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HYDRA II: A FAINT AND COMPACT MILKY WAY DWARF GALAXY FOUND
IN THE SURVEY OF THE MAGELLANIC STELLAR HISTORY
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ABSTRACT

We present the discovery of a new dwarf galaxy, Hydra II, found serendipitously within the data from the ongoing
Survey of the Magellanic Stellar History conducted with the Dark Energy Camera on the Blanco 4 m Telescope.
The new satellite is compact ( =r 68h ±11 pc) and faint ( = −M 4.8V ±0.3), but well within the realm of dwarf
galaxies. The stellar distribution of Hydra II in the color–magnitude diagram is well-described by a metal-poor
( = −[Fe H] 2.2) and old (13 Gyr) isochrone and shows a distinct blue horizontal branch, some possible red clump
stars, and faint stars that are suggestive of blue stragglers. At a heliocentric distance of 134±10 kpc, Hydra II is
located in a region of the Galactic halo that models have suggested may host material from the leading arm of the
Magellanic Stream. A comparison with N-body simulations hints that the new dwarf galaxy could be or could have
been a satellite of the Magellanic Clouds.

Key words: galaxies: individual (Hydra II) – Local Group – Magellanic Clouds

1. INTRODUCTION

Our view of the Milky Way satellite system has thoroughly

changed over the last decade, thanks to systematic CCD

surveys of large swathes of the sky. Explorations of the Sloan

Digital Sky Survey first revealed that dwarf galaxies extend to a

much fainter regime than previously thought (e.g., Willman

et al. 2005) and more than doubled the number of known

Milky Way dwarf galaxies from data mainly covering the north

Galactic cap (e.g., Belokurov et al. 2007). Spectroscopic

surveys (e.g., Muñoz et al. 2006; Martin et al. 2007; Simon &

Geha 2007) confirm the dwarf galaxy nature of these systems
by demonstrating them to be kinematically hotter than implied
solely by their baryonic content—which can be as low as only
a few hundred solar luminosities (Martin et al. 2008).
More recently, a cohort of faint satellites, most of them likely

dwarf galaxies, was found within the first year data from the
Dark Energy Survey (DES; Bechtol et al. 2015; Koposov
et al. 2015). Although these data only cover 1800 deg2 of the
southern Galactic cap to the north of the Magellanic Clouds,
they revealed nine new stellar systems. The majority of these
new systems have distances that hint that they likely are, or
were, associated with the Clouds.
Within the ΛCDM cosmology, the Milky Way is expected to

grow hierarchically by accreting groups of smaller galaxies
over time (e.g., Li & Helmi 2008) and it is therefore not
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unexpected that the LMC would be in the process of shedding
its satellites in the Milky Way halo (D’Onghia & Lake 2008).
In fact, comparisons with simulations show that the majority of
current Milky Way satellites, especially the fainter ones, could
have been accreted as satellites of larger dwarf galaxies
(Wetzel et al. 2015). These group accretions could then drive
the planar distribution of Milky Way satellites (Lynden-
Bell 1976; Metz & Kroupa 2007; Pawlowski et al. 2013),
even though the flat spatial distribution of Milky Way satellites
still proves challenging to reproduce in a ΛCDM universe
(Pawlowski et al. 2012a, but see also, e.g., Wang et al.
2013).

Here, we report the discovery of a new dwarf galaxy found
in the data of the Survey of the Magellanic Stellar History

(SMASH; PI D. Nidever). Located at α δ =( , ) (12 21 42.1,h m s

− ° ′ ″31 59 07 ) in the Hydra constellation, we name it Hydra II
(HyaII) following the usual naming conventions.26

Throughout this paper, the distance to the Milky Way center
is assumed to be 8 kpc.

2. THE SMASH DATA AND DISCOVERY

SMASH is a NOAO community survey using ∼40 nights
with DECam on the CTIO Blanco 4 m to perform deep imaging
over ∼2400 deg2 of the southern sky (at 20% filling factor)
with the goal of studying the complex stellar structures of the
Magellanic Clouds at all angular separations with unprece-
dented fidelity (D. Nidever et al. 2015, in preparation). This
letter uses data taken during UT 2013 March 17–20 under
partly photometric conditions. Observations were obtained for
23 fields spread across an area of ∼1200 deg2 in the region of
the leading arm of the Magellanic Stream. The data used here
consist of 1 × 60 s and 3 × 267 s in gr and 3 × 333 s in iz
dithered subexposures. Observations of several standard star
fields at various airmasses were also obtained every night to
enable photometric calibration.

InstCal image data products (calibrated, single-frame
images) are automatically produced by the DECam Commu-
nity Pipeline (Valdes et al. 2014) and provided by the NOAO
Science Archive Server.27 The rest of the photometric
reduction is performed with the PHOTRED28 pipeline first
described in Nidever et al. (2011). PHOTRED is an automated
point-spread function (PSF) photometry pipeline based on the
DAOPHOT suite of programs (Stetson 1987, 1994) and
performs WCS fitting, single-image PSF photometry (ALL-
STAR), forced PSF photometry of multiple images with a
master source list created from a deep stack of all exposures
(ALLFRAME), aperture correction, photometric calibration,
and dereddening. Finally, star-like detections are separated
from extended sources by enforcing a cut on the Sextractor
stellar probability index ( >prob 0.8).
HyaII was discovered through a search for compact over-

densities in the 23 SMASH year 1 fields. As in Koposov et al.
(2007), the data are first filtered to isolate relatively blue stars
(− < − <g r1.0 ( ) 1.00 ) compatible with a dwarf galaxyʼs red
giant branch (RGB), horizontal branch (HB), old main-
sequence turn-off (oMSTO), and main sequence before being
binned in ′0.5 pixels and convolved with a 1′ Gaussian kernel.
A visual inspection of the resulting maps reveals a few
significant overdensities, most of which are spurious, triggered
by known astronomical objects in the background. The only
overdensity found without a counterpart in the NASA/IPAC
Extragalactic Database or Simbad is HyaII.

3. THE PROPERTIES OF HYDRA II

Figure 1 presents the color–magnitude diagram (CMD) of
HyaII for a region within two half-light radii ( ′3.4) of its
centroid, as determined below. The features produced by HyaII
become evident when compared to the field CMD shown in
the same figure for a region of the same size and taken 18′ to
the west. One can see the dwarf galaxyʼs almost vertical
RGB between − =g r g[( ) , ] [0.4, 23.5]0 0 and − =g r g[( ) , ]0 0

Figure 1. Left: CMD of stellar-like objects within two half-light radii of HyaIIʼs centroid, that of a field comparison with the same area, the CMD of HyaII with an old
and metal-poor isochrone overlaid, and the CMD of HyaII with our CMD selection boxes overlaid. The isochrone shown is taken from the PARSEC library (Bressan
et al. 2012) and has an age of13 Gyr and metallicity of = −[Fe H] 2.2. Right: spatial distribution of stellar-like objects in and around HyaII. Small red dots represent
all star-like objects in the SMASH catalog, whereas black dots correspond to those selected along the CMD features of HyaII; cyan star symbols correspond to
potential member HB stars (see the text). The white stripes indicate the location of chip gaps and the white circle an exclusion region of unreliable photometry affected
by a bright star.

26
Hydra I is a concentration of stars that has been proposed as the progenitor

of the “East Banded Structure,” a stellar structure at the edge of the Milky Way
disk (Grillmair 2011).

27
https://www.portal-nvo.noao.edu

28
https://github.com/dnidever/PHOTRED
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[0.7, 20.0], where it fades into the foreground contamination,
its very clear blue HB at − = ∼ −g r g[( ) , ] [ 0.2, 21.2]0 0 , its
oMSTO and the beginning of the corresponding MS at

− ∼g r g[( ) , ] [0.3, 24.0]0 0 and fainter. HyaII also hosts some
stars that are consistent with being red clump stars at

− ∼g r g[( ) , ] [0.5, 20.8]0 0 . A handful of stars bluer and

brighter than the oMSTO at − ∼ −g r( ) 0.20 and
< <g22.0 23.50 are likely blue stragglers or intermediate

age stars. The smaller relative number of stars in this group to
those in the HyaII blue HB is consistent with ratios seen for
blue straggler populations in faint dwarf galaxies (Deason
et al. 2015).

The right-most panel of Figure 1 shows the distribution of all
stellar-like objects in this region of the SMASH survey as small
red dots, whereas the big black dots correspond to stars
specifically selected in the selection box shown in red in the
right-most CMD panel of Figure 1. Despite the chip gaps and
the presence of a bright star near the center of HyaII, the CMD
features correspond to a clearly defined spatial overdensity that
subtends a few arcminutes.

We apply the algorithm presented in an upcoming contribu-
tion (N. F. Martin et al. 2015, in preparation) to determine the
structural parameters of HyaII. In summary, this algorithm
builds on the work of Martin et al. (2008) and uses the location
of every star in the sample to produce Markov Chain Monte
Carlo samplings of the posterior probability distribution
functions (pdfs) for a family of models representing the spatial
distribution of member stars as the sum of an exponential radial
density profile and a constant level of contamination. The
inference is performed in a six-dimensional parameter space,
with the parameters representing the centroid of the dwarf
galaxy, its exponential half-light radius, rh, its ellipticity, ϵ, the
position angle of its major axis east of north, θ, and the number

of stars in the galaxy for the chosen CMD selection box, N*.
This version of the algorithm further allows for the masking of
regions without data, a particularly necessary step in the case of
HyaII given the presence of the bright star near the dwarf
galaxyʼs center. The resulting marginalized pdfs are shown in
Figure 2 for the three most important structural parameters

(ϵ,θ, and rh) and summarized in Table 1. HyaII is a rather

compact ( = ′ −
+r 1.7h 0.2
0.3) and round stellar system. However, the

presence of the chip gaps and the necessity of masking out a
region near the center of the dwarf galaxy render the structural
parameter somewhat uncertain. Therefore, looking at the pdfs
in Figure 2, it is still possible for HyaII to be elliptical ( ≲ 0.4)
and larger than the favored model ( ≲ ′r 2.5h ).
The distinct HB of HyaII provides us with a good tool for

inferring the distance to the dwarf galaxy. A small CMD
selection box tailored around the HB (blue polygon overlaid on
the right-most CMD of Figure 1) isolates stars shown in cyan
in the right-most panel of Figure 1. Further requiring that they
be within r4 h limits the sample to 12 HB stars with high
membership probability. The relation given by Deason
et al. (2011, their Equation (7)) between the absolute
magnitude of blue HB stars and their colors allows us to
calculate a distance modulus for each of these 12 stars, which,
when combined, yield the average distance modulus for HyaII:

− = ±m M( ) 20.64 0.160 , where we assumed an uncertainty
of 0.10 on the relation. This corresponds to a heliocentric
distance of ±134 10 kpc, or a Galactocentric distance of

±128 10 kpc. This value further yields an estimate of the
physical size of the system, = ±r 68 11 pch (folding in the
uncertainties on the distance), with the corresponding pdf
presented in the bottom-right pdf panel of Figure 2.
On the third CMD of Figure 1, we have plotted an old

(13 Gyr) and metal-poor ( = −[Fe H] 2.2) PARSEC isochrone
(Bressan et al. 2012). The isochrone has been shifted to the
distance modulus of 20.64 determined above and nicely tracks
all the CMD features of the dwarf galaxy (HB, RGB, MSTO).
Following N. F. Martin et al. (2015, in preparation) and

Martin et al. (2008), we use the inference of N*, the number of
HyaII stars within a chosen CMD selection box, corrected for
holes in the data, to determine the absolute magnitude of HyaII.
Although this means that we do not directly calculate the
luminosity contribution of the observed stars, the resulting
quantity is more representative of the underlying properties of
dwarf galaxies, folding in “CMD shot noise” (Martin
et al. 2008). We first rerun our structural parameter code for
a shallower CMD selection box ( <g 23.70 ), for which the data
are complete. We then generate an artificial CMD from the
isochrone shown above and its associated luminosity function

Figure 2. Left: one-dimensional, marginalized pdfs for the ellipticity (ϵ), the
position angle (θ), and the angular and physical half-light radii (rh) of HyaII.
The gray dotted–dashed lines indicate the modes of the distributions. Right:
radial density profile of the favored exponential model (full line) compared to
the data binned with the favored centroid, ellipticity, position angle, and
number of stars within the chosen CMD selection box. The dashed line
represents the inferred contamination level. The good match between the data
and the model radial density profile illustrates the good quality of the structural
parameter inference.

Table 1

Properties of Hydra II

α (J2000) 12 21 42.1h m s

δ (J2000) − ° ′ ″31 59 07

ℓ 295◦. 61

b +30◦. 46

−m M( )0 20.64 ± 0.16

Heliocentric Distance ±134 10 kpc

Galactocentric Distance ±128 10 kpc

MV −4.8 ± 0.3

LV
±

⊙L103.9 0.1

−E B V( )
a 0.053

Ellipticity −
+0.01 0.01
0.19

Position Angle (E of N) °−
+28 35
40

rh ′ −
+1.7 0.2
0.3

±68 11 pc

Note.
a
From Schlafly & Finkbeiner (2011).
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(assuming a Kroupa 2001 IMF), folding in the photometric
uncertainties determined from the data of the SMASH field.
From the shallow structural parameter chain, we randomly

draw a value Ni
* of the number of stars we are aiming for

and then populate the artificial CMD until Ni
* stars have been

drawn in the shallow CMD box. Summing up the flux of all
stars of the artificial CMD, whether in the CMD box or not,
yields the total luminosity of the dwarf galaxy. In addition,

reiterating this procedure for different values of Ni
* drawn

from its pdf allows us to track the influence of “CMD shot
noise” on our uncertainties. We infer a total luminosity of

= ±
⊙L L10V

3.9 0.1 , i.e., = − ±M 4.8 0.3V .

4. DISCUSSION

The properties of the new dwarf galaxy, Hydra II, are typical
of other faint dwarf galaxies found around the Milky Way, as
can be seen in Figure 3. HyaII is compact ( = ±r 68 11 pch )
and faint ( = − ±M 4.8 0.3V ) but shares these properties with
Coma Berenices (Muñoz et al. 2010) and Canes Venatici II
(Sand et al. 2012). HyaII is surprisingly round for a dwarf
galaxy but it should be noted that this parameter is not very
well constrained given the presence of a bright star near the
center of the dwarf galaxy. Finally, the oldest and most metal-
poor stellar population present in the PARSEC library provides a
good fit to the CMD features of HyaII, as is often the case for
such faint dwarf galaxies (e.g., Brown et al. 2014).

HyaII is located close to the Vast Polar Structure of Milky
Way satellites proposed by Pawlowski et al. (2012b) but this is
hardly surprising given that the SMASH survey mainly targets
fields in this proposed structure. HyaII is also located in the same
region of the sky as the leading arm of the gaseous Magellanic
Stream (Nidever et al. 2010), suggesting that HyaII is, or was
until recently, part of the Clouds satellite system. The orbital
properties of possible satellites of the LMC are presently
unconstrained, except for one, the SMC (Kallivayalil
et al. 2013), believed to have been accreted by the Milky Way
as part of the LMC group, which explains the SMC’s proximity
to the LMC, the gaseous bridge connecting them, and
similarities in their star formation histories. It is thus reasonable

to examine the orbital properties of this one confirmed
companion to see if it can shed light on a plausible association
of HyaII with the LMC. The orbit of the SMC is expected to be
highly eccentric, explaining why the two Clouds have not yet
merged. The SMC has likely completed 2–3 orbits about the
LMC (Besla et al. 2010). At each pericentric approach between
the two galaxies, LMC tides strip stars and gas from the SMC.
Indeed, Olsen et al. (2011) and Noël et al. (2013) report a
population of SMC stars stripped and captured by the LMC, and
Nidever et al. (2013) found a stellar component of the gaseous
Magellanic Bridge tidally stripped from the SMC. In Figure 4,
we examine the heliocentric distances to stellar debris stripped
from the SMC as predicted by simulations that reproduce the
global properties of the Magellanic System in a first infall
scenario (Besla et al. 2012, Model 2).
HyaII is located near the Leading Arm, a collection of high-

velocity neutral hydrogen gas that leads the Magellanic Clouds.
This structure is one of the main lines of evidence that the
extended gas distribution surrounding the Clouds resulted from
tidal forces rather than hydrodynamic processes, such as ram-
pressure stripping. The latter process cannot pull material ahead
of the stripped body, while the former process can naturally
throw stripped material ahead of the Clouds. The Leading Arm
is expected to have formed as a tidal tail over the course of the
most recently completed orbit of the SMC about the LMC,
whereas the Stream formed as a tidal tail at an earlier
encounter. Predicted stellar debris in the Leading Arm should
roughly trace the most recent orbit of the SMC about the LMC
(Besla et al. 2012). Once removed, stripped SMC stars gain
energy and migrate to larger radii than the original orbital path
of the SMC about the LMC. In addition, Milky Way tides
move the debris to even larger distances. As a result, the
distribution of these debris can reach distances as large as
130 kpc (80 kpc from the LMC itself).

The distance to HyaII is consistent with the debris trail and
trajectory of the LMC. The new dwarf galaxy is also within the

virial radius of the LMC29, assuming a halo mass of ∼ ⊙M1011

Figure 3. Distribution of Milky Way satellites in the rh–MV plane, color-coded by ellipticity. Squares represent globular clusters (Harris 1996, 2010), circled dots are
confirmed dwarf galaxies (McConnachie 2012), while dots are recently discovered and ambiguous systems for which there are no spectroscopic confirmations as to
their nature. These include the DES discoveries (Bechtol et al. 2015; Kim et al. 2015; Koposov et al. 2015), PSO J174.0675-10.8774/Crater (Belokurov et al. 2014;
Laevens et al. 2014), and Laevens 2/Triangulum II (Laevens & Martin 2015). Symbols connected by a full line correspond to different measurements of the size and
magnitude of the same object. HyaII is represented by the large triangle and falls within the realm of known, faint dwarf galaxies.

29
It is, however, outside the LMCʼs tidal radius of 22 ± 5 kpc (van der Marel

& Kallivayalil 2014).
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as predicted by abundance-matching relations (Moster
et al. 2013). Sales et al. (2011) demonstrated that most
subhalos of a model-analogous LMC group should remain
within the dark-matter halo of the LMC in a first infall scenario.
While not a definite proof, our analysis does suggest that the
distance of HyaII is consistent with an LMC association. This
study further suggests two clear tests for establishing the
association of HyaII with the LMC.

1. The detection of stars in the Leading Arm that have
metallicities consistent with a stripped SMC population
can inform us of the extreme distances that material in
orbit about the LMC can reach. The identification of such
stars is a major goal of our SMASH program.

2. With radial velocities and proper motion measurements
of HyaIIʼs stars, the dwarf galaxyʼs 3D velocity can be
compared against that of the Clouds to test whether the
dwarf galaxy is moving in a similar orbital plane.
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