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Hydrates of Natural Gas: 

A Review of Their Geologic Occurrence 

By Keith A. Kvenvolden and Mark A. McMenamin 1 

SUMMARY 

Gas hydrates are a type of inclusion com­
pound or clathrate formed as icelike mixtures of 
gas and water in which gas molecules are trapped 
within a framework or cage of water molecules. 
Large quantities of natural gas (mainly methane) 
can be trapped in sediments in the form of gas 
hydrates. The pressure and temperature condi­
tions for the formation of gas hydrates are found 
in regions of permafrost and beneath the sea in 
outer continental margins and ocean basins. In 
addition to suitable temperature and pressure 
conditions, sufficient concentrations of methane 
must be present for hydrate stability. This 
methane may be produced in sediments by biolog­
ical processes; however, the extent of this 
production is not fully understood. Methane 
could also migrate from thermochemically altered 
organic matter at depth. 

The presence of gas hydrates in permafrost 
regions has been established at the Messoyakha 
gas field in western Siberia, in two exploratory 
wells in the Mackenzie Delta area of Canada, and 
in a wildcat well on the North Slope of Alaska. 
In the Alaskan well, a pressure core barrel suc­
cessfully recovered gas hydrate in sediment at 
in situ temperature and pressure. Although gas 
hydrates have now been identified in permafrost 
areas, the geographical extent of these hydrates 
has not yet been determined. 

Geologic, geochemical, and geophysical evi­
dence suggests that gas hydrates can exist in 
many areas beneath the seafloor. Geologic evi­
dence consists of (1) widespread areas where 
pressures and temperatures are suitable for gas­
hydrate stability and (2) recovery of deep-sea 
sediment cores that release gas and cool endo­
thermically when exposed to sea-level temperature 
and pressure. Geochemical observations include 
(1) high concentrations of methane in sediment, 
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usually accompanied by low concentrations of eth­
ane, and (2) gas released from thawing cores in 
the volumes expected for the decomposition of gas 
hydrate. Geophysical evidence includes (1) seis­
mic anomalies that can be explained by the prop­
erties of sediments containing hydrates, (2) high 
acoustic velocity in sediments from suspected 
hydrate zones, and (3) laboratory experiments 
which show that the acoustic velocities of sedi­
ment increase when gas hydrate is formed in the 
sediment. 

The main seismic evidence for submarine gas 
hydrates are reflectors that simulate the topog­
raphy of the seafloor. Such reflectorP appear on 
seismic records from the east coast of North 
America, the North Pacific, the Bering Sea, and 
the Pacific and Atlantic coasts of Central Amer­
ica. They lie anywhere from 100 to 1,100 meters 
below the bottom. Bottom-simulating reflectors 
have been seen only in water deeper than 400 m 
and are generally manifest on seismic records as 
a reflection polarity reversal caused [y an ab­
rupt decrease in seismic velocity. The exact 
relations of bottom-simulating reflectors to gas 
hydrate zones are uncertain. The change in seis­
mic impedance may mark the bottom of th~ gas­
hydrate zone where free methane gas is trapped 
beneath the hydrate layer. Other features on 
seismic records that may indicate the presence of 
hydrates are bottom-paralleling bright spots, 
pagoda structures, and deep-water velocity ampli­
tude features (VAMP's). 

Not all bottom-simulating reflectors may be 
directly related to gas hydrates. For e.xample, a 
bottom-simulating reflector lacking polErity re­
versal in sediments of the Bering Sea is current­
ly thought to represent a migrating diagenetic 
boundary related to the dissolution of diatoms 
and the induration of claystone. 

If large quantities of gas hydrate are wide­
spread in permafrost regions and in offshore 
marine sediments, they may be potential energy 
resources. The gas within the hydrate itself may 



not be recoverable, but the free gas trapped be­
neath it may be the important resource. 

INTRODUCfiON 

Gas hydrates are a special kind of clathrate 
formed from a mixture of natural gas and water. 
Clathrates are inclusion compounds in which two 
or more chemical compounds form a stable crystal­
line mixture. One constituent forms the clath­
rate framework, a molecular lattice with an or­
dered geometric pattern. The other constituents 
of the clathrate fill the sites or cages within 

the framework structure. A clathrate framework, 
because it may contain many vacant sites, is a 
nonstoichiometric substance (a substance that 
cannot be accurately described by a single chemi-

cal formula). Water, because of its hydrogen­
bonding properties, is an excellent clathrate 
framework compound. An expanded ice lattice 

forms cages that can contain gas molecules such 
as argon, methane, propane, isobutane, sulfur 
dioxide, carbon dioxide, and hydrogen sulfide. 

The term "gas hydrate" is used here to mean 
a water-methane clathrate that may or may not 
contain ethane, propane, and other hydrocarbons. 
Under suitable pressures, natural gas, which con­
tains mainly methane, can interact with water to 
form a solid icelike mixture, that is, a gas hy­
drate, at temperatures considerably above the 
freezing point of water (fig. 1). The amount of 

methane needed for hydrate formation depends on 
temperature and pressure. In the methane-water 
system, only methane present in excess of the 
amount soluble in water is available for hydrate 
formation. In an ideally saturated hydrate, with 

all cages filled by methane molecules, the molar 
ratio of methane to water can be nearly 1:6. The 

formula for an ideal stoichiometric methane-water 
clathrate is CH4 ·s-3/4H2o. One cubic meter of 
this ideal hydrate would contain the equivalent 
of about 170 cubic meters of free methane gas. 
Gas hydrates found in nature contain less gas 
than this because the lattice cages are not com­
pletely filled. Nevertheless, gas hydrates in 
reservoir rocks can contain much more methane per 
unit volume than could be contained as free gas 
in the same space. This fact suggests that if 
gas hydrates exist in large quantities in the 
upper few hundred meters of the earth's crust, 
they would constitute a significant potential 
energy resource. Also, because gas hydrates are 
impermeable to free gas, a layer of hydrate could 
trap economically important quantities of free 
gas below it. 

Petroleum exploration drilling in Arctic 
regions has established the occurrence of gas 
hydrate below permafrost (fig. 2). Marine seis­
mic studies and Deep Sea Drilling Project cores 
strongly indicate the presence of gas hydrates 
in some seafloor sediments (fig. 2). This paper 
reviews what is known about these naturally 
occurring gas hydrates. 
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GAS HYDRATES IN PERMAFROST REGIONS 

The fact that temperature and pressure con­
ditions beneath permafrost regions fall ¥7ithin 
the stability field of gas hydrates (fig. 3) was 
recognized in the 1940's. Now several deposits 
of gas hydrate are known (table 1). In 1970, 
well logging and formation tests in the ~·,~sso­
yakha gas field in western Siberia revealed bil­
lions of cubic meters of methane gas frozen as 
gas hydrate (Makogon and others, 1971, 1972; both 

METHANE 
GAS+WATER 

Methane hydrate 
stability field 

Figure 1--Phase boundary diagram showin~: free 
methane gas and methane hydrate (pattern) for 
a fresh water-pure methane system. Addition 
of NaCl to water lowers temperature of hydrate 
formation, in effect shifting gas-hy~rate 
curve to left. Addition of co2 , H2S, c2H6 , or 
c3n8 raises temperature of hydrate formation, 
in effect shifting curve to right. Therefore, 
impurities in natural gas will increase area 
of hydrate stability field. Depth scale is an 
approximation assuming that lithostatic and 
hydrostatic pressure gradients are b0th 0.1 
atmosphere per meter (10.1 kPa/m), but the 
true lithostatic gradient is slightly greater. 
Redrawn after Katz and others (1959). 
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Figure 2.--Known and inferred accumulations of gas hydrate. Dots on land depict susp~cted or con­
firmed occurrences of gas hydrates beneath permafrost. Dots in oceans show areas where seismic 
or drilling evidence suggests presence of gas hydrates. See tables 1 and 2 for a listing of 
each site, along with geologic, geophysical, and geochemical evidence for hydrate presence, re­
search organization involved, and pertinent references. 

references cited by Milton, 1976). Methane was 
released from the gas hydrate by injecting meth­
anol into test wells that perforated the hydrate 
zone. The injections of methanol, which serves 
as a hydrate inhibitor, resulted in a large in­
crease in gas productivity from the test wells. 
The parts of the Messoyakha field containing gas 
hydrates are calculated to have 54 percent more 
reserves than would be expected in an equal vol­
ume of reservoir rocks filled with free gas. 

Two exploratory wells drilled in permafrost 
of the Mackenzie Delta penetrated shallow sand 
reservoirs containing gas hydrate at depths of 
820 to 1,100 m (Bily and Dick, 1974). The amount 
of formation gas in the drilling mud increased 

significantly during penetration of these sands. 
Although these sands were very porous, their per­
meability was extremely low. Low permeability 
and pronounced gas release are characteristic of 
hydrate-filled reservoirs. '!he loP permeability 
is thought to result from the plugring of sedi­
ment interstices by gas hydrate, and the gas lib­
erated is attributed to hydrate decomposition. 

Other characteristics of the ras hydrate 
zone are visible on well logs (Bily and Dick, 
1974). The hydrate-bearing sands bive a rela­
tively high resistivity. Spontanecus potential 
(SP) curves show very little deflection in hy­
drate zones in comparison with deflections in 
free-gas and free-water zones. Sor.ic logs show 

Table 1. --Evidence for gas hydrates beneath permafrost 

Num-

her 
on 

fig. 
2 

Location 

Messoyakha gas field and 
northwestern Siberia, 
U.S.S.R. 

Mackenzie Delta, Northwest 
Territories, Canada 

West Prudhoe Bay, Alaska, 
u.s.A. 

Arctic Archipelago, North­
west Territories, Canada 

Vilyuy Basin, Yakutia, 
u.s.s.R. 

Permafrost 
thickness 

(m) 

Predicted 
depth range 
of hydrate 

(m) 

Geophysical 
evidence 

Geochemical 
evidence 

Research 
organization References 

450-----250-870---------------------- 90 pet. or more meth- --U.S.S.R.------- Makogon and 
ane in gas analysis; others, 1971. 
large volme of gas 
from thawed cores. 

610------820-llOO--- Well logs: small deflection --do.--------- Imperial Oil, 
in SP; high resistivity; Ltd. 
high velocity sonic log; 
over-gage caliper log. 

610---------210-IIDO----- Well logs: high resistivi- --do.------------------Ex-on--------­
ties; high velocity sonic 
log; gas kicks in mud logs. 

BUy and Dick, 
1974. 

R. D. Me Iver, 
written commun., 
1979. 

530----- No data 
in print. 

--------------------No data in print------ Dome Petrole...,, Hitchson, 1974. 
utd. 

>500-----do.-----------------------do.-------------u.s.s.R.----- Makogon and 

others, 1972. 
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an increase in acoustic velocity, and the caliper 
log indicates over-gage borehole through many 
hydrate-bearing zones. 

The first conclusive confirmation that gas 
hydrates occur in sediments under permafrost was 
obtained from pressure core barrel samples at the 
Arco-Exxon N.W. Eileen State No. 2 wildcat well 
on the north slope of Alaska in the West Prudhoe 
Bay field (R.D. Mciver, written commun., 1979). 
Two pressurized cores were successfully recovered 
and were maintained in the barrel at temperatures 
slightly above 0°C. At the time the cores were 
collected it was uncertain whether the cores had 
contained gas hydrate or only pressurized free 
methane. If the cores had contained free gas at 
in situ temperature and pressure, the pressure in 
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Gas hydrate zone 

Figure 3.--Gas hydrate zone, shown as area be­
tween intersections of geothermal gradient 
with hydrate-gas phase boundary curve. Within 
this area, pressure and temperature conditions 
are favorable for hydrate formation. Plot 
shows pure methane hydrate zone for an Arctic 
region in which permafrost is 600 m thick and 
enough methane is present to form hydrate. 
Pressure gradient is 0.1 atm/m (10.1 kPa/m). 
Geothermal gradient changes at base of perma­
frost. Changes in gas composition or water 
salinity will shift phase boundary curve in 
same sense as figure 1. Redrawn after Bily 
and Dick (1974). 
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the barrel would have been expected to decrease 
linearly as gas was withdrawn from th~ barrel. 
However, pressure was maintained even after re­
peated samples were withdrawn. This result could 
only have been caused by the decomposition of 
hydrate after each increment of pressure release 
and gas removal. Immediately after each sample 
was removed and the system closed, pressure began 
to build toward the pressure of hydrate equilib­
ritnn. The sampled gas was 93 percent methane and 
7 percent nitrogen. 

Well logs in the Eileen well al~o indicated 
the hydrate zone. Whereas strong mud.-gas shows 
suggested free gas in the formation, the high 
resistivities and high velocities on the sonic 
log indicated ice or icelike materials. The 
density log also responded as if there were ice 
rather than gas in the formation. Ir combination 
the resistivity, sonic, and mud logs pointed to 
the presence of hydrates. 

In addition to the North Slope, the Macken­
zie Delta, and the western Siberian lasin, the 
Arctic Archipelago of Canada and the Vilyuy basin 
of the U.S.S.R. show evidence of gas hydrate 
deposits. Gas-flow data from a well in Winter 
Harbor in the Arctic Archipelago sugrested the 
presence of gas hydrates (Hitchon, 1~74). Mako­
gon and others (1972) reported that the Central 
Vilyuy gas field in Yakutia, U.S.S.R., contains 
gas hydrates beneath permafrost. 

Any sedimentary basin with extersive areas 
of relatively thick (several hundred meters) con­
tinuous permafrost may contain potentially com­
mercial occurrences of gas hydrates. Antarctica 
may have large gas hydrate accwnulations, al­
though few data on Antarctic permafrost areas are 
available (Hitchon, 1974). No drilling program 
has been conducted on the Antarctic continent 
except for a few experimental holes, but the land 
temperature profile is such that gas hydrates 
could exist at depths of,more than 1,800 m. 

GAS HYDRATES IN OCEANIC SEDIMENTS 

Pressure and temperature conditions in the 
deep sea fl,oor are within the range of gas hy­
drate stability (fig. 4), and the possible pre­
sence of gas hydrates has been noted in several 
areas (table 2). Observation of deep-sea sedi­
ment cores that release large quantities of 
methane suggest that gas hydrates exist in some 
areas beneath the seafloor. In reviews of sedi­
ment gas data from the Deep Sea Drilling Project 
(DSDP), Claypool and others (1973; Legs 10-19) 
and Mciver (1974; Legs 18-23) described instances 
where gas evolved from core samples after they 
were taken on deck. Gas evolution S')metimes 
continued for several hours, and the pressures 
generated were occasionally sufficie~t to extrude 
cores from the barrel and rupture sealed contain­
ers. The expanding, cooling gas fo~ned ice on 
the exposed cores. The quantity and rate of gas 
evolution could indicate the decomposition of gas 
hydrate, although high concentrations of gas not 
in hydrated form can produce similar results. In 
most instances, the gas was methane with traces 



of ethane. Recent results from DSDP Legs 66 and 
67 provide more evidence for the presence of gas 
hydrates in sediments on the slope of the Mid­
America Trench off Central America (Geotimes, 
1979a, 1979b). On both of these legs, gas-re­
leasing cores were observed. Frozen sediment was 
recovered from the zone of hydrate stability at 
Sites 490, 491, 492, 497, and 498. Gas expansion 
volumes as high as 50 to 1 (R. von Huene, oral 
commun., 1979) suggest that gas hydrates had 
indeed been sampled. 

Methane in ocean sediment may be of either 
biochemical or thermal origin. It is uncertain, 
however, that enough gas to support the formation 
of gas hydrate can be generated by methane-pro­
ducing bacteria alone. Claypool and Kaplan 
(1974) estimated that biological generation of 
methane in sediment containing 0.5 percent or­
ganic carbon near sediment depths of around 1,000 
m (corresponding to 30°C) is 20 mmol per kilogram 
of interstitial water. They also estimated the 
threshold methane concentration for hydrate sta­
bility as 58 mmol/kg. Thermocatalytic methane is 
produced by alteration of organic matter at temp­
eratures greater than 50°C, but gas hydrates are 
stable only at relatively low temperatures. For 
gas hydrates to form from thermocatalytic natural 
gas (methane), such gas must migrate upward from 
burial depths greater than 1,500 m into cooler 
regions where it could be incorporated into a gas 
hydrate zone. 

BOTIOM-SIMULATING REFLECTORS 

A bottom-simulating reflector is an anomal­
ous seismic reflector that parallels the topog­
raphy of the seafloor but lies anywhere from 100 
to 1,100 m below the bottom. Bottom-simulating 

reflectors are most easily recognized on seismic 
records when they cut across other reflectors and 
occur in water depths greater than 400 m. They 
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Figure 4.--Idealized section of gas hydrate zone 
in sediments of outer continental mar.?ins, 
computed for pure methane. Stippled zone is 
potential area of hydrate formation, where 
pressure and temperature conditions are cor­
rect for hydrate stability assuming an ade­
quate supply of methane. Presence of other 
gases in methane would increase methane hy­
drate envelope downward. Increasing pressure 
from height of water column causes increase in 
subbottom depth of gas hydrate zone. Decreas­
ing sediment temperature (down to 1°C in cold­
est, deepest bottom waters) also decreases 
hydrate subbottom depth. Redrawn fron R.D. 
Mciver, written commun., 1979. 

Table 2.--Evidence for gas hydrates in the seafloor 

Num­

ber 

fig. 

2 

10 

II 

12 

13 

14 

Location 

Blake-Bahama Outer Ridge, 
western Atlantic, off 
east coast of U.S.A. 

Bering Sea, North Pacific 

Beaufort Sea, Arctic Ocean 

Western North Atlantic 

We stern Cul f of Mexico 

Northern Colombian and nor-
thern Panamanian coasts 

Central America, Pacific 
side 

Western Africa 

Culf of Oman 

Water 

depth 
(m) 

3700 

2000-

4000+ 

40Q-
2500+ 

250o-

3800 

1200-
2000 

1500-

3000 

800-
2400 

2000-
5500 

3000 

Predicted sub= Bottom-

bottom depth simulating Other Geochemical 

range of reflectors geophysical evidence 

hydrate (subbottom evidence 
(m) de th m) 

0-1000--------about 500------------- 90 pet. or more methane 
in gas analysis; large 
volume of gas from 

thawed cores. 

Research He fer,.~nces 

organization 

Lamont-Doherty, Markl and others, 
DSDP, and USGS. 1970; Ewing and 

Hollister, 1972; 
Dillon and others, 
1980. 

Q-)1000-------580-670---- VAMP's, )500 m 90 pet. or more methane --DSDP and USGS--- Scholl ard Creager, 
beneath the in gas analysis. 1973; Scholl and 
sea floor. Cooper, 197 8. 

0-700+ ---------100-300-------------------No data in print-----------USGS------------ Grantz ard others, 
1976. 

0-) 1 OOD---------500-600--------------------do. ---------------------Lamont-Doherty--- Tucholke and 
others, 1977. 

0-50D-----------1 00-11 OD---------------------do. ------------------Uni v. of Texas , 
Marine Science 
Institute. 

Shipley and others, 
1979. 

0-800-------10Q-11 00----------------do .-----------------------do .--------------Do. 

0-65D--------100-1100---------------do.---------------------do .-------------Do. 

0-)100D---------------- Pagoda structures --do.-----------------Woods Hole, Mass. Emery, 1974. 

at very shallow 
depth. 

0-800-------------- Bright spots at --do.---------------Cambridge, U.K. 

600-700 m depth. 

5 

White, 1979. 



are generally characterized by reflection pola­
rity reversals and large reflection coefficients 
(Shipley and others, 1979). Gas hydrate zones 
and diagenetic boundaries in sediment have been 
proposed as possible causes of these anomalous 
seismic reflectors. 

Before DSDP Leg 11 in the Blake-Bahama 
region of the Atlantic Ocean, geophysicists of 
the Lamont-Doherty Geological Observatory were 
intrigued by bottom-simulating reflectors on 
their seismic records over the Blake-Bahama Outer 
Ridge (Markland others, 1970; Stoll and others, 
1971). The observation that some of the seismic 
reflectors on their records intersected other 
reflectors and paralleled the seafloor (fig. 5) 
was unexplained. One of the major objectives 
of Leg 11 was to investigate the nature of the 
bottom-simulating reflectors and determine their 
relation, if any, to accumulations of gas hydrate 
beneath the seafloor. The strongest reflector on 
the ridge mimicked the ridge profile at a depth 
of more than 500 m below the seafloor. Samples 
from Sites 102, 103, and 104 of Leg 11 yielded 
mainly methane and traces of ethane (for quanti­
tative gas composition data see Claypool and oth­
ers, 1973). The strong bottom-simulating reflec­
tor was at that time correlated with a distinct 
break in the drilling rate and with a zone of 
nodules of siderite and ankerite (Lancelot and 
Ewing, 1972). Another explanation, suggested by 
Stoll, Ewing, and Bryan (1971), Ewing and Hollis­
ter (1972), and Dillon, Grow, and Paull (1980), 
is that the bottom-simulating reflector corres­
ponds to the isotherm that separates a gas envi­
ronment from a gas hydrate environment. The 
average thermal gradient for the ridge (about 35-
400C/km) permits a gas hydrate to exist at the 
500-m sediment depth of the strong reflector, but 
below that level the temperature would be high 
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Figure 5.--Diagrammatic seismic profile of Blake­
Bahama Outer Ridge, showing thin, regularly 
spaced reflectors from strata. Bottom-simu­
lating reflector (stippled) transects bedding 
and parallels seafloor and may represent hy­
drate-to-free-gas transition at bottom of gas 
hydrate zone. Redrawn from Tucholke and oth­
ers (1977). 

6 

enough that methane could exist only as a gas. 
The interface between gas hydrate above and free 
gas below could provide a velocity contrast that 
is responsible for the bottom-sim•1lating reflec­
tor. Furthermore, the apparent acoustic velocity 
through sediment overlying this reflector was 
determined to be about 2 km/s (Lancelot and Ew­
ing, 1972). This value, later co~firmed by inde­
pendent sonobuoy measurements ( Br:ran, 1974), is 
unusually high for hemipelagic se1iment. 

Laboratory experimental studies provide fur­
ther evidence linking gas hydrates with the sedi­
ments of the Blake-Bahama Ridge. Stoll, Ewing, 
and Bryan (1971) demonstrated that when methane 
mixed with water-saturated sand w~s brought to 
the estimated temperatures and pressures of the 
Blake-Bahama Ridge sediment, the velocity of com­
pressional seismic waves in the sand increased 
from 1.7 to 2.5 km/s. This experimental increase 
in seismic velocity helps explain the unusually 
high velocities observed in hemip~lagic sediment 
of the ridge. 

Since they were first found in the Blake­
Bahama Ridge (Markl and others, 1970; Ewing and 
Hollister, 1972), other bottom-simulating reflec­
tors have been reported (fig. 3) from the western 
North Atlantic Ocean (Tucholke and others, 1977), 
the Beaufort ~a of the Arctic Ocean (Grantz and 
others, 1976), and the Bering Sec and elsewhere 
in the North Pacific Ocean (Scholl and Creager, 
1973). Shipley and others (1979) described bot­
tom-simulating reflectors in sediments off the 
east coast of the United States, in the western 
Gulf of Mexico, off the northern coasts of Colom­
bia and Panama, and along the Pacific coast of 
Central America from Panama to k.apulco, Mexico. 

From studies of the western North Atlantic, 
Tucholke, Bryan, and Ewing (1977) identified two 
high-amplitude reflecting horizons that ·are con­
formable with the seafloor and atout 500 to 600 m 
beneath it. These horizons show the following 
characteristics: they cut acros~ bedding-plane 
reflectors in the same manner as the reflector 
horizon observed on the Blake-Bab:tma Ridge; they 
appear to be restricted to areas where sedimen­
tary strata dip landward; and th~ir subbottom 
depth increases with the seafloor depth, a rela­
tion consistent with theoretical predictions of 
the configuration of a hydrate zone (fig. 4). A 
zone of gas hydrates may overlie the anomalous 
horizons, and thus the seismic horizons could be 
reflectors representing an impedance contrast 
caused by the downward change from gas hydrate to 
gas in the sediment. Grantz and others (1976) 
identified a strong seismic reflector that mimics 
the bathymetry of the seafloor, 100-300 m beneath 
it, on the continental slope of the Beaufort Sea 
north of Alaska. The bottom-sim1uating reflector 
was identified in about 60 percent of seismic 
profiles obtained in water deeper than 400-600 m. 

Not all bottom-simulating reflectors can be 
directly related to the presence of gas hydrates. 
Although gas hydrates provide one reasonable 
explanation for bottom-simulatin.~ reflectors, 
these acoustic features may also result from 
temperature controlled diagenetic effects. Dur-



ing DSDP Leg 19, Scholl and Creager (1973) noted 
seismic reflectors that tend to parallel the sea­

floor in some Bering Sea sediments draped on the 
Umnak Plateau, and they coined the acronym BSR 
for the bottom-simulating reflector. At two 
sites, 184 and 185, the reflector was penetrated. 
Although methane was observed in sediment from 
Site 185, no other evidence for gas hydrates was 
noted. Scholl and Creager (1973) attribute this 
reflector to a lithologic transition from hemi­
pelagic diatom ooze to indurated claystone. 
Because of the time-transgressive nature of this 

horizon, this BSR appears to represent some sort 
of migratory diagenetic boundary related to the 

dissolution of diatoms and the formation of clay­
stone. Hein and others (1978) confirmed that 
opal-A is transformed to opal-CT in the tempera­
ture range corresponding to a subbottom depth of 
600 m, the depth of the BSR in Bering Sea sedi­
ment. Further, because the subbottom depth of 
the BSR on the flanks of Umnak Plateau decreases 

with increasing water depth, this BSR is probably 
not directly caused by gas hydrates (Shipley and 
others, 1979). Nevertheless, gas hydrates may 
still play an important role in the formation of 
this BSR. Claypool and Kaplan (1974) note that, 
in all cases of BSR's described from the Bering 
Sea, the lithologic change is consistent with the 
inferred depth of the isotherm where gas hydrate 
would decompose under the prevailing pressure 
conditions. Claypool and Kaplan (1974) suggest 
at least an indirect link between lithification 
and gas hydrate. Free carbon dioxide and methane 
concentrations determine the pH of interstitial 
water. The pH conditions determine the solubil­
ity of lithologic components such as carbonate 
and silica. Gas hydrate formation may influence 
carbon dioxide and methane activities and may 
therefore influence the dissolution and reprecip­
itation of carbonate and silica cements. 

Thus, some bottom-simulating reflectors are 
not directly related to the presence of gas hy­
drates, as illustrated above, but bottom-simulat­
ing reflectors may not be observed even though 
gas hydrates are present. For example, in areas 
where sedimentary stratification parallels the 
seafloor, the bottom-simulating reflector may not 
be detectable. During drilling on DSDP Leg 67 in 
the Mid-America Trench off Guatemala, gas hy­
drates apparently were encountered at Sites 497 
and 498, but the seismic records for these areas 
showed no obvious bottom-simulating reflectors 
(R. von Huene, oral commun., 1979). 

Gas hydrate zones in the seafloor may form 
regionally extensive impermeable seals and may 
trap economically important accumulations of 
natural gas, provided sufficient sources for 
methane are present. If gas were to migrate up­
ward and be impeded by hydrate, it would accumu­
late at the lower boundary of the hydrate zone as 
free gas and would cause a significant decrease 
in seismic velocity at that boundary (Bryan, 
1974). Bottom-simulating reflectors are strong­
est in the vicinity of ridge crests and tend to 
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fade out on the flanks (Mark! and others, 1970), 
a configuration that suggests gas accumulation at 
the crest as in an anticlinal trap. 

OTHER SEISMIC EVIDENCE FOR GAS HYD~ATES 

IN OCEANIC SEDIMENTS 

Seismic features other than bottom-simulat­
ing reflectors may be produced by gas hydrates. 
These features include bottom-parallel bright 
spots, pagoda structures, and deep-water velocity 
amplitude features (VAMP's). White (1977) sug­
gested that seismic bright spots (amplitude anom­
alies) in the Gulf of Oman are caused by natural 
gas accumulations. These subbottom reflectors 
are curved, mimic the topography of the seafloor, 
and transgress local bedding (making these bright 
spots similar to bottom-simulating reflectors, 

but of lesser lateral extent). White (1979) in­
ferred that the gas is held in place not by a 
stratigraphic trap but by an impe~eable gas hy­
drate layer that follows the seafloor topography. 

Emery (1974) has suggested that pagoda 
structures may be related to gas hydrates, al­
though these are very shallow subbottom seismic 
features, and there is little consensus regarding 
their significance. Geophysical traverses ~~ross 

nearly flat mud bottom at depths between 2,000 
and 5,000 m off western Africa provided ext€nsive 
seismic shallow-penetration recordings at 3.5 
kHz. The recordings reveal the presence of com­
mon alternating light and dark triangular S€ismic 
features, or pagoda structures, whose internal 
structure and acoustic properties may, according 
to Emery (1974), be due to local centers of gas 
hydrate induration. 

Velocity-amplitude features (VAMP's) are 
acoustic anomalies showing narrow (1 to 2 km) 

subsurface columns of concave reflection horizons 
called pulldowns, associated with gently arched, 
high-amplitude horizons higher in the sectio~ 
(Scholl and Cooper, 1978). These kinds of acous­
tic anomalies, common on seismic profiles col­

lected in the Bering Sea, are typically seen in 
flat-lying beds at subbottom depths greater than 
500 m and in deep water around 4,000 m. VAMP's 
are essentially deep-seated "bright spots" u'"~der­

lain by reflection horizon pulldowns. Gas hy­
drates may be responsible for VAMP's by cont~ib­
uting to the restriction of upward-migrating gas 
and fluids. 

It is difficult to detect gas hydrates by 
purely chemical and seismic means. Support for 
the indentification of gas hydrate in seafloor 
sediments will result when cores containing l.y­
drates recovered at their subsea temperatures and 
pressures can be analyzed. A pressure core t .'lr­

rel capable of this task has been designed br 
DSDP but has never been successfully deploye~ in 
a gas hydrate horizon. From the geologic, g~o­
physical, and geochemical evidence obtained thus 
far, there is little doubt that gas hydrates are 
an important part of the marine sedimentary 
record. 
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