
HydraVM: Extracting Parallelism from Legacy Sequential Code Using STM

Mohamed M. Saad, Mohamed Mohamedin, and Binoy Ravindran
ECE Dept., Virginia Tech, Blacksburg, VA 24061, USA

{msaad, mohamedin, binoy}@vt.edu

Abstract

We present a virtual machine prototype, called Hy-
draVM, that automatically extracts parallelism from
legacy sequential code (at the bytecode level) through
a set of techniques including code profiling, data de-
pendency analysis, and execution analysis. HydraVM is
built by extending the Jikes RVM and modifying its base-
line compiler, and exploits software transactional mem-
ory to manage concurrent and out-of-order memory ac-
cesses. Our experimental studies show up to 5× speedup
on the JOlden benchmark.

1 Introduction

Many organizations with enterprise-class legacy soft-
ware are increasingly faced with a hardware technology
refresh challenge due to the ubiquity of chip multiproces-
sor (CMP) hardware. This problem is significant when
legacy codebases run into several million LOC and are
not significantly concurrent (often intentionally designed
to be sequential to reduce development costs, while ex-
ploiting Moore’s law of single-core chips). Manual ex-
position of concurrency is largely non-scalable for such
codebases. In some instances, sources are not available
due to proprietary reasons, intellectual property issues
(of integrated third-party software), and organizational
boundaries. This motivates techniques and tools for au-
tomated concurrency refactoring.

Past efforts on parallelizing sequential programs
can be broadly classified into speculative and non-
speculative techniques. Non-speculative techniques,
which are usually compiler-based, exploit loop-level par-
allelism, and differ on the type of data dependency that
they handle (e.g., static arrays, dynamically allocated ar-
rays, pointers) [4, 16, 27, 13].

Speculative techniques can be broadly classified based
on 1) what program constructs they use to extract threads
(e.g., loops, subroutines), 2) whether they are imple-

mented in hardware or software, 3) whether they require
source codes, and 4) whether they are done online, of-
fline, or both. Of course, this classification is not mutu-
ally exclusive.

Parallelization using thread-level speculation (TLS)
hardware has been extensively studied, most of which
largely focus on loops [26, 33, 15, 20, 32, 10, 11, 24, 34].
Automatic and semi-automatic parallelization without
TLS hardware have also been explored [18, 27, 13, 12,
9].

Transactional memory (TM) has recently emerged as
a powerful concurrency control abstraction [19]. With
TM, code that read/write shared memory objects is orga-
nized as transactions, which speculatively execute, while
logging changes made to objects–e.g., using an undo-log
or a write-buffer. When two transactions conflict (e.g.,
read/write, write/write), one of them is aborted and the
other is committed, yielding (the illusion of) atomicity.
Aborted transactions are re-started, after rolling-back the
changes–e.g., undoing object changes using the undo-
log (eager), or discarding the write buffers (lazy). Be-
sides a simple programming model, TM provides perfor-
mance comparable to lock-based synchronization [29],
especially for high contention and read-dominated work-
loads, and is composable. Multiprocessor TM has been
proposed in hardware (HTM), in software (STM), and in
hardware/software combination.

Motivated by TM’s advantages, several recent efforts
have exploited TM for automatic parallelization. In
particular, trace-based automatic/semi-automatic paral-
lelization is explored in [5, 6, 8, 14], which use HTM to
handle dependencies. [25] parallelizes loops with depen-
dencies using thread pipelines, wherein multiple parallel
thread pipelines run concurrently. [22] parallelizes loops
by running them as transactions, with STM preserving
the program order. [30] parallelizes loops by running a
non-speculative “lead” thread, while other threads run
other iterations speculatively, with STM managing de-
pendencies.

In this paper, we exploit STM for automated con-
currency refactoring. Our basic idea is to optimisti-
cally split code (at the bytecode level) into parallel semi-
independent sections, called superblocks [17]. For each
superblock, we create a synthetic method that contains
the code for the superblock and receives variables ac-
cessed by the superblock as parameters, and returns the
exit point of the superblock. This synthetic method is ex-
ecuted in a separate thread, and runs as a memory trans-
action, while relying on STM to detect and resolve mem-
ory conflicts (between the superblocks).

Thus, each transaction has its own memory that it ac-
cesses or modifies. When the transaction is invoked, a
copy of all variables is made and is sent to the method.
Upon successful completion of the transaction, this copy
is then merged back with the master memory version.
In short, our memory model is lazy-commit with write-
buffer implementation. To distinguish between multiple
copies of an object, an identifier is added to the header of
an object, which is unique in all copies of the object. We
define a successful execution of an invoked superblock
as when 1) it does not cause a memory conflict with an-
other superblock with an older chronological order, and
2) it is reachable in a future execution of the program.

We build these techniques into a virtual machine (VM)
called, HydraVM, by extending the Jikes RVM [1] and
modifying its baseline compiler.

To handle potential memory conflicts, we develop
ByteSTM, which is a VM-level STM implementation,
which yields the following benefits: 1) Significant imple-
mentation flexibility in handling memory access at low-
level (e.g., registers, thread stack) and for transparently
manipulating bytecode instructions for transactional syn-
chronization and recovery; 2) Higher performance due to
implementing all TM building blocks (e.g., versioning,
conflict detection, contention management) at bytecode-
level; and 3) Easy integration with other modules of Hy-
draVM (Section 3.4). To preserve the program order,
each transaction must wait until its preceding code in
the original program has been executed to commit. To-
ward this, ByteSTM suspends completed transactions till
their valid commit times are reached. Aborted trans-
actions discard their changes and are either terminated
(i.e., a program flow violation or a misprediction) or re-
executed (i.e., to resolve a data-dependency conflict).

We experimentally evaluated HydraVM on a set of
benchmark applications, including a subset of the JOlden
benchmark suite [7]. Our results reveal speedup of up to
5×.

Our work is different from past STM-based paral-
lelization works in that we consider entire programs (not
just loops such as [22, 30]), and automatically identify
parallel sections (i.e., superblocks) by compile and run-
time program analysis techniques, which are then exe-

Builder

Inspector

Recompilation

ProfilerTM Manager

Figure 1: HydraVM Architecture

cuted as transactions. Additionally, our work targets ar-
bitrary programs (not just recursive such as [6]), is en-
tirely software-based (unlike [6]), and do not require pro-
gram source code. The rest of the paper is organized
as follows. In Section 2, we describe HydraVM’s de-
sign and underlying mechanisms. Section3 discusses
HydraVM’s implementation, and we report on our exper-
imental studies in Section 4. We conclude in Section 5.

HydraVM is publicly available at www.hydravm.org.

2 Overview

Adaptive Optimization System (AOS) [1] is a general
VM architecture that allows online feedback-directed op-
timizations. In HydraVM, we extend the AOS archi-
tecture to enable parallelization of input programs, and
dynamically refine parallelized sections based on exe-
cution. Figure 1 shows HydraVM’s architecture, which
contains six components:
• Profiler: performs static analysis and adds addi-

tional instructions to monitor data access and exe-
cution flow.
• Inspector: monitors program execution at run-time

and produces profiling data.
• Recompilation: recompiles bytecode into machine

code and reloads classes definitions at run-time.
• Knowledge Repository: a store for profiling data.
• Builder: uses profiling data to reconstruct the pro-

gram as multi-threaded code, and tunes execution
according to data access conflicts.
• TM Manager: does transactional concurrency con-

trol to guarantee safe memory and preserves execu-
tion order.

HydraVM works in three phases. The first phase fo-
cuses on detecting parallel patterns in the code, by in-

2

http://www.hydravm.org

e

g

f

e

g

f

h i

j b

e

g

f

e

g

f

h i

j bb j

a k

Figure 2: Matrix Multiplication Execution Graph

jecting the code with hooks, monitoring code execution,
and determining memory access and execution patterns.
This may lead to slower code execution due to inspec-
tion overhead. Profiler is active only during this phase. It
analyzes the bytecode and instruments it with additional
instructions. Inspector collects information from gener-
ated instructions and stores it in the Knowledge Reposi-
tory.

The second phase starts after collecting enough infor-
mation in the Knowledge Repository about which blocks
were executed and how they access memory. The Builder
component uses this information to split the code into
superblocks, which can be executed in parallel. New
version of the code is generated and is compiled by the
Recompilation component. The TM Manager manages
memory access of the execution of the parallel version,
and organizes transaction commit according to the origi-
nal execution order. The manager collects profiling data
including commit rate and conflicting threads.

The last phase is tuning the reconstructed program
based on thread behavior (e.g., conflict rate). The Builder
evaluates the previous reconstruction of superblocks by
splitting or merging some of them, and reassigning them
to threads. The last two phases continue back and forth
till the end of program execution, as the second phase
represents a feedback to the third one. The instrumen-
tation code added in the first phase is used only during
that phase to determine the dynamic behavior of the pro-
gram, while the later two phases infer execution behavior
through transaction conflict rates and commit rates.

HydraVM supports two modes: online and offline. In
the online mode, we assume that program execution is
long enough to capture parallel execution patterns. Oth-
erwise, the first phase can be done in a separate pre-
execution phase, which can be classified as offline mode.

We now describe each of HydraVM’s components.
2.1 Bytecode Profiling
First, HydraVM accepts program bytecode and con-

verts it to architecture-specific machine code. We con-
sider the program as a set of basic blocks, where each
basic block is a sequence of non-branching instructions

1 f o r (I n t e g e r i = 0 ; i < DIMx ; i ++)
2 f o r (I n t e g e r j = 0 ; j < DIMx ; j ++)
3 f o r (I n t e g e r k = 0 ; k < DIMy ; k ++)
4 X[i] [j] += A[i] [k] ∗ B[k] [j] ;

Figure 3: Matrix Multiplication Example

that ends either with a branch instruction (conditional or
non-conditional) or a return. Thus, any program can be
represented by a graph in which nodes represent basic
blocks and edges represent the program control flow –
i.e., an execution graph (see Figure 2)1. Basic blocks can
be determined at compile-time. However, our main goal
is to determine the context and frequency of reachabil-
ity of the basic blocks – i.e., when the code is revisited
through execution. To collect this information, we mod-
ify Jikes RVM’s baseline compiler to insert additional in-
structions (in the program bytecode) at the edges of the
basic blocks (e.g., branching, conditional, return state-
ments) that detect whenever a basic block is reached. Ad-
ditionally, we insert instructions into the bytecode to 1)
statically detect the set of variables accessed by the ba-
sic blocks, and 2) mark basic blocks with input/output
operations, as they need special handling in program re-
construction. This code modification doesn’t affect the
behavior of the original program. We call this version of
the modified program, profiled bytecode.

2.2 Superblock detection
With the profiled bytecode, we can view the program

execution as a graph with basic blocks and variables rep-
resented as nodes, and the execution flow as edges. A ba-
sic block that is visited more than once during execution
will be represented by a different node each time. The
benefits of execution graph are multifold: 1) Hot-spot
portions of the code can be identified by examining the
graph’s hot paths, 2) static data dependencies between
blocks can be determined, and 3) parallel execution pat-
terns of the program can be identified.

To determine superblocks, we use a string factor-
ization technique: each basic block is represented
by a character that acts like an unique ID for that
block. Now, an execution of a program can be rep-
resented as a string. For example, Figure 3 shows a
matrix multiplication code snippet. An execution of
this code for a 2x2 matrix can be represented as the
string ab jbhc f e f ghc f e f ghi jbhc f e f ghc f e f ghi jk. We
factorize this string into its basic components using a
variant of Main’s algorithm [21] that we have devel-
oped (our variant is described in [28]). The factor-
ization converts the matrix multiplication string into
ab(jb(hc f e f g)2hi)2 jk. Using this representation, com-

1More details about transforming the code into an execution graph
is available at [28]

3

Threads

Executor

Collector

Superblocks

jobs queue

Reconstructed Program

Figure 4: Program Reconstruction as a Producer-
Consumer Pattern

bined with grouping blocks that access the same memory
locations, we divide the code into a set of nested calls,
where each call execute a group of basic blocks, which
becomes a superblock.

Thus, we divide the code, optimistically, into indepen-
dent parts called superblocks that represent subsets of the
execution graph. Each superblock represents a long se-
quence of instructions, and accesses a known set of vari-
ables.

I/O instructions are excluded from superblocks, as
changing their execution order affects the program se-
mantics, and they are irrevocable (i.e., at transaction
aborts).

2.3 Code Reconstruction
Upon detection of candidate superblocks for paral-

lelization, the program is reconstructed as a producer-
consumer pattern. In this pattern, two daemons threads
are active, producer and consumer, which share a com-
mon fixed-size queue of tasks. The producer generates
jobs and adds them in the queue, while the consumer de-
queues the jobs and executes them. HydraVM uses a
Collector module and an Executor module to process the
superblocks: the Collector has access to the generated
superblocks and uses them as jobs, while the Executor
executes the superblocks by assigning them to a pool of
core threads.

Figure 4 shows the overall pattern of the generated
program. Under this pattern, we utilize the available
cores by executing the superblocks in parallel. However,
doing so requires handling of several issues such as:
• Threads may finish in out of original execution or-

der.
• The execution flow can be determined only at run-

time. This may cause some of the assigned su-
perblocks to be skipped from the correct execution.
• Due to the differences between execution flow in the

profiling phase and the actual execution, memory
access conflicts between concurrent accesses may
occur. Also, memory arithmetic (e.g., arrays in-
dexed with variables) may easily violate the pro-
gram reconstruction (see example in Section 3.2).

A
B

C
A

B

C

A
B

C

(a) (b) (c)

Figure 5: Parallel execution pitfalls: (a) normal sequen-
tial execution, (b) possible parallel execution scenario,
and (c) TM execution.

To tackle these problems, we execute each thread as a
transaction. A transaction’s changes are deferred un-
til commit. At commit time, a transaction commits its
changes if and only if: 1) it did not conflict with any
other concurrent transaction, and 2) it is reachable under
the execution.

2.4 TM Managed Parallelization
To ensure data consistency, we use STM. Memory

access violations are detected and resolved by STM
through transactional conflict detection, abort, roll-back,
and retry. Program order is maintained by deferring the
commit of transactions that complete early till their valid
execution order.

Consider the example in Figure 5, where three su-
perblocks A, B, and C are assigned to different threads
TA, TB, and TC and execute as three transactions tA, tB,
and tC, respectively. Superblock A can have B or C as
its successor, and that cannot be determined until run-
time. According to the parallel execution in Figure 5(b),
TC will finish execution before others. However, tC will
not commit until tA or tB completes successfully. This
requires that every transaction must notify the STM to
permit its successor to commit.

Now, let tA conflict with tB because of unexpected
memory access. STM will favor the older transaction
in the original execution and abort tB, and will discard
its local changes. Later, tB will be re-executed. A prob-
lem arises if tA and tC wrongly and unexpectedly access
the same memory location. Under Figure 5(b)’s parallel
execution scenario, this will not be detected as a transac-
tional conflict (TC finishes before TA). To handle this sce-
nario, we extend the life time of transactions to the ear-
liest transaction starting time. When a transaction must
wait for its predecessor to commit, its life time is ex-
tended till the end of its predecessor. Figure 5(c) shows
the execution from the TM perspective.

2.5 Reconstruction Tuning
TM preserves data consistency, but it may cause de-

graded performance due to successive conflicts. To re-
duce this, the TM Manager provides feedback to the
Builder component to reduce the number of conflicts.
We store the commit rate, and the conflicting scenar-
ios in the Knowledge Repository to be used later for

4

y = 1 y1 = 1
y += 2 y2 = y1 + 2
x = y x1 = y2

Figure 6: Static Single Assignment form Example

further reconstruction. When the commit rate reaches
a minimum preconfigured rate, the Builder is invoked.
Conflicting superblocks are combined into a single su-
perblock. This requires changes to the control instruc-
tions (e.g., branching conditions) to maintain the origi-
nal execution flow. The newly reconstructed version is
recompiled and loaded as a new class definition at run-
time.

3 Implementation

3.1 Detecting Real Memory Dependencies
Recall that we use bytecode as the input, and con-

currency refactoring is done entirely at the VM level.
Compiler optimizations such as register reductions and
variable substitutions increase the difficulty in detecting
memory dependencies at the bytecode-level. For exam-
ple, two independent basic blocks in the source code
may share the same set of local variables or loop coun-
ters in the bytecode. To overcome this problem, we
transform the bytecode into the Static Single Assignment
form (SSA) [2]. The SSA form guarantees that each lo-
cal variable has a single static point of definition, which
significantly simplifies analysis. Figure 6 shows an ex-
ample of the SSA form.

Using the SSA form, we inspect assignment state-
ments, which reflect memory operations required by the
basic block. At the end of each basic block, we generate
a call for a touch operation that notifies the VM about the
variables that were accessed in that basic block. In the
second phase of profiling, we record the execution paths
and the memory accessed during those paths. We then
package each set of basic blocks in a superblock. Su-
perblocks should not be conflicting and access the same
memory objects. However, it is possible to have such
conflicts, since our analysis uses information from past
execution. We intentionally designed the data depen-
dency algorithm to ignore some questionable data depen-
dencies (e.g., loop index). This gives more opportuni-
ties for parallelization, since if at run time, a question-
able dependency occurs, the STM will detect and han-
dle it. Thus, more blocks can run in parallel and greater
speedup can be achieved.

3.2 Misprofiling
We rely on our analysis on online profiling for detect-

ing execution flow, which mainly depends on the input
in the profiling phase. This input may not reflect some
run-time aspects of the program flow (e.g., loops limits,

biased branches). To illustrate this, we return to the ma-
trix multiplication example in Figure 3. Based on the
profiling using 2x2 matrices, we construct the execution
graph shown in Figure 2. Now, assume that we have the
following superblocks ab, jbhi, hc f e f g, and jk, and we
need to run this code for matrices 2x3 and 3x2. The Col-
lector will assign jobs to the Executor, but upon the ex-
ecution of the superblock jk, the Executor will find that
the code exits after j and needs to execute bhi. Hence,
it will request the Collector to schedule the job jbhi in
the incoming job set. Doing so allows us to extend the
flow to cover more iterations. Note that the entry point
must be send to the synthetic method that represents the
superblock, as it should be able to start from any of its
basic blocks (e.g., jbhi will start from b not j, as j al-
ready executed before).

3.3 Method Inlining
Method inlining is the insertion of the complete body

of a method at every place that it is called. In HydraVM,
method calls appear as basic blocks, and in the execution
graph, they appear as nodes. Thus, inlining occurs auto-
matically as a side effect of the reconstruction process.
This eliminates the time overhead of invoking a method.

Another interesting issue is handling recursive calls.
The execution graph for recursion will appear as a re-
peated sequence of basic blocks (e.g., abababab . . .).
Similar to method-inlining, we merge multiple levels of
recursion into a single superblock, which reduces the
overhead of managing parameters over the heap. Thus, a
recursive call under HydraVM will be formed as nested
transactions with lower depth than the original recursive
code.

3.4 ByteSTM
ByteSTM is an STM implementation that operates at

the bytecode level and is integrated into HydraVM. We
implemented ByteSTM by modifying the Jikes RVM
by adding bytecode-level instructions to support transac-
tions – e.g., xBegin and xCommit are used to start and end
a transaction, respectively. Each memory load/store in-
struction inside a transaction is executed transactionally.
ByteSTM’s implementation is based on the RingSTM al-
gorithm [31]. With RingSTM, transactional writes are
buffered in a redo log. Each transaction has a read signa-
ture and a write signature (represented using bloom fil-
ters [3]) that summarize all read locations and written lo-
cations, respectively. A transaction validates its read-set
by intersecting its read signature with other concurrent
committed transactions’ write signatures in a ring. The
ring is a circular buffer that stores all committed trans-
actions’ write signatures. At commit time, a validation
is done again. If the transaction is valid, then the trans-
action’s write signature is added to the ring using a sin-
gle Compare-And-Swap operation. If it is successfully
added to the ring, then the transaction is committed, and

5

it writes back the redo log values to memory.
Each superblock has an order that represents its logical

order in the sequential execution of the original program.
To preserve the data consistency between superblocks,
STM must be modified to support this ordering. Thus, in
ByteSTM, when a conflict is detected between two su-
perblocks, we abort the one with the higher order. Also,
when a block with a higher order tries to commit, we
force it to sleep until its order is reached. ByteSTM com-
mits the block if no conflict is detected.

When attempting to commit, each transaction checks
its order against the expected order. If they are the same,
the transaction proceeds and updates the expected order.
Otherwise, it sleeps and waits for its turn. After commit-
ting, each thread checks if the next thread is waiting for
its turn to commit, and if so, that thread is woken up.

3.5 Parallelizing Nested Loops
Nested loops are generally difficult for paralleliza-

tion, as it is difficult to parallelize both inner and outer
loops. In HydraVM, we handle nested loops as nested
transactions using the closed-nesting model [23]: abort-
ing a parent transaction aborts all its inner transactions,
but not vice versa, and changes made by inner transac-
tions become visible to their parents when they commit,
but those changes are hidden from outside world till the
highest level parent’s commit.

Consider our earlier matrix multiplication example.
We have an outer transaction jbhi, which invokes a set
of inner transactions hc f e f g after the execution of the
basic block b.

4 Experimental Evaluation

Benchmarks. To evaluate HydraVM, we used five ap-
plications as benchmarks. These include a matrix mul-
tiplication application and four applications from the
JOlden benchmark suite [7]: minimum spanning tree
(MST), tree add (TreeAdd), traveling salesman (TSP),
and bitonic sort (BiSort). The applications are written
as sequential applications, though they exhibit data-level
parallelism.

Testbed. We conducted our experiments on an 8-core
multicore machine, which has 2 Intel Xeon Processors
(E5520), each with 4 cores running at 2.27GHz, with
256 KB L1 data cache, 1 MB L2 data cache, and 8 MB
L3 data cache. The machine runs Ubuntu Linux Server
10.04 LTS 64-bit. JikesRVM version 3.1.0 is used to
run all experiments. We configured it to run using the
Jikes Baseline compiler and mark-and-sweep GC, which
match ByteSTM configurations.

Evaluation. Table 1 shows the result of the Profiler
analysis on the benchmarks. The table shows the number
of basic blocks, superblocks, and the average number of
instructions per basic block. The lower part of the table

Table 1: Profiler Analysis on Benchmarks
Benchmark Matrix TSP BiSort MST TreeAdd
Avg. Instr. per BB. 4.29 4.2 4.75 3.7 4.1
Basic Blocks 31 77 24 52 10
Superblocks 3 12 5 3 4
Jobs 1001 1365 1023 12241 8195
Max Nesting 2 5 2 1 3

 0

 1

 2

 3

 4

 5

 6

Matrix TSP BiSort MST TreeAdd
S

pe
ed

up

2 Processors
4 Processors
6 Processors
8 Processors

Figure 7: HydraVM Speedup

shows the number of executed jobs by the Executor, and
the maximum level of nesting during the experiments.

Figure 7 shows the speedup obtained over the orig-
inal benchmark running on an unmodified Jikes RVM.
We change the number of used cores by setting the pro-
cess affinity. For matrix multiplication, HydraVM re-
constructs the outer two loops into nested transactions,
while the inner-most loop is formed into a superblock
because of the iteration dependencies. In TSP, BiSort,
and TreeAdd, each multiple level of recursive call is
inlined into a single superblock. For the MST bench-
mark, each iteration over the graph adds a new node to
the MST, which creates inter-dependencies between iter-
ations. However, updating the costs from the constructed
MST and other nodes presents a good parallelization op-
portunity for HydraVM.

5 Conclusions

We presented HydraVM, a JVM that automatically refac-
tors concurrency in Java programs at the bytecode-level.
Our basic idea is to reconstruct the code in a way that
exhibits data-level and execution-flow parallelism. STM
was exploited as memory guards that preserve consis-
tency and program order. Our experiments show that
HydraVM achieves speedup between 2×-5× on a set of
benchmark applications.

6

References
[1] ARNOLD, M., FINK, S., GROVE, D., HIND, M., AND

SWEENEY, P. F. Adaptive optimization in the jalapeno jvm. In
OOPSLA ’00 (New York, NY, USA, 2000), ACM, pp. 47–65.

[2] BILARDI, G., AND PINGALI, K. Algorithms for computing the
static single assignment form. In J. ACM 50, 3 (2003), 375–425.

[3] BLOOM, B. H. Space/time trade-offs in hash coding with allow-
able errors. Commun. ACM 13 (July 1970), 422–426.

[4] BLUME, W., DOALLO, R., EIGENMANN, R., GROUT, J., HOE-
FLINGER, J., AND LAWRENCE, T. Parallel programming with
polaris. In Computer 29, 12 (1996), 78–82.

[5] BRADEL, B., AND ABDELRAHMAN, T. Automatic trace-based
parallelization of Java programs. In ICPP 2007 (sept. 2007),
p. 26.

[6] BRADEL, B. J., AND ABDELRAHMAN, T. S. The use of hard-
ware transactional memory for the trace-based parallelization of
recursive Java programs. In PPPJ ’09 (New York, NY, USA,
2009), ACM, pp. 101–110.

[7] CAHOON, B., AND MCKINLEY, K. S. Data flow analysis for
software prefetching linked data structures in Java. In PPPJ
’09 (Washington, DC, USA, 2001), IEEE Computer Society,
pp. 280–291.

[8] CARLSTROM, B., CHUNG, J., CHAFI, H., MCDONALD, A.,
MINH, C., HAMMOND, L., KOZYRAKIS, C., AND OLUKOTUN,
K. Executing Java programs with transactional memory. Science
of Computer Programming 63, 2 (2006), 111–129.

[9] CHAN, B., AND ABDELRAHMAN, T. Run-time support for the
automatic parallelization of Java programs. The Journal of Su-
percomputing 28, 1 (2004), 91–117.

[10] CHEN, M., AND OLUKOTUN, K. Test: a tracer for extracting
speculative threads. In CGO 2003 (2003), IEEE, pp. 301–312.

[11] CHEN, P., HUNG, M., HWANG, Y., JU, R., AND LEE, J.
Compiler support for speculative multithreading architecture with
probabilistic points-to analysis. In ACM SIGPLAN Notices
(2003), vol. 38, ACM, pp. 25–36.

[12] CHOI, J., GUPTA, M., SERRANO, M., SREEDHAR, V., AND
MIDKIFF, S. Escape analysis for Java. ACM SIGPLAN Notices
34, 10 (1999), 1–19.

[13] DEUTSCH, A. Interprocedural may-alias analysis for pointers:
Beyond k-limiting. In ACM SIGPLAN Notices (1994), vol. 29,
ACM, pp. 230–241.

[14] DICE, D., HERLIHY, M., LEA, D., LEV, Y., LUCHANGCO, V.,
MESARD, W., MOIR, M., MOORE, K., AND NUSSBAUM, D.
Applications of the adaptive transactional memory test platform.
In Transact 2008 workshop (2008).

[15] DU, Z., LIM, C., LI, X., YANG, C., ZHAO, Q., AND NGAI,
T. A cost-driven compilation framework for speculative paral-
lelization of sequential programs. ACM SIGPLAN Notices 39, 6
(2004), 71–81.

[16] HALL, M., ANDERSON, J., AMARASINGHE, S., MURPHY, B.,
LIAO, S., AND BU, E. Maximizing multiprocessor performance
with the suif compiler. Computer 29, 12 (1996), 84–89.

[17] HWU, W. M. W., MAHLKE, S. A., CHEN, W. Y., CHANG,
P. P., WARTER, N. J., BRINGMANN, R. A., OUELLETTE,
R. G., HANK, R. E., KIYOHARA, T., HAAB, G. E., HOLM,
J. G., AND LAVERY, D. M. The superblock: An effective tech-
nique for vliw and superscalar compilation. The Journal of Su-
percomputing 7 (1993), 229–248. 10.1007/BF01205185.

[18] LAM, M., AND RINARD, M. Coarse-grain parallel programming
in jade. In ACM SIGPLAN Notices (1991), vol. 26, ACM, pp. 94–
105.

[19] LARUS, J. R., AND RAJWAR, R. Transactional Memory. Mor-
gan and Claypool, 2006.

[20] LIU, W., TUCK, J., CEZE, L., AHN, W., STRAUSS, K., RE-
NAU, J., AND TORRELLAS, J. Posh: a tls compiler that exploits
program structure. In PPoPP ’06 (2006), ACM, pp. 158–167.

[21] MAIN, M. G. Detecting leftmost maximal periodicities. Discrete
Appl. Math. 25 (September 1989), 145–153.

[22] MEHRARA, M., HAO, J., HSU, P.-C., AND MAHLKE, S. Paral-
lelizing sequential applications on commodity hardware using a
low-cost software transactional memory. In PLDI ’09 (New York,
NY, USA, 2009), ACM, pp. 166–176.

[23] MOSS, J. E. B., AND HOSKING, A. L. Nested transactional
memory: model and architecture sketches. Sci. Comput. Pro-
gram. 63 (December 2006), 186–201.

[24] QUIÑONES, C., MADRILES, C., SÁNCHEZ, J., MARCUELLO,
P., GONZÁLEZ, A., AND TULLSEN, D. Mitosis compiler: an
infrastructure for speculative threading based on pre-computation
slices. In ACM Sigplan Notices (2005), vol. 40, ACM, pp. 269–
279.

[25] RAMAN, A., KIM, H., MASON, T. R., JABLIN, T. B., AND
AUGUST, D. I. Speculative parallelization using software multi-
threaded transactions. In ASPLOS ’10 (New York, NY, USA,
2010), ACM, pp. 65–76.

[26] RAUCHWERGER, L., AND PADUA, D. The lrpd test: speculative
run-time parallelization of loops with privatization and reduction
parallelization. SIGPLAN Not. 30 (June 1995), 218–232.

[27] RUGINA, R., AND RINARD, M. Automatic parallelization of di-
vide and conquer algorithms. In ACM SIGPLAN Notices (1999),
vol. 34, ACM, pp. 72–83.

[28] SAAD, M. M., MOHAMEDIN, M., AND RAVINDRAN, B. Hy-
draVM Project : Technical Report. Tech. rep., ECE Dept., Vir-
ginia Tech, January 2012.

[29] SAHA, B., ADL-TABATABAI, A.-R., HUDSON, R. L., CAO
MINH, C., AND HERTZBERG, B. McRT-STM: a high perfor-
mance software transactional memory system for a multi-core
runtime. In PPoPP ’06 (Mar 2006), pp. 187–197.

[30] SPEAR, M., KELSEY, K., BAI, T., DALESSANDRO, L., SCOTT,
M., DING, C., AND WU, P. Fastpath speculative parallelization.
Languages and Compilers for Parallel Computing (2010), 338–
352.

[31] SPEAR, M. F., MICHAEL, M. M., AND VON PRAUN, C.
RingSTM: scalable transactions with a single atomic instruction.
In SPAA ’08 (New York, NY, USA, 2008), ACM, pp. 275–284.

[32] STEFFAN, J., AND MOWRY, T. The potential for using thread-
level data speculation to facilitate automatic parallelization. In
HPCA ’98 , IEEE, pp. 2–13.

[33] TSAI, J., AND YEW, P. The superthreaded architecture: Thread
pipelining with run-time data dependence checking and control
speculation. In PACT ’96, IEEE, pp. 35–46.

[34] WU, P., KEJARIWAL, A., AND CAŞCAVAL, C. Compiler-driven
dependence profiling to guide program parallelization. LCPS ’08,
232–248.

7

