
1

Hydro: A Hybrid Routing Protocol for Low-Power
and Lossy Networks

Stephen Dawson-Haggerty, Arsalan Tavakoli, and David Culler
Computer Science Division

University of California, Berkeley
{stevedh,arsalan,culler}@cs.berkeley.edu

Abstract—Existing routing protocols for sensor networks ei-
ther exclusively focus on collection-based traffic, or optimize
for point-to-point traffic in a homogeneous network. As these
networks become more general, a mix of these workloads in
a heterogeneous setting is expected, while still abiding by the
resource constraints of low-power and lossy networks (L2Ns).
Our design leverages the predominantly two-tiered topology of
L2N deployments, with capable border routers supplementing
resource-starved in-network nodes, and optimizes for the typical
traffic workloads consisting mainly of collection based traffic with
specific instances of point-to-point traffic.

We present Hydro, a hybrid routing protocol that combines
local agility with centralized control. In-network nodes use
distributed DAG formation to provide default routes to border
routers, concurrently forming the foundation for triangle point-
to-point routing. Border Routers build a global, but typically
incomplete, view of the network using topology reports received
from in-network nodes, and subsequently install optimized routes
in the network for active point-to-point flows.

Building on the vast existing literature on distributed DAG for-
mation in L2Ns and centralized routing in large-scale networks,
our contribution lies in the merging of these ideas in the form
of a routing protocol that addresses the needs of L2Ns while
remaining grounded in their inherent constraints. Evaluations
across testbeds and deployments demonstrate the performance
and functionality of Hydro across a variety of workloads and
network conditions.

I. I NTRODUCTION

Data collection represents a significant fraction of network
traffic in many monitoring applications, as has been well-
documented in the literature [14], [6], [15]. In these systems,
in-network nodes gather sensor data locally and either trickle
their readings frequently or send bulk data sets periodically to
a remote server with the border routers acting as data sinks.
Since most applications employ some form of collection, it
is critical to optimize collection as a basic network primitive.
However, point-to-point traffic also occurs, especially since
these networks are now embracing IP. Collection and dissem-
ination alone are insufficient, since they lead to inefficient
application modalities such as flooding the entire network to
deliver a command to a single node.

In many cases, point-to-point routing would be used to
initiate data transfer, send end-to-end acknowledgementslike
in TCP and Flush, or for carrying out infrequent network
diagnostics withping and traceroute. In some cases,
traffic flows exist between a “root” node and some other node
in a network. In other cases, point-to-point flows exist between

arbitrary nodes in the network, like a control path between a
light switch and light bulb. A successful point-to-point routing
protocol will make few demands on nodes in the first case
and will make demands proportional to some measure of the
workload (e.g. number of flows, nodes, or neighbors) in the
second case.

The key insight underlying this work is that while point-to-
point routing is becoming more important, the space, time, and
message overhead of point-to-point routing must be propor-
tional to its often minor yet critical usage in practice. In other
words, application developers are willing to pay for point-to-
point routing only if its cost is negligible when it goes unused
and is proportional to the degree of point-to-point traffic when
it does get used. Unfortunately, existing point-to-point routing
protocols like S4, BVR, and DYMO do not satisfy this load-
proportionality. This fact may be one reason they are relatively
unused in practice, especially since a collection protocolmay
still be necessary and run in parallel.

In order to meet the requirements of robust collection,
point-to-point communication, and low footprint, we present
Hydro, a hybrid routing protocol for L2Ns that provides both
centralized control and local agility. Hydro uses a distributed
algorithm to form a DAG for routing data from in-network
nodes to border routers, allowing nodes to maintain multiple
options that are ranked through data-driven link estimation.
Nodes piggyback topology reports on periodic collection traf-
fic, allowing border routers to build and maintain a global
view of the topology. The DAG provides basictriangle point-
to-point routing by allowing nodes to forward packets to a
border router, which subsequently source routes them to the
appropriate destination. Hydro builds on prior work by Hui [5]
by adding a centralized optimization in which border routers
insert routing table entries at the appropriate nodes, reducing
the transmission stretch between communicating endpoints
without the need for excessive state or complexity at the nodes.

II. BACKGROUND

Routing has been an integral part of L2Ns since their emer-
gence, as data and commands had to be relayed between nodes.
Initially, as many of the deployments focused on various types
of monitoring, the predominant communication paradigm was
Collection-Oriented, or many-to-onerouting. By association
Dissemination-Oriented, or one-to-many, routing also emerged
because of the need to send commands to the nodes (e.g. for
time synchronization).



2

MintRoute and its successor, CTP [16], [3] are gradient-
based collection protocols. CTP developed a more accurate
link estimator, in which control and data traffic were used to
inform link estimates.

TSMP [13], incorporated into the WirelessHART standard,
is a well-established industry approach that includes centralize
scheduling of channel resources to achieve predictable laten-
cies. However, although little technical data is available, it
operates at the link-layer, using channel hopping, and doesnot
provide any routing capabilities specified in publicly available
documentation. Its tight scheduling of media accesses differs
significantly from the functionality of our border routers,
which contain only soft state and are relatively asynchronous.

Hui presented a complete IPv6 network architecture for
L2Ns, which includes a low power link along with network
and transport layers adapted to the unique characteristicsof
these networks [5]. This work adapted collection to the IP
architecture by conceptualizing it as choosing an IP default
route. It also provided unicast capabilities by allowing a
controller to efficiently communicate with individual nodes by
source routing the packet, forming the basis for triangle routing
of intra-network traffic. However, such an approach also incurs
unnecessarily high stretch and bottleneck links around the
controller. This basic design represents the leading edge of
collection research, and formed Hydro’s basic template; we
extend it with optimizations for point-to-point traffic.

BVR [4] was a geographical location-based routing protocol
for L2Ns. A set of landmark beacons are selected whose
identity is known by all nodes in the network. Every node
is given a virtual coordinate, which is the vector of distances
to all beacons in the network. When a node wants to send a
packet to a destination node, it greedily forwards the packet
along routes that move it closer to the destination.

S4 [10], is designed to provide small stretch and state in
order to enable scalable routing. It utilizes a modified compact
routing algorithm tailored for L2Ns. S4 has a theoretical worst
case routing stretch of 3, although published results indicate
an average routing stretch of 1.2 while maintainingO(

√
N)

state. Deploying S4 would require also designing a distributed
directory service, and the protocol does not optimize for the
common workload where most traffic is destined towards an
egress point; unlike S4’s homogeneous network, Hydro starts
with optimizing collection and emphasizing heterogeneity.

AODV [12] uses flooded RREQ messages to discover paths
to destinations on demand, with intermediate nodes creating
hop-by-hop entries for bidirectional flows. DSR [7] is also an
on-demand routing protocol, but uses source routing to route
packets. OLSR [2] is a link state algorithm that uses multipoint
relays to reduce the flood of link-state advertisements. 802.11s,
a draft mesh routing standard uses a variant of AODV called
AODV-RM for intra-subnet point-to-point communication, but
optimizes for an access network’s workload by proactively
building a routing tree towards egress points [1].

These and other protocols provide point-to-point routing
capabilities in wireless networks. Both on-demand and link-
state based solutions exist, but the focus is on providing
reliable any-to-any delivery in networks with mobile nodes
that are resource rich. Consequently, most of these protocols

have large control traffic and/or state requirements.

III. H YDRO DESIGN AND OPERATION

Hydro’s design is a marriage of centralized and distributed
mechanisms: low-power nodes form and maintain a distributed
DAG that provides them with a set of default routes for
communicating with border routers. These border routers
maintain a global view of the network using topology reports
received from each of the nodes, and subsequently install op-
timized point-to-point routes within the network. These three
mechanisms of distributed DAG formation, global topology
formation, and route install form the primitives for Hydro’s
operation, and are shown in figure 1.

A. Distributed DAG formation

Most communication in L2Ns is data generated by network
nodes being routed to data sinks. In Hydro, border routers
provide egress connectivity beyond the L2N to these data
sinks and other internet hosts. The distributed DAG provides
a locally-maintained mechanism for optimizing the collection
workload. Therefore, the first primitive Hydro provides is a
reliable route towards a border router: aDefault Route Table,
made of a list of entries, each containing the link-layer address
of a node in the direction of a border router. Each solid arrow
in figure 1 corresponds to an entry in a node’s Default Route
Table. Once a neighbor has been inserted into the Default
Route Table, the node will begin to maintain statistics about
the link-layer packet success rates to help it evaluate the
quality of that link.

Existing collection-based protocols demonstrated that pro-
viding multiple routes to a given destination significantly
improves reliability in L2Ns [3], [5]. Hydro’s Default Route
Table is an ordered list of next hop addresses for communicat-
ing with border routers. Each default route entry contains the
address of the next-hop in the path, the route cost advertised
by the next-hop, the link cost estimate for communicating
with the next-hop (and the corresponding confidence), and the
advertised willingness.

B. Global Topology Construction

The second primitive Hydro requires is the collection of
topology information from the network: in order to execute
its duties as a central point of control, a border router must
build a global view of the topology. However, this task is
complicated by multiple factors: restrictions on control traffic
make it impractical for the nodes to send their complete link-
state to the border router; furthermore, memory constraints
prevent nodes from even maintaining a list of all neighbors,
making creation of the complete global topology impossible.

In Hydro, each node in the network createsTopology
Reportsto be sent to a border router. Topology reports contain
only the top few “mature” entries in the Default Route Table.
In addition, Hydro allows nodes to optionally insertNode
Attributes in topology reports. These Node Attributes are
application specific, and can be static (e.g. installed memory or
power source), or dynamic (e.g. energy left or queue length),
to enable more complex routing policies.



3

Fig. 1. Overview of Hydro containing all three primitives. The distributed DAG, represented by solid arrows, is maintained using the Default Route Table
and points towards border routers. Topology collection uses piggybacked updates to allow border routers to maintain theLink State Database. Finally, installed
routes are stored in per-node Flow Tables.

Topology reports are sent to a border router periodically
using a default route; they are opportunistically piggybacked
on data traffic whenever an application generates sufficiently
frequent traffic. The unpacked datagram in figure 1 shows how
topology information is added to data traffic using an optional
extension header; using this mechanism, the overhead is only
incurred on packets actually containing topology updates.The
border router aggregates these topology reports to create a
global view of the topology, known as the Link State Database.
Figure 1 shows a partial view of the LSDB maintained by
controller 1: for instance, the link from 5 to 2, being reported
in the exploded packet is present in the database with cost
2.5. While this view does not include all links in the physical
network, it is a subset of high-quality, bidirectional links with
accurate link cost estimates.

C. Centralized Route Installation

The combination of distributed DAG formation and a
global topology database enables point-to-point communica-
tion through triangle routing. The final Hydro primitive allows
state to be installed in the network to optimize active flows.
A border router uses Route Installs to update a node’s Flow
Table. When a node receives a Route Install, it inserts or
updates an entry in the Flow Table. Each Route Install has
two parts:

• Flow Match: The criteria used to determine whether
a given packet matches a flow table entry. By default
Hydro uses the packet destination, but more complex flow
matches based on additional fields such as the packet
source, traffic type, or flow label are possible.

• Flow Path: The actual route that matching packets use.
Hydro stores the complete path to the destination used in
a source routing header

The policy for when routes should be installed may either
be a default policy, or optimized for specific workloads. By
default, Hydro installs routes the first time they are used.

D. Forwarding

Both nodes and border routers function as routers and
forward packets. Hydro’s packet forwarding policy is different
for each.

1) Node Forwarding:The routing layer on a node contains
two tables with forwarding information. The Default Route
Table maintains state about neighbors which are closer to a
border router then that node. The Flow Table maintains routes
to other in-network notes which has been installed by a border
router. In order to forward packets, in-network nodes take the
following actions:

1) Source Route:If a packet contains a valid source route,
the node forwards the packet to the next router in the
sequence.

2) Flow Table Entry: If a matching entry exists in the
Flow Table, then it is used to forward the packet on to
the destination.

3) Default Route: If neither a source route nor flow entry
is available, packets are forwarded along a default route
to a border router.

E. Multiple Border Routers

A single border router creates a single point of failure, either
due to failure of the border router itself, or because of media
congestion around that one device. Furthermore, scalability
and deep paths also become a concern in larger networks.
To alleviate such concerns, Hydro provides a mechanism for
installing additional border routers. All border routers are
exact replicas, each maintaining the same a global topology
view. The border routers are connected network using separate
interfaces from those used to communicate with the L2N
subnet: typically this back-haul link is either an Ethernetor
an 802.11 mesh.

This use of multiple border routers, if properly located and
deployed can help manage the depth of the network as well as



4

the volume of traffic congesting bottleneck links to a border
router. We examine this benefit empirically on a large testbed
in section IV.

F. State Management

The three tables maintained by Hydro are shown in figure 1;
their contents have been discussed in previous sections. First,
The Default Route Table is used to maintain a stable back-
channel to a border router; its consistency is maintained by
using a standard tree-formation protocol. When inconsistencies
are detected, broadcasts are started to resolve them.

The second table, the Link State Database is maintained at
all border routers by processing topology reports. Since nodes
are required to periodically send these updates, a border router
which fails will recover merely by listening to updates for
same amount of time as the slowest topology update.

The final table is the Route Install Table: it contains routes
installed based on the Link State Database of a border routerat
some point in time. It is also not proactively maintained: when
a link which is part of an installed route fails, the packet is
forwarded to a border router. In addition to removing the link
from the LSDB after a small number of failures, the border
router will generate a “Route Uninstall” message so that the
node router does not continue to use the same erroneous route.

IV. EVALUATION

This section evaluates the performance of Hydro on several
key metrics across multiple networks. In one application, we
evaluate the performance of 57 nodes running Hydro for over
six months in a real deployment of wall-plug meters [6]. On
two experimental testbeds, we evaluate Hydro’s scalability,
performance, and resilience across a range of workloads and
failure conditions.

A. Methodology

We use two testbeds and a real deployment to evaluate
Hydro. TestbedA is a ceiling-mounted network of 48 nodes
across a single floor and a network diameter of 3-5 hops,
depending on environmental factors. TestbedB consists of
a network of 125 nodes spread across three floors, with a
diameter of 7-9 hops. Both testbeds are equipped with wired
backchannels, which we use to collect packet traces that allow
us to track the progress of packets through the network.
The real deployment consists of 49 nodes spread across four
floors of an office building, with the nodes placed in various
locations, such as under desks, inside a refrigerator, or onthe
ceiling. An additional eight nodes are installed in a remote
residential environment, resulting in a total deployment size
of 57 nodes.

For the baseline workload in these experiments, all nodes
report data to a border router every 30 seconds (with no other
form of traffic). We define a flow to be traffic between a
source / destination pair, and in our experiments, we use ICMP
ping messages, separated by 2 seconds for multi-packet flows.
In addition, all experiments are given time to bootstrap the
network topology formation, except as noted.

B. Implementation Details

Our implementation of Hydro is built on top of a low-
power IPv6 stack using6loWPAN [11] and the TinyOS 2
operating sytem [8]; it forms the core of the routing protocol
distributed withblip, the 6loWPAN/IPv6 stack developed
at Berkeley and distributed with TinyOS. Unless otherwise
stated, our implementation uses the default settings highlighted
in Section III. Border Routers exist in two forms: either a
normal PC with a connected node for interfacing with the L2N,
or an embedded Linux device with an integrated 802.15.4
radio.

C. Distributed DAG Formation

The distributed DAG is critical to Hydro’s functionality. To
assess this reliability, we examine the performance of Hydro
on our real-world deployment. The workload consisted of
nodes transmitting data every 1 minute to an external server.
Figure 2 provides a histogram of the packet delivery ratio
(PDR) observed across three days on our real deployment.
The nodes are deployed in a very wi-fi intensive environment,
leading to a slight degradation in performance during the
work-week. Nonetheless, we still see that the median PDR
is 99.4% on a Saturday, and 98.4% on a Monday, reinforcing
the key assertion that the distributed DAG effectively provides
a reliable backchannel to the border router.

Fig. 2. CDF of collection packet delivery ratio observed over three days in
a real-world deployment.

D. Centralized Route Installation

To evalute the impact of the centralized optimization of
installing routes, we compare our protocol to itself with route
installation disabled, so that all packets are forced to usea
default route through the border router. Our experiment begins
with 5 concurrent bidirectional flows of 50 packets each and
increases to 23 bidirectional flows, enlisting all but two nodes
in the network as traffic endpoints. Node Flow Tables are
cleared after each trial.

Figure 3 shows the result of the experiment after 5 tri-
als, each using different pairs. Error-bars signify standard
deviation. When route installs are active, the packet delivery
ratio remains above 98.7%, as seen in the top of Figure 3
indicating at a high level that the protocol performs “well,”



5

4 6 8 10 12 14 16 18 20 22 24

0.7

0.75

0.8

0.85

0.9

0.95

1

P
a

c
k

e
t 

D
e

liv
e

ry

P
e

rc
e

n
ta

g
e

 

 

Centralized
Triangle

4 6 8 10 12 14 16 18 20 22 24

0

5

10

15

R
o

u
te

 I
n

st
a

ll

Tr
a

n
s 

(p
e

r 
Fl

o
w

)

4 6 8 10 12 14 16 18 20 22 24

0

0.2

0.4

0.6

0.8

Number of Concurrent Flows

D
A

G
 C

o
n

tr
o

l 
P
a

c
k

e
ts

(p
e

r 
N

o
d

e
)

Fig. 3. Packet delivery and control traffic rates as a function of the number
of concurrent flows, with (centralize) and without (triangle) the route install
optimization.

the forwarding engine is “reliable,” and that it supports a
reasonably large amount of traffic. The lower two graphs
in Figure 3 contain the total number of centralized control
transmissionsper flow, and the total DAG maintainence traffic
per node per minute. These generally show a low level of
traffic. The kink in the center graph was caused by the protocol
reacting to a link failure.

Centralized systems are often criticized for being too slow
to detect and react to remote events. It is important that the
optimization we introduced does not break in the case of node
and link failures. Therefore, we next turn our attention to
Hydro’s robustness to node failures. Figure 4 examines the
performance of a single bidirectional flow as all other nodes
in the network are failed. The state of the system is constantly
probed by a single bidirectional flow with traffic sent once per
second. Every four minutes, four random nodes are removed
with the experiment ending when 44 nodes (out of 48 in
Testbed A) are killed, leaving the network partitioned. The
vertical lines in the graph indicate the points at which nodes
were killed.

0 500 1000 1500 2000 2500 3000 3500

0

0.2

0.4

0.6

0.8

1

P
a

c
k

e
t 

D
e

liv
e

ry

P
e

rc
e

n
ta

g
e

0 500 1000 1500 2000 2500 3000 3500

0

1

2

3

4

R
o

u
te

 I
n

st
a

ll

Tr
a

n
s 

(p
e

r 
Fl

o
w

)

0 500 1000 1500 2000 2500 3000 3500

0

2

4

6

Time

D
A

G
 C

o
n

tr
o

l 
P
a

c
k

e
ts

(p
e

r 
N

o
d

e
)

Fig. 4. Packet delivery ratio and control traffic statisticsfor a single flow
amidst node failures: each vertical line indicates that fournodes failed, until
finally only four nodes remain and the network is partitioned.

Figure 4 demonstrates that the packet delivery ratio remains
near 100% until near the end of the experiment. Added route
install traffic is clearly visible after a route has been broken.
At the same time, the DAG maintainence traffic works in the
background to maintain reachablity to the controller. Nodes
use cached default routes until approximately 1500 seconds,
when some nodes must begin seeking out new default routes
and therefore triggering additional DAG control traffic. At
the end of the experiment, the delivery rate drops to zero as
the network becomes partitioned. We note that this indicates
that Hydro is able to quickly respond to broken links in the
network, as the overall delivery rate remains close to 100%.

0 500 1000 1500 2000 2500 3000

0.8

0.85

0.9

0.95

1

P
a

c
k

e
t 

D
e

liv
e

ry

P
e

rc
e

n
ta

g
e

0 500 1000 1500 2000 2500 3000

0

5

10

R
o

u
te

 I
n

st
a

ll

Tr
a

n
s 

(p
e

r 
Fl

o
w

)

0 500 1000 1500 2000 2500 3000

0

0.5

1

1.5

2

Time

D
A

G
 C

o
n

tr
o

l 
P
a

c
k

e
ts

(p
e

r 
N

o
d

e
)

Fig. 5. Packet delivery ratio and control traffic statisticsfor multiple flows
amidst node failures. Approximatly half the nodes are involved in a flow, and
the rest progressively fail until only the active nodes remain. Four nodes are
removed at each vertical line.

To ensure that our result was not biased by our selection
of a particular pair of endpoints, we repeat the experiment
with a larger number of concurrent flows. Figure 5 shows
the same view of the data: at a high level, it appears that
Hydro still responds well to the network failures. We see an
interesting spike in control traffic around 1000 seconds into the
experiment: at this point we have removed approximately1/3
of the network, and the DAG forms a brief loop, which persists
for several minutes before the DAG re-forms and success rates
return to near 100%.

The key result of these two experiments is that Hydro’s
mechanism to both install and expire state in the network
continues to work even in the face of substantial failure.

E. Footprint and Overhead Analysis

The previous section primarily focused on the performance
of Hydro, namely stretch and packet delivery ratio. In this
section we examine state requirements and control overhead,
as well as Hydro’s code and memory footprint.

Table I breaks out the RAM and ROM sizes of the network-
ing components in our system stack. While all are critical to
Hydro’s operation, all of the protocol’s logic is embedded in
Hydro Router, which is only 5K of code, and 524 Bytes of
RAM including all routing state for six individual flows as
well as 210 Bytes of other static data. Removing the route



6

installation functionalty and providing only triangle routing
reduces the code size by approximately 2kB.

Component ROM Size RAM Size
CC2420 Driver 5390 237

6lowpan Adaptation 1310 0
IP Forwarding Engine 2760 188

Hydro Router 5172 524
ICMP Engine 1590 34

UDP Transport Layer 662 8

TABLE I
CODE AND MEMORY FOOTPRINT.

Overhead (bytes) Typical Frequency
Top. Report 4+(4·Neigh)+NA Data Rate
Src. Route 4+(2·Hops) Per Packet
Route Inst. 1 + (2·Hops) Per Flow

Solicit. 1 Bit ∝ churn
Adver. 3 ∝ churn

TABLE II
HYDRO CONTROL OVERHEAD

Generally, the most frequent type of overhead is source
routing headers, which are included in all packets from the
border router and also in all packets that use an installed route.
Router solicitations and advertisements also cause a smalllevel
of background traffic; in stable networks these packets are
rarely sent, reducing the energy demands of the protocol.

F. IETF Criteria

The challenges of serving this class of networks with
conventional routing protocols have resulted in an IETF draft
that identifies five quantifiable criteria that are necessary
for an L2N routing protocol [9]: We briefly consider these
requirements as a check that we have not violated any well-
known design rules for this space.

Table ScalabilityEach node’s state must be bound by the
number of unique destinations it communicates with:
state in our design is stored only for active flows, and
constant size table for default routes.

Loss Response Any response to loss is localized to the
affected data flow:The failure of nodes or links cause
traffic to be diverted to the border router, which is
simultaneously alerted of the change. Fresh state is
installed once the border router rebuilds its topology.

Control Cost Control overhead must be bound by the
periodic data traffic rate:We have no periodic bea-
con traffic. Topology collection is data driven in most
cases, and topology reports are piggybacked on data
packets. This traffic involves only the communicating
nodes and the border router.

Link Quality Protocol must define a metric for differen-
tiating among links:Paths are chosen based on ETX.

Node Cost Protocol must support heterogeneity in the
network: Hydro provides the ability for nodes to
specify their willingness to forward packets for other
nodes, and node attributes can be considered in the
centralize route computation.

V. CONCLUSION

As sensor networks are used in ever larger and longer
deployments, fixed in physical space and sharing a network
across many applications, the ability to communicate with
a particular node is no longer an expensive luxury, but
rather something foundational. In this paper we have presented
Hydro, a protocol for low power and lossy wireless networks
that begins with the premise that centralized triangle routing
provides any-to-any routing with constant state and minimum
complexity at the cost of high stretch. Our optimizations
allow reducing routing stretch without overloading constrained
nodes with excessive state or traffic requirements. Hydro’s
performance shows that it is ready to support an emerging
class of applications while still remaining efficient for classical
workloads.

REFERENCES

[1] M. Bahr. Proposed routing for ieee 802.11s wlan mesh networks. In
WICON ’06: Proceedings of the 2nd annual international workshop on
Wireless internet, page 5, New York, NY, USA, 2006. ACM.

[2] T. Clausen and P. Jacquet. RFC 3626: Optimized link state routing
protocol, 2003.

[3] R. Fonseca, O. Gnawali, K. Jamieson, and P. Levis. Collection tree
protocol. http://www.tinyos.net/tinyos-2.x/doc/html/tep119.html.

[4] R. Fonseca, S. Ratnasamy, D. Culler, S. Shenker, and I. Stoica. Beacon
vector routing: Scalable point-to-point routing in wireless sensornets. In
In NSDI, 2005.

[5] J. Hui and D. Culler. Ip is dead, long live ip for wireless sensor networks.
In the 6th ACM Conference on Embedded Networked Sensor Systems
(SenSys), 2008.

[6] X. Jiang, S. Dawson-Haggerty, P. Dutta, and D. Culler. Design and
implementation of a high-fidelity ac metering network. InProceedings of
the 8th ACM/IEEE International Conference on Information Processing
in Sensor Networks (IPSN’09) Track on Sensor Platforms, Tools, and
Design Methods, 2009.

[7] D. Johnson, Y. Hu, and D. Maltz. RFC 4728: The dynamic source
routing protocol (dsr) for mobile ad hoc networks for ipv4, 2007.

[8] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler. Tinyos: An
operating system for wireless sensor networks.Ambient Intelligence,
2005.

[9] P. Levis, A. Tavakoli, and S. Dawson-Haggerty. Overviewof existing
routing protocols for low power and lossy networks, 2008.

[10] Y. Mao, F. Wang, L. Qiu, S. S. Lam, and J. M. Smith. S4: Small state
and small stretch routing protocol for large wireless sensornetworks. In
NSDI, 2007.

[11] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. RFC 4944:
Transmission of ipv6 packets over ieee 802.15.4 networks, 2007.

[12] C. E. Perkins and E. M. Belding-Royer. Ad-hoc on-demand distance
vector routing. InWMCSA, pages 90–100, 1999.

[13] K. S. J. Pister and L. Doherty. Tsmp: Time synchronized meshprotocol.
In Parallel and Distributed Computer and Systems, 2008.

[14] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,
S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and W. Hong. A
macroscope in the redwoods.ACM Sensys, 2005.

[15] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M.Welsh. Fidelity
and yield in a volcano monitoring sensor network. InOSDI, pages 381–
396, 2006.

[16] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of
multihop routing in sensor networks. InProceedings of the First ACM
Conference on Embedded Networked Sensor Systems, Los Angeles, CA,
Nov. 2003.


