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Abstract. In this paper, two methods are presented to analyse the free overfall in

1-shaped (equilateral triangle-shaped) channels. First, the flow upstream of a free

overfall from smooth horizontal or mildly sloping 1-shaped channels is analysed

theoretically to determine the end-depth-ratio (EDR), applying the momentum

equation based on the Boussinesq approximation. Second, an alternate method for

analysing free overfall in 1-shaped channels is also presented where the flow over

a free overfall in a 1-shaped channel is simulated by that over a sharp-crested weir

to calculate the EDR. The method of estimation of discharge from the known end

depth is also presented for both the methods. These approaches eliminate the need

of an experimentally determined pressure coefficient. Experiments are conducted to

verify the results obtained from the present methods. Comparisons of the computed

and experimental results are satisfactory.

Keywords. Brink depth; equilateral triangle shaped channels; end depth; free

overfall; hydraulics; one-dimensional flow; open channel flow; steady flow.

1. Introduction

A free overfall is a situation in which the flow finds a sudden drop in the channel base, causing

the flow to separate from the solid boundary to form a free nappe. A significant characteristic

is that there is a strong departure from hydrostatic distribution of pressure caused by the strong

accelerated downflow in the vicinity of the drop. In open channels, free overfall offers the

possibility of being used as a measuring device of discharge. Pioneer experimental research

was carried out by Rouse (1936) in mildly sloping rectangular channels to determine the end-

depth-ratio (EDR = end depth / critical depth), which was found to be 0.715. Since then a large

number of investigations on free overfall have been carried out on various channels (Fathy

& Shaarawi 1954; Delleur et al 1956; Diskin 1961; Smith 1962; Rajaratnam & Muralidhar

1964, 1968, 1970; Clarke 1965; Markland 1965; Anderson 1967; Strelkoff & Moayeri 1970;

Bauer & Graf 1971; Ali & Sykes 1972; Chow & Han 1979; Hager 1983, 1999; Keller & Fong

1989; Ferro 1992, 1999; Montes 1992; Marchi 1993; Gupta et al 1993; Murty Bhallamudi

1994; Anastasiadou-Partheniou & Hatzigiannakis 1995; Clausnitzer & Hager 1997; Davis

et al 1998, 1999; Dey 1998 2000, 2001).
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Solutions of the potential flow theory to determine the hydraulic aspects of overfalls

were given by Markland (1965), Clarke (1965), Strelkoff & Moayeri (1970), Chow & Han

(1979), Matthew (1991) and Montes (1992). Jaeger (1948) solved the momentum and energy

equations using the Boussinesq approximation to calculate the EDR in horizontal rectan-

gular channels. Rajaratnam & Muralidhar (1964b) presented experimental and analytical

work on the overfall from circular channels. Anderson (1967) analysed the modified energy

equation based on the Boussinesq approximation to determine the EDR for the rectangu-

lar overfall. The free vortex theory was applied by Ali & Sykes (1972) for trapezoidal

overfalls. Hager (1983) solved the momentum and extended energy equations to analyse

the rectangular overfall considering the streamline inclination and curvature. An analyti-

cal approach, termed theory of a direct fluid sheet, was put forward by Naghdi & Rubin

(1981) to develop an exact solution of the non-linear equations. Marchi (1993) solved the

two-dimensional overfall with the aid of the cnoidal wave theory. Empirical equations of

EDR for trapezoidal overfalls were proposed by Gupta et al (1993). Also, the end depths

in trapezoidal and exponential channels were analytically determined by Murty Bhallamudi

(1994) using the momentum approach based on the Boussinesq approximation. Anastasiadou-

Partheniou & Hatzigiannakis (1995) and Ferro (1999) simulated the free overfall by that

over a sharp-crested weir. Analytical solutions for circular overfall given by Dey (1998b,

2001a) were based on the momentum equation and the simulation of a free overfall by that

over a sharp-crested weir respectively. Dey (2001) also, studied the free overfall in ellip-

tical channels. ISO 3874 (1977) and ISO 4371 (1984) recommended the flow estimation

by the end depth method in rectangular and non-rectangular channels, respectively. The

effect of bottom roughness on rectangular overfalls was experimentally studied by Delleur

et al (1956), Rajaratnam et al (1976) and Kraijenhoff & Dommerholt (1977), and its math-

ematical solution was given by Dey (1998a, 2000). However, no attempt has so far been

made to analyse the free overfall in 1-shaped channels, which is a possible shape of a

sewer.

In this paper, two separate methods are presented to analyse the free overfall in 1-

shaped channels. First, an analytical model for a free overfall from smooth horizontally

laid or mildly sloping 1-shaped channels is presented, applying a momentum approach

based on the Boussinesq assumption. Second, an alternate approach for a free overfall

in 1-shaped channels is also presented, where the flow over a fall in a 1-shaped chan-

nel is simulated by that over a sharp-crested weir to calculate the EDR and discharge.

Both the methods eliminate the need for an experimentally determined pressure coeffi-

cient. The methods yield the EDR and discharge, which are verified by the experimental

data. The above analyses are given for a flow regime approaching subcriticality. A flow

regime approaching supercriticality being not so common in practice is beyond the realm of

this study.

2. Experimental set-up and procedure

Experiments were conducted in two different horizontally laid 1-shaped channels (made of

transparent perspex), having sides of 18 cm (channel 1) and 12 cm (channel 2). The lengths of

the channels were 4 m. Each channel was connected to an upstream supply. Water discharged

through the downstream end of the channel into a measuring tank and finally drained into the

reservoir. A valve in the upstream supply line controlled the discharge. The discharge was

set by slowly opening the upstream valve until the desired height at the end section of the
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Table 1. Experimental data.

Channel b Q ĥc ĥe h̃e Q̂

(cm) (cm3s−1)

1 18 17824.41 0.6671 0.4744 0.7112 0.5932
16007.64 0.6262 0.4506 0.7195 0.5327
14595.46 0.5916 0.4172 0.7053 0.4857
13639.59 0.5667 0.3906 0.6892 0.4539
11373.10 0.5031 0.3600 0.7155 0.3785
11374.87 0.5032 0.3428 0.6812 0.3786

9261.11 0.4381 0.3089 0.7051 0.3082
8253.22 0.4049 0.2839 0.7011 0.2747
7306.86 0.3724 0.2544 0.6832 0.2432
6546.58 0.3453 0.2417 0.6999 0.2179
5935.18 0.3227 0.2272 0.7041 0.1975
5673.51 0.3128 0.2144 0.6855 0.1888
5036.94 0.2882 0.1994 0.6921 0.1676
4239.29 0.2559 0.1789 0.6991 0.1411
3385.21 0.2192 0.1561 0.7122 0.1127
2917.41 0.1979 0.1378 0.6961 0.0971
2484.03 0.1773 0.1239 0.6988 0.0827
1850.22 0.1450 0.1017 0.7012 0.0616
1249.03 0.1110 0.0783 0.7057 0.0416

786.83 0.0812 0.0561 0.6911 0.0262

2 12 7738.46 0.7344 0.5083 0.6922 0.7097
6778.14 0.6849 0.4833 0.7057 0.6216
5905.46 0.6325 0.4350 0.6878 0.5416
5288.86 0.5910 0.4250 0.7191 0.4850
5266.99 0.5895 0.4083 0.6927 0.4830
5014.46 0.5714 0.3983 0.6971 0.4599
4612.18 0.5414 0.3800 0.7019 0.4230
4126.17 0.5031 0.3583 0.7123 0.3784
4138.76 0.5041 0.3433 0.6811 0.3796
3459.38 0.4468 0.3208 0.7181 0.3173
3394.18 0.4410 0.3008 0.6821 0.3113
2915.30 0.3975 0.2800 0.7044 0.2674
2638.02 0.3711 0.2658 0.7163 0.2419
2357.93 0.3435 0.2408 0.7011 0.2163
2141.94 0.3215 0.2225 0.6921 0.1964
1803.38 0.2855 0.2042 0.7151 0.1654
1564.69 0.2589 0.1767 0.6824 0.1435
1252.70 0.2222 0.1567 0.7052 0.1149
1029.22 0.1941 0.1342 0.6911 0.0944

792.74 0.1624 0.1125 0.6928 0.0727

channel resulted. Once it was reached, the corresponding discharge was recorded with the

aid of a measuring tank. The end depths were measured carefully by a point gauge. Table 1

presents the experimental data.

3. First model of the EDR

This model is based on the assumption of pseudo-uniform flow, where frictional resistance

being very small is balanced by the streamwise gravity component of force (Dey 1998). Apply-
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Figure 1. Definition sketch of (a) a free overfall in a 1-shaped channel and (b) a weir flow.

ing the one-dimensional momentum equation between sections x = −L (far upstream of the

end section) and x = −x for the flow situation under consideration (figure 1a), one obtains

fo − f = ρQ(βV − βoVo), (1)

where f = total pressure force, ρ = mass density of fluid, Q = discharge, β = Boussinesq

coefficient, and V = mean flow velocity. Subscript ‘o’ refers to section x = −L. For

simplicity, in this analysis, b is assumed to be unity. For a curvilinear flow with constant

acceleration ay normal to the direction of flow, the intensity of pressure p at y above the

bottom is obtained from the integration of the Euler equation as

− ∂

∂y
(p + ρgy) = ρay, (2)

where g = gravitational constant. According to the Boussinesq theory (Jaeger 1957), as the

free surface curvature of a free overfall is relatively small and varies from a finite value at the

surface to zero at the channel boundary, a linear variation of the streamline curvature with

depth is assumed. Hence, the radius of curvature r of a streamline at y is written as

1/r ≈ (y/h) (1/rs), (3)

where h = flow depth, and rs = radius of curvature of the free surface. As the free surface

curvature is small, it can be approximated as

1/rs ≈ d2h/dx2. (4)

If the flow velocity at any depth equals the mean flow velocity V (which is a function of x),

the vertical acceleration ay(= V 2/r) based on the above assumption is given by

ay = ky, (5)
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where

k = (V 2/h) (d2h/dx2). (6)

The above assumption for the estimation of rs was found to be adequate in many flow situa-

tions involving a small streamline curvature (Jaeger 1957). Using (5), (2) is integrated within

y to h to obtain the expression for the pressure distribution as

p = ρg(h − y) + o.5ρk(h2 − y2). (7)

The pressure force f at section x = −x is derived from

f =
∫ h

0

pt(y)dy, (8)

where t (y) = width of the channel at y. It is expressed for a 1-shaped channel of side b as

t (y) = b − (2/
√

3)y. (9)

Thus, using (7) and (9) in (8), f is expressed as

f = ρgz3 ĥ3

√
3

[

1 − ĥ

3

]

+ ρkz4 ĥ3

2
√

3

[

4

3
− ĥ

2

]

, (10)

where ĥ = h/z, and z = height of the channel, which is given by

z = (
√

3/2) b. (11)

At the far upstream section (x = −L), k = 0 and ĥ is replaced by ĥo. Thus, the hydrostatic

pressure force fo obtained from (10) is

fo = ρgz3(ĥ3/
√

3)
[

1 − (ĥo/3)
]

, (12)

where ĥo = ho/z. The continuity equation between sections x = −L and x = −x is

Q = VoAo = V A, (13)

where Q = discharge, and A = flow area. The flow area is expressed for a 1-shaped channel

as

A = (z2/
√

3)(2 − ĥ)ĥ. (14)

Using (10)–(14) and incorporating Fo into (1) with β = βo = 1, yields

ĥ2
o

[

1 − ĥo

3

]

− ĥ2

[

1 − ĥ

3

]

− kzĥ3

2g

[

4

3
− ĥ

2

]

= F2
o

2
· (2 − ĥo)

3ĥ3
o

1 − ĥo

[

1

(2 − ĥ)ĥ
− 1

(2 − ĥo)ĥo

]

, (15)
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where

Fo =
√

6Q̂{(1 − ĥo)
1/2/[(2 − ĥo)ĥo]1.5}, (16a)

Q̂ = Q/(g0.5z2.5). (16b)

The EDR, which is the ratio of end depth (he) to critical depth (hc), is computed for a

1-shaped channel using the preceding equations. According to Anderson (1967), the free

surface profile is a continuous falling surface upstream and downstream of the end section.

To be more explicit, the free surface of the flow passes through the brink and ends up as a

parabolic trajectory of a gravity fall. Hence, the rate of change of slope of the free surface at

the end section (x = 0), as was assumed by Anderson (1967), is

(d2h/dx2)x=0 = −g/V 2
e (17)

where subscript e refers to the end section (x = 0). Using (17), ke at the end section

determined from (6) is

ke = −g/he. (18)

Applying (15) to the end section (ĥ = ĥe) and substituting ke from (18) in (15), a generalized

equation for the EDR is derived as

ĥ2
o

[

1 − ĥo

3

]

− ĥ2
e

[

1 − ĥe

3

]

+ ĥ2
e

2

[

4

3
− ĥe

2

]

= F2
o

2
· (2 − ĥo)

3ĥ3
o

1 − ĥo

[

1

(2 − ĥe)ĥe

− 1

(2 − ĥo)ĥo

]

. (19)

When the stream-wise slope of the channel is either horizontal or mild, the flow becomes

critical (ho = he) upstream of the control section. Thus, the upstream Froude number Fo is

unity. Introducing Fo = 1 and ĥo = ĥc in (19), we get

ĥ2
c

[

1 − ĥc

3

]

− ĥ2
e

[

1 − ĥe

3

]

+ ĥ2
e

2

[

4

3
− ĥe

2

]

= 1

2
· (2 − ĥc)

3ĥ3
c

1 − ĥc

[

1

(2 − ĥe)ĥe

− 1

(2 − ĥc)ĥc

]

. (20)

where c refers to a critical state of flow. Equation (20) is an implicit equation. Therefore,

it is solved numerically, and the EDR h̃e is calculated from the following non-dimensional

equation:

h̃e = he/hc = ĥe/ĥc. (21)

4. Second model of the EDR (alternate approach)

The flow over a free overfall in a 1-shaped channel (figure 1b) can be assumed to be similar to

the flow over a sharp-crested weir having same section with a crest Y = 0 and head above the
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crest Z = ho (Rouse 1936; Anastasiadou-Partheniou & Hatzigiannakis 1995; Ferro 1999).

As is done to compute the discharge over a sharp-crested weir, a zero pressure distribution and

parallel streamlines at the end section are assumed, neglecting the compaction of the nappe.

The flow velocity at the end section is calculated by applying the Bernoulli equation on a

streamline between the far upstream section at x = −L, where the pressure is hydrostatic,

and the end section at x = 0. The discharge Q is computed using the following equation:

Q = Cd

√

2g

∫ ho

0

t (H − y)1/2dy, (22)

where Cd = coefficient of discharge (= CvCc), Cv = coefficient of velocity, Cc = coefficient

of contraction (= Ae/Ao), and H = total head. H at the far upstream section (x = −L) is

given by

H = ho + (V 2
o /2g). (23)

Using (9) in(22), Q is expressed as

Q = 2
√

2/3Cv Ccz
2.5√g

∫ ĥo

0

(1 − ŷ)(Ĥ − ŷ)1/2dŷ, (24)

where ŷ = y/z, and Ĥ = H/z. The coefficient of contraction Cc can be expressed as

Cc = (2 − ĥe)ĥe/[(2 − ĥo)ĥo]. (25)

Using (25) in (24) and normalizing, yields

Q̂ = 2
√

2/3Cv

(2 − ĥe)ĥe

(2 − ĥo)ĥo

∫ ĥo

0

(1 − ŷ)(Ĥ − ŷ)1/2dŷ. (26)

Integrating (26) and using (16a), we can write

Fo

3[ĥo(2 − ĥo)]
2.5

8Cv(1 − ĥo)0.5
= (2 − ĥe)ĥe

{

(Ĥ − ĥo)
3/2

[

1

5
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]
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(

2

5
Ĥ − 1

)}
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Introducing Froude number in (23), Ĥ can be given by

Ĥ = ĥo + F2
o

4
· (2 − ĥo)ĥo

1 − ĥo

. (28)

Introducing Fo = 1 and ĥo = ĥc in (27) and (28), one gets

3[ĥc(2 − ĥc)]
2.5

8Cv(1 − ĥc)0.5
= (2 − ĥe)ĥe

{

(Ĥ − ĥc)
3/2

[
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, (29)

Ĥ = ĥc + 1

4
· (2 − ĥc)ĥc

1 − ĥc

. (30)
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Equation (29) can be expressed as a quadratic equation. It is

ĥ2
e − 2ĥe + λ = 0, (31)

where λ = ξ1/ξ2, and

ξ1 = 3[ĥc(2 − ĥc)]
2.5

8Cv(1 − ĥc)0.5
(32a)

ξ2 = (Ĥ − ĥc)
3/2

[

1
5
(2Ĥ + 3ĥc) − 1

]

− Ĥ 3/2
(

2
3
Ĥ − 1

)

(32b)

The feasible solution of (31) is

ĥe = 1 − (1 − λ)1/2. (33)

For a given ĥc, Ĥ is computed from (30). Then, ĥeis solved from (33), and finally, EDR h̃e

is estimated from (21). As value of Cv for flow over free overfalls is not available as yet, (33)

is required to be calibrated extensively. The experimental data were used to calibrate (33),

making Cv a free parameter. For this purpose, the experimental data of ĥc and ĥewere used

as source data. As the variation of estimated Cv is small, the mean value of Cv obtained as

0.998 was used here.

5. The discharge

The concept of free overfall from 1-shaped channels is utilized to estimate the discharge

using a known end depth. The equation of discharge obtained from continuity equation is

Q = AoVo. (34)

0
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Figure 2. EDR h̃e as a function

of ĥc.
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Figure 3. Variation of ĥe with Q̂.

Introducing Fo = 1 and ĥo = ĥc in (34), one gets

Q̂ = 1√
6

· [(2 − ĥc)ĥc]1.5

(1 − ĥc)0.5
. (35)

The results of both EDR models can be used to evaluate non-dimensional discharge Q̂ from

(35).

6. Results

The dependence of h̃e on c̃ is shown in figure 2. The curve obtained from the first model lies

almost at the mid zone of the experimental data in the range of 0.111 ≤ ĥc ≤ .0.734. For the

present case, the EDR h̃e has a value of around 0.695 up to ĥc = 0.70. The curve rises sharply

from ĥc = 0.80. The curve obtained from this model corresponds closely to the experimental

data with an accuracy of ±5%. Using Cv = 0.998, the dependency of h̃e on h̃c obtained

from the second model is also shown in figure 2. The EDR h̃e varies almost linearly from

0.715 to 0.685 up to ĥc = 0.70. The curve obtained from the second model has an agreement

with the experimental data and the first model. Non-dimensional discharge Q̂ is calculated

using (35) for both the models. The variations of ĥe with Q̂ for both the models are presented

in figure 3. The experimental observations are agreeable with the curves obtained from the

present models with an accuracy of ±5%. Figure 3 can be used to estimate the discharge from

measured end-depth.

7. Conclusions

First, the free overfall in horizontal or mildly sloping 1-shaped channels has been analysed

applying the momentum equation based on the Boussinesq approximation. In sub-critical
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approaching flows, the EDR has been related to the critical depth and has been found to be

around 0.695. The mathematical solutions have allowed estimation of discharge from the

known end depth. Second, a simplified approach for computation of the end depth for a free

overfall in 1-shaped channels has been presented. The flow over a fall in a 1-shaped channel

has been simulated by that over a sharp-crested weir to calculate the end-depth ratio. The end-

depth ratio is varying almost linearly from 0.715 to 0.685 for a critical depth-channel height

ratio up to 0.70. The method of estimation of discharge from the known end depth has also

been presented. Both the models have corresponded satisfactorily to the experimental data.

The writers are grateful to the Late Bimalundu Dey for his helpful suggestions during the

preparation of the paper.
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