HYDRAULIC SYSTEMS ANALYSIS An Introduction

HYDRAULIC SYSTEMS ANALYSIS AN INTRODUCTION

JOHN STRINGER

Senior Lecturer, Department of Mechanical Engineering, University of Sheffield

M

© J. D. Stringer, 1976

Softcover reprint of the hardcover 1st edition 1976

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means without permission.

This book is sold subject to the standard conditions of the Net Book Agreement.

First published in 1976 by THE MACMILLAN PRESS LTD London and Basingstoke Associated companies in New York Dublin Melbourne Johannesburg and Madras

SBN 333 18293 6 ISBN 978-1-349-02599-2 DOI 10.1007/978-1-349-02597-8 (eBook)

Preface

Engineering design calculations are usually based on approximations and simplifying assumptions rather than being exact and precise so as to ensure that results are obtained quickly and economically. Prerequisites of suitable calculation procedures are that they give results of sufficient accuracy for their purpose but are in no danger of being misleading. In the case of hydraulic systems and servomechanisms, one such technique for carrying out design calculations is based on the method of linear analysis. With this method the characteristics of the various components of any device are represented in the form of linear equations which are then taken together in order to predict how a completed system will behave. The actual behaviour of the practical device may be somewhat different from that predicted but the differences should be only in detail and not in essence.

This book traces the constituent features involved in applying linear methods to hydraulic mechanisms. A step-by-step approach is adopted with no attempt made to convert the text into a reference book. Involved are certain aspects of the subjects of dynamics and of fluid mechanics combined with the basic concepts of linear control theory and a few electrical ideas (for coping with electrohydraulics).

The text concentrates on this so-called 'small perturbation' or 'small excursion' or linearised analysis whose use in hydraulics has been developed in the past by various research workers. One pioneer in this field, under whose aegis the author has now worked for some years, is Professor J. K. Royle. More advanced techniques of analysis have also H. E. Merritt evolved and one book *Hydraulic Control Systems* by H. E. Merritt, dealing with both linear and other methods, is particularly recommended for further reading.

The author wishes to thank Mr K. Morris and Mr D. Puttergill for their help with diagrams, Mr K. H. Sutherland for his useful suggestions and Mrs Ivy Ashton for doing the typing.

> J. D. Stringer Sheffield, 1976

Contents

Preface		v	
Λ	ome	nclature	xi
1	Flu	id flow calculations	1
	1.1	Power	1
		1.1.1 Pumping	2
		1.1.2 Pressures	2 2 3
	1.2	The steady flow equation	3
		1.2.1 Useful forms of the equation	4
		1.2.2 Orifices	4
		1.2.3 Oil temperature rise	6
	1.3	Flowrates	6
		1.3.1 Flow through tubes	7
		1.3.2 Capillary (small-bore) tubes	8
		1.3.3 Connecting pipelines	8
		1.3.4 Turbulent flow	9
		1.3.5 Approximations used in calculation	9
		1.3.6 Annular passages	10
		1.3.7 Viscosity variations	11
	1.4	Compressibility	11
		1.4.1 Compressibility flowrates	11
		1.4.2 Dilation of containers	12
		1.4.3 Air content	13
		1.4.4 Flexible hoses	14
		1.4.5 Surges	14
		1.4.6 Pressure waves	16
	Pro	blems	17
2	Dyr	namic analysis	21
	-	First-order systems	21
		2.1.1 A first-order fluid system	22
		2.1.2 A first-order electrical system	23
		2.1.3 A first-order hydraulic servomechanism	24
		2.1.4 The first-order equation	25
	2.2	The step input	26
		2.2.1 Response of first-order systems to step input	27
		2.2.2 Response as a function of time	27
	2.3	Ramp input and response for first-order systems	28

		Harmonic input 2.4.1 Harmonic response of first-order systems 2.4.2 Graphical representations 2.4.3 Harmonic response locus 2.4.4 Logarithmic plots	29 29 30 32 33
	2.5	Second-order systems 2.5.1 A second-order electrical circuit 2.5.2 The second-order equation	34 36 37
	2.6	Response of second-order systems to ramp input	39
		Harmonic response of second-order systems	39
		2.7.1 Harmonic response locus	40
		2.7.2 Logarithmic plots	40
	Prol	blems	41
3	Hyd	raulic frequency	45
	3.1	A single-acting hydraulic jack	45
		A double-acting cylinder	47
	3.3	A double-acting cylinder with a long exhaust pipeline	48
	3.4	An oil hydraulic motor with two pipelines	50
	Pro	blems	52
4	Var	able pump systems	54
		The pump	55
		The motor	55
	4.3	Open loop systems	56
		4.3.1 Steady state operation	56
		4.3.2 Dynamic analysis	57
		Closed loop (position control) systems	58
		Practical systems	60
	Pro	blem	60
5		ear control theory	61
		Algebraic stability criterion (Routh-Hurwitz)	61
	5.2	Open loop relations	63
		5.2.1 First-order example	63
		5.2.2 Third-order example	63
		5.2.3 General case	65
		5.2.4 Harmonic input	65
		5.2.5 Open loop harmonic response locus	65
		5.2.6 Open loop testing	66
		Nyquist stability criterion	67
	5.4	Adequate stability	67
		5.4.1 Gain and phase margins	67

viii

Contents		ix
	5.4.2 Logarithmic locus	68
	5.4.3 Maximum closed loop dynamic magnification	69
	Problem	71
6	Pumps	72
	6.1 Types of pump	72
	6.2 Flow irregularities	75
	6.3 Constant-pressure sources	79
7	Flow through valves	81
	7.1 Four-way spool valves	81
	7.1.1 Critical centre valves	82
	7.1.2 Flowrate prediction	83
	7.1.3 Open centre type (underlapped four-way valve)	86
	7.2 Three-way spool valves	88
	7.3 Nozzle-flapper valves	88
	Problems	90
8	Valve-controlled systems	91
	8.1 Four-way valve system	91
	8.2 Pure inertia analysis	92
	8.2.1 Analysis with friction and leakage	93
	8.3 Valve position servos	95
	8.3.1 The 'velocity constant'	96
	8.3.2 Governing equation	96
	8.4 Feedback lever system (with a four-way valve)	98
	8.5 Valve servo characteristics	99
	8.5.1 Stability	99
	8.5.2 Harmonic response	100
	8.5.3 Description of harmonic response	101 106
	8.5.4 Open loop characteristics	106
	8.5.5 Adequate stability	100
9	Electrohydraulic servo valves	107
	9.1 Flow control valves	107
	9.2 Valves with coil armatures	108
	9.2.1 A single-stage valve	108
	9.2.2 A two-stage valve	110
	9.3 Valves with torque motors	112
	9.4 Valve dynamics	114
	9.4.1 Torque motors	114
	9.4.2 Two-stage operation	115
	9.4.3 Simplified representations of valve characteristics	116

x Contents	
9.5 Comments on electrical supplies	117
9.5.1 Pulse width modulation	118
10 Electrohydraulic servomechanisms	120
10.1 'Proportional' systems	121
10.1.1 Analysis	123
10.1.2 Precision	125
10.2 Velocity control	126
10.2.1 Pump control	126
10.3 Compensated control	127
10.3.1 Analysis	127
10.3.2 A possible electrical network 10.3.3 Systems with a compensating network	128
10.4 Valve characteristics	131
10.4 Valve characteristics	132
11 Conclusion	133
Appendix A Spool valve stroking forces	134
A.1 Flow forces	134
A.1.1 Steady flow	134
A.1.2 Transient flow	136
A.2 Effective moving mass	137
A.3 Frictional forces	138
A.4 Summary	139
Problem	140
Appendix B Three-way valve systems	141
B.1 Valves	141
B.1.1 Critical centre type	142
B.1.2 Open centre type (underlapped three-way valve)	142
B.2 Three-way valve system	143
B.3 Three-way valve servo	145
B.3.1 Governing equation	145
Appendix C Special purpose valves	148
C.1 Poppet valves	148
C.2 Single-stage relief valve	149
C.3 A flow control valve	151
C.3.1 Forces	152
C.3.2 Flowrates	152
Appendix D Numerical examples	155
D.1 Question (i)	155

Contents	xi
D.1.1 Calculation of answers to question (i)	155
D.1.2 Answers to question (i)	159
D.2 Question (ii)	159
D.2.1 Calculation of answer to question (ii)	159
D.2.2 Answer to question (ii)	160
Appendix E Hydraulic lock	161
General Problems	
References	169
Index	171

Nomenclature

а	cross-sectional area of pipe (also a coefficient)
A	net area of piston
B _c	magnetic flux density
c _r	radial clearance
Ċ	capacitance
C_1, C_2	constants
$C_{\rm d}$	discharge coefficient
$C_{\rm h}$	specific heat
d	diameter
D D	$\equiv d/dt$
е	electrical potential
Ε	Young's modulus
f	fluid friction factor
F	force
g	gravity acceleration
g_0	force/mass conversion factor
Ĝ	an acceleration
h	a coefficient
i	$=(-1)^{1/2}$
Ι	electrical current
I _c	electrical control current
J	moment of inertia
k	a constant
Κ	a constant
K_q	valve flow coefficient
K _c	valve pressure-flow coefficient
L	leakage coefficient
m	a mass
Μ	a mass
n	angular speed (rad/s)
Ν	a magnitude
N _c	number of turns
р	complex operator
Р	pressure or pressure difference (with various suffixes)
q	volume flowrate
<i>q</i>	rate of change of q
Q	heat transfer rate or quantity of heat
r	radius

xiv	Nomenclature
R	electrical resistance
(Re)	Reynolds' number
S	complex operator
t	time
T	time constant
u	valve underlap
u_1, u_2	specific internal energies
v	velocity
$v_{ m s}$	sonic velocity
V	volume
W_{x}	external work
x	a displacement
У	a displacement
Ζ	height above some datum
f	viscous friction rate
f G J l	a gear ratio
g	Joule's equivalent
	length
\mathscr{L}	inductance
М	amplitude ratio
r	a ratio
t	temperature
α	a ratio
α _p	pump capacity
β	bulk modulus
γ	angular deflection
$\delta_{\mathbf{m}}$	motor capacity
Δ	a change or difference of
3	eccentricity
ζ	damping ratio or factor
heta	a quantity with various suffixes $(\theta_i \text{ input, } \theta_o \text{ output, } \theta \text{ error})$
λ	$(v_i \text{ input, } v_o \text{ output, } o \text{ error})$ see equation C.2
	dynamic viscosity
μ_{v}	kinematic viscosity (also Poisson's ratio)
	density
$ ho \sigma$	$= 1/\beta$
τ	torque
ϕ	phase angle
ψ	poppet half angle
ψ	a frequency (rad/s)
$\hat{\mathbf{\Omega}}$	a constant velocity or rate of change
22	a constant verocity of rate of change