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Abstract—A reliable source of randomness is not only an
essential building block in various cryptographic, security, and
distributed systems protocols, but also plays an integral part
in the design of many new blockchain proposals. Consequently,
the topic of publicly-verifiable, bias-resistant and unpredictable
randomness has recently enjoyed increased attention. In partic-
ular random beacon protocols, aimed at continuous operation,
can be a vital component for current Proof-of-Stake based
distributed ledger proposals. We improve upon previous random
beacon approaches with HydRand, a novel distributed protocol
based on publicly-verifiable secret sharing (PVSS) to ensure
unpredictability, bias-resistance, and public-verifiability of a
continuous sequence of random beacon values. Furthermore,
HydRand provides guaranteed output delivery of randomness at
regular and predictable intervals in the presence of adversarial
behavior and does not rely on a trusted dealer for the initial
setup. Compared to existing PVSS based approaches that strive
to achieve similar properties, our solution improves scalability by
lowering the communication complexity from O(n3) to O(n2).
Furthermore, we are the first to present a detailed comparison
of recently described schemes and protocols that can be used for
implementing random beacons.

I. INTRODUCTION

The question of how to generate trustworthy random val-

ues among a set of mutually distrusting participants over a

message passing network was first addressed by Blum in

1983, thereby introducing the notion of coin tossing protocols
[10]. Distributed randomness also forms a key component of

asynchronous consensus protocols in the form of local [6] and

common coin designs [38], [20].

Lately, coin tossing protocols have received increased atten-

tion, in part because generating shared randomness is proving

to be a vital component of most distributed ledger approaches

(e.g. [8], [22], [33]) that aim to replace the computationally

intensive Proof-of-Work (PoW) mechanism as found in Bitcoin

[36] and similar cryptocurrencies. Specifically, Proof-of-Stake
(PoS) blockchain proposals, which rely on virtual resources

in the form of digital assets, call for manipulation resistant

and unpredictable leader election as part of a secure protocol

design [33]. The distributed generation of trustworthy random

values can hence be considered a complementary problem to

the development of such protocols.

Random beacon protocols aim to generate publicly-

verifiable, bias-resistant and unpredictable randomness in dis-

tributed environments. The concept of a random beacon was

first formalized by Rabin [39], where a service that emits

a fresh random number at regular intervals is proposed.

Potential application areas for random beacons are broad and,

as described in [44], [21], [15], include:

• the secure generation of protocol parameters for crypto-

graphic schemes [4], [34]

• privacy preserving messaging services [49], [47], [30]

• protocols for anonymous browsing, including Tor hidden

services [46], [31], [28]

• electronic voting protocols [1]

• publicly-auditable selections [15]

• gambling and lottery services [15]

With the emergence of blockchain protocols additional areas

that demand secure sources of public randomness, such as

sharding approaches [23], were formed. In particular smart

contracts often draw upon insecure sources of randomness or

trusted third parties [2], [17] such as the NIST random beacon,

Random.org or Oraclize.it.

The revealed backdoor in the Dual Elliptic Curve PRNG

[9], the unreliability of proprietary beacons [15], and the pos-

sibility of a centralized provider buffering, manipulating, and

benefiting from prior knowledge of the provided randomness

[15] are only a few of many reasons in favor of distributed

randomness beacons where trust is spread among participants.

Considering distributed approaches, the following proper-

ties, as outlined in [3], [15], [44], are desiderata of a random

beacon protocol:

1) Availability/Liveness:
Any single participant or colluding adversary should not

be able to prevent progress.

2) Unpredictability: Correct, as well as adversarial nodes,

should not be able to predict (precompute) future ran-

dom beacon values.

3) Bias-Resistance: Any single participant or colluding

adversary should not be able to influence future random

beacon values to their advantage.

4) Public-Verifiability: Third parties not directly partic-

ipating in the protocol should also be able to verify

generated values. As soon as a new random beacon value

becomes available, all parties can verify the correctness

of the new value using public information only.

Additionally, we follow the notion of [33], [21] where guar-
anteed output delivery (G.O.D.) [40] i.e., the inability for

an adversary to prevent correct participants of the protocol

from obtaining an output, is also considered as an important

property of random beacon protocols. In particular, if an

adversary is not sufficiently restricted by how much it can

affect the timing of the random beacon’s output in system

models with bounded delays, both unpredictability and bias-

resistance are weakened because the adversary can influence
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if an application is able to receive the output before a certain

time or not.

Another particular desirable property for random beacons in

the context of (permissionless) distributed ledgers is the avoid-
ance of an initial trusted setup, e.g. a trusted dealer, [44].

Current random beacon protocols aim to provide solutions

by employing different techniques, reaching from Proof-of-

Delay [17], [19] and incentive based solutions [18], [41] over

publicly-verifiable secret sharing (PVSS) [3], [21], [33], [44]

and unique signatures [22], [25] to utilizing Bitcoin itself

as a source of randomness [7], [15]. The diversity of these

approaches, as well as the differences in their underlying as-

sumptions and characteristics, make them difficult to compare

and not equally suited for all use-cases. Furthermore, various

recently described (PoS) blockchain schemes utilize or provide

a random beacon as part of their protocol design and are

therefore not easily comparable or deployable as a stand-alone

protocol.

A. Contribution

We present HydRand, a PVSS based distributed random

beacon protocol geared towards the continuous provision of

randomness at regular intervals in a Byzantine failure setting.

HydRand provides guaranteed output delivery, i.e., it guar-

antees the generation of new, bias-resistant randomness in

every round of the protocol. As a hybrid approach, HydRand

provides both a probabilistic guarantee for unpredictability,

which ensures that a successful prediction of future random

beacon values becomes exponentially unlikely, as well as

unpredictability with absolute certainty for applications which

wait for at least f + 1 rounds before using a future protocol

output. The protocol assumes a synchronous system model and

n = 3f + 1 participants. In respect to previous approaches

based on PVSS, the communication complexity is hereby

lowered from O(n3) to O(n2) as HydRand only requires at

most one PVSS distribution/recovery operation per round. Our

protocol is described in a self contained manner and neither

relies on a trusted dealer nor on a distributed key generation

(DKG) protocol.

Moreover, to the best of our knowledge, we are the first to

provide an extensive comparison of state of the art random

beacon protocols in this field that considers and analyses a

variety of key characteristics and assumptions.

B. Paper Structure

The assumed system model is presented in section II.

Section III provides a high level overview of the HydRand

protocol and highlights the employed variant of PVSS, which

constitutes one of the main cryptographic primitives that is

utilized. The protocol construction is outlined in detail in

section IV. An extensive analysis including proofs showing

that HydRand achieves the desired properties is presented in

section V. Section VI compares HydRand to other related

schemes, while sections VII and VIII discuss and conclude the

paper. The presentation of our evaluation results, an execution

example highlighting the protocol functionality and its phases,

as well as a quick reference for utilized symbols and notations

can be found in the appendix.

II. SYSTEM AND THREAT MODEL

We assume a fixed set of known participants, hereby referred

to as nodes, of size n = 3f + 1, of which at most f nodes

may exhibit Byzantine failures and can deviate arbitrarily from

the specified protocol. A node is considered to be correct if it

does not engage in any incorrect behavior during the entirety

of the protocol execution, else it is considered to be faulty.

The terms Byzantine or malicious are used synonymously

to refer to faulty nodes. The set of all nodes is denoted

by P = {1, 2, ..., n} and each node i ∈ P is assumed to

have a private/public key pair 〈ski, pki〉. The public keys of

these keypairs are known to all participants. A synchronous

system model with a fully connected network of authenticated

and reliable bidirectional point-to-point messaging channels is

assumed. We argue that the chosen timing model is reasonable

for a small to moderate set of participants, and defer an

analysis of our protocol in other system models to future work.

Further, for many application areas of random beacons, e.g,

in the context of cryptocurrencies, partially synchronous and

synchronous system models are prevalent. Here, a synchronous

random beacon protocol that also provides guaranteed output

delivery may be necessary if strong notions of bias-resistance

are a requirement.

III. PROTOCOL OVERVIEW

The aim of HydRand is to provide a bias-resistant, publicly-

verifiable and unpredictable stand-alone random beacon which

emits random values at a regular interval. We target HydRand

at a permissioned setting with a fixed set of participants

and assume a known upper bound1 on both computation and

message transmission times.

For the protocol setup it is assumed that all participants ex-

changed their public keys and prepared an initial commitment

using publicly-verifiable secret sharing (PVSS). The protocol

operation itself is separated into rounds, where each round

consists of three distinct phases – propose, acknowledge and

voting. We describe these phases in detail in section IV. In

each round, the previously generated random value is used for

uniquely determining the current round leader. This leader has

two choices: (i) The leader reveals the correct secret value

he has committed himself to the last time2 he was leader

and attaches his next commitment. (ii) The leader does not

reveal his secret value and therefore cannot attach another

commitment. In the latter case, the previously committed

secret value is reconstructed by f+1 other nodes, including at

least one correct participant. The properties of the underlying

PVSS scheme ensure that the random beacon value obtained

by reconstruction is always equal to the value that is obtained

when a leader reveals his secret – this establishes bias-
resistance. Additionally, guaranteed output delivery follows

1 We assume that a message sent at the beginning of one phase is received
within that same phase.

2The initial commitment from the protocol setup is used the first time.
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because the protocol outputs a random beacon value at each

round, independent of the actions of the (potentially adversar-

ial) leader and other faulty nodes.

In case the leader’s previous commitment is reconstructed,

the leader is excluded from being eligible as leader in future

rounds since no new valid commitment was provided. How-

ever, the presented protocol could also be adapted to facilitate

that temporarily failed nodes may rejoin f + 1 rounds after

a fresh commitment is provided and agreed upon. A correct

leader constructs a new dataset, which includes: (i) the secret

value they previously committed themselves to, (ii) a new

commitment to a uniformly random sampled value and (iii)

a reference to the dataset of the previous round. The leader

signs this dataset using their private key and broadcasts this

message and signature to all other nodes in the network. After

receiving and verifying the dataset, each node can compute

the new random value of the beacon.

In case a leader is faulty and does not broadcast any data,

other participants can collaborate to reconstruct the missing

secret value, i.e. the value the leader has previously committed

himself to in (ii). The reconstructed value can be used by

any node to obtain the new random beacon value and thereby

advance the protocol to the next round and leader. This

process is repeated until eventually a correct leader is selected

that creates a new dataset that accounts for all reconstructed

datasets in between.

To ensure that a correct node is selected as leader after

(at most) f + 1 rounds, all previously selected leaders of the

last f rounds are exempt from becoming leader in the current

round. Since malicious nodes are unable to determine how

an unrevealed commitment of an honest leader will influence

future random beacon values, they cannot precompute any fu-

ture output once a correct node is selected as leader. Moreover,

correct participants converge on a single history after a correct

node is selected as leader, because correct leaders are required

to build on top of a single dataset and never sign different

datasets in the same round. The correct node acts as a barrier

for unpredictability and anchor for agreement on the protocol

state. Unpredictability is thereby ensured with certainty for

any round after f +1 rounds in the future. Public-verifiability
is established by leveraging the properties of the underlying

PVSS scheme.

A. Publicly-Verifiable Secret Sharing

We rely on PVSS as a primary building block in the

HydRand protocol. More specifically, we make use of Scrape’s

PVSS protocol [21], which is an optimization of Schoen-

makers’ PVSS scheme [43], and allows a node (dealer) to

efficiently share a secret value s ∈ Zq among a set of n
recipients, such that any subset of at least t recipients is

able to recover/reconstruct the value hs ∈ Gq , where h is

one of two independent generators of the group Gq and the

prime q denotes the order of this group. The value of the

reconstruction threshold t is set in a way that does not enable

a colluding adversary to successfully recover a shared secret

without requiring the collaboration of at least one correct node,

i.e. t = f + 1. A key property of a publicly-verifiable secret

sharing protocol is that, upon receiving the secret shares, not

only the recipients but any third party with access to the public

keys of the participants can verify the correctness of the shares

prior to reconstruction of the secret. We use the term PVSS
commitment, denoted by Com(s), to refer to the result of the

share distribution process of Scrape’s PVSS. To form a PVSS

commitment, a dealer provides:

• The encrypted shares for a secret s, i.e. one encrypted

share ŝi for each node i, encrypted with the receiver’s

public key.

• The commitments v1, v2, ..., vn to the shares for each

node.

• A non-interactive zero-knowledge (NIZK) proof ensuring

the correctness of the encrypted shares

For additional details regarding Scrape we refer the reader

to [21].

B. Design Rationale

A malicious leader can try to construct and send different

commitments, and hence different datasets, to other partici-

pants of the protocol or selectively withhold information to

bias the resulting sequence of random beacon values. Hence,

some form of (Byzantine) consensus protocol is necessary for

participants to agree either on a single, valid commitment or

the fact that the leader was faulty. In this respect, HydRand

leverages on its intended application as a continuous random

beacon to amortize the communication overhead of Byzantine

agreement (BA) that is incurred at each round. Specifically,

HydRand introduces a variant of repeated Byzantine agree-

ment that defers consensus decisions for up to f + 1 rounds,

and combines data from multiple consensus instances that are

executed with every consecutive new round of the HydRand

protocol. By exempting a current leader to be re-elected within

the next f rounds, enough time is given to reach agreement if

the leader was faulty or not. Thereby, the overall communica-

tion (bit) complexity in regard to PVSS based random beacon

schemes with comparable guarantees is reduced from O(n3)
to O(n2).

IV. PROTOCOL DETAILS

HydRand proceeds in rounds, where each round r ≥ 1
consists of three phases: propose, acknowledge and vote.

Further, each round has a uniquely associated leader �r ∈ P
that is selected through the randomness generated by the

protocol. When referring to the current round’s leader, we may

omit the subscript and simply denote the leader by �.
Each round, �r is selected uniformly at random from the set

of all nodes that were not leader during the last f+1 rounds3.

At the end of a round all nodes learn a new random beacon

value Rr. For simplicity, we hereby assume that correct nodes

agree on the initial random beacon value R0 used to select the

leader of round 1, as well as the set of initial commitments of

3 The detailed leader selection mechanism is described in section IV-D.
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all nodes. R0 becomes public knowledge only after the set of

initial commitments was defined during setup.4

To simplify our notation, we assume that the sender of a

broadcast is also a recipient of that message. Similarly, the

dealer in the PVSS protocol also provides a share for himself.

We use 〈m〉i to denote the message m a node i cryptograph-

ically signed with its private key ski. We further assume,

that each correct node discards invalidly signed messages and

processes only messages for the current round and phase.

A. Propose Phase

During this phase the round leader � reveals his previ-

ously committed value s� and provides a new commitment

Com(s�� ). For this purpose, it is the leader’s task to propose

a new dataset Dr for the current round r. As a performance

optimization, we split a dataset into two parts: a header and

a body. For certain operations, we only require sending the

header of the dataset. The header header(Dr) of dataset Dr

contains:

• the hash of the dataset’s body H(body(Dr))
• the current round index r
• the round’s random beacon value Rr

• the revealed secret value s�
• the round index �r of the previous dataset D �r
• the hash H(D �r ) of the previous dataset D �r if �r > 0
• a list of random beacon values {Rk, Rk+1, ...} for all

recovered rounds between �r and r (if any)

• the Merkle tree root hash Mr over all encrypted shares

in the new commitment Com(s�� )

We use H(Dr) = H(header(Dr)) to denote the crypto-

graphic hash of the dataset Dr. The body body(Dr) of dataset

Dr contains:

• a confirmation certificate CC(D �r ), which confirms that

D �r was previously accepted as a valid dataset

• a recovery certificate RC(k) for all rounds k ∈ { �r +
1, �r + 2, ..., r − 1}, which confirms that there exists a

recovery for all rounds between �r and r If �r = r − 1
then no such intermediate round exists and this value is

omitted.

• the commitment Com(s�� ) to a new randomly chosen

secret s��
The leader selects �r < r as the most recent regular round, for

which the leader is not aware of any successful recovery. As

we prove in section V-A, such a round always exists and the

leader is in possession of the confirmation certificate CC(D �r )
required for the dataset’s body.

After the construction of the above dataset, a cor-

rect leader � broadcasts a signed propose message〈
propose, 〈header(Dr)〉�, body(Dr)

〉
�

to all nodes. Each

node i, which receives such a message from the leader before

the end of the propose phase, checks the validity of the

dataset Dr. For this purpose i verifies that Dr is constructed

as previously defined and properly signed. This includes a

4 In practice this initial random value can, for example, be obtained via
Proof-of-Delay [17] or a Proof-of-Work [7].

check that the revealed secret s� corresponds to the previous

commitment Com(s�) of the current leader. Additionally,

the validity of the confirmation and recovery certificates is

checked. A confirmation certificate CC(D �r ) for dataset D �r
is valid iff it consists of f + 1 signed messages of the

form 〈confirm, �r ,H(D �r )〉i from f+1 different senders i.
Similarly, a recovery certificate RC(k) for some round k is a

collection of f +1 signed messages of the form 〈recover, k〉i
from f + 1 different senders.

B. Acknowledge Phase

If a node i receives a valid dataset Dr from the

round’s leader � during the propose phase, it con-

structs and broadcasts a signed acknowledge message〈〈acknowledge, r,H(Dr)〉i, 〈header(Dr)〉�
〉
i

thereby also

forwarding the revealed secret value s� as part of the header.

Further, each node i collects and validates acknowledge mes-

sages from other nodes.

C. Vote Phase

Each node i checks the following conditions:

• During the current propose phase a valid dataset Dr was

received.

• During the current acknowledge phase at least 2f + 1
valid acknowledge messages from different senders have

been received.

• All acknowledge messages received refer to the dataset’s

hash H(Dr). Valid acknowledge messages for more than

one value of H(Dr) form a cryptographic proof of leader

equivocation.5

If all conditions are met, node i broadcasts a

signed confirmation message: 〈confirm, r,H(Dr)〉i
Otherwise node i, broadcasts a recover message:〈〈recover, r〉i, s�, Com(s�)[si], ŝi,Mk[ŝi], Rr−1

〉
i

Here,

Com(s�)[si] denotes i’s decrypted share si and its share

decryption proof according to Scrape’s PVSS, which

cryptographically proves that si is a valid decryption of ŝi
under i’s secret key. Round k denotes the round in which

� has provided the commitment Com(s�) and a Merkle

tree root hash Mk. The Merkle branch Mk[ŝi] proves that

the encrypted share ŝi was previously distributed as part of

Com(s�) and therefore also of Dk. The values ŝi and Mk[ŝi]
are required to enable nodes which are not in possession of

Com(s�) to verify the share decryption proof for si. Rr−1 is

included for efficient external verification.

Correct nodes always include values for s�, Com(s�)[si], ŝi
and Mk[ŝi] if they are in possession of the required data.

Otherwise the unknown value(s) are omitted. This can happen

if an adversary selectively sent the previous dataset Dk to a

subset of nodes. Therefore, upon receiving recovery messages

from other nodes, correct nodes accept messages with omitted

values. The protocol guarantees that at least f+1 correct nodes

have received the dataset with a valid confirmation certificate,

5 In a (PoS) cryptocurrency setting, the protocol could be extended such
that this equivocation proof is used to seize some form of security deposit
from the leader.
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and hence are able to provide the necessary shares required for

reconstructing the respective secret. An example is presented

in appendix B.

At the end of this phase each node i can obtain the

round’s random beacon value Rr. We distinguish between

the following two cases: (i) node i already knows the secret

value s�, because it received the dataset Dr or an acknowledge

message for Dr, and (ii) node i has received at least f+1 valid

recover messages which include at least f+1 decrypted secret

shares for s�. In the latter case the reconstruction procedure

of Scrape’s PVSS can be executed to produce the value hs� .

In both cases Rr is then obtained by computing:

Rr ← H(Rr−1 || hs�) (Definition 1)

D. Leader selection

At the beginning of each round r ≥ 1, a node i determines

the round’s leader �r based on the available local information

it gathered so far. For this purpose node i uses the randomness

Rr−1 of the previous round to deterministically select �r
from the set Lr of potential leaders. We denote the canonical

representation of Lr as 〈l0, l1, ..., l|Lr|−1〉 and obtain �r as

follows:

�r ← l(Rr−1 mod |Lr|) (Definition 2)

Let D �r denote the most recent valid dataset, for which node

i is not in possession of a corresponding recovery certificate

RC( �r ). If no such dataset exists we set �r = 0. Now

we introduce a method to determine the set of recovered
nodes rn(·) as a component needed for the definition of Lr.

Intuitively, the set rn(·) contains all nodes, which have not

provided valid datasets for some round where the node was

selected as leader. We define the set of all leaders that were

recovered in some round up to a referenced dataset as follows:

rn(Dx) =

{
∅ if x = 0

{�k | RC(k) ∈ Dx} ∪ rn(D �x ) otherwise

(Definition 3)

Here D �x denotes the previous dataset referenced by Dx. This

function is used to construct the set of available nodes Pr for

round r recursively by excluding all nodes which have been

selected as leader in a round for which a valid reconstruction

certificate exists:

Pr = P \ rn(D �r ) (Definition 4)

Based on this notion, the definition of the set of potential

leaders Lr for round r follows:

Lr = Pr \ {�r−f , �r−f+1, ..., �r−1} (Definition 5)

Intuitively, the set Lr only includes nodes that were not

selected as leader for at least f rounds in the past and have

not been reconstructed in any previous round, i.e., nodes that

distributed valid datasets for all rounds in which they were

selected as leader.

V. PROTOCOL PROPERTIES

In the following, we show that HydRand achieves the

desirable properties of a random beacon protocol as outlined in

section I: liveness, guaranteed output delivery, unpredictabil-
ity, bias-resistance, and public-verifiability. We furthermore

show that our protocol also achieves uniform agreement. In our

proofs we may refer to the definitions introduced in section

IV.

A. Liveness and Guaranteed Output Delivery

To show that HydRand satisfies liveness and guaranteed

output delivery, we first introduce and prove several primary

lemmas. We show that (i) correct nodes are always able to

provide a valid dataset if they are selected as leader, (ii) correct

nodes can never be recovered and (iii) the set of potential

leaders always contains at least f + 1 correct nodes. Using

these results, we infer that correct nodes can always output the

round’s random beacon value by the end of the round, given

that they know the value for the previous round. Finally, we

use an inductive argument to prove liveness and guaranteed

output delivery of our protocol.

Lemma 1. (Possibility of construction of valid datasets) For
each round r a correct leader �r can construct a valid dataset
Dr.

Proof. Implicit agreement by all correct nodes on the current

round number r follows from the synchronous system model

and fixed duration of phases. A correct leader is in possession

of its own secret s� and thus knows Rr. Furthermore, the

leader can always construct a new PVSS commitment for a

new secret Com(s�� ) and is able to provide a valid value for

Mr. Therefore, it only remains to be shown that each correct

node is able to provide the required confirmation certificate

CC(·) and recovery certificates RC(·). During the vote phase

of every previous round, correct nodes have either broadcast a

recover or confirm message. As there are at least 2f+1 correct

nodes, each node is guaranteed to receive at least f+1 recover

messages or at least f+1 confirm messages (or both) for each

of these rounds. As f + 1 recover messages form a recovery

certificate and f + 1 confirm messages form a confirmation

certificate, each node is in possession of a recovery certificate

or a confirmation certificate (or both) for every previous round,

and is hence able to provide the required certificates for Dr.

Lemma 2. (No recovery of correct leaders) If leader �r is
correct, there does not exist a node i, which is in possession
of a valid recovery certificate RC(r).

Proof. A correct leader �r sends valid proposal Dr to all

nodes during the propose phase. By lemma 1, �r can always

construct such a dataset. As all correct nodes consider Dr as

valid, at least 2f + 1 nodes broadcast acknowledge messages

for Dr during the acknowledge phase. All 2f + 1 correct

nodes therefore receive at least 2f + 1 valid acknowledge

messages for Dr. Since there cannot exist a valid acknowledge

for a different dataset D′
r (a correct leader only provides his
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signature for Dr) all correct nodes broadcast confirm messages

during the vote phase. As correct nodes only broadcast either

confirm or recover messages, there are at most f recover

messages (from Byzantine nodes). A valid recovery certificate

RC(r) however requires at least f +1 recover messages from

different nodes, and therefore cannot exist.

Lemma 3. (Availability of leaders) For each round r ≥ 1,
the set of potential leaders Lr contains at least f +1 correct
nodes.

Proof. We first show that for each round r, the set of available

nodes Pr contains at least 2f+1 correct nodes. By Definition

3 and Definition 4 (see section IV-D), we ensure that only

leaders �k for some round k, in which a recovery certificate

RC(k) exists, are excluded from the set P to form Pr. As we

have shown in lemma 2 there are no recovery certificates for

rounds with correct leaders. Therefore correct nodes cannot

be excluded from P to form Pr, and thus Pr contains at least

2f + 1 correct nodes.

Using the above result and Definition 5, which excludes at

most f + 1 nodes from Pr to form Lr, Lr contains at least

f + 1 correct nodes.

Lemma 4. (Liveness) If a correct node knows the random
beacon value Rr−1, it can output the random beacon value
Rr by the end of round r (independent of the actions of the
round’s leader �r).

Proof. Following lemma 3 we guarantee the existence of a

leader �r. Since �r ∈ Lr and Lr ⊂ Pr, we know that �r ∈
Pr. By applying Definition 4 we get �r 
∈ rn(D �r ). Hence,

there exists some history of datasets with head D �r , in which

there does not exist a recovery certificate RC(k) for any round

k < �r in which �r was also leader. Such a history for any

valid dataset Dk can only exist if at least one correct node

confirmed that Dk was correctly distributed and acknowledged

by 2f + 1 nodes by providing a confirm message. Hence, at

least f + 1 correct nodes know a common dataset Dk for

all rounds k where �r was previously selected as leader. In

addition, all nodes know the shares for �r’s first commitment

as defined in the protocol setup. Thus, at least f + 1 correct

nodes can broadcast the decrypted share in case a recovery of

the leader �r in round r is necessary. Hence all nodes learn

the value hs� corresponding to �r’s last commitment Com(s�),
and thus obtain Rr using hs� and Rr−1 via Definition 1.

Theorem 1. (Guaranteed Output Delivery) For each round r
all correct nodes output a new random beacon value Rr.

Proof. We use lemmas 3 and 4 and prove the theorem by

induction on the round index r. For the base case we have

an agreed random beacon value R0 as given by the protocol

setup. For the induction step, we assume that Rr−1 is known

by all correct nodes. Lemma 3 ensures that the set of potential

leaders Lr contains at least f + 1 correct nodes. Therefore,

Definition 2 can always be applied to a selected leader �r using

Lr and Rr−1. Hence, we can use lemma 4, to show that by

the end of round r each correct node outputs a value Rr.

B. Agreement

In the following, we show that all correct nodes agree on

a common sequence of random beacon values. We start by

showing that (i) within f+1 rounds a correct node is selected

as leader and (ii) all correct nodes agree on a common set

of potential leaders and use this two results to prove that

uniform agreement is satisfied for the random beacon values

in HydRand.

Lemma 5. (Selection of correct leaders) In each interval
{k, k + 1, k + 2, ..., k + f} of f + 1 consecutive rounds there
is at least one round �k ∈ {k, k + 1, k + 2, ..., k + f}, such
that the leader � �k

of that round is correct.

Proof. We assume that there is no correct leader in

{�k, �k+1, �k+2, ..., �k+f} and derive a contradiction. We apply

the definition of the set of potential leaders for round k + f :

Lk+f = Pk+f \ {�k, �k+1, ..., �k+f−1}
Notice that {�k, �k+1, ..., �k+f−1} denotes a set of f Byzantine

nodes. As there are only f Byzantine nodes in total, Lk+f

cannot contain any Byzantine nodes. However, the Byzantine

node �k+f is assumed to be leader of round k+f and therefore

�k+f ∈ Lk+f , which completes the contradiction.

Lemma 6. (Agreement on potential leaders) If a node con-
structs a valid set of potential leaders Lr in round r, then
every correct node constructs the same value for Lr.

Proof. Using lemma 5, for the interval {r−f−1, r−f, ..., r−
1}, we know that there is some round �r with a correct leader

� �r in this interval. Using lemma 1, we know that � �r is able

to construct a valid dataset D �r in round �r . As � �r is correct,

it has distributed this dataset to all nodes during the propose

phase of round �r . All correct nodes therefore acknowledge

D �r in the acknowledge phase of round �r . Since there are at

least 2f + 1 correct nodes, all correct nodes receive at least

2f +1 valid acknowledge messages for D �r by the end of the

acknowledge phase. No node can receive a valid acknowledge

for some different dataset D′
�r
, because the correct leader � �r

does not provide a signature for a different value. Therefore,

all correct nodes broadcast confirm messages for D �r . As all

correct nodes broadcast either one confirm or one recovery

message, there are at most f recover messages (by Byzantine

nodes). Therefore, no valid recovery certificate RC( �r ) exists

for round �r . Thus, any valid future dataset needs to (indirectly)

reference the common and unique dataset D �r . Consequently,

we established agreement on D �r and its common history

provided by the references to the predecessor datasets.

As the set of available nodes P �r for round �r is defined

using only the agreed set of all nodes P and D �r , P �r is also

agreed upon. Since the definition of Lr does not depended

on whether or not leaders are recovered during the rounds

{r− f, r− f +1, ..., r− 1} and �r ≥ r− f − 1, agreement on

the set Lr follows.
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Theorem 2. (Uniform Agreement) If a node outputs a valid
random beacon value Rr in round r, then every node that
outputs a valid beacon value in round r outputs the same Rr.

Proof. We prove the theorem by induction on the round index

r. For the base case we have an agreed common random

beacon value R0 as defined by the protocol setup.

For the induction step, we assume that every node that

outputs a valid beacon value in round r − 1 outputs the

same Rr−1. We have agreement on Rr−1 by the induction

hypothesis and show agreement on the set of potential leaders

Lr in lemma 6. As the leader selection mechanism given

in Definition 2 only depends on those two arguments, all

correct nodes agree on a common unique leader �r. By

applying lemma 4 we obtain that each correct node learns the

leader’s previously committed secret hs� . By either checking

the revealed value of s� against the leaders commitment or

verifying the validity of the share decryption proof according

to Scrape’s PVSS description [21], uniqueness of a valid hs�

and consequently of Rr is ensured.

C. Unpredictability

Intuitively, the prediction of a future random beacon value

by the adversary is only possible if the adversary is selected

as leader for that particular round, as well as all rounds before

that point, because each round’s random beacon value depends

on a secret value only known to the round leader. As we prove

below, this is impossible for f + 1 consecutive rounds.

However, even before this bound is reached, the possibility

of successful prediction decreases exponentially in the number

of rounds to predict. The probability of successful prediction

of ω future random beacon values, where ω < f + 1, can be

characterized by a hypergeometric distribution with population

size n, ω draws (the number of values to predict) and f success

states (adversarial nodes) in the population. The prediction is

possible, iff all of the ω draws pick one of the success states.

Figure 1 shows the probabilities for different values of n, under

the n = 3f+1 security assumption. For large values of n, the

probability converges to a geometric distribution.

Fig. 1: Unpredictability guarantees for different numbers of

nodes n, assuming a 33% adversary, i.e. f = �n
3 � - 1

Theorem 3. (Unpredictability) At the beginning of round r,
no node can predict the outcome Rr+f of the random beacon
protocol in round r + f .

Proof. By applying lemma 5 we show that there is at least

one correct leader during the interval of f + 1 consecutive

rounds {r, r + 1, r + 2, ..., r + f}. Let k denote any round

during this interval in which the leader �k is correct. As �k
follows the protocol, it has not distributed its secret value

s�k to any node at the beginning of round r. Additionally,

no correct node will provide a decrypted secret share, which

could be used in the recovery process of the secret value.

Therefore only f secret shares are available for an adversary

to try and recover the secret in order to compute Rk (and

potentially consecutive random beacon values). However, the

protocol defines the reconstruction threshold t used by the

PVSS scheme to be f + 1. Therefore, an adversary cannot

obtain the underlying secret before it is revealed or recovered

during round k. Consequently, Rk and all consecutive random

beacon values (including Rr+f ) are unpredictable at the start

of round r.

D. Bias-Resistance

Theorem 4. (Bias-Resistance) No node i can, for any round
r, influence the value Rr of the random beacon protocol in a
meaningful (i.e. predictable) way.

Proof. This property follows from unpredictability and the fact

that the protocol is constructed in a way that ensures that

any action a (Byzantine) nodes takes in some round r, can

only influence the value of the random beacon at round r +
f + 1 or later. In theorem 3 we have shown that the random

beacon value at round r+f is unpredictable at the beginning of

round r. Therefore, a node cannot influence the random beacon

values for rounds r to r + f , and may only influence values

at round r + f + 1 or later in an unpredictable manner.

E. Public-Verifiability

Theorem 5. (Public-Verifiability) For each round r, an exter-
nal verifier can check the correctness of the random beacon
value Rr, at the end of round r.

Proof. The external verifier receives from any correct node

(i.e. after querying at most f + 1 nodes) its history up to and

including round r. The verifier can, by following the protocol

rules, only obtain a random beacon value Rr iff the provided

data is correct. Additionally, an external verifier can obtain

and verify recovered random beacon values between the last

valid dataset D �r and the current dataset Dr for all rounds

k ∈ { �r + 1, �r + 2, ..., r − 1}.

Lemma 7. (Efficient-Verification) For each round r, an exter-
nal verifier can check the correctness of the random beacon
value Rr in O(n), at the end of round r (without validation
of all previous rounds).

Proof. We distinguish two cases: (i) the leader of round

r provided a valid dataset Dr in time. The confirmation

certificate CC(Dr) is hereby available at the end of round
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r and can be used to verify the correctness of Dr (and

hence the included Rr) by verifying f + 1 signatures; (ii)

the leader of round r was recovered. In this case, an external

verifier requests the necessary information to simulate a node’s

execution of the recovery step of round r, i.e. f + 1 recover

messages from round r as well as the header header(Dr′)
and confirmation certificate CC(Dr′) of the failed leader’s

previously distributed dataset Dr′ . The simulation of a node’s

recovery requires f +1 validations of decrypted PVSS shares,

combining the shares via Lagrange interpolation, and checking

f+1 signatures to verify CC(Dr′), and can thus be performed

in O(n).

VI. COMPARISON OF RANDOM BEACON PROTOCOLS

Recent years have seen a substantial amount of new research

related to the generation of publicly-verifiable (distributed)

randomness being published in academia as well as the in-

dustry. Thereof, we distinguish between the following types

of protocols:

1) Stand-alone protocols, that are specifically designed to

provide randomness. This includes the approach de-

scribed within the first Ouroboros Proof-of-Stake pro-

tocol [33], the Scrape protocol [21], the Rand* protocol

family [44], as well as our HydRand protocol.

2) Protocols designed for the purpose of generating ran-

domness, leveraging resources of existing systems,

namely Caucus [3] and Proof-of-Delay [17], [19].

3) Protocols that produce randomness as a byproduct of

their operation, including Algorand [22], the BA proto-

col by Cachin et al., Dfinity [32] and Ouroboros Praos

[24].

Additionally, we include Proof-of-Work blockchains, as first

described by S. Nakamoto [36], as a source of public-verifiable

randomness [16] in our comparison.

Proof-of-Work and Proof-of-Delay inherently require a sub-

stantial amount of computational resources to ensure secu-

rity. When directly relying on the block hashes of a PoW

blockchain as a source of randomness, bias-resistance can

generally not be ensured. A miner can, with non-negligible

probability, pick/reject random beacon values which suit him

by choosing to withhold a valid PoW solution in favor of some

other block(s). Hence, random beacon values derived by this

mechanism may not be guaranteed to be uniformly distributed.

Proof-of-Delay, as described by Bünz et al. [17], addresses

this problem by employing a delay function on top of the PoW

block hash. Here, a cryptographic hash function or symmetric

encryption algorithm is applied iteratively to the block hash

to produce the randomness. The number of iterations Δ is a

security parameter of the protocol and must be selected in a

way that ensures that no adversary can finish this inherently

sequential computation within the typical confirmation time

of a block. While the adversary can still withhold its value

and influence the protocol’s output, they can only do so

blindly without knowing the effects at the time of the decision,

which ensures bias-resistance. However, full verification of a

random beacon value is slow, as it requires the same sequential

recomputing.

Algorand [22], Ouroboros Praos [24] and Caucus [3] are

comparable in their approach of combining the previous public

randomness with a (verifiable) source of private randomness,

i.e., in the form of a VRF or hash chain, from an eligible leader

to form the next random value. However, leader uniqueness

by itself is not guaranteed and additional consensus rules are

necessary to reach agreement. In this respect Algorand imple-

ments a Byzantine agreement protocol with finality, whereas

Ouroboros Praos is a Proof-of-Stake blockchain protocol with

eventual agreement, and Caucus is implemented within a smart

contract that leverages the consensus protocol provided by the

underlying Ethereum blockchain.

Cachin et al. [20] and Dfinity [32] both employ unique
threshold signatures as a core primitive in their construction.

The BLS signature scheme of Boneh et al. [14], [13], is a

suitable candidate as its signatures are unique and both the

signing process as well as the aggregation process are non-

interactive. The main idea is that all nodes (i) provide a

signature share on some common value (e.g. a round number),

(ii) verify the received signatures shares and (iii) combine

the valid shares to obtain the next random beacon value. As

long as a threshold of nodes contributes valid signature shares

the aggregation succeeds. Both approaches require the secure

distribution of a shared private key as a precondition. While

a trusted dealer is assumed in [20], Dfinity uses a distributed

key generation protocol to establish this key.

The approaches described in the initial Ouroboros protocol

[33], Scrape [21] and RandShare [44] all rely on PVSS as

an underlying primitive. The general idea is that each node

first privately generates a random secret value, and then sends

out a publicly-verifiable commitment and shares of this secret

using PVSS to all nodes. After verification and filtering out

invalid commitments, the nodes begin to reveal their respective

secrets. If a node fails to reveal or maliciously withholds

its value, the other nodes step in and collectively recover

the secret from the shares they received previously. Finally,

all revealed/reconstructed secrets are combined to form the

randomness.

RandHound [44] and RandHerd [44] are also protocols

based on PVSS, but operate in a different manner. RandHound

is a one-shot protocol, where a client divides nodes into mul-

tiple smaller groups and combines the randomness generated

by these groups to form a random beacon value, whereas

RandHerd is tailored towards continuous operation. The latter

uses RandHound to establish a fair division of nodes, executes

a distributed key generation protocol within these groups, and

leverages on collective signing [45] to produce a sequence of

random beacon values.

A. Comparison Overview

In this section, the results of our comparison of the herein

presented and discussed approaches for generating publicly-

verifiable distributed randomness are outlined. We highlight
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TABLE I: Comparison of approaches for generating publicly-verifiable randomness
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[22] Algorand semi-syn. 10−12 O(cn)∗ t↗ � O(c)∗ O(1)∗ VRF no

[20] Cachin et al. asyn. � O(n2) � � O(n) O(1) uniq. thr. sig. yes

[3] Caucus syn. � O(n) t↗ � O(1) O(1) hash func. no

[32] Dfinity syn. 10−12 O(cn) � � O(c) O(1) BLS sig. yes#

[33] Ouroboros syn. � O(n3) � � O(n3) O(n3) PVSS no

[24] Ourob. Praos semi-syn. � O(n)∗ t↗ � O(1)∗ O(1)∗ VRF no

[36] Proof-of-Work syn. � O(n) t↗ � very high§ O(1) hash func. no

[17] Proof-of-Delay syn. � O(n) � � very high§ O(logΔ)◦ hash func. no

[44] RandShare asyn. �† O(n3) � � O(n3) O(n3) PVSS no

[44] RandHound syn. 0.08% O(c2n)‡ � � O(c2n) O(c2n) PVSS no

[44] RandHerd syn. 0.08% O(c2 logn)‡ � � O(c2 logn) O(1) PVSS/CoSi yes#

[21] Scrape syn. � O(n3) � � O(n2) O(n2) PVSS no

HydRand syn. � O(n2) t↗� � O(n) O(n) PVSS no

♦ For the failure probability we give the upper bound for the parameterization
of the protocol as suggested by the respective authors.
∗ The approach for generating randomness is not described in a standalone
matter and requires additional communication and verification steps for the
underlying consensus protocol or the implementation of e.g. a bulletin board.
The herein presented values do not account for this additional complexity.
‡ In contrast to Algorand and Dfinity, the parameter c in Rand-
Hound/RandHerd actually depends on n and is thus not constant. This is
a direct consequence of sharding n nodes into groups of size c, as the
protocols fail to provide availability if any single group fails. Keeping c
constant while increasing n leads to a higher number of groups m, and
thus increases the probability of a lifeness failure. To counter this effect
requires a security/performance tradeoff where c also has to be increased as
n grows. In section VI-C we further outline that c is a relevant factor in
practice, in particular if one wants to achieve a similar liveness guarantee
as e.g. Algorand or Dfinity.
† The protocol only provides liveness with additional synchrony assump-
tions. See section VI-C for a detailed discussion.

§ The complexity is not dependent on the number of nodes n, but the
involved Proof-of-Work is inherently computationally demanding. For Proof-
of-Delay the computational complexity depends on the chosen input for
the delay function. For the typical choice of using the blockhashes of the
underlying Proof-of-Work system as inputs, the cost of the mining process
is inherited.
# In Dfinity’s and RandHerd’s approach nodes are split into smaller groups.
Within each of these groups a distributed key generation protocol is run.

t↗ The protocols provide probabilistic guarantees for unpredictability, which
quickly (exponentially in the waiting time) get stronger the longer a client
waits after it commits to use a future protocol output. For HydRand, we
indicate that unpredictability with absolute certainty is reached after f rounds

using the additional �symbol.
◦ We refer to the verification executed within the Smart Contract via an
interactive challenge/response protocol. It has logarithmic complexity O(Δ)
in the security parameter Δ, which describes how many iterations of the hash
function are applied to the seed.

that a broad comparison was performed by not only consid-

ering protocols specifically targeted at implementing random

beacons, but also by including approaches that can readily

provide a random beacon functionality as a byproduct of their

intended application, such as the provision of a distributed

public ledger. Consequently, the underlying models, assump-

tions, notations, as well as the context differ from protocol

to protocol and render an evaluation of the herein presented

approaches a non-trivial task. We conducted the comparison

to the best of our knowledge, contacted the respective protocol

authors to try and clarify ambiguities and explicitly state

whenever we were unable to adequately determine certain

properties or had to estimate them.

The main results are presented in table I and the various

protocol properties are discussed in greater detail in the fol-

lowing subsections. For the presented complexity evaluations,

n refers to the number of protocol participants, and c denotes

the size of some subset of nodes, if one is assumed in the

specific protocol. Notice that the subset size c is protocol

dependent and, although typically constant, a non-negligible

factor for the resulting communication complexity in practice

(see section VI-D for a more detailed discussion).

B. Communication Model

We classify the communication model of the analyzed

protocols into three categories, namely synchronous, semi-

synchronous and asynchronous protocols. We call a protocol

synchronous, if a fixed known upper bound on message

propagation delay is assumed. If no assumption on this delay

is imposed by the protocol and messages are only eventually

delivered, we categorize the protocol as asynchronous. If

some weaker assumptions in regard to synchrony are made,
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we informally use the term semi-synchronous. This applies

for instance to Algorand and Ouroboros Praos, where the

underlying assumptions are outlined in detail, but are not

readily comparable to other definitions of partial-synchrony,

such as those first established in the context of distributed

consensus [26], [27].

Dfinity [32] is aimed at a semi-synchronous setting, however

security proofs are currently only published for the syn-

chronous case.

We inferred the synchrony assumption from the protocol

description or the underlying protocol whenever they have

not been stated explicitly. Currently deployed Proof-of-Work

blockchains such as Bitcoin and Ethereum assume a syn-

chronous communication model. As Proof-of-Delay [17] and

Caucus [3] are built on top of such Proof-of-Work blockchains,

these protocols are also classified as synchronous. In [44],

RandShare is described within an asynchronous setting6. For

RandHound and RandHerd synchrony is indicated in various

paragraphs, e.g. III. A. for RandHound and IV. B. 1) for

RandHerd [44].

C. Liveness/Availability

In regard to liveness, we distinguish between three different

protocol types:

1) protocols which achieve liveness unconditionally (in the

respective system model)

2) protocols which have a (configurable) but non-zero

probability of a liveness failure

3) protocols which do not provide liveness (in the respec-

tive system model)

We mark protocols of the first type with a � symbol in

our comparison table. This category also includes HydRand,

which achieves liveness and guaranteed output delivery in

the respective system model unconditionally. For protocols of

the second type, namely Algorand, Dfinity, RandHound and

RandHerd, we give a typical failure probability as described

by the respective authors. The authors of Algorand and Dfinity

consider failure probabilities of at most 10−12 [22] and

2−40 ≈ 10−12 [32] as suitable for the respective setting,

whereas a typical failure probability of 0.08% [44] is stated for

the exemplary configuration in the RandHound and RandHerd

protocols.

For all of the above protocols, the failure probability can

be adjusted through a security parameter. For example, to

lower the failure probability of RandHound and RandHerd

to a level of 10−12, the group size c can be increased. By

applying the formula given in Syta et al. [44], we observe an

increase in group size from c = 32 to c = 125 to achieve

this failure rate against an adversary controlling less than 1/3
of the nodes. Consequently, performance is decreased, as the

communication complexities of both protocols contain c as a

quadratic factor.

The RandShare protocol is described in an asynchronous

communication model (under a n = 3f + 1 adversary as-

6see section VI-C for detailed discussion on liveness problems in this setting

sumption). However, a closer analysis of the protocol shows

that further synchrony assumptions are required and therefore

RandShare does not guarantee liveness under full asynchrony.

The problem arises in paragraph II. D. 2. 1) [44], where sj(i)
is used to denote the secret share of the secret sj(0), which

node j sends privately to node i.

Initialize a bit-vector Vi = (vi1, ..., vin) to zero,

to keep track of valid secrets sj(0) received. Then

wait until a message with share sj(i) from each j 
=
i has arrived.

In an asynchronous setting a node i cannot wait to receive a

message from each other node j, as Byzantine nodes might

never send such a message. Similarly, a node should not

broadcast a negative vote in case no value Âj is received, as

described in paragraph II. D. 2. 3), because this would imply

a time bound for being able to send valid votes.7

D. Communication Complexity

In Table I, we outline the communication complexity of

different approaches that provide randomness either as a stand-

alone service or by deriving it from the characteristics of

the underlying protocol. Thereby we consider the overall bits

transmitted for all nodes per round, i.e. per produced random

beacon value.

The different approaches exhibit a wide range of communi-

cation complexities. In the simplest scenario, where a Proof-

of-Work blockchain forms the basis for the random beacon, a

successful miner only has to perform one broadcast, leading

to a complexity of O(n). This also applies for the Proof-of-

Delay approach. Caucus also provides a low communication

complexity of O(n) by leveraging the properties of the under-

lying Smart Contract platform.

For the Algorand and Ouroboros Praos protocols, an anal-

ysis of the communication complexity is not provided in the

respective publications [22], [24]. We infer that Ouroboros

Praos has a communication complexity in O(n), because the

protocol only provides guarantees for eventual consensus and

is based upon many of the design principles of Proof-of-Work

blockchains, whereas protocols like Algorand, which provide

consensus finality, generally operate at a higher per round

communication cost. Both protocols use a similar approach

based on private randomness, where a verifiable random

function (VRF) is used to compute and verify a local source of

randomness. The leader’s local randomness is then combined

with the previous global randomness to obtain the next global

randomness. Used in this way, the communication complexity

is only dependent on the underlying agreement protocol and

does not incur any additional overhead.

To optimize the amount of data transmitted, the Algorand

and Dfinity protocols perform certain communication-heavy

7 Even if this issue is corrected, i.e., by modifying the protocol to only wait
for 2f+1 shares, and broadcasting negative votes only after receiving 2f+1
valid messages, the protocol can not guarantee liveness, as the threshold of
2f + 1 positive votes as described in paragraph II. D. 2. 4) may never be
reached, and consequently the protocol aborts as stated in paragraph II. D. 3.
2).
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operations only within a single subset of nodes. RandHound

and RandHerd employ sharding to split nodes into multiple

smaller groups, where some operations are performed inde-

pendently within all groups, and the results from individual

groups are then combined in a final step. The required sizes for

these subgroups typically depend on the assumptions in regard

to the adversarial power and the described failure probability.

Algorand is designed for a very large number of nodes, and

the group size is c ≈ 1000 [29]. Dfinity outlines a group size

of c = 405 under a n = 3f + 1 security assumption and a

failure probability of 2−40 ≈ 10−12. As the authors outline, for

small values of n, Dfinity’s random beacon protocol may also

be executed by all nodes, i.e. without selecting a committee as

a subset of all nodes. In this case n nodes broadcast a signature

share to all other nodes, leading to a complexity of O(n2).
For RandHound and RandHerd, group sizes of 16, 24, 32

and 40 are considered by the authors. As we outline in section

VI-C, a group size of c ≥ 125 is required to establish a failure

probability similar to Algorand or Dfinity.

The approaches employed by Ouroboros, RandShare and

Scrape are similar, where each node in the protocol employs

a PVSS scheme to commit to a secret value. This involves the

distribution of the PVSS shares, i.e. each node has to broadcast

a message of size O(n) to all other nodes. The resulting

communication complexity of O(n3) is a major drawback of

these approaches, however in this context (P)VSS can also

help to achieve guaranteed output delivery [39].

HydRand is similar in this respect, as it also uses PVSS as

an underlying primitive, but improves efficiency by a factor

of O(n) because only a single node has to perform the

distribution of PVSS shares per round. HydRand’s commu-

nication complexity of O(n2) includes all messages required

to establish Byzantine agreement. The communication com-

plexity is reduced by shifting the transmission of messages of

size n to the leader and employing cryptographically signed

conformation/recovery certificates to converge on a history of

datasets. Messages that need to be broadcast by all nodes are

always of constant size. In our evaluation (see appendix A),

we provide information on the produced network traffic for

different numbers of nodes (n) in practice.

E. Unpredictability

Unpredictability is a key property related to randomness that

is provided by all compared protocols. We distinguish between

the following two types of unpredictability that the protocols

achieve:

1) all future random beacon values are fully unpredictable

for all participants

2) the probability of predicting future random beacon val-

ues decreases exponentially with the number of rounds

to predict

Protocols, where each round’s random beacon is dependent

on the input of a (Byzantine) quorum of participants, namely

the protocols by Cachin et al., Ouroboros, Dfinity, RandShare,

RandHound, RandHerd and Scrape, fall into the first category.

For Proof-of-Work, Algorand, Caucus, Ouroboros Praos this is

not the case and the next random beacon depends on a single

node’s (i.e. the miner’s or the leader’s) secret value. Clearly,

since this node knows the next random number in advance

it is able to predict the next random beacon value. In case

adversarial nodes mine a sequence of blocks or are selected

repeatedly as leader, prediction of more than one value is

possible if they collude. This issue is typically addressed by a

random selection of the respective leader, rendering prediction

unlikely quickly. As long as the leader selection process

ensures that honest nodes are selected with non-negligible

probability, the probability of successful prediction decreases

exponentially with the number of rounds to predict.

Proof-of-Delay can, in principle, achieve full unpredictabil-

ity or unpredictability with high probability even though

the next random beacon value depends on the output of a

single node, because the leader (e.g. the miner who finds a

valid PoW) does not immediately know the resulting random

number that is derived from their output. If the leader tries to

predict a future value, it has to withhold their output until

it is able to finish the sequential computation required for

the delay function. Depending on the underlying synchrony

assumptions and consensus protocol, withholding the solution

(e.g. block) for too long will either exclude the leader’s output

with certainty or high probability, as the delay parameter can

be set much greater than the time bounds used for consensus.

In the context of unpredictability, HydRand offers both

unpredictability with exponentially increasing probability for

at most f rounds, as well as full unpredictability after f + 1
rounds. We provide a detailed analysis in section V-C, out-

lining the necessary waiting times to achieve an error margin

of 10−12 for different participant numbers when waiting less

than f + 1 rounds to achieve guaranteed unpredictability.

F. Bias-Resistance

Bias-resistance is the property that ensures a protocol’s

output cannot be manipulated by a (colluding) adversary, i.e.

each random beacon value should be uniformly drawn from

the set of possible values. Following the work in Cascudo

at el. [21], we observe that bias-resistance is closely related

to the property of guaranteed output delivery. In case an

adversary can learn a candidate output and subsequently

prevent the random beacon protocol from producing that

output, the resulting beacon values are no longer guaranteed

to be uniformly distributed. Even if an adversary is only

able to prevent the output of a random beacon value to be

available at some specific time, without having previously

gained knowledge of the candidate value itself, bias resistance

may not be guaranteed. Here, the synchrony requirements of

the application(s) toward the delivery of new random beacon

values determine biasability. In either cases, further security

assumptions and additional primitives (e.g. PVSS or threshold

signatures and n > 2 participants) are necessary if bias-

resistance is to be guaranteed.

For all (of the compared) protocols, where the last interact-

ing party can influence the random beacon value, this strong

form of bias-resistance can not be ensured. This does not
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necessarily imply that an adversary can arbitrarily manipulate

the probability distribution or, even worse, select a specific

output. For example, the respective publications for Algorand

and Ouroboros Praos show techniques to efficiently use this

somewhat biasable form of randomness for the purpose of

leader selection.8 However, if the specific application requires

a true uniform distribution of random beacon values, only

protocols that provide the previously outlined strong notion of

bias-resistance should be considered, namely the protocols by

Cachin et al., Dfinity, Ouroboros, Proof-of-Delay, RandShare,

RandHerd, Scrape and HydRand.

G. Computation and Verification Complexity

For our analysis we distinguish between (i) computation

complexity, which describes the amount of operations an

active protocol participant has to perform during one round

of the protocol, and (ii) verification complexity, referring to

the amount of computation an external (passive) observer of

the protocol has to perform in order to verify the correctness

of one random beacon value.

A main drawback of using Proof-of-Work and Proof-of-

Delay as a source of randomness is the high computational

complexity, as both approaches inherently rely on solving

cryptographic puzzles as part of their security model. The

other protocols herein considered have a computational com-

plexity of at most O(n3). The protocols RandShare and

Ouroboros, which require O(n3) due to the involved PVSS

instances, may be optimized by updating the employed PVSS

scheme to the variant introduced by Scrape [21]. The VRF

based approaches from Algorand, Ouroboros Praos as well

as Caucus (after the initial setup) are very efficient, because

they only require the verification of a VRF or hash preim-

age. In regard to verification complexity, when applying the

optimization of the PVSS protocol introduced by Scrape, all

protocol outputs can be verified reasonably efficiently, i.e.

within O(n2).

For Proof-of-Delay, the drawbacks of a high verification

complexity, and consequently the disadvantages of an inter-

active verification process for the use within Smart Contracts,

may also be addressed by employing verifiable delay functions

(VDF) [11], [48], [37], [12]. While VDFs are not sufficient to

provide the functionally of a random beacon on their own,

they enable efficient verification of the involved sequential

computation steps and can be used in combination with a

consensus protocol for agreement on the VDF inputs to form

a random beacon. On the contrary, the high computation

complexity is inherent in Proof-of-Delay protocols and cannot

be reduced using VDFs.

The most efficient protocols in regard to computation and

verification complexity are based on threshold signatures,

VRFs and Proof-of-Work. We consider these approaches most

suitable for verification within smart contracts or embedded

8 Both publications are aware of, and analyze the fact that the distribution
of random numbers produced by their approaches is not uniform and consider
the potential implications [22], [24].

devices, if fast implementations of the required cryptographic

primitives are available within the specific platform.

VII. DISCUSSION

The comparison in section VI outlines that there exist

a variety of different approaches for implementing random

beacon protocols. Improvements in one characteristic or aspect

are often met with negative trade-offs in others, providing

no clear candidate that is suitable for all applications. In the

following, we discuss defining characteristics of the herein

considered protocol designs, to aid in the selection process

for particular use case scenarios.

A. Key Characteristics of Existing Protocol Designs

Both Proof-of-Work [36] and Proof-of-Delay [17] based

random beacon approaches are well suited for larger and

dynamic sets of participants and can easily leverage on existing

Proof-of-Work blockchains. While Proof-of-Work alone is

not sufficient to establish bias-resistance, Proof-of-Delay can

serve as an augmentation to achieve this guarantee with high

probability. However, both approaches require a very high

amount of computational resources. Proof-of-Delay may also

serve as a suitable bootstrapping mechanism for generating an

initial random value to be used in other protocols.

Ouroboros [33], RandShare [44], and Scrape [21] are PVSS

based protocols. While the produced randomness of these ap-

proaches satisfies strong notions of unpredictability and bias-

resistance, their high communication overhead significantly

impacts scalability. Consequently, these protocols seem most

suitable for a small scale setting (e.g. a private/consortium

blockchain) or as an alternative for a Proof-of-Delay boot-

strapping mechanism without the computational requirements.

Caucus [3] is an approach that can be deployed and ef-

ficiently verified within Smart Contracts but unfortunately

cannot ensure bias-resistance.

Algorand [22] targets a large set of nodes while still

being able to provide consensus finality without requiring

strong synchrony assumptions. As a trade-off, the protocol can

not ensure a strong notion of bias-resistance. In this regard

Ouroboros Praos [24] makes a similar trade-off to achieve

better scalability at the cost of consensus finality and also

weakening bias-resistance.

The randomness produced by the threshold signature based

protocols of Cachin et al. [20] and Dfinity [32] provide strong

bias-resistance. Additionally, Cachin et al. is the only protocol

in our comparison that is proven secure in an asynchronous

communication model. Dfinity’s approach scales to a larger

number of nodes, but security is only proven in a synchronous

system model. The drawback of both protocols is their reliance

on cryptographic primitives that are based on elliptic curve

pairings, which are not yet well-established. E.g. Menezes et

al. [35] and subsequently Barbulescu et al. [5] showed the

security level of a commonly used pairing-friendly curve is

in fact 2110 or 2100 instead of the targeted 2128. Also these

protocols require a trusted dealer or distributed key generation

protocol.
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RandHound [44] and RandHerd [44] employ a sharding

approach to achieve good scalability for a large number of

participants. RandHound does not provide a strong notion

of bias-resistance while RandHerd requires additional view-

change and agreement protocols when a leader is Byzantine

or non-available.

B. Advantages and Limitations of HydRand

HydRand is a dedicated random beacon protocol tailored

towards continuous operation and assumes a small to medium

set of nodes. The protocol provides strong properties that are

comparable to other PVSS-based approaches, while reducing

the communication overhead by O(n). A resulting trade-

off is the need to wait for f + 1 rounds for guaranteed

unpredictability, however strong probabilistic unpredictability

is ensured within a few rounds (see figure 1), and bias-

resistance is always achieved.

An evaluation (see appendix A) of our open-source Python

implementation of the HydRand protocol outlines the practi-

cability for a wide range of participant configurations, while

requiring minimal hardware resources. The protocol design is

simple, and its design goals are achieved without requiring a

trusted dealer or DKG in the initial setup, thereby avoiding

the introduction of additional security assumptions and im-

plementation complexity. Moreover, a detailed analysis and

security proofs of the protocol’s properties and guarantees are

provided.

HydRand furthermore ensures guaranteed output delivery:

A new random beacon value is guaranteed to be produced at

each round, i.e. in regular intervals, regardless of the adver-

sary’s actions. This is of particular importance for application

scenarios in which strong synchrony requirements or gapless

delivery of new random beacon values is required. To achieve

the design goal of producing random beacon values at regular

intervals, HydRand implicitly requires synchronous round-

to-round communication. A resulting drawback is that any

leader which (temporarily) fails to deliver required messages is

excluded from further participation. Consequently, in systems

where synchrony guarantees may have a probability of being

temporarily violated, the round duration parameter has to

be carefully selected to avoid any resulting liveness failures.

In future work, we envision an extension of the HydRand

protocol to also consider and tolerate crash-recovery failures,

which may be able to address the current limitations in this

regard.

Requiring strong synchrony can also prove advantageous

for a public randomness beacon, as an external validator with

knowledge of the setup parameters and the protocol start

time cannot be tricked into accepting outdated random beacon

values. Further, unlike protocols aimed at a dynamic set of

participants (e.g. Algorand, Dfinity or Ouroboros Praos), a

static set can also render the validation of random beacon

values simpler. For a static validator set, no additional proofs

need to be provided to convince any third party, which has

not observed the entire protocol execution, that the current

set of validators has legitimately evolved from some initial

configuration.

Although excellent performance results were obtained when

testing our implementation with up to 128 globally distributed

nodes, scalability to a much larger set of participants is limited

due the inherent communication complexity of O(n2). In such

a scenario, approaches where the consensus algorithm is only

executed by a subset of the participating nodes, or Proof-of-

Delay based protocols may prove advantageous.

VIII. CONCLUSION

We present HydRand, a synchronous random beacon proto-

col that tolerates up to one third Byzantine failures and show

that it provides liveness, public-verifiability, bias-resistance,

and probabilistic as well as hard bounds for unpredictabil-
ity. HydRand ensures guaranteed output delivery, namely

that randomness is produced at regular intervals, even under

adversarial conditions. The protocol is designed for stand-

alone use, but could also find utility in the context of current

and future Proof-of-Stake and permissioned blockchain or

consensus protocols.

Additionally, we provide the first in-depth comparison

and discussion of novel approaches for generating publicly-

verifiable randomness, which enables researchers to compare

current as well as future designs objectively with each other.

Thereby, we highlight that HydRand achieves various desirable

properties in a unique way without incurring major drawbacks:

(i) it is a stand-alone protocol that can be readily adapted for

different use-cases, (ii) it neither requires a trusted dealer nor

a distributed key generation protocol, and (iii) it offers strong

guarantees for the produced randomness while improving upon

the performance and scalability of previous solutions with

comparable guarantees.

Furthermore, we develop and evaluate a fully functional

protocol prototype in Python to demonstrate the feasibility and

practicability of HydRand. The source code and additional in-

formation on the implementation details are publicly available

on Github [42].
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APPENDIX A

EVALUATION

To outline the feasibility and practicability of HydRand,

we develop a fully functional protocol prototype in Python,

and make our code publicly available on Github [42]. The

evaluation was performed by executing the HydRand protocol

on Amazon EC2 t2.micro instances (1 GiB of RAM, one vir-

tual CPU core, 60-80 Mbit/s network bandwidth). To simulate

an execution over the internet, instances were spread equally

over multiple data centers in eight AWS regions (Canada,

London, Ireland, N. California, N. Virginia, Paris, Singapore

and Tokio).

Executions were performed both, with correct nodes only,

as well as considering up to f simulated node failures.

The synchronous round duration was derived experimentally
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and leaves room for improvement, as both the resource and

network capacity of the instances can be adjusted, and the

protocol code may be further optimized. Figure 2 presents the

throughput our protocol achieves within the aforementioned

setup conditions for different numbers of nodes (n) where

failures can occur.

Fig. 2: Random beacon throughput per minute (bpm) for

different numbers of nodes (n) with f simulated failures.

Figure 3 outlines the average bandwidth used per node

over the duration of 30 minutes of protocol execution, with

and without simulated failures. It should be noted that the

protocol parametrization, specifically the round duration, is the

same only for executions with the same n, i.e. for faulty and

correct executions for a particular n, and corresponds to that

of Figure 2. In the presented data it appears executions with

simulated failures grow linearly with the size of n, whereas

the average amount of data transferred per node in failure-free

runs appears almost constant for different sizes of n. This is

expected, given that executions with simulated failures induce

larger message exchanges between participants if a leader has

to be recovered and therefore consume more bandwidth than

runs without failures.

In regard to verification performance, we measure that an

(external) client can publicly verify the correctness of a round’s

random beacon in ≈ 57ms, considering the worst case in a

setting with with 128 nodes. The corresponding proof, which

enables non-interactive verification, is ≈ 26kB in size.

The results of our research prototype evaluation highlight

that the presented HydRand protocol is practicable for realistic

deployment scenarios. Data from our performed executions

suggests that the beacon throughput for large n was restricted

by the computational capacity of the AWS instances. An

evaluation of the effects of different parameterizations, in-

cluding the utilization of more powerful instances, as well

as an analysis of resource consumption under more complex

adversarial behavior, is deferred to future work.

APPENDIX B

EXAMPLE PROTOCOL EXECUTION

Figure 5 shows four rounds of an example execution of the

HydRand protocol in a setting of f = 2 Byzantine nodes.

The sequence of randomly selected leaders in this example

execution includes a worst case scenario, where f distinct

leaders were drawn from the set of Byzantine nodes (nodes

Fig. 3: Average used bandwidth per node in Kbit/s for

different total (n), with and without simulated failures.

Fig. 4: Total CPU utilization (%), measured every second on

all nodes (n) for different runs (y axis).

n4 and n5), followed by a correct node and then again the

first Byzantine node (n4).

Round r1: In this execution the first node that gets selected

as the leader (i.e., node n4) belongs to the set of Byzantine

nodes. This leader selectively sends a propose message only

to a subset of correct nodes. In our case the nodes n1, n2 and

n3. Moreover, the Byzantine node n5 only sends acknowledge
messages to the very same nodes (n1, n2, n3). After that phase,

the Byzantine node n5 sends a recover message to the nodes

n6 and n7.

This leads to a situation where the correct nodes n1, n2 and

n3 receive 2f + 1 acknowledge messages. Therefore, those

nodes (n1, n2 and n3) broadcast confirm messages which

together form a valid confirmation certificate known to every

node. Further, the nodes n6 and n7 as well as the adversary

are in possession of a valid recovery certificate RC(r1), as

nodes n5, n6 and n7 sent out recover messages.

Round r2: The next node (n5) that is selected as leader is

also in the set of Byzantine nodes and does not broadcast any

message. Therefore, the secret value of the rounds leader gets

reconstructed at the end of the vote phase and all nodes are

only in possession of a reconstruction certificate RC(r2) for

this round.

Round r3: The leader (n3) of this round belongs to the set

of correct nodes and has received f + 1 confirm messages in

round r1. Moreover, node n3 is not in possession of a valid

recovery certificate for r1 since he has only received f recover
messages, i.e. from node n6 and n7 but not from node n5.

Therefore, the leader broadcasts a new dataset D3 containing

a valid confirmation certificate CC(D1) for round r1, as well

as a recovery certificate RC(r2) for round r2.

After receiving the propose message, all correct nodes, in-

cluding n6 and n7, are safe to assume that at least f+1 correct
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Fig. 5: Example execution of four rounds of the HydRand protocol with n = 3f + 1 = 7.

nodes are in possession of dataset D1. The justification for

this assumption comes from the fact that the propose message

contains a confirmation certificate composed of f + 1 signed

messages including the hash H(D1) of D1. This necessarily

includes at least one honest node which, per definition, only

sends a confirm message if it has received 2f + 1 valid

acknowledge messages in advance. Therefore, at least f + 1
correct nodes have to be in possession of dataset D1. As a

result, all correct nodes accept this rounds new dataset D3

containing CC(D1). This holds true, even for nodes n6 and

n7 although they have not received dataset D1.

If node n6 or n7 would have been selected as leader in

round r3, then this node would have constructed a dataset D3

that contains a valid recovery certificate for round r1 and r2
as well. In that case the nodes n1, n2 and n3 would have

discarded their dataset D1.

Round r4: In this round node n4 is again selected as leader.

This is valid since f rounds have passed since this node has

been selected as leader. Therefore, at least one correct node

was selected as leader in between – in this case node n3.

Since there is no recovery certificate RC(r3) for round r3
available, all further leaders have to include the confirmation
certificate CC(D3) for round r3 to extend upon the chain of

valid datasets. Otherwise their future datasets would not be

valid and rejected by all correct nodes. Therefore, all nodes

including node n4, have to accept the view of node n3 in this

case.

In our example, node n4 attempts to stall the protocol by

selectively releasing a new dataset D4 only to the nodes n2, n3.

But since those nodes are not able to reach the required number

of 2f +1 acknowledge messages (together with the Byzantine

nodes n4 and n5), no correct node will send a confirmation

message in the last phase of this round. As a result all correct

nodes will send reconstruct messages leading to a total of 2f+
1 reconstruct messages, which is more than f + 1 and hence

enough to form a reconstruction certificate and to reconstruct

the leader’s secret for round r4 given the decrypted shares of

n1, n2 and n3.

Note that, although possible, the PVSS reconstruction of

the secret from r1 would not be necessary here, since in this

example the leader of r4 selectively sent out a new dataset

and therefore revealed the secret to at least one correct node,

namely n2 and n3. Per definition, correct nodes broadcast the

revealed secret in their acknowledge messages. Therefore, all

other correct nodes receive the revealed secret in round r4
even if they have not received the dataset D3 directly.
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APPENDIX C

NOTATION REFERENCE

TABLE II: Symbols

Symbol Description

f number of Byzantine nodes

n number of all nodes, defined as n = 3f + 1

t reconstruction threshold for PVSS, defined as t = f+
1

i a node as defined by context

r, k, x some round as defined by context

� leader of the current round r

�x leader of round x

H(·) cryptographic hash function

〈ski, pki〉 private/public keypair of node i

〈m〉i some message m signed using the secret key ski of
node i

|| string/list concatenation

Rx randomness of round x

Dx dataset of some round x, consists of a header(Dx)
and body(Dx)

H(Dx) cryptographic hash of the header(Dx)

�x previous round of round x, such that there exists a
valid dataset for round �x

D �x previous dataset referenced in dataset Dx

P set of all nodes (processes), P is of size n

Px set of available nodes for some round x, i.e., set of all
nodes excluding recovered nodes till round x

Lx set of potential leaders for some round x, i.e., set
of all nodes excluding recovered nodes till round x
and excluding nodes that have been selected as leader
within the last f rounds

rn(Dx) set of recovered nodes up to block Dx

Symbol Description

q prime number q

Zq ring of integers modulo q

Gq multiplicative group of order q, in which the discrete
log problem hard

h generator for the group Gq

s underlying secret value, a dealer wants to share with
PVSS, s ∈ Zq

Com(s) PVSS commitment to the value s, includes com-
mitments to the coefficients of the underlying poly-
nomial, encrypted shares and a NIZK correctness
proof.

hs result of the reconstruction process for a commit-
ment Com(s)

ŝi encrypted share for node i, part of the commitment
Com(s)

Com(s)[si] node i’s decrypted share for the commitment
Com(s), result of decrypting ŝi using i’s private
key

s� current leader’s previously committed secret value.

s�� current leader’s new randomly selected secret value.

Com(s�) current leader’s previous commitment

Com(s�� ) current leader’s new commitment

CC(Dx) commit certificate of dataset Dx that contains at least
f + 1 valid confirmation messages.

RC(x) recovery certificate of round x that contains at least
f + 1 valid recover messages.

Mx root of a Merkle tree for the shares ŝ1, ŝ2, ..., ŝn for
�x’s commitment Com(s�x) in round x

Mx[ŝi] merkle branch for ŝi, showing that ŝi is under the
Merkle root Mx (and thus part of Dx)

TABLE III: Messages

Message Description
〈
propose, 〈header(Dr)〉�, body(Dr)

〉
�

The message that is broadcasted by correct leaders in the propose phase of each
round.

〈〈acknowledge, r,H(Dr)〉i, 〈header(Dr)〉�
〉
i

The message that is broadcasted by correct nodes that received a valid propose
messages from the leader of the current round. Broadcasting this messages ensures
that the leader cannot equivocate.

〈
confirm, r,H(Dr)

〉
i

The message that is broadcasted by correct nodes that received 2f + 1 valid
acknowledge messages from other nodes during this round. Any node which received
f + 1 of these messages can construct a valid confirmation certificate for round r.

〈〈recover, r〉i, s�, Com(s�)[si], ŝi,Mk[ŝi], Rr−1

〉
i

The message that is broadcasted by correct nodes that did not receive a valid propose
message from the leader at the beginning of this round. Any node which received
f + 1 of these messages can reconstruct a valid recovery certificate for round r.

(f + 1)× 〈confirm, r,H(Dr)〉i commitment certificate CC(Dr) for dataset Dr with hash H(Dr)
(valid if it contains correctly signed messages from f + 1 different nodes i)

(f + 1)× 〈recover, r〉i recovery certificate RC(r) for round r
(valid if it contains correctly signed messages from f + 1 different nodes i)
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