameters ΘTRE
:,i =394

[TRi, TEi, FAi]T , i ∈ [1, L] that have been used in previous publications in the field of395

MRF2,6,8. The echo time TEi was constant of 2ms. The repetition time TRi was randomly396

varied in the range of 11.5 - 14.5 ms with a Perlin noise pattern. All the flip angles FAi, i ∈397

[1, L] constituted a sinusoidal variation in the range of 0 - 70 degrees to ensure smoothly398

varying transient state of the magnetization, as shown in Figure 5.399

For the range of tissue parameters, T1 relaxation times are set to cover a range of400

[1, 5000] ms and T2 relaxation times to cover a range of [1, 2000] ms with an increment401

of 10 ms for both. Such parameter ranges cover the relaxation time values that can be402

commonly found in a brain scan34. All the valid combinations of T1 and T2 values are403

stacked together, generating a lookup-table LUT of dimension K × 2 where K = 80100.404

Given the lookup-table and RF pulse sequences, dictionary entries are synthesized by solving405

the Bloch equations using the extended phase graph formalism, leading to a dictionary of406

dimension K × L where L = 200 or 1000 is the number of time frames.407

When the training dataset is ready, the dictionary entries are used as input signals and408

corresponding lookup-table entries serve as the groundtruth to train the designed network,409

as mentioned in Section II.C.2.. The model was trained for 50 epochs. It takes around 30410

seconds for running one epoch on average, thus around 25 minutes for completing 50 epochs,411

on a NVIDIA GeForce GTX 1080 Ti GPU. In each training epoch, 20% of the training412
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samples are separated aside for validation dataset. The learning rate decays from 1e-2 to413

1e-6 every 10 epochs. Each batch was experimentally set to contain 256 time-sequences414

in order to balance the convergence rate and weights updating rate well. For comparison415

purposes, we also implemented Hoppe et al.’s CNN referring to14, and Cohen et al.’s FNN416

referring to13 with the same structure and parameters as specified in their papers. Then we417

use the same GPU and training dataset to train their networks with specified learning rate418

and number of epochs until convergence.419

We adopt a few widely used metrics, such as root mean square error (RMSE), signal-

to-noise ratio (SNR) and peak signal-to-noise ratio (PSNR) to evaluate the image quality

quantitatively. The definitions of RMSE, SNR and PSNR are given as follows:

RMSE =

√
‖X− X̂‖2F

N
, (13)

SNR = 20 log10
‖X‖2F
RMSE

, (14)

PSNR = 20 log10
PeakVal

RMSE
, (15)

where matrices X and X̂ denote the ground truth signal and its reconstructed version,420

respectively, N denotes the total number of elements in the signal and ‖ · ‖F denotes the421

Frobenius norm. PeakVal stands for the pixel peak value in an image, e.g., 1 for a normalized422

signal.423

III.B. Testing on synthetic dataset424

In this subsection, we evaluate the performance of HYDRA on a synthetic testing dataset.425

The procedures of constructing a synthetic testing dataset is similar to the construction of426

the training dataset: 500 different T1 values are randomly selected from 1 - 5000 ms, while427

200 different T2 values are randomly selected from 1 - 2000 ms, using random permutation428

based on uniformly distributed pseudorandom numbers. All the valid combinations from429

the selected T1 and T2 values are stacked together, generating a parameter matrix ΘT12
430

of dimension 80000 × 2 with N = 80000. The RF pulse sequences are the same as in the431

training stage. Given the parameter matrix and RF pulse sequences, input signal signatures432

are synthesized by solving the Bloch equations using the extended phase graph formalism,433

leading to a signature matrix X of dimension N×L = 80000×200, with each row representing434
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a temporal signature corresponding to a specific combination of T1 and T2 values. The435

signature matrix X and parameter matrix ΘT12 constitute the synthetic testing dataset,436

with X as input and ΘT12 as the groundtruth.437

We input the synthetic testing signatures X into Hoppe et al.’s CNN14, Cohen et al.’s438

FNN13, and the network of HYDRA to compare the outputs with groundtruth T1 and T2439

values in ΘT12. We also compare with dictionary matching methods1,2,3,4,5,6 which exploit440

the same dictionary D and lookup-table LUT to find the best matching entry for each sig-441

nature in X and then estimate parameter values by searching the lookup-table. As shown442

in Table 2, Table 3, Fig. 6 and Fig. 7, the estimated parameter values using the proposed443

network obtained outstanding agreement with the groundtruth, yielding higher PSNR, SNR444

and smaller RMSE than the dictionary matching method1,2,3,4,5,6, as well as competing net-445

works13,14.446

In particular, to illustrate in detail how well neural networks tackle the discretization447

issue inherent to dictionary matching, we show the testing performance on continuous-valued448

T1, T2 parameters which have small intervals, e.g. 0.5ms, that is 20 times smaller than the449

training grid intervals 10ms, between neighboring values in Table 3. Since these values and450

their corresponding MRF signatures do not exist in the training dictionary and lookup-table2,451

the dictionary matching methods report a T1 and T2 value – the closest discretized value452

present in the dictionary – that can be quite distinct from the groundtruth. In contrast, the453

various neural network approaches can potentially learn an underlying mapping from the454

temporal signatures to the respective T1 and T2 values, leading to estimates that are much455

closer to the groundtruth. Interestingly, our approach outperforms previous networks13,14
456

as shown in Table 3 and Fig. 6. Evidently, neural networks demonstrate much better ro-457

bustness to discretization issues, leading to improved parameter restoration in comparison458

to dictionary based methods.459

Another impressive advantage of HYDRA is the fast inference speed. HYDRA takes only460

8.2 s to complete the mapping operation for eighty thousand temporal signatures, that is,461

53× faster than dictionary matching. Furthermore, the inference speed of HYDRA is subject462

to the network topology. That is, once the network structure is fixed, the complexity is fixed.463

2 As mentioned in the experiment setting in section 5.1, in the training dataset, T1 relaxation times are
set to cover a range of [1, 5000] ms and T2 relaxation times to cover a range of [1, 2000] ms with an increment
of 10 ms for both, that is, T1 values = {1, 11, 21, · · · , 4991}, and T2 values = {1, 11, 21, · · · , 1991}.
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In contrast, the complexity of dictionary matching is limited by the dictionary density. This464

implies that our advantage will be more prominent in comparison with competing techniques465

using a dictionary with higher density.466

III.C. Testing on anatomical dataset467

In this subsection, we evaluate our approach on an anatomical testing dataset. We construct468

the dataset from brain scans that were acquired with GE Signa 3T HDXT scanner from a469

healthy subject.3 Since there are no groundtruth parameter values for the T1 and T2 param-470

eter maps, we obtain gold standard data by acquiring Fast Imaging Employing Steady-state471

Acquisition (FIESTA) and Spoiled Gradient Recalled Acquisition in Steady State (SPGR)472

images, at 4 different flip angles (3◦,5◦,12◦ and 20◦), and implementing corrections35 fol-473

lowed by DESPOT1 and DESPOT236 algorithms. The constructed gold standard T1, T2474

parameter maps have a dimension of 128 × 128 for each map, accordingly leading to a pa-475

rameter matrix ΘT12 of size 16384× 2 by stacking vectorized T1, T2 maps together. Based476

on the parameter matrix ΘT12 and pre-defined RF pulse sequences, we generate temporal477

signatures using Bloch equations, the same mechanism as generating the synthetic testing478

dataset, leading to a signature matrix X of dimension N × L = 16384× 200. The signature479

matrix X and parameter matrix ΘT12 constitute the anatomical testing dataset, with X as480

input and ΘT12 as the gold standard reference.481

Note that, since the gold standard T1, T2 maps exhibit spatial structures in the image482

domain, the resulting signature matrix X can be regarded as a stack of L = 200 vectorized483

image frames, where each frame exhibits specific spatial structures. Therefore, it makes484

sense to perform Fourier transform and k-space subsampling for each column of X to get485

k-space measurements Y. This is the key difference between the anatomical dataset and the486

synthetic dataset.487

We first explore the case with full k-space sampling in order to evaluate the parameter488

restoration performance of HYDRA. Then, we consider situations with k-space subsampling489

in order to evaluate both the signature restoration and the parameter restoration performance490

of HYDRA.491

3The experiment procedures involving human subjects described in this paper were approved by the
Institutional Review Board of Tel-Aviv Sourasky Medical Center, Israel.
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III.C.1. Full k-space sampling492

In the first case, the fully-sampled k-space measurements Y, derived from the Fourier trans-493

form of X, are used as input to obtain the estimated ΘT12. This is equivalent to inputting X494

into the network of HYDRA, or performing dictionary matching based on X directly, since495

the inverse Fourier transform of the fully-sampled measurements Y is exactly the same as496

X. The aim is to test the parameter restoration performance only. In the experiment, cor-497

responding parameter values in ΘT12 serve as the gold standard reference. For comparison,498

dictionary matching methods1,2,3,4,5,6 exploit the same dictionary D and lookup-table LUT499

as in our training stage to find the best matching entry and estimate parameter values for500

each signature in X.501

Visual and quantitative results are shown in Fig. 8, Fig. 9 and Table 4. It can be502

seen that our basic version of HYDRA outperforms dictionary matching1,2,3,4,5,6, yielding503

better visual and quantitative performance, e.g., 7.9 dB SNR gains for T2 mapping. The504

RMSE of T2 mapping is also reduced to 2.498 from 6.252, accordingly. Our nonlocal version505

of HYDRA achieves even better performance, leading to 10 dB SNR gains with RMSE506

as small as 1.86. This is owing to the advantage that the trained network is a powerful507

function approximator, which is able to output well-estimated parameter values based on508

learnt mapping functions, even though these values do not exist in the training dictionary509

and lookup-table. In contrast, dictionary matching only matches signatures to discrete510

parameters existing in the training dataset. In other words, if there are no exact matching511

dictionary element and parameter values for an inquiry MRF signature, it will find adjacent512

values as approximations, thus introducing discretization error. On the other hand, the513

advantage of HYDRA over dictionary matching on T1 mapping is not as significant as on514

T2 mapping quantitatively. But the visual improvements are evident. A similar trend515

is observed when comparing our network with competing networks such as Hoppe et al.’s516

CNN14 and Cohen et al.’s FNN13. In addition, HYDRA takes around 2 s to accomplish the517

mapping for 16384 signatures, 40× faster than dictionary matching1,2,3,4,5,6.518

III.C.2. k-space subsampling using Gaussian patterns519

In k-space subsampling situations, the developed low-rank based de-aliasing method is ap-520

plied to restore the signature matrix X from the measurements matrix Y. Then, the re-521
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constructed X is used as input into the network for parameter mapping to obtain the cor-522

responding tissue parameter values. In the experiments, the sub-sampling factor β is set to523

be 70% and 15%. For β = 15%, 15% k-space data is acquired by a series of 2D random524

Gaussian sampling patterns, shown in Fig. 10, leading to a k-space measurement matrix Y525

of size Q× L = 2458× 200. Similarly, β = 70% gives rise to a k-space measurement matrix526

Y of size Q × L = 11469 × 200. A larger λ enforces lower rank for the restored signature527

matrix X to strengthen the de-aliasing effect, while a smaller λ encourages X to have a sub-528

sampled Fourier transform that approximates the k-space measurements matrix Y better.529

Therefore, we tried a range of values from 1 to 20 for λ and experimentally select the best530

one λ = 5. Since the low-rank based signature restoration involves gradient descent steps, a531

larger step size µ accelerates gradient descent speed, but tends to result in oscillation or even532

divergence, while a smaller µ leads to a slower convergence. We experimentally find that533

µ = 1 gives a good balance. The same k-space measurements Y are also used by dictionary-534

matching based methods1,3,6 for comparison, and the same signature restoration approach535

is used to convert Y onto X for learning based methods13,14. The aim is to evaluate the536

overall performance on both signature restoration and parameter restoration.537

Quantitative performance is shown in Table 5. Note that the advantage of learning-538

based methods over dictionary matching degrades when the subsampling factor increases.539

This is due to the fact that the restored signatures from highly subsampled k-space data540

exhibit deviations and distortions, thus leading to poorer input for the trained networks. In541

spite of this, the proposed approach outperforms the dictionary matching based methods1,3
542

with significant gains, and also yields better or comparable performance as the state-of-the-543

art methods FLOR6, CNN14 and FNN13. In addition, it takes around 23s for low-rank based544

signature restoration and less than 3s for network based parameter restoration. Thus, the545

total time cost is around 26s, almost 4.8× faster than FLOR6. Furthermore, the speed of546

our method is 60× faster than FLOR6 for parameter restoration.547

We compared the performance with/without nonlocal operations in our developed net-548

work. The results in Table 4 and 5 show that the proposed network with nonlocal operations549

based self-attention scheme outperforms the basic counterpart. In particular, the nonlocal550

version achieves 6 dB gains in terms of SNR over the basic version for T2 mapping. Such551

significant improvement demonstrates the benefits of capturing long-range dependencies and552

global features using the nonlocal operation based attention scheme.553
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We also investigated the performance with respect to the number of time frames. In554

particular, we increased L from 200 to 1000 and kept other experiment settings the same as555

before. The quantitative results are shown in Table 6. It is noticed that given more time556

frames, all the methods show better performance. Moreover, the performance of learning-557

based methods, including CNN14, FNN13 and HYDRA, improve more than model-based558

techniques1,3,6. In particular, our approach outperforms competing algorithms quantitatively559

in terms of PSRN, SNR, and RMSE, as well as demonstrates visual advantage, as shown in560

Figure 11 and Figure 12.561

III.C.3. k-space subsampling using spiral trajectories562

We carried out additional experiments with widely used non-Cartesian sampling patterns –563

variable density spiral trajectories6,37. A set of spiral trajectories used in the experiments are564

shown in Figure 13. They have FOV of 24 and rotation angle difference of 7.5 degrees between565

any two adjacent spirals to spread out the alias artifacts. Given such spiral trajectories,566

data were subsampled to acquire 1488 k-space samples in each time frame, leading to a567

subsampling ratio of 9% which is defined by the number of acquired samples in the k-space568

domain divided by the number of pixels in a frame. This setting closely matches the original569

MRF paper1 where each single spiral trajectory samples 1450 k-space points (leading to a570

subsampling ratio around 9%) and any two adjacent spiral trajectories have a rotation angle571

of 7.5 degrees.572

In the case of spiral subsampling, during the signature restoration, SParse Uniform Re-573

Sampling (SPURS) algorithm38 was exploited to implement nonuniform Fourier transform574

between k-space domain and image domain, as SPURS has proved to achieve smaller approx-575

imation errors while maintaining low computational cost comparing with other resampling576

methods, such as nonuniform-FFT algorithm33 and regularized Block Uniform ReSampling577

(rBURS)39. In the experiments, 1000 density variable spiral trajectories were used for k-space578

subsampling, leading to 1000 time frames. The quantitative and qualitative reconstruction579

results demonstrate that HYDRA outperforms competing methods with smaller estimation580

errors, as shown in Table 7, Figure 15 and Figure 14.581
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IV. Discussion582

IV.A. Relation to previous works583

Our low-rank based signature restoration method is adapted from FLOR6 by removing the584

operation of projecting the temporal signal onto a dictionary. Thus, the signature restoration585

does not require a simulated dictionary, and saves computational cost. Although recent586

works13,14 exploit neural networks to perform parameter mapping, replacing dictionaries and587

lookup-tables used in conventional MRF reconstruction approaches, our technique is different588

from these methods13,14. We design a deep nonlocal residual CNN for capturing signature-to-589

parameter mapping which is organically combined with low-rank based de-aliasing techniques590

for signature restoration. In this way, our algorithm can bypass some of the issues associated591

with other techniques: (1) The input dimension issue. The proposed approach can ingest592

temporal signatures with different lengths without the need to change the structure of the593

network. This is due to the fact that we rely on convolutional neural networks (CNNs)594

rather than fully-connected neural networks (FNNs) such as the model used in13. (2) The595

k-space subsampling issue. The proposed approach involves a hybrid of a neural network596

with a low-rank based de-aliasing approach. Thus it is able to deal with correlations both597

over time and space via exploiting low-rank regularization and convolution operation. This598

enables our work to handle k-space subsampling situations. (3) The complex mappings599

issue. By exploiting a residual network structure, our method can be successfully extended600

to deeper levels and thus obtain a better capacity to learn complex signature-to-parameter601

mapping functions. (4) Distortion and corruption issue. Due to the subsampling in k-space,602

the restored temporal signatures suffer from local distortion and corruption. Such deviation603

may lead to performance degeneration in the second stage. By incorporating non-local604

operations in the network design, our method is able to capture global features and find605

most relevant components for inference, thereby reducing interference of local distortion and606

corruption.607

IV.B. Computational complexity608

HYDRA involves two main stages: the low-rank based signature restoration stage and the609

network based parameter restoration stage. Even though the time cost for parameter restora-610

tion is longer than previous methods13,14, the time cost in the this stage is only a small611

fraction of the total time consumption, as the computational complexity is dominated by612

IV.. DISCUSSION

This article is protected by copyright. All rights reserved. 



A
c

c
e

p
te

d
 A

r
ti

c
le

page 22 P. Song

the signature restoration stage. In other words, the computational burden of HYDRA lies613

in the SVD calculation in the first stage. Hence, fast SVD methods can be employed to614

dramatically improve the efficiency of signature restoration.615

IV.C. Model storage requirements616

Regarding the storage requirement (in double precision), HYDRA needs only 2.1 megabytes617

to store the network with 0.5 million parameters, while it requires 108 megabytes to store618

a simulated dictionary of size 80100 × 200 and 551 megabytes for size 80100 × 1000. Note619

that the dictionary volume will grow exponentially with the number of parameters, but the620

space required for storing a network is not strictly limited by the dictionary density once the621

topology of the network is fixed, thus significantly alleviating the storage burden inherent to622

the exponential growth of multi-dimensional dictionaries.623

IV.D. Impact of providing continuous T1/T2 values624

Providing continuous T1/T2 values is an advantage of neural network based parameter625

mapping over dictionary matching. This property may find promising applications in some626

practical scenarios, for exampling, monitoring sensitive changing of pathology condition627

over time, such as multiple sclerosis40,41, stroke42, and treatment responses43,44, where the628

differences in T1 and T2 values between healthy and diseased tissues or between disease629

stages could be very small45. On the other hand, to fulfil this potential of network based630

MRF techniques, prerequisites on the accuracy and precision of MRI measurements are631

needed. Taking T1/T2 quantification as an example, even for the inversion recovery spin632

echo (IR-SE) / multiple single-echo spin echo MRI sequences which are considered as the633

gold standard for T1/T2 quantification, there exist variations of 2% - 9% on the measured634

relaxation times45. Such anatomical measurement uncertainties and model imperfections635

may weaken the advantage and clinical impact of providing continuous T1/T2 values using636

network based MRF techniques to some extent. Therefore, improving the accuracy of gold637

standard approaches in the future would contribute to making the most of the potential of638

neural networks in the MRF domain.639
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V. Conclusion640

We proposed a hybrid deep MRF approach which combines low-rank based signature restora-641

tion with learning-based parameter restoration. In our approach, a low-rank based de-642

aliasing method is used to restore clean signatures from subsampled k-space measurements.643

Then, a 1D deep nonlocal residual CNN is developed for efficient signature-to-parameter644

mapping, replacing the time-consuming dictionary matching operation in conventional MRF645

techniques. Our approach demonstrates advantages in terms of inference speed, accuracy and646

storage requirements over competing MRF methods as no dictionary is needed for recovery.647
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Figure 1: Relationship between key variables. The MR contrast matrix X is associated with
the k-space measurements Y per column by the subsampled Fourier transform. It is related
to tissue parameters ΘT12 per row by the Bloch equations. Given ΘTRE and Y, the image
stack X is commonly first reconstructed from Y, referred to as signature restoration, and
then mapped to tissue parameters ΘT12 via dictionary matching, referred to as parameter
restoration.

Figure 2: Parameter restoration using dictionary matching. Given an inquiry temporal
signature, dictionary matching computes its inner product with each dictionary entry, and
selects the most correlated one with the highest inner product as the best matching signature.
Once the best matching entry is found, it directly leads to multiple tissue parameters, such
as T1, T2, simultaneously, via searching a lookup-table.
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Figure 3: Diagram of the proposed MRF reconstruction approach. During the training
stage, synthesized dictionary entries are used as training signatures to train the designed 1D
nonlocal residual CNN until the outputs approximate parameter values in LUT well. In this
way, the network captures the signature-to-parameter mapping. During the testing stage, a
low-rank based algorithm is used to restore the image stack, a matrix containing signatures
in rows, from k-space measurements. Then the restored signatures are input into the trained
network to obtain corresponding tissue parameters directly.

Table 1: Brief description of experiment types and settings.

Experiment Settings

Training
Input: D, size K × L = 80100× 200.
Groundtruth: LUT, size 80100× 2.
k-space subsampling factor β: not available.

Testing on
synthetic data

Input: X, size N × L = 80000× 200.

Groundtruth: Θ
T12, size 80000× 2.

k-space subsampling factor β: not available.

Testing on
anatomical data

Input: Y, size Q× L = 16384β × 200 or 16384β × 1000.

Reference: Θ
T12, size N × 2 = 16384× 2.

k-space subsampling factor β: 70%, 15% using Gaussian patterns.

Testing on
anatomical data

Input: Y, size Q× L = 16384β × 1000.

Reference: Θ
T12, size N × 2 = 16384× 2.

k-space subsampling factor β: 9% using spiral trajectories.
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(a) (b)

Figure 4: Synthetic MRF temporal signatures with 200 time frames. (a) Temporal signatures corresponding
to parameter values {(T1, T2)} ms = {(800,40),(800,60),(800,80),(800,100)} ms. (2) Temporal signatures
corresponding to parameter values {(T1, T2)} ms = {(400,80),(600,80),(800,80),(1000,80)} ms.

Figure 5: FISP pulse sequence parameters. All the flip angles (FA) constituted a sinusoidal
variation in the range of 0 - 70 degrees to ensure smoothly varying transient state of the
magnetization. The repetition time (TR) was randomly varied in the range of 11.5 - 14.5
ms with a Perlin noise pattern.

Table 2: Testing on synthetic dataset. Comparing parameter restoration performance, in
terms of PSNR, SNR, RMSE and correlation coefficient.

Dict. Match. CNN14 FNN13 Proposed
T1 / T2 T1 / T2 T1 / T2 T1 / T2

PSNR (dB) 59.15 / 52.31 62.96 / 49.64 58.97 / 54.96 79.30 / 72.99
SNR (dB) 55.23 / 47.15 59.05 / 44.49 55.06 / 49.81 75.38 / 67.83
RMSE (ms) 5.515 / 4.847 3.554 / 6.591 5.63 / 3.57 0.542 / 0.448
CorrCoef 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
time cost (s) 464.10 2.87 1.58 8.2

REFERENCES

This article is protected by copyright. All rights reserved. 



A
c

c
e

p
te

d
 A

r
ti

c
le

Hybrid Deep MRF page 31

Table 3: Testing on synthetic dataset involving detailed T1 / T2 examples that are not
on the training grid and their intervals are much smaller than the training grid intervals.
D.M. denotes dictionary matching. T1 and T2 errors are defined as the difference between
estimated values and groundtruth values.

T1 Estimation T1 Errors
Truth D.M. 14 13 Ours D.M. 14 13 Ours
1005.0 1001.0 1002.9 1009.3 1004.8 -4.0 -2.1 4.3 -0.2
1005.5 1001.0 1003.3 1010.0 1005.3 -4.5 -2.3 4.5 -0.2
1006.0 1011.0 1003.6 1010.6 1005.8 5.0 -2.4 4.6 -0.2
1006.5 1011.0 1004.1 1011.2 1006.3 4.5 -2.5 4.7 -0.2
1007.0 1011.0 1004.5 1011.8 1006.8 4.0 -2.5 4.8 -0.3
RMSE - - - - 4.4 2.3 4.6 0.2

T2 Estimation T2 Errors
Truth D.M. 14 13 Ours D.M. 14 13 Ours
505.0 501.0 513.6 504.3 505.2 -4.0 8.6 -0.7 0.2
505.5 511.0 514.1 504.8 505.7 5.5 8.6 -0.7 0.2
506.0 501.0 514.7 505.3 506.2 -5.0 8.6 -0.7 0.2
506.5 511.0 515.2 505.9 506.8 4.5 8.7 -0.6 0.3
507.0 511.0 515.7 506.4 507.3 4.0 8.7 -0.6 0.3
RMSE - - - - 4.6 8.6 0.7 0.2

Dictionary Matching CNN14 FNN13 HYDRA

Figure 6: Testing on synthetic dataset involving detailed T1 / T2 examples that are not
on the training grid and their intervals are much smaller than the training grid intervals.
Dictionary matching finds best adjacent values from the dictionary, i.e. 1001, 1011 for T1,
and 501, 511 for T2. In contrast, owing to the captured mapping functions, neural networks
output continuous values. Proposed HYDRA leads to the smallest deviations and bias.

Table 4: Testing on anatomical dataset with full k-space sampling. Comparing parameter
restoration performance, in terms of PSNR, SNR, RMSE and correlation coefficient.

Dict. Match. CNN14 FNN13 Proposed basic Proposed nonlocal
T1 / T2 T1 / T2 T1 / T2 T1 / T2 T1 / T2

PSNR (dB) 56.64 / 52.04 54.06 / 49.88 54.53 / 54.36 56.59 / 60.01 56.47 / 62.56
SNR (dB) 42.20 / 27.81 39.63 / 25.66 40.09 / 30.07 42.15 / 35.76 42.03 / 38.32
RMSE (ms) 6.623 / 6.252 8.912 / 8.015 8.45 / 4.78 6.661 / 2.498 6.76 / 1.86
CorrCoef 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00 1.00 / 1.00
time cost (s) 84.56 0.69 0.41 1.6 2.1
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(a) T1, T2 estimations using dictionary matching.

(b) T1, T2 estimations using CNN14.

(c) T1, T2 estimations using FNN13.

(d) T1, T2 estimations using HYDRA.

Figure 7: Testing on the synthetic dataset for comparing parameter restoration performance. Subfig. (a) -
(d) show the results using dictionary matching1,2,3,4,5,6, FNN13, CNN14 and HYDRA. In each subfigure, the
left figure compares the estimated T1 or T2 values (marked with red dot) with groundtruth values (marked
with blue line), and the right figure shows the deviations of the estimation from the groundtruth. Parameter
mapping performance of HYDRA is much better than competing methods, in the entire value range of T1
and T2 parameters, resulting in smaller deviations.

Table 5: Testing on anatomical dataset with k-space subsampling ratio 70% and 15% using
Gaussian patterns and 200 time frames.

k-space subsampling factor β = 70%
Ma et al.1 BLIP3 FLOR6 CNN14 FNN13 Proposed

basic nonlocal
PSNR (dB) 23.69 / 38.17 45.67 / 47.84 50.11 / 50.85 49.71 / 45.48 50.15 / 51.08 50.79 / 51.59 49.87 / 57.57
SNR (dB) 8.73 / 13.84 31.28 / 23.49 35.67 / 26.48 35.26 / 21.19 35.70 / 26.67 36.34 / 27.19 35.42 / 33.30

RMSE (ms) 294.32 / 30.87 23.42 / 10.14 14.01 / 7.17 14.71 / 13.31 13.99 / 6.98 12.99 / 6.57 14.44 / 3.31
time cost (s) 72.88 75.70 85.35 23.72 23.53 24.85 26.3

k-space subsampling factor β = 15%
Ma et al.1 BLIP3 FLOR6 CNN14 FNN13 Proposed

basic nonlocal
PSNR (dB) 27.94 / 32.84 35.45 / 39.25 44.95 / 46.11 43.74 / 35.98 45.03 / 45.90 45.23 / 44.44 45.39 / 51.32
SNR (dB) 13.50 / 8.61 20.99 / 14.58 30.51 / 21.89 29.23 / 12.26 30.58 / 21.32 30.76 / 19.78 30.91 / 26.99

RMSE (ms) 180.3 / 57.03 76.01 / 27.25 25.46 / 12.37 29.27 / 39.73 25.21 / 12.68 24.65 / 15.00 24.20 / 6.79
time cost (s) 106 112.8 121.7 24.54 24.36 25.67 27.31
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(a) T1, T2 estimations using dictionary matching.

(b) T1, T2 estimations using CNN14.

(c) T1, T2 estimations using FNN13.

(d) T1, T2 estimations using HYDRA.

Figure 8: Testing on the anatomical dataset with full k-space sampling for comparing parameter restoration
performance. Subfig. (a) - (d) show the results using dictionary matching1,2,3,4,5,6, FNN13, CNN14 and
HYDRA. Each subfigure shows the deviations of the estimation from the reference. Parameter mapping
performance using HYDRA outperforms competing methods significantly, resulting in smaller deviations.
The performance is also verified by quantitative metrics, as shown in Table 4.

Table 6: Testing on anatomical dataset with k-space subsampling ratio 15% using Gaussian
patterns and 1000 time frames.

Ma et al.1 BLIP3 FLOR6 CNN14 FNN13 Proposed
PSNR (dB) 27.53 / 33.28 35.50 / 39.10 50.90 / 50.04 41.96 / 39.21 52.62 / 49.86 52.32 / 52.79
SNR (dB) 13.09 / 9.05 21.06 / 14.87 36.44 / 25.65 27.44 / 15.05 38.17 / 25.43 37.86 / 28.35

RMSE (ms) 189.09 / 54.21 75.53 / 27.74 12.83 / 7.87 35.91 / 27.37 10.52 / 8.04 10.89 / 5.74

Table 7: Testing on anatomical dataset with k-space subsampling ratio 9% using spiral
trajectories and 1000 time frames.

Ma et al.1 BLIP3 FLOR6 CNN14 FNN13 Proposed
PSNR (dB) 26.66 / 30.44 29.35 / 39.47 39.32 / 44.60 35.68 / 27.74 40.26 / 44.70 41.45 / 45.41
SNR (dB) 12.22 / 6.21 15.03 / 15.22 24.88 / 20.38 21.45 / 4.48 25.84 / 20.30 27.02 / 21.04

RMSE (ms) 209.01 / 75.18 153.37 / 26.57 48.67 / 14.72 73.96 / 102.57 43.65 / 14.55 38.08 / 13.41
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T1/T2 Reference
Dictionary Matching

SNR = 42.20/27.81 dB
CNN14

SNR = 39.63/25.66 dB
FNN13

SNR = 40.09/30.07dB
HYDRA

SNR = 42.03/38.32 dB

Figure 9: Visual results of testing on anatomical dataset with full k-space sampling for comparing parameter
restoration performance. Top two rows correspond to T1 maps and residual errors while bottom two rows
correspond to T2 maps and residual errors. Proposed HYDRA results in comparable performance for T1
mapping and yields much better performance for T2 mapping, obtaining 10dB higher SNR gains than
competing dictionary-matching based methods1,2,3,4,5,6. HYDRA also outperforms previous networks, such
as CNN by Hoppe et al.14 and FNN by Cohen et al.13.

Figure 10: A series of Gaussian patterns used for k-space subsampling.
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(a) T1, T2 estimations using Ma et al.1.

(b) T1, T2 estimations using BLIP3

(c) T1, T2 estimations using FLOR6

(d) T1, T2 estimations using CNN14.

(e) T1, T2 estimations using FNN13.

(f) T1, T2 estimations using HYDRA.

Figure 11: Testing on the anatomical dataset with k-space subsampling factor 15% using Gaussian patterns
and 1000 time frames. Subfig. (a) - (f) show the results using Ma et al.1, BLIP3, FLOR6, CNN by Hoppe
et al.14, FNN by Cohen et al.13 and HYDRA.
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(a) T1 estimation (top row) and residual errors (bottom row).

(b) T2 estimation (top row) and residual errors (bottom row).

BLIP3

SNR = 21.06/14.87 dB
FLOR6

SNR = 36.44/25.65 dB
CNN14

SNR = 27.44/15.05 dB
FNN13

SNR = 38.17/25.43 dB
HYDRA

SNR = 37.86/28.35 dB

Figure 12: Visual results of testing on anatomical dataset with k-space subsampling factor 15% using
Gaussian pattern with L = 1000. Comparison between BLIP3, FLOR6, CNN by Hoppe et al.14, FNN by
Cohen et al.13 and HYDRA.

Figure 13: A series of spiral trajectories for k-space subsampling.
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(a) T1, T2 estimations using Ma et al.1.

(b) T1, T2 estimations using BLIP3

(c) T1, T2 estimations using FLOR6

(d) T1, T2 estimations using CNN14.

(e) T1, T2 estimations using FNN13.

(f) T1, T2 estimations using HYDRA.

Figure 14: Testing on the anatomical dataset with k-space subsampling factor 9% using spiral trajectories
and 1000 time frames. Subfig. (a) - (f) show the results using Ma et al.1, BLIP3, FLOR6, CNN by Hoppe
et al.14, FNN by Cohen et al.13 and HYDRA.
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(a) T1 Reference (left) and T2 Reference (right).

(b) T1 estimation (top row) and residual errors (bottom row).

(c) T2 estimation (top row) and residual errors (bottom row).

BLIP3

SNR = 15.03/15.22 dB
FLOR6

SNR = 24.88/20.38 dB
CNN14

SNR = 21.45/4.48 dB
FNN13

SNR = 25.84/20.30 dB
HYDRA

SNR = 27.02/21.04 dB

Figure 15: Visual results of testing on anatomical dataset with k-space subsampling factor
9% using spiral trajectories with L = 1000. Comparison between BLIP3, FLOR6, CNN by
Hoppe et al.14, FNN by Cohen et al.13 and HYDRA.

REFERENCES

This article is protected by copyright. All rights reserved. 



http://pubads.g.doubleclick.net/gampad/clk?id=5165399957&iu=/2215



