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Abstract: The study of lipopeptides and their related compounds produced by various living or-
ganisms from bacteria to marine invertebrates is of fundamental interest for medicinal chemistry,
pharmacology, and practical clinical medicine. Using the principles of retrosynthetic analysis of linear
and cyclic peptides, the pharmacological activity of unique, unusual, and rare fatty acids (FA) that are
part of natural lipopeptides was investigated. To search for new biologically active natural metabo-
lites from natural sources, more than 350 FA incorporated into linear and cyclic peptides isolated from
bacteria, cyanobacteria, microalgae, marine invertebrates, fungal endophytes, and microorganisms
isolated from sediments are presented. Biological activities have been studied experimentally in
various laboratories, as well as data obtained using QSAR (Quantitative Structure-Activity Relationships)
algorithms. According to the data obtained, several FA were identified that demonstrated strong
antibacterial, antimicrobial, antifungal, or antitumor activity. Along with this, FA have been found
that have shown rare properties such as antiviral, antidiabetic, anti-helmintic, anti-inflammatory,
anti-psoriatic, anti-ischemic, and anti-infective activities. In addition, FA have been found as potential
regulators of lipid metabolism, as well as agents for the treatment of acute neurological disorders, as
well as in the treatment of atherosclerosis and multiple sclerosis. For 36 FA, 3D graphs are presented,
which demonstrate their predicted and calculated activities.
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1. Introduction

It is known that peptides are natural biological molecules, are found in all living
organisms living on planet Earth and apparently play a key role in all types of biological ac-
tivity [1–9]. Linear and/or cyclic lipopeptides and depsipeptides of bacteria, cyanobacteria,
marine invertebrates, and fungi and fungal endophytes are of great interest, both from the
point of view of academic research and from a purely practical point of view, as well as their
use in pharmacology and medicine [1,2,10–19]. Both types of peptides have shown different
biological activities, which include antiviral, anti-inflammatory, antibacterial, antifungal,
anti-tumor, and other activities [3,5,12,15,17]. Lipopeptides are molecules consisting of a
lipid fragment connected to peptides with an ester bond, while depsipeptides are peptides
in which one or more amide groups are replaced by a corresponding ester [20–25].

When scanning more than 30,000 peptide structures, especially lipopeptides and
depsipeptides isolated from marine and terrestrial organisms, it was found that these com-
pounds in the absolute majority (over 80%) contain fragments of saturated FA (C6:0–C26:0),
about 15% contain iso-, anteiso- and methyl-branched chain FA (C6:0–C24:0), and about
4–5% contain unsaturated FA. A few exceptions to FA not included in this review are amino
fatty (carboxylic) acids and those mentioned above. Unique, rare, and unusual FA make up
less than one percent of the total peptides screening.

This review focuses on this rare group of FA that are part of lipopeptides or depsipep-
tides and are covalently linked. The lipopeptides used in this review were found and
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isolated from bacteria, microalgae, cyanobacteria, marine invertebrates, fungal endophytes,
and phytopathogenic microorganisms. The biological activity of many lipopeptides has
not been studied. The biological activity of FA, as well as some amino acids that make up
the peptides, was studied using the PASS software [26–28]. In addition, 3D graphs of the
most interesting FA from the point of view of their pharmacological activity are presented.

2. Bacterial and Cyanobacterial Linear and Cyclic Peptides and Their Fatty Acids

It is known that cyanobacteria (or blue–green algae) belong to the division of Gram-
negative bacteria capable of photosynthesis, accompanied by the release of oxygen, which
have a blue–green color, and they are called cyanobacteria [29–33]. From the Archean rocks
of Western Australia, fossils of cyanobacteria have been identified, the age of which is
determined at 3.5 billion years [34,35].

Marine cyanobacteria have been attracting increasing attention for probe and drug
discovery due to the high incidence of structurally novel bioactive secondary metabolites
that complement those known from terrestrial sources [36–38]. These natural products are
predominantly modified peptides and depsipeptides, polyketides, and peptide–polyketide
hybrids, many of which are cyclic and oftentimes halogenated [39–41]. Cyanobacteria
produce many bioactive compounds of various chemical structures, with about 40% of
them being lipopeptides [36–45].

Using cytotoxic cyclic depsipeptides as an example, we want to show which FA are
incorporated into peptides and are of interest to academic science for their unusual chemical
structures. All the discovered cryptophycins can be retrosynthetically divided into four sub-
fragments or subunits, namely A–D. Unit A represents the most exotic fragment, (5S,6S,E)-
5-hydroxy-6-(2R,3R)-3-phenyloxiran-2-yl)hept-2-enoic acid. Fragment B can be derived
from D-O-methyltyrosine and represents the (R)-2-amino-3-(3-chloro-4-methoxyphenyl)-
propanoic acid. Unit C represents 3-aminopropanoic acid (known as β-alanine). Finally,
(S)-2-hydroxy-4-methyl-pentanoic acid, also known as L-leucic acid (or 2-hydroxyisocaproic
acid), constitutes the fragment D (Figure 1).
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Figure 1. Molecular structure of cryptophycin-1 and retrosynthetic division on the subunits. Shortly
after the discovery of cryptophycin-1, biological screening assays showed a high cytotoxicity against
human cervical carcinoma (KB) and human breast adenocarcinoma (MCF-7).

Cryptophycin-1 is the most important member of the cryptophycins family. It was
first isolated from Nostoc sp. ATCC 53787 by Merck scientists as an antifungal agent [46].
However, a detailed study of cryptophycin-1 showed that it was too toxic to be of practical
use, at least as an antifungal agent. Subsequent studies have shown that cryptophycin-1 is
an active microtubule depolymerization agent, showing excellent activity against a wide
range of solid tumors implanted in mice, including multiple drug-resistant tumors [47]. In
addition, cryptophycin-1 suppresses tubulin dynamics and induces apoptosis [48,49].

Considering the above experimental data, we tested the biological activity of cryptophycin-
1 and its subunits A, B, C and D included in this depsipeptide. The data of the PASS analysis
are shown in Table 1. The data obtained by various groups of scientists are fully confirmed
by the PASS program. The dominant activity was antifungal with a confidence level of 84.5%,
in addition, antitumor activity was found with a confidence level of 77%, antineoplastic
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(solid tumors) activity with a reliability of 63%, and apoptosis agonist-62%. Thus, PASS fully
confirmed the experimental data, and thus the program showed the correctness and quality of
its work.

Table 1. Biological activity cryptophycin-1 and its subunits A, B, C and D.

Fragment Name Predicted Biological Activity, Pa * Reported Activity [46–49]

Cryptophycin-1

Antifungal (0.845)
Antimitotic (0.784)

Antineoplastic (0.771)
Antineoplastic (solid tumors) (0.631)

Apoptosis agonist (0.625)

Antifungal
Anticancer
Apoptosis

Subunit A (1)

Antineoplastic (0.856)
Antileukemic (0.783)

Antiviral (Arbovirus) (0.775)
Antifungal (0.773)

Cytoprotectant (0.675)
Apoptosis agonist (0.669)

Fibrinolytic (0.664)
Antimitotic (0.634)

Antithrombotic (0.624)

No published data

Subunit B

Preneoplastic conditions treatment (0.836)
Antiviral (Arbovirus) (0.774)

Acute neurologic disorders treatment (0.759)
Antiviral (Picornavirus) (0.715)

No published data

Subunit C

Fibrinolytic (0.814)
Preneoplastic conditions treatment (0.803)

Antiviral (Arbovirus) (0.760)
Antimutagenic (0.737)
Anticonvulsant (0.676)

Antiviral (Picornavirus) (0.662)

No published data

Subunit D

Anti-ischemic, cerebral (0.921)
Sclerosant (0.871)

Antihypertensive (0.756)
Anti-hypoxic (0.741)

Antiviral (Arbovirus) (0.740)

No published data

* Only activities with Pa > 0.5 are shown. The numbers in brackets show the level of biological activity. 100%
activity level is 1.000.

Interestingly, the antifungal activity that is characteristic of cryptophycin-1 was found
only in subunit A and was not found in other subunits B, C and D. From this it can be
inferred that subunit A makes a significant contribution to the overall pool of activity of
this depsipeptide (Table 1).

Cryptophycin-1, similar to other cryptophycins, is a class of 16-membered highly
cytotoxic macrocyclic depsipeptides produced by the cyanobacterium from the strain Nos-
toc [46]. So, (5S,6S,E)-5-hydroxy-6-(2R,3R)-3-phenyloxiran-2-yl)hept-2-enoic acid (1, struc-
ture shown in Figure 2) is a fragment of the cryptophycins 1, 2, 16, 21, 23, 24, 28, 31,
38, 50, 52, 54, 176 and 326 [50,51], and (2E,5S,6R,7E)-5-hydroxy-6-methyl-8-phenylocta-
2,7-dienoic acid (2) was detected in cryptophycins 3, 4, 17, 18, 19, 29, 31, 43, 45, 46, 49,
175 and 327 (Figure 3). (S,E)-5-Hydroxy-6-(2R,3R)-3-phenyloxiran-2-yl)hex-2-enoic acid
(3) was found in the structure of cryptophycin 28, (R,2E,7E)-5-hydroxy-8-phenylocta-2,7-
dienoic acid (4) was detected in cryptophycin 40, and (6S,7S,Z)-6-hydroxy-7-((2R,3R)-3-
phenyloxiran-2-yl)oct-3-enoic acid (5) was isolated from cryptophycin 327.
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Figure 2. The genus of cyanobacteria Nostoc: (a), Nostoc sp.; (b), Nostoc commune; (c), N. commune;
(d), N. commune, which inhabit various environments, such as the bottom of both fresh and salt
lakes, and form colonies consisting of filaments of moniliform cells in a gelatinous membrane.
Cyanobacteria of the genus Nostoc produce saturated and unsaturated fatty acids, lipopeptides,
depsipeptides, oligopeptides and toxins. All photos are taken from sites where permission was
granted for non-commercial use.
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Cryptophycin-38, -326, and -327 were isolated from the terrestrial cyanobacterium
Nostoc sp. GSV 224 by Chaganty and co-workers [52], and cryptophycin-2, -21, -46,
-175, and -176 have been identified from the MeCN-CH2Cl2 extract of the same blue–green
algae [50,53,54].

(5S,6S,7R,8S,E)-8-Chloro-5,7-dihydroxy-6-methyl-8-phenyloct-2-enoic acid (6) has been
detected in the cryptophycins 8 and 55 which were isolated from Nostoc sp. GSV, and
(5S,6S,7R,8S,E)-5,7-dihydroxy-8-methoxy-6-methyl-8-phenyloct-2-enoic acid (7) was found in
the cryptophycins 9 and 10 [55]. 4-(2S,3R,4R,5S)-4-Hydroxy-3-methyl-5-phenyltetrahydrofuran-
2-yl)-butanoic acid (8) has been found in the linear cryptophycins 6 and 7, and (5S,6S,E)-5-
hydroxy-6-((2S,3S)-3-phenyloxiran-2-yl)hept-2-enoic acid (9) was detected in cryptophycin-
101. The anticancer activity of natural, semi-synthetic and synthetic cryptophycins has been
studied in detail and summarized in several review articles [50–57]. The biological activity of
the fatty acids incorporated into cryptophycins is shown in Table 2.

Table 2. Predicted biological activity of subunit A (FA) incorporated into cryptophycins.

No. Predicted Biological Activity, Pa *

2
Antiviral (Arbovirus) (0.780); Antineoplastic (0.766); Antifungal (0.707)

Lipid metabolism regulator (0.705); Hypolipemic (0.694)
Preneoplastic conditions treatment (0.667); Apoptosis agonist (0.664)

3

Antiviral (Arbovirus) (0.804); Antineoplastic (0.795); Antidiabetic (0.701)
Antifungal (0.695); Anti-inflammatory (0.680); Cytoprotectant (0.661)

Immunosuppressant (0.634); Anti-hypercholesterolemic (0.629)
Antithrombotic (0.611)

4
Antiviral (Arbovirus) (0.833); Lipid metabolism regulator (0.827)

Anti-inflammatory (0.765); Hypolipemic (0.759); Cytoprotectant (0.729)
Anti-hypercholesterolemic (0.715); Antineoplastic (0.697)

5 Antineoplastic (0.850); Antileukemic (0.781); Antifungal (0.727)
Anti-hypoxic (0.702); Antiviral (Arbovirus) (0.683); Cytoprotectant (0.638)

6 Antineoplastic (0.764); Apoptosis agonist (0.762)
Antiviral (Arbovirus) (0.728); Antimitotic (0.664); Antifungal (0.560)

7 Antiviral (Arbovirus) (0.730); Antifungal (0.658); Antineoplastic (0.611)

8

Antineoplastic (0.776); Antifungal (0.694); Anti-helmintic (0.691)
Antidiabetic (0.660); Acute neurologic disorders treatment (0.625)

Antibacterial (0.624); Antiviral (Arbovirus) (0.621)
Antiviral (Picornavirus) (0.608)

9 Antineoplastic (0.856); Antileukemic (0.783); Antiviral (Arbovirus) (0.775)
Antifungal (0.773); Anti-hypercholesterolemic (0.742); Apoptosis agonist (0.669)

* Only activities with Pa > 0.5 are shown. The numbers in brackets show the level of biological activity. 100%
activity level is 1.000.

The analysis of the predicted biological activity of subunit A incorporated into cryp-
tophycins, which is presented in Table 2, shows that all these fatty acids have three dom-
inant properties such as antiviral (Arbovirus), antifungal and moderate antineoplastic
activities with some variations in different fatty acids. The 3D graph of the activities of
cryptophycin-1 and its four subunits A, B, C and D is shown in Figure 4.

It is known that natural compounds containing an acetylenic (triple) bond have
been isolated from many species of plants, fungi, fungal endophytes, and various marine
invertebrates [58–63]. Numerous studies have shown that many of these metabolites exhibit
various biological activities, such as antibacterial, antimicrobial, antifungal, antitumor, and
other medicinal properties [58,64–66]. Various species of freshwater and marine plants,
macrophytes, microalgae, cyanobacteria and some other aquatic organisms produce a wide
variety of different bioactive molecules containing acetylenic bonds [58,64–66].
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Figure 4. 3D graph showing the predicted and calculated activity of cryptophycin−1 and
its four subunits A in Figure 1 ((5S,6S,E)-5-hydroxy-6-((2R,3R)-3-phenyloxiran-2-yl)-hept-2-enoic
acid); B in Figure 1 ((R)-2-amino-3-(3-chloro-4-methoxyphenyl)-propanoic acid); C in Figure 1
(3-aminopropanoic acid) and D in Figure 1 ((S)-2-hydroxy-4-methylpentanoic acid), with the highest
degree of confidence being more than 74%. Designations A, B, C, and D are shown in Figure 1. The
depsipeptide named cryptophycin−1 was produced by the cyanobacterium from the strain Nostoc.

The genus Lyngbya is the most abundant and available cyanobacterial species and
is distributed throughout the world in tropical and subtropical regions. The species
L. majuscule (see Figure 5), L. martensiana, L. aestuarii and L. wollei are currently the most
important species of their genus Lyngbya and synthesize many secondary metabolites
including lipopeptides.

Through numerous studies, it has been established that the widespread tropical
cyanobacterium Lyngbya majuscula synthesizes more than 30% of all natural products
derived from all marine cyanobacteria [67], which exhibit various activities, including
antiproliferative, antifeedant, anti-inflammatory, molluscicidal, and immunosuppressive
properties. It has been established that more than half of the known secondary metabolites
are either linear or cyclic lipopeptides, some of which contain an acetylene fragment [67].
The linear lipopeptides called apramides A, B, and G were found in the cytotoxic fraction
of L. majuscula collected at Apra Harbor (Guam) [68], and apramide G showed strong
cytotoxic activity against KB and LoVo cells, respectively [69]. (R)-2-methyloct-7-ynoic
acid (10, see Figure 6 for structure, and biological activity shown in Table 3) was found in
apramide A and G, and apramide B contained oct-7-ynoic acid (11).
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Dragonamide, dysidenamide, nordysidenin, and pseudodysidenin were isolated from
L. majuscula collected from the beach at Boca del Drago Beach, Bocas del Toro, Panama.
Dragonamide containing (S)-2-methyloct-7-ynoic acid (12) showed strong cytotoxic activity
against P-388, A-549, HT-29, and MEL-28 cancer cells [70], and was synthesized four years
later after its discovery [71]. The n-BuOH extract of L. majuscula contained a cytotoxic,
linear lipotetrapeptide named carmabin A, which contains 2,4-dimethyldec-9-ynoic acid
(13) [72]. The depsipeptides named antanapeptins A–D, of which antanapeptin A and D
contain 3-hydroxy-2-methyloct-7-ynoic acid (14), were isolated from L. majuscula of the
Antany Mora collection (Madagascar), and both depsipeptides showed moderate cytotoxic
activity against neuroblastoma-2A cells in mice [73].

Pitipeptolide A, which belongs to the cyclodepsipeptides, was isolated from extracts
of the cyanobacterium L. majuscula, which lives around the Piti Bomb Holes (Guam Reefs),
where marine blooms caused by these cyanobacteria occur with a certain periodicity. This
lipopeptide containing a 2,2-dimethyl-3-hydroxy-7-octynoic acid (15) [74] exhibited weak
cytotoxicity against LoVo cancer cells but possessed moderate antimycobacterial activity
and stimulated elastase activity. Other pitipeptolides D, E, and F also contained this fatty
acid. Two depsipeptides named yanucamides A and B were found in lipid extracts of two
cyanobacteria, L. majuscula and Schizothrix sp. collected at Yanuca Island (Fiji) [75]. Both
lipopeptides contained the same fatty acid (15), which has previously been described as
a major component of kulolide-1 and kulokainalide-1 isolated from the marine mollusk
Philinopsis speciosa [76].

This acetylenic acid (15) was also found in the depsipeptides called wewakpeptins A
and C, and both peptides showed cytotoxic activity against H460 human lung tumor and
the mouse neuroblastoma-2A cell lines [77–79]. Additionally, another cyclic depsipeptide
called georgamide was isolated from a non-identified Australian cyanobacterium [79],
containing two hydroxy carboxylic acids, 2(S)-hydroxy-3(R)-methyl-pentanoic acid and FA
(15), which are also present in wewakpeptins A and B [79].

Cytotoxic depsipeptide, which was named onchidin B, was isolated from extracts of
the pulmonate mollusk Onchidium sp. and contained the 3-hydroxy-2-methyl-7-octynoic
acid (14) [80–82].

Cyclic depsipeptide, kulolide-1 was isolated from a cephalaspidean mollusk, Philinop-
sis speciosa, and contains two carboxylic acids, L-3-phenyllacetic acid and the unprecedented
(R)-3-hydroxy-2,2-dimethyl-7-octynoic acid (15). The isolated depsipeptide showed activity
against L-1210 leukemia cells and P388 murine leukemia cells and caused a morphological
change in 3Y1 rat fibroblast cells [83,84]. In addition, this mollusk yielded a linear peptide,
pupukeamide, and an unprecedented macrolide, tolytoxin-23-acetate, which contained this
acetylenic acid [84]. Interestingly, the lipopeptides kulolide-2, kulolide-3, kulokainalide-1,
kulomoopunalide-1, kulomoopunalide-2, and tolytoxin 23-acetate were found in com-
bined extracts of ((EtOH and CHCl3/MeOH (1:1))) mollusk Ph. speciosa. Kulokainalide-1
contains acetylenic acid (15), and kulomoopunalide-1 and kulomoopunalide-2 contains (R)-
3-hydroxy-2-methyl-7-octynoic acid (14) [84]. Widely present in lipopeptides, acetylenic
acid (15) was also found in structures such as in the depsipeptides mantillamide, and
dudawalamide A, isolated from extracts of the marine cyanobacterium Lyngbya sp. Both
peptides show anticancer and antimalarial activity [85]. A cyclic depsipeptide, guineamide
G with FA (15), is produced by the marine cyanobacterium L. majuscula, collected from
Papua New Guinea, and exhibits potent brine shrimp toxicity and moderate cytotoxicity
to a mouse neuroblastoma cell line [86]. Additionally, the cocosamides A and B from the
lipophilic extract of a collection of L. majuscula from Cocos Lagoon (Guam), demonstrated
activity against HT-29 cells, and also contained FA (15) [87]. FA (15) was present in cyclic
depsipeptides, and the viequeamides A–F, which were discovered from a shallow subtidal
collection of Rivularia sp.; viequeamide A is active against the H460 human lung cancer
cell line [88]. Other cyclic depsipeptides, named dudawalamides A−D, were isolated
from Papua New Guinea from the cyanobacterium Moorea sp., and FA (15) was found in
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dudawalamide A as recently reported [89]. The 3D graph of the activity of fatty acids (15) is
shown in Figure 7.
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The Luesch group from the Florida University reported the isolation of cytotoxic
cyclodepsipeptides, veraguamides A–F from a cyanobacterium Symploca cf. hydnoides at
Cetti Bay, Guam [90], and veraguamides H, I–L from the marine cyanobacterium Oscillatoria
margaritifera at the Coiba National Park, Panama [91], which contained 3-hydroxy-2-methyl-
7-octynoic acid (14). Among them, veraguamides A and B are 8-bromo-3-hydroxy-2-
methyl-7-octynoic acid (16)-containing cyclic peptides, while veraguamides K and L are
acid (16)-containing linear peptides. The Okinawan marine cyanobacterium Oceania sp.
produces a cytotoxic depsipeptide called odobromoamide containing an alkynyl bromide
(16), and this demonstrated cytotoxic activity against HeLa S3 cells and broad-spectrum
cytotoxicity against a panel of human cancer cell lines [92].

An alkynyl-containing cyclic depsipeptide, palauamide, containing 5,7-dihydroxy-
2,6-dimethyldodec-2-en-11-ynoic acid (17), was extracted from a Lyngbya sp. from Palau.
Palauamide showed strong cytotoxicity against KB cells with an IC50 value of 13 nM [93].
Sitachitta and co-workers reported the isolation and identification of cyclic peptides,
trungapeptins A, B, and C, containing 3-hydroxy-2-methyl-7-octynoic (18), 3-hydroxy-
2-methyl-7-octenoic (19), and 3-hydroxy-2-methyl-7-octanoic acid (20), respectively [94].
Trungapeptin A exhibited potent brine shrimp toxicity and ichthyotoxicity at 10 ppm and
6.2 ppm, respectively.

In 2009, a hmoya-containing analog of hantupeptin A (19, 3-hydroxy-2-methyl-7-
octynoic acid) was discovered from the marine cyanobacterium Lyngbya majuscula from
Pulau Hantu Besar, Singapore [95]. Further, hantupeptin A afforded both brine shrimp
toxicity at 10 ppm and strong cytotoxicity against the leukemia cell line MOLT-4 with an
IC50 value of 32 nM. The same FA (19) was detected in trungapeptin A, which was detected
in the marine cyanobacterium L. majuscula collected from Trung Province, Thailand [96].
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A sample of brown Lyngbya polychroa from Hollywood Beach, Fort Lauderdale, Florida
yielded an impressive array of structurally diverse cytotoxic linear tetrapeptide–octynoates,
the dragonamides A, B, C, D and E [97–99]. The dragonamides C and D showed weak
activity, with GI50 values of 56 and 59 µM against U2OS osteosarcoma cells, 22 and 32 µM
against HT29 colon adenocarcinoma cells, and 49 and 51 µM against IMR-32 neuroblastoma
cells, respectively. From isolated linear tetrapeptides, the dragonamides A and B contain FA
(12), dragonamide C contains FA (21), dragonamide D contains FA (22) and dragonamide
E contains FA (23).

Table 3. Predicted biological activity of FA from cyanobacteria of the strain Nostoc.

No. Predicted Biological Activity, Pa *

10
Neuroprotector (0.806); Sclerosant (0.779); Anticonvulsant (0.734)

Acute neurologic disorders treatment (0.684); Anti-inflammatory (0.681)
Antineoplastic (0.631); Preneoplastic conditions treatment (0.628); Anti-neurogenic pain (0.610)

11 Neuroprotector (0.827); Antineoplastic (0.708); Preneoplastic conditions treatment (0.672)
Anticonvulsant (0.672); Antiviral (Arbovirus) (0.647); Psychostimulant (0.643)

12 Neuroprotector (0.806); Sclerosant (0.779); Acute neurologic disorders treatment (0.684)
Antineoplastic (0.631); Preneoplastic conditions treatment (0.628)

13 Anticonvulsant (0.797); Hypolipemic (0.762); Acute neurologic disorders treatment (0.759)
Neuroprotector (0.739); Sclerosant (0.727); Antineoplastic (0.638)

14 Sclerosant (0.767); Neuroprotector (0.748); Antineoplastic (0.666)
Acute neurologic disorders treatment (0.645); Antiviral (Arbovirus) (0.595)

15
Anti-psoriatic (0.923); Antineoplastic (0.883); Neuroprotector (0.675)

Antiviral (Arbovirus) (0.635); Neurodegenerative diseases treatment (0.620)
Alzheimer’s disease treatment (0.591)

16 Sclerosant (0.767); Antifungal (0.735); Antineoplastic (0.730)

17 Antineoplastic (0.812); Anti-inflammatory (0.763); Apoptosis agonist (0.691)

18 Sclerosant (0.767); Antineoplastic (0.666); Acute neurologic disorders treatment (0.645)

19 Acute neurologic disorders treatment (0.795); Sclerosant (0.754)
Lipid metabolism regulator (0.749); Antiviral (Arbovirus) (0.704)

20 Sclerosant (0.910); Antiviral (Arbovirus) (0.784); Acute neurologic disorders treatment (0.747)
Preneoplastic conditions treatment (0.714); Lipid metabolism regulator (0.667)

21 Antineoplastic (0.758); Neuroprotector (0.752); Antiviral (Arbovirus) (0.636)

22 Neuroprotector (0.756); Periodontitis treatment (0.744); Antineoplastic (0.680)
Preneoplastic conditions treatment (0.655); Psychostimulant (0.545)

23 Antineoplastic (0.765); Neuroprotector (0.724); Lipid metabolism regulator (0.720)
Apoptosis agonist (0.625); Acute neurologic disorders treatment (0.566)

24 Neuroprotector (0.800); Antineoplastic (0.738); Anticonvulsant (0.678)

25 Anti-psoriatic (0.924); Lipid metabolism regulator (0.889); Antineoplastic (0.867)
* Only activities with Pa > 0.5 are shown.

Several linear alkynoic lipopeptides have been isolated from a Panamanian strain of the
marine cyanobacterium L. majuscula, including carmabin A, dragomabin, and dragonamide
A, which showed good antimalarial activity (IC50 4, 6, and 7.7 µM, respectively), whereas
the non-aromatic analog, dragonamide B, was inactive [98]. The isolated linear lipopeptides
dragomabin and dragonamide A and B contained fatty acid (12), while fatty acid (13) were
determined in carmabin A.

A marine cyanobacterium Oscillatoria nigro-viridis from Panama area led to the isolation
of two linear alkynoic lipopeptides, viridamides A and B with 5-methoxydec-9-ynoic acid
(24). Viridamide A showed anti-trypanosomal activity with an IC50 = 1.1 µM, and anti-
leishmanial activity with an IC50 = 1.5 µM [100]. An acetylene-containing lipopeptide,
kurahyne with FA (23), was isolated from a cyanobacterial assemblage that mostly consisted
of Lyngbya sp. Kurahyne inhibited the growth of human cancer cells and induced apoptosis
in HeLa cells, and it seemed to localize in mitochondria [101].
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Cyclic depsipeptides, the cocosamides A and B, containing FA (15) and (25), respec-
tively, have been detected in the lipophilic extract of a collection of L. majuscula from Cocos
Lagoon, Guam. Both metabolites showed weak cytotoxicity against MCF7 breast cancer
and HT-29 colon cancer cells [102].

The marine benthic cyanobacteria Oscillatoria nigroviridis from the Colombian Caribbean
Sea produces lipopeptides named almiramides B, D, E, F, H, and G with FA (12). Almi-
ramides B and D show a strong activity against human tumor cell lines A549, MDA-MB231,
MCF-7, HeLa and PC3 [103]. Pitipeptolides D, E and F with (15, FA) showing antimycobac-
terial cyclodepsipeptides were detected in the marine cyanobacterium L. majuscula from Piti
Bomb Holes, Guam. Obtained compounds showed weak cytotoxicity against HT-29 colon
adenocarcinoma and MCF7 breast cancer cells [86].

Cytotoxic cyclic depsipeptides, hantupeptins A and B, have been derived from the
marine cyanobacterium L. majuscula from Pulau Hantu Besar, Singapore. Hantupeptin A
with FA (12) showed strong cytotoxicity against leukemia cells and breast cancer MCF-
7 cells (IC50 values of 32 and 4.0 µM, respectively), while hantupeptin B with FA (19)
displayed moderate cytotoxicity against MOLT-4 (leukemia) and MCF-7 cell lines [95,104].

The cyclic depsipeptide guineamide G with FA (15) has been extracted from Lyngbya
semiplena and L. majuscula. The isolated lipopeptide exhibited brine shrimp toxicity and
showed potent cytotoxicity against a mouse neuroblastoma cell line with an LC50 value of
2.7 µM [105,106].

A slightly halophilic myxobacterial strain, SMH-27-4, was isolated from nearshore soil.
This slowly-growing myxobacterium produced the novel antibiotic depsipeptides named
miuraenamides A and B, which both contain (R,E) -9-hydroxy-6-methyldec-5-enoic acid
(26, structure see Figure 8, and Table 4). Miuraenamide A exhibited potent and selective
inhibition against a phytopathogenic microorganism, Phytophthora sp., And moderate
inhibition against some fungi and yeasts. Both metabolites inhibited NADH oxidase at
IC50 values of 50 µM [107].
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Table 4. Predicted biological activity of FA from cyanobacteria of the strain Lyngbya.

No. Predicted Biological Activity, Pa *

26 Antineoplastic (0.855); Lipid metabolism regulator (0.842)
Apoptosis agonist (0.803)

27 Sclerosant (0.871); Acute neurologic disorders treatment (0.870)
Antineoplastic (0.714)

28
Antineoplastic (0.906); Hypolipemic (0.902); Lipid metabolism regulator (0.879)

Apoptosis agonist (0.811); Acute neurologic disorders treatment (0.670)
Atherosclerosis treatment (0.662); Proliferative diseases treatment (0.562)

29 Cholesterol antagonist (0.649); Antianginal (0.628)
Lipid metabolism regulator (0.532)

30 Cholesterol antagonist (0.649); Antianginal (0.628)
Lipid metabolism regulator (0.532)

31 Iron antagonist (0.952); Antineoplastic (0.736)
Microtubule formation stimulant (0.578)

32 Neurodegenerative diseases treatment (0.688); Bone diseases treatment (0.528)

33 Dermatologic (0.667); Anti-psoriatic (0.663)
* Only activities with Pa > 0.5 are shown.

Cyanobacteria are known to require iron to grow, and they often inhabit iron-restricted
habitats and produce several siderophores, including an unusual FA (27). Iron starvation
triggered the synthesis of β-OH-Asp lipopeptides in cyanobacteria Rivularia sp. strain PCC
7116, Leptolyngbya sp. strain NIES-3755, and Rubidibacter lacunae strain KORDI 51-2 [108].

Unusual (2E,6E,8E)-12-hydroxy-14-methoxy-2,4,9-trimethylpentadeca-2,6,8-trienoic
acid (28) was detected in cyclic peptide named alotamide A, which is produced by the
marine cyanobacterium Lyngbya bouillonii. Alotamide A displays an unusual calcium influx
activation profile in murine cerebrocortical neurons with an EC50 of 4.18 µM [109]. The
cyclic peptides apratoxins A–C possess the unprecedented (E)-3-((4S)-2-((2S,3R,5S)-3,8-
dihydroxy-5,9,9-trimethyldecan-2-yl)-4,5-dihydrothiazol-4-yl)-2-methylacrylic acid (29) as
the polyketide moiety, and apratoxin D with FA (30) showed potent in vitro cytotoxicity
against H-460 human lung cancer cells with an IC50 value of 2.6 nM. Apratoxin A pos-
sesses IC50 values for in vitro cytotoxicity against human tumor cell lines, ranging from
0.3 to 0.5 nM; however, it was only marginally active in vivo against a colon tumor and
ineffective against a mammary tumor. Apratoxins A–D have been isolated from the marine
cyanobacteria Lyngbya majuscula and Lyngbya sordida [110,111].

The nNeuroactive cyclic depsipeptide hoiamide A was originally isolated from a
consortium of two different filamentous cyanobacteria identified as Lyngbya majuscula
and Phormidium gracile, and two related peptide metabolites, one a cyclic depsipeptide,
hoiamide B, and the other a linear lipopeptide, hoiamide C, were isolated from two different
collections of marine cyanobacteria obtained in Papua New Guinea. All the isolated
hoiamides A–C contain unusual FA (31) [112].

The 3D graph demonstrating the predicted and calculated FA (31) activity is shown
in Figure 9. A collection of the marine cyanobacterium Lyngbya bouillonii from Guam
afforded the cytotoxic apratoxin E, which displayed stronger cytotoxicity than its closest
analog, semisynthetic E-dehydroapratoxin A, against several cancer cell lines derived from
colon, cervix, and bone, ranging from 21 to 72 nM. Both cyclic peptides contained FA
(32) and (33), respectively [113]. A halogenated metabolite, (S)-7,7-dichloro-3-hydroxy-
2,2-dimethyloctanoic acid (34) is incorporated into many lipopeptides that are produced
predominantly by the marine cyanobacterium of the genus Lyngbya, as well as other
cyanobacterial species, L. bouillonii and the Fijian marine cyanobacterium Moorea pro-
ducens [114,115]. Thus, lyngbyabellin A, a significantly cytotoxic compound with unusual
structural features, was isolated from a Guamanian strain of the marine cyanobacterium
Lyngbya majuscula [116]. Lyngbyabellin A was shown to be a potent disrupter of the cellular
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microfilament network. In addition, lyngbyabellin A showed anticancer activity against
HT29, HeLA, KB, LoVo cancer cell lines [114,115]. Antitumor lipopeptides lyngbyabellin B,
C, J and 27-deoxylyngbyabellin A have shown activity against HT29, HeLA, and MCF7
cancer cell lines [115,117,118].
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Figure 9. 3D graph showing the predicted and calculated Iron antagonist activity of unusual FA
(31) with the highest degree of confidence being more than 95%. This acid is part of a neuroactive
cyclic depsipeptide called hoiamide. These cyclic depsipeptides are produced by two different
filamentous cyanobacteria, Lyngbya majuscula and Phormidium gracila. It is a very rare case that a fatty
acid exhibits the surprising property of being an iron antagonist with a high degree of certainty.

A halogenated FA (34, see Figure 10) has also been found in the cytotoxic lipopep-
tide named hectochlorin which was isolated from marine isolates of Lyngbya majuscula
collected from Hector Bay, Panama [119]. Another chlorine-containing metabolite, (2S,3S)-
7,7-dichloro-3-hydroxy-2-methyl-octanoic acid (35) was detected in bioactive lipopeptides
such as the lyngbyabellins E, F, G, H, I, K, M, N, O and P, which exhibit antimalarial, anti-
cancer, and antifouling activities [117,118,120–122]. The above lyngbyabellins have been
isolated from the marine cyanobacteria Lyngbya majuscula, Lyngbya sp., L. bouillonii, Okeania
sp., Moorea bouillonii, and M. producens. (2S,3S,7R)-7-Chloro-3-hydroxy-2-methyloctanoic
acid (36) was isolated from lipopeptides named lyngbyabellins K, L and 7-epi-lyngbyabellin
L, which showed antitumor activity against H-460 cancer cell lines [123].

The cyclic lipopeptides named antillatoxins, ATx-A (41) and ATx-B (42) have been
isolated from a marine cyanobacteria Lyngbya majuscula [124], and both toxins contained
(4S,5S,6E,8E)-5-hydroxy-4,6,8,10,10-pentamethyl-3-methyleneundeca-6,8-dienoic acid (37), and
acid (40). Antillatoxin B exhibited significant sodium channel-activating (EC50 = 1.8 µM) and
ichthyotoxic (LC50 = 1 µM) properties [125]. It was shown that the natural product antillatoxin
B (42) is 10 times less active than antillatoxin A (41), and synthetic stereoisomers (43 and
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44) of the cyclic depsipeptide of antillatoxin A were 20–55 times less active than the natural
isomer [125,126].
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Figure 10. FA derived from lipopeptides and the cyclic depsipeptides produced by Moorea and 
Lyngbya. 

Both synthetic stereoisomers (43 and 44) contain different lipophilic fragments, 
(4S,5S,6E,8E)-5-hydroxy-4,6,10,10-tetramethyl-3-methyleneundeca-6,8-dienoic acid (38) 
and (4S,5S),(E)-5-hydroxy-4,6,10,10-tetramethyl-3-methyleneundec-6-enoic acid (39), re-
spectively, although the cytotoxicity (44) for Neuro-2a cells was shown to be 10 times more 
effective than the cytotoxicity of the molecule (43) as shown by Okura and co-workers 
[127]. 

The biological activities of FA 34–40 and the cyclic lipopeptides named antillatoxins 
41–44 are shown in Table 5. Undoubtedly, (S)-7,7-dichloro-3-hydroxy-2,2-dime-
thyloctanoic acid (34) containing two chlorine atoms is of great interest since it demon-
strates strong hypolipemic activity with a confidence level of more than 92%. The 3D 
graph of this acid is shown in Figure 11. 
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Both synthetic stereoisomers (43 and 44) contain different lipophilic fragments, (4S,5S,6E,
8E)-5-hydroxy-4,6,10,10-tetramethyl-3-methyleneundeca-6,8-dienoic acid (38) and (4S,5S),(E)-
5-hydroxy-4,6,10,10-tetramethyl-3-methyleneundec-6-enoic acid (39), respectively, although
the cytotoxicity (44) for Neuro-2a cells was shown to be 10 times more effective than the
cytotoxicity of the molecule (43) as shown by Okura and co-workers [127].

The biological activities of FA 34–40 and the cyclic lipopeptides named antillatoxins
41–44 are shown in Table 5. Undoubtedly, (S)-7,7-dichloro-3-hydroxy-2,2-dimethyloctanoic
acid (34) containing two chlorine atoms is of great interest since it demonstrates strong
hypolipemic activity with a confidence level of more than 92%. The 3D graph of this acid is
shown in Figure 11.

Table 5. Predicted biological activity of FA from peptides of Lyngbya majuscula.

No. Predicted Biological Activity, Pa *

34
Hypolipemic (0.921); Anti-psoriatic (0.913); Antidiabetic (0.897); Antineoplastic
(0.799); Anti-obesity (0.783); Antihypertriglyceridemic (0.766); Lipid metabolism

regulator (0.633)

35 Hypolipemic (0.910); Antidiabetic (0.902); Antihypertriglyceridemic (0.761)

36 Sclerosant (0.741); Inflammatory Bowel disease treatment (0.607);
Antibacterial (0.588)

37 Antineoplastic (0.880); Hypolipemic (0.858); Lipid metabolism regulator (0.608)

38 Antineoplastic (0.822); Hypolipemic (0.801); Lipid metabolism regulator (0.700)
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Table 5. Cont.

No. Predicted Biological Activity, Pa *

39
Hypolipemic (0.890); Lipid metabolism regulator (0.813);

Anti-hypercholesterolemic (0.704)
Atherosclerosis treatment (0.657); Cholesterol synthesis inhibitor (0.542)

40 Hypolipemic (0.858); Antineoplastic (0.810); Lipid metabolism regulator (0.608)

41 Antineoplastic (0.897); Antifungal (0.787); Apoptosis agonist (0.696)

42 Antineoplastic (0.869); Antifungal (0.728); Apoptosis agonist (0.650)

43 Antineoplastic (0.895); Antifungal (0.802); Apoptosis agonist (0.734)

44 Antineoplastic (0.854); Antifungal (0.801); Antibacterial (0.708); Apoptosis
agonist (0.653)

A Hypolipemic (0.910); Antidiabetic (0.902); Antihypertriglyceridemic (0.761)

B
Anti-ischemic, cerebral (0.756); Neuroprotector (0.718); Antiviral (Arbovirus)
(0.687); Genital warts treatment (0.648); Antineoplastic (liver cancer) (0.582);

Antimetastatic (0.540)

C Antiviral (Arbovirus) (0.732); Neuroprotector (0.726); Antineoplastic (liver
cancer) (0.633); Acute neurologic disorders treatment (0.568); Antimitotic (0.567)

D Antineoplastic (liver cancer) (0.923); Antineoplastic (0.685); Anti-ischemic,
cerebral (0.664)

* Only activities with Pa > 0.5 are shown.
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It seems very interesting to compare the activities of (4S,5S,6E,8E)-5-hydroxy-4,6,8,10,10-
pentamethyl-3-methyleneundeca-6,8-dienoic acid (37), two cyclic lipopeptides named antil-
latoxin A (41) and B (42), and a synthetic analogue (43). As shown by the PASS analysis, for
all samples the dominant property is moderate antitumor activity with a reliability of about
90%. The 3D graph of this acid (37) and cyclic lipopeptides is shown in Figure 12.
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tic properties (these are four highs in the red zone) of (4S,5S,6E,8E)-5-hydroxy-4,6,8,10,10-pentamethyl-
3-methyleneundeca-6,8-dienoic acid (37), two cyclic lipopeptides, antillatoxins A (41) and B (42), and
a synthetic analogue (43). The cyclic lipopeptides, ATx-A (41) and ATx-B (42) have been isolated from
a marine cyanobacteria Lyngbya majuscula.

Lyngbyabellin N is a bioactive lipopeptide (structure shown in Figure 10) that is
produced by the filamentous marine cyanobacterium Moorea bouillonii. This metabolite
possesses a leucine statin residue and showed strong cytotoxic activity against HCT116
colon cancer cell lines (IC50 = 41 nM) and is highly cytotoxic to H-460 human lung cancer
cells [117–123]. It was interesting to determine which of the four fragments (A, B, C and
D) of lyngbyabellin N contributes to its overall activity. The actuality of these fragments
is shown in Table 6. As can be seen from these PASS data, fragment D demonstrates
antineoplastic (liver cancer) activity with a confidence level of 92.3%.

Neo FA, neo alkanes and their analogs and derivatives are quite rare lipid molecules
that are found in marine invertebrates, algae, fungi, plants, and microorganisms, but they
are not found in free form [128]. Several neo fatty (carboxylic) acids (37–41, 45–48) have
been incorporated into the lipopeptides produced by cyanobacteria. Two cytotoxic pep-
tides with pivalic acid (45, activity see in Table 5), named bisebromoamide and norbise-
bromoamide, have been identified from the marine cyanobacterium Lyngbya sp. Bisebro-
moamide exhibit cytotoxicity against HeLa S3 cells (IC50 = 0.04 µg/mL) and inhibit the
phosphorylation of extracellular signal-regulated protein kinases in NRK cells, showing po-
tent and selective inhibitory effects on protein kinases [129,130]. The antibiotic bottromycin
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B with pivalic acid (45), produced by Streptomyces sp. strain No. 3668-L2, Kitasatoa purpurea
strain KA-281, and Micromonospora chalcea strain FERM-P 1823 [131–134]. Bottromycin has
shown antibacterial activity against six antibiotic-resistant strains of Staphylococcus aureus,
Streptococcus pyogenes, Micrococcus flavus, Bacillus subtilis, B. cereus, B. megaterium, B. anthracis,
Corynebacterium xerosis, and Mycobacterium phlei in concentrations of 0.03–3 µg/mL.

Table 6. Predicted biological activity of FA from peptides of cyanobacteria.

No. Predicted Biological Activity, Pa *

45
Lipid metabolism regulator (0.928); Anti-hypercholesterolemic (0.738)

Preneoplastic conditions treatment (0.722); Antihypoxic (0.711)
Hypolipemic (0.676)

46 Psychostimulant (0.768); Antiviral (0.766)
Preneoplastic conditions treatment (0.678)

47 Psychostimulant (0.731); Antiviral (0.731)
Preneoplastic conditions treatment (0.718)

48 Lipid metabolism regulator (0.885); Hypolipemic (0.772)
Anti-hypercholesterolemic (0.735)

49 Lipid metabolism regulator (0.843); Preneoplastic conditions treatment (0.832)
Antimutagenic (0.832); Acute neurologic disorders treatment (0.691)

50 Fibrinolytic (0.893); Preneoplastic conditions treatment (0.804)

51 Antidiabetic (0.886); Inflammatory Bowel disease treatment (0.852)

52 Antidiabetic (0.886); Inflammatory Bowel disease treatment (0.852)

53 Antidiabetic (0.886); Inflammatory Bowel disease treatment (0.852)

54 Antidiabetic (0.916); Antineoplastic (0.831); Immunosuppressant (0.681)

55 Hypolipemic (0.790); Lipid metabolism regulator (0.738)
Atherosclerosis treatment (0.679)

56
Lipid metabolism regulator (0.908); Hypolipemic (0.881)

Anti-hypercholesterolemic (0.765)
Acute neurologic disorders treatment (0.734); Atherosclerosis treatment (0.722)

57

Antineoplastic (0.834); Lipid metabolism regulator (0.831)
Apoptosis agonist (0.818)

Acute neurologic disorders treatment (0.795); Hypolipemic (0.725); Atherosclerosis
treatment (0.617)

58 Antineoplastic (0.703); Lipid metabolism regulator (0.678)
Antiviral (Arbovirus) (0.643)

59 Lipid metabolism regulator (0.886); Hypolipemic (0.823)
Anti-hypercholesterolemic (0.742)

60 Anti-infective (0.877); Lipid metabolism regulator (0.866)
Antiviral (Arbovirus) (0.827)

* Only activities with Pa > 0.5 are shown.

Pyrrolinone-containing lipopeptides named ypaoamide with (Z)- and (E)- double
bonds, herbivore antifeedant metabolites, were isolated from the extract of a mixed
cyanobacterial assemblage that was composed of Schizothrix calcicola and Lyngbya majus-
cula [135–137]. More than 20 years later, similar pyrrolinone-containing lipopeptides named
ypaoamides B and C were isolated from marine cyanobacterium Okeania sp. collected in
Okinawa. Both ypaoamides B and C stimulated glucose uptake in cultured rat L6 myotubes,
and ypaoamide B showed potent activity and activated AMP-activated protein kinase. All
four lipopeptides contained the rare 6,6-dimethylheptanoic acid (46) [138].
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The unique polytheonamides A and B with 5,5-dimethyl-2-oxohexanoic acid (47) are
highly cytotoxic polypeptides with 48 amino acid residues have been isolated from the
marine sponge Theonella swinhoei [139].

Janadolide, obtained from cyanobacteria Okeania sp. (Janado, Japan) and a cyclic
peptide polyketide hybrid possessing a rare tert-butyl moiety, (2R,7S,E)-7-hydroxy-2,5,8,8-
tetramethylnon-5-enoic acid (48), showed potent activity towards Trypanosoma brucei (IC50
47 nM) which was superior to the commonly used therapeutic drug suramin. Furthermore,
significant selectivity towards the trypanosome parasite was identified, since no in vitro
cytotoxicity towards the human cell lines MRC-5, HL60 and HeLa cells was noted at
10 mM [140].

Compounds containing an aromatic ring in a molecule are widespread in nature.
They are found in marine invertebrates, algae, fungi, microorganisms, and other liv-
ing organisms [141–153]. Acyclic lipopeptides named hoshinoamides A and B with
4-(4-hydroxyphenyl)-butanoic acid (49) have been isolated from the marine cyanobac-
terium Caldora penicillata. Both compounds inhibited the in vitro growth of the malar-
ial parasite Plasmodium falciparum (IC50 = 0.5 and 1.0 µM, respectively) [154]. Cytotoxic
depsipeptides, anaenamides A and B with 2-methoxy-6-pentylbenzoic acid (50), were
discovered from a green filamentous cyanobacterium Hormoscilla sp. from Guam [155].

A linear lipopeptide aldehyde with 2-hydroxy-3-(4-hydroxyphenyl)-propanoic acid
(51) was detected in a hydrophilic extract of the Nostoc sp. [156]. Two trypsin inhibitors
called nostosin A and B with (S)-2-hydroxy-4-(4-hydroxyphenyl)-butanoic acid (52) and
(R)-2-hydroxy-4-(4-hydroxyphenyl)-butanoic acid (53), respectively, were isolated from a
hydrophilic extract of Nostoc sp. strain FSN, which was collected from a paddy field in the
Golestan Province, Iran. Nostosins A and B exhibited IC50 values of 0.35 and 55 µM against
porcine trypsin, respectively, suggesting that the argininal aldehyde group plays a crucial
role in the efficient inhibition of trypsin [157].

Nannocystin A, a lipopeptide with epoxy-containing FA (54), was isolated from a
myxobacterium Nannocystis sp. [158,159]. The isolated compound has a strong antifungal
effect against C. albicans and displays potent cell proliferation inhibitive properties by induc-
ing apoptosis early in tested cell lines. Besides, nannocystin A has shown antiproliferative
properties against 472 cancer cell lines in the nanomolar concentration range (IC50 values
ranging from 0.5 µM to 5 nM).

A cytotoxic and linear peptide was isolated from the marine cyanobacterium Geitler-
inema sp. The structure of mitsoamide contains an unusual polyketide unit (3,7-dimethoxy-
5-methyl-nonanedioic acid, 55) incorporated into a homolysine residue, and possesses a
highly unusual piperidine amino moiety. This peptide showed antitumor activity against
NCI-H460 human lung tumor cells, IC50 460 nM [160].

A lipopeptide, minnamide A with unique (3S,5S,7R,9S,11R,13S,15R)-3,7,11,15-tetrahydroxy-
5,9,13-trimethyloctadecanoic acid (56) from the marine cyanobacterium Okeania hirsute showed
growth-inhibitory activity toward HeLa cells with an IC50 value of 0.17µM, and rapidly induced
cell death at a concentration of 2 µM [161].

Rare (2E,4E,10E)-15-hydroxy-7-methoxy-2-methylhexadeca-2,4,10-trienoic acid (57) was
incorporated into cyclic lipopeptide named malevamide E which was found in extracts of the
marine cyanobacterium Symploca laeteviridis (see Figure 13) and showed store-operated Ca 2+

entry in thapsigargin-treated human embryonic kidney (HEK) cells with a dose-dependent
inhibition (2–45 µM) [162].

The tropical marine cyanobacterium, Moorea bouillonii from New Britain, Papua New
Guinea, yielded a cytotoxic cyclic depsipeptide, bouillonamide [163]. The obtained metabo-
lite exhibited mild toxicity with an IC50 of 6.0 µM against the neuron 2a mouse neuroblas-
toma cells. In addition, the cyclopeptide contained two unique polyketide-derived moieties,
namely a 2-methyl-6-methylamino-hex-5-enoic acid (58) and 3-methyl-5-hydroxy-heptanoic
acid (59).

The antifungal glycosylated lipopeptide, hassallidin A, was isolated from an epilithic
cyanobacterium Tolypothrix basionym collected in Bellano, Italy. The isolated lipopep-
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tide with 2,3-dihydroxytetradecanoic acid (60, see Figure 14) exhibited antifungal activity
against Aspergillus fumigatus and Candida albicans [164]. The 3D graph demonstrating the
predicted and calculated activity of FA (51, 52, 53 and 54) is shown in Figure 15.
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dihydroxy-3,7-dimethyl-8-phenylocta-3,5-dien-1-yl)-2-methyloxirane-2-carboxylic acid (54). These
FA were derived from lipopeptides produced by the cyanobacterium Nostoc sp. and myxobacterium
Nannocystis sp.

Yu and co-workers [165] isolated nine linear lipopeptides of the named microcolins
E–M from the marine cyanobacteria Moorea produns, which showed significant cytotoxic
activity against lung carcinoma, and they all contained (2S,4S)-2,4-dimethyloctanoic acid
(61, for structure see Figure 16, and activity see in Table 7). Two linear lipopeptides, gageo-
statins B and C belonging to the heptapeptides were obtained from the fermentation broth
of a marine-derived bacterium Bacillus subtilis. The isolated lipopeptides contain (3R)-3-
hydroxy-9,11-dimethyltridecanoic (62) and (3S,E)-3-hydroxy-9,11-dimethyl-tridec-4-enoic
(63) acids, respectively. The gageostatins exhibited good antifungal activities with MIC
values of 4–32 µg/mL when tested against pathogenic fungi (Rhizoctonia solani, Bacillus
cinerea and Colletotrichum acutatum) and both compounds shown moderate antibacterial
activity against bacteria (Bacillus subtilis, Staphylococcus aeureus, Salmonella typhi and Pseu-
domonas aeruginosa) with MIC values of 8–64 µg/mL. Furthermore, gageostatins displayed
cytotoxicity against six human cancer cell lines with GI50 values of 4.6–19.6 µg/mL [166].

An antimalarial lipopeptide, ikoamide with (3S,5R)-3,5-dimethoxyoctanoic acid (64), was
isolated from an Okeania sp. marine cyanobacterium. Ikoamide showed strong antimalarial
activity with an IC50 value of 0.14 µM without cytotoxicity against human cancer cell lines at
10 µM [167]. A malyngamide with (E)-7-hydroxytetradec-4-enoic acid (65) was isolated from
the marine cyanobacterium Moorea producens collected in Hawaii. The compound showed
cytotoxicity against the L1210 cell line at an IC50 value of 2.9 mM and lethal toxicity against
the shrimp Palaemon paucidens at an LD100 value of 33.3 mg/kg [168].

The marine bacterium Saccharomonospora sp. CNQ-490 produced the chlorinated lipopep-
tide taromycin A, and taromycin B was detected in ethyl acetate extracts of S. coelicolor
M1146-M1 cultures [169,170]. Both taromycins A and B display potent activity against
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methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium
clinical isolates. Both lipopeptides contain a rare (2E,4E)-octa-2,4-dienoic (66) and (2E,4E)-6-
methylocta-2,4-dienoic (67) acids, respectively.

Cyclic lipopeptides named bananamides D-G were detected in the crude extract
of Pseudomonas sp. COW3. Both bananamides D and G contain (Z)-3-hydroxydodec-4-
enoic acid (68). COW3 displayed antagonistic activity and mycophagy against Pythium
myriotylum, while it mainly showed mycophagy on Pyricularia oryzae. Purified bananamides
D-G inhibited the growth of P. myriotylum and P. oryzae and caused hyphal distortion [171].

The cyclic lipopeptide named gageopeptin A with (3S)-3-hydroxy-12,14-dimethylhexa-
decanoic acid (69) was obtained from the ethyl acetate extract of the fermentation broth of a
marine-derived strain Bacillus sp. 109GGC020 and it exhibited moderate antibacterial and
good antifungal activities [172], and two linear lipopeptides, gageopeptides C and D with
(3S)-3-hydroxy-8,10-dimethyldodecanoic (70) and (3R)-3-hydroxy-9,11-dimethyltridecanoic
(71) acids, were discovered from a marine Bacillus subtilis strain 109GGC020 [173].
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Table 7. Predicted biological activity of FA derived from cyanobacterial peptides.

No. Predicted Biological Activity, Pa *

61 Hypolipemic (0.861); Antineoplastic (0.854); Lipid metabolism regulator (0.849)

62
Lipid metabolism regulator (0.934); Hypolipemic (0.903); Sclerosant (0.869)

Acute neurologic disorders treatment (0.845); Anti-hypercholesterolemic (0.831)
Atherosclerosis treatment (0.705); Cholesterol synthesis inhibitor (0.519)

63

Lipid metabolism regulator (0.959); Anti-hypercholesterolemic (0.900);
Hypolipemic (0.895)

Acute neurologic disorders treatment (0.893); Atherosclerosis treatment (0.696)
Multiple sclerosis treatment (0.548); Antibacterial (0.537); Cholesterol synthesis

inhibitor (0.526)

64 Hypolipemic (0.878); Acute neurologic disorders treatment (0.780)
Lipid metabolism regulator (0.771); Atherosclerosis treatment (0.675)

65
Lipid metabolism regulator (0.941); Hypolipemic (0.829);

Anti-hypercholesterolemic (0.792)
Acute neurologic disorder treatment (0.697); Atherosclerosis treatment (0.647)

66

Antiviral (Arbovirus) (0.947); Lipid metabolism regulator (0.884);
Antimutagenic (0.793)

Antiviral (Picornavirus) (0.782); Hypolipemic (0.724);
Anti-hypercholesterolemic (0.695)

67
Hypolipemic (0.835); Lipid metabolism regulator (0.830); Antiviral

(Arbovirus) (0.821)
Antiviral (Picornavirus) (0.761); Preneoplastic conditions treatment (0.722)

68
Lipid metabolism regulator (0.953); Antiviral (Arbovirus) (0.885)

Hypolipemic (0.884); Anti-hypercholesterolemic (0.856); Leukopoiesis
stimulant (0.826); Atherosclerosis treatment (0.692)

69
Lipid metabolism regulator (0.934); Hypolipemic (0.903);

Anti-hypercholesterolemic (0.831)
Atherosclerosis treatment (0.705); Cholesterol synthesis inhibitor (0.519)

70
Lipid metabolism regulator (0.934); Hypolipemic (0.903);

Anti-hypercholesterolemic (0.831)
Atherosclerosis treatment (0.705); Cholesterol synthesis inhibitor (0.519)

71
Lipid metabolism regulator (0.934); Hypolipemic (0.903);

Anti-hypercholesterolemic (0.831)
Atherosclerosis treatment (0.705); Cholesterol synthesis inhibitor (0.519)

72 Vasoprotector (0.890); Lipid metabolism regulator (0.884); Antiviral
(Arbovirus) (0.824)

73 Antipsoriatic (0.957); Antineoplastic (0.886); Antiviral (Arbovirus) (0.796)
Lipid metabolism regulator (0.792); Alzheimer’s disease treatment (0.613)

74

Lipid metabolism regulator (0.929); Antiviral (Arbovirus) (0.891);
Antimutagenic (0.866)

Anti-hypercholesterolemic (0.786); Hypolipemic (0.721); Atherosclerosis
treatment (0.629)

* Only activities with Pa > 0.5 are shown.

A lipopeptide antibiotic, stalobacin I was discovered from a culture broth of an uniden-
tified Gram-negative bacterium. Stalobacin I had a unique chemical architecture composed
of an upper and a lower half peptide sequence, which were linked via a hemiaminal
methylene moiety. The sequence of one contained an unusual amino acid, carnosadine,
3,4-dihydroxyariginine, 3-hydroxy-isoleucine, and 3-hydroxyaspartic acid, and a novel
cyclopropyl FA, (E)-2-hydroxy-4-((1R,2R)-2-((Z)-tridec-6-en-1-yl)-cyclopropyl)-but-3-enoic
acid (72). This compound showed antibacterial activity against a broad range of drug-
resistant Gram-positive bacteria and was much stronger than those of “last resort” antibi-
otics such as vancomycin, linezolid, and telavancin (MIC 0.004–0.016 µg/mL) [174].
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Lyngbya majuscula from Papua New Guinea yielded the guineamides B and C with
(S)-3-hydroxy-2,2-dimethylhexanoic acid (73), which possess moderate cytotoxicity to a
mouse neuroblastoma cell line with IC50 values of 15 and 16 µM, respectively [40]. The
same acid (73) was detected in a cyclic depsipeptide palmyramide A that was isolated from
a Lyngbya majuscula–Centroceras sp. association [175]. Pure palmyramide A showed sodium
channel-blocking activity in neuro-2a cells and cytotoxic activity in H-460 human lung
carcinoma cells. The 3D graph demonstrating the predicted and calculated activity of FA
(66) is shown in Figure 17, and the 3D graph on Figure 18 shows the activity of FA (62),
(63), (68), and (70).
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Figure 17. 3D Graph showing the predicted and calculated with dominance of antiviral activity of
(2E,4E)-octa-2,4-dienoic (66) acid. This FA was found in lipopeptides, which are produced by the
marine bacteria Saccharomonospora sp. and Saccharomonospora coelicolor and can be used as a strong
antiviral agent.

A lipopeptide with (Z)-hexadec-9-enoic acid (74) named pseudoalteropeptide A was
isolated from the marine bacterium Pseudoalteromonas piscicida SWA4_PA4. It showed
moderate iron-chelating activity as well as cytotoxic activity against Jurkat human T
lymphocyte cells [176].

Bioactive compounds of marine cyanobacteria from a Jamaican collection of Lyngbya
majuscula led to the isolation of jamaicamides A–C. Two jamaicamides A and B are highly
functionalized lipopeptides containing an alkynyl, vinyl chloride, α-methoxy eneone
system, and pyrrolinone ring fragments [176A]. Three halogenated FA, (4E,9E)-14-bromo-
9-(chloromethylene)-6-methyltetradec-4-en-13-ynoic acid (75, for structure see Figure 19,
and activity see in Table 8), (4E,9E)-9-(chloromethylene)-6-methyltetradec-4-en-13-ynoic
acid (76) and (4E,9E)-9-(chloromethylene)-6-methyltetradeca-4,13-dienoic acid (77) were
found in the neurotoxins, jamaicamides A–C, respectively. Halogenated linear lipopeptides
called vatiamides F and E have been found in the cyanobacterium Moorea producens. Both
lipopeptides contained same FA (75) and (76), respectively [177].
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Table 8. Predicted biological activity of FA from cyanopeptides.

No. Predicted Biological Activity, Pa *

75 Antifungal (0.791); Antineoplastic (0.744)
Lipid metabolism regulator (0.680)

76 Antieczematic (0.869); Anesthetic general (0.722)
Neuroprotector (0.714)

77 Antieczematic (0.900); Lipid metabolism regulator (0.859)
Antifungal (0.756)

78 Antineoplastic (0.960); Preneoplastic conditions treatment (0.661)
Antiviral (Arbovirus) (0.618); Antiviral (Picornavirus) (0.520)

79 Cystic fibrosis treatment (0.861); Antiviral (Arbovirus) (0.717); Anesthetic
general (0.702)

80 Cystic fibrosis treatment (0.850); Anesthetic general (0.733)
Antiviral (Arbovirus) (0.687)

81 Anti-hypercholesterolemic (0.902); Apoptosis agonist (0.779); Antineoplastic (0.779)

82 Lipid metabolism regulator (0.888); Angiogenesis stimulant (0.869);
Expectorant (0.715)

83 Acute neurologic disorders treatment (0.870); Anti-inflammatory (0.776)

84 Acute neurologic disorders treatment (0.870); Anti-inflammatory (0.776)

85 Lipid metabolism regulator (0.930); Anti-hypercholesterolemic (0.842)
Hypolipemic (0.830)

86 Lipid metabolism regulator (0.848); Anti-hypercholesterolemic (0.770)
Hypolipemic (0.760)

87 Lipid metabolism regulator (0.848); Anti-hypercholesterolemic (0.770)

88 Lipid metabolism regulator (0.930); Anti-hypercholesterolemic (0.842)
Hypolipemic (0.830)

89 Lipid metabolism regulator (0.848); Anti-hypercholesterolemic (0.770)
Hypolipemic (0.760)

* Only activities with Pa > 0.5 are shown.

The cyanobacteria genus Lyngbya is an amazing source of chlorine-containing metabo-
lites, and Lyngbya majuscula from Grenada has identified depsipeptides named itralamides
A and B, which contain 4,4-dichloro-3-methylbutanoic acid (78) [178]. The 3D graph
demonstrating the predicted and calculated activity of FA (78) is shown in Figure 20.

Cyanobacterial field collections from American Samoa and Palmyra Atoll yielded
three cyclic peptides called tutuilamides A–C. Tutuilamides A–C show potent elastase
inhibitory activity together with moderate potency in H-460 lung cancer cell cytotoxicity
assays. The tutuilamides A and B contain (E)-4-chloro-3-methylbut-3-enoic acid (79) and
(E)-3-(chloromethylene)-pentanoic acid (80) and were detected in tutuilamide [179].

The Floridian marine cyanobacterium, Symploca sp., produces a cytotoxic depsipeptide
named largazole and contains a 4-methyl-thiazoline unit (81) and an unusual a 3-hydroxy-7-
mercaptohept-4-enoic acid (82). This thioether-functional depsipeptide is a potent inhibitor
of the growth of transformed human mammary epithelial cells (MDA-MB-231) and is
less susceptible to non-transformed mouse mammary epithelial cells. In addition, larga-
zole showed exceptional antiproliferative activity against transformed U2OS fibroblast
osteosarcoma cells [180].
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Figure 20. 3D graph showing the predicted and calculated antineoplastic activity of 4,4-dichloro-
3-methylbutanoic acid (78) with the highest degree of confidence being more than 96%. This halo-
genated acid was detected in depsipeptides of the Eastern Caribbean collection of Lyngbya majuscula.

Three lipopetides called lyngbyastatins 4–6 have been identified from the marine
cyanobacterium Lyngbya confervoides from the Florida Atlantic coast and South Florida.
Lyngbyastatin 4 shows potent and selective inhibitory effects on elastase as well as chy-
motrypsin in vitro over other serine proteases with IC50 values of 0.03 and 0.30 µM, re-
spectively. Rare (R)-2-hydroxy-3-(sulfooxy)-propanoic acid (83) was detected in lyngbyas-
tatin 4 and sodium (R)-2-carboxy-2-hydroxyethyl sulfate (84) was found in lyngbyastatin
6 [181,182].

A lipopeptide antibiotic called amphomycin A with (E)-10-methyldodec-3-enoic acid
(85) was first isolated from extracts of the bacterium Streptococcus canis demonstrating
antibacterial activity against Gram-positive pathogens [183,184]. A lipopeptide antibiotic
called tsushimycin which was isolated from Bacillus subtilis contains three different FA in
varying proportions: (E)-11-methyldodec-3-enoic (86), (E)-12-methyltridec-3-enoic (87) and
(E)-11-methyltridec-3-enoic (88) acids [185].

Several lipopeptide antibiotics, friulimicins A, B, C, D, and the acidic lipopeptides of
the amphomycin type that were also present in the culture fluid, compounds A-1437 A, B, E,
and G, were isolated from cultures of Actinoplanes friuliensis HAG01 0964 after fermentation
in different nutrient media. All eight lipopeptides possess an identical peptide macrocycle
as their central element, linked via a diaminobutyric acid N-terminal either to an acylated
asparagine residue or, in the case of the amphomycin series, to an acylated aspartic acid
residue. Friulimicin A and A-1437 A contains cis-3-iso-13:1 acid (87), friulimicin B and
A-1437 B contains cis-3-isotetradecenoic acid (88), friulimicin C and A-1437 E contains fatty
acid (89), and friulimicin D and A-1437 G contains cis-3-anteisopentadecenoic acid (90, for
structure see Figure 21, and activity in Table 9) [186,187].
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Figure 21. Unsaturated and other FA derived from peptides.

Four cyclolipopeptides, glycinocins A to D, were isolated from the fermentation
broth of an unidentified terrestrial Actinomycete species. The glycinocin antibiotics are
structurally related to amphomycin that was originally reported as a linear lipopeptide with
a C-terminal diketopiperazine moiety [188]. All isolated glycinocins contain rare double-
bond FA in the second position. So, glycinocins A and D contain (E)-14-methylpentadec-2-
enoic acid (91), B-(E)-15-methylhexadec-2-enoic acid (92) and C-(E)-13-methyltetradec-2-
enoic acid (93), respectively.

A series of different lipopeptides containing the same FA fragment (94–100) were
isolated from marine cyanobacteria living in different regions of the world’s oceans. Thus,
Lyngbya majuscula from Papua New Guinea led to the isolation of two lipopeptides, aurilides
B and C. Both compounds with (2E,5S,6S,7S,8E)-5,7-dihydroxy-2,6,8-trimethylundeca-2,8-
dienoic acid (94) showed in vitro cytotoxicity toward NCI-H460 human lung tumor and
the neuro-2a mouse neuroblastoma cell lines, with LC50 values between 0.01 and 0.13 µM,
and aurilide B exhibited a high level of cytotoxicity against leukemia, renal, and prostate
cancer cell lines [189].
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Table 9. Predicted biological activity of FA from cyanobacterial peptides.

No. Predicted Biological Activity, Pa *

90
Lipid metabolism regulator (0.930); Anti-hypercholesterolemic (0.842)

Hypolipemic (0.830)
Atherosclerosis treatment (0.635); Multiple sclerosis treatment (0.507)

91
Lipid metabolism regulator (0.848); Anti-hypercholesterolemic (0.770);

Hypolipemic (0.760)
Acute neurologic disorders treatment (0.696); Atherosclerosis treatment (0.551)

92
Lipid metabolism regulator (0.848); Anti-hypercholesterolemic (0.770);

Hypolipemic (0.760)
Acute neurologic disorders treatment (0.696); Atherosclerosis treatment (0.551)

93
Lipid metabolism regulator (0.930); Anti-hypercholesterolemic (0.842);

Hypolipemic (0.830)
Acute neurologic disorders treatment (0.690); Atherosclerosis treatment (0.635)

94 Antineoplastic (0.859); Apoptosis agonist (0.765); Antimitotic (0.689)

95 Antineoplastic (0.778); Apoptosis agonist (0.724); Antiviral (Arbovirus) (0.695)
Preneoplastic conditions treatment (0.551)

96

Antineoplastic (0.800); Apoptosis agonist (0.794); Lipid metabolism
regulator (0.780)

Antifungal (0.750); Preneoplastic conditions treatment (0.622);
Spasmolytic (0.540)

97
Antineoplastic (0.877); Apoptosis agonist (0.818); Hypolipemic (0.809);

Antifungal (0.775)
Anti-inflammatory (0.748); Preneoplastic conditions treatment (0.540)

98 Antineoplastic (0.881); Apoptosis agonist (0.814); Hypolipemic (0.810)
Antifungal (0.767); Anti-inflammatory (0.746); Lipid metabolism regulator (0.706)

99
Antineoplastic (0.871); Hypolipemic (0.815); Antifungal (0.775); Apoptosis

agonist (0.764)
Anti-inflammatory (0.729); Lipid metabolism regulator (0.643)

100 Antineoplastic (0.812); Anti-inflammatory (0.763); Immunosuppressant (0.712)
Antifungal (0.695); Apoptosis agonist (0.691); Hypolipemic (0.667)

* Only activities with Pa > 0.5 are shown.

Cyclic depsipeptides, lagunamides A and B were isolated from the marine cyanobac-
terium L. majuscula obtained from Pulau Hantu Besar (Singapore). Both lagunamides
displayed significant antimalarial properties against Plasmodium falciparum, with IC50
values of 0.2 and 0.9 µM, respectively. Lagunamides A and B contained (5S,6S,7R,8R,E)-
5,7-dihydroxy-2,6,8-trimethyldec-2-enoic (98, for predicted activity see Figure 22) and
(2E,5S,6S,7S,8E)-5,7-dihydroxy-2,6,8-trimethyldeca-2,8-dienoic (99) acids and possessed
potent cytotoxic activity against P388 murine leukemia cell lines, with IC50 values of 6.4 and
20.5 nM, respectively [190]. The same cyanobacterium from Singapore produced a cyto-
toxic cyclodepsipeptide named lagunamide C, which displayed potent cytotoxic activity
against a panel of cancer cell lines, such as P388, A549, PC3, HCT8, and SK-OV3 cell lines,
with IC50 values ranging from 2.1 to 24.4 nM. This compound with (5S,6R,8R,9S,E)-5,8-
dihydroxy-2,6,9-trimethylundec-2-enoic acid (95) also displayed significant antimalarial
activity with an IC50 value of 0.29 µM when tested against Plasmodium falciparum. In addi-
tion, lagunamide C exhibited weak anti-swarming activity when tested at 100 ppm against
the Gram-negative bacterial strain, Pseudomonas aeruginosa PA01 [191].
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IC50 value of 6.7 and 7.1 nM, respectively. 
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droxy-2,6,8-trimethylundec-2-enoic acid (97) showed potent cytotoxicity against HeLa S3 
human cervical cancer cells with an IC50 value of 26.3 nM [193]. 
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which had an IC50 value of 13 nM against the KB tumor cell line [93]. 

The Baltic Sea cyanobacterium Anabaena cylindrica Bio33, cultivated in the laboratory, 
has provided the antifungal lipopeptides balticidins A–D. An unusual, chlorinated FA 
(101, for structure see Figure 23, and activity see in Table 10) was detected in balticidins A 
and B, and dechlorinated acid (102) was found in balticidins C and D. Antifungal activity 
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migatus, Microsporum gypseum, Mucor sp., and Microsporum canis [194,195]. Antibiotic 
lipopeptides from Pseudomonads (see Figure 24), brabantamides A–C, were isolated from 
plant-associated Pseudomonas sp. SH-C52. Brabantamides A–C displayed moderate to 
high in vitro activities against Gram-positive bacterial pathogens. Brabantamide B con-
tains unsaturated fatty acid (103), and brabantamide A and C contains saturated FA (104) 
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Figure 22. 3D graph showing the predicted and calculated antineoplastic activity of (5S,6S,7R,8R,E)-
5,7-dihydroxy-2,6,8-trimethyldec-2-enoic acid (98) as a fragment of lagunamides A and B. These
cyclic depsipeptides were isolated from the marine cyanobacterium Lyngbya majuscula obtained from
Pulau Hantu Besar (Singapore).

Cytotoxic macrocyclic depsipeptides, lagunamide D and D, were discovered from a
mixture containing marine cyanobacteria Dichothrix sp., Lyngbya sp. and Rivularia sp. from
Florida. Both depsipeptides contain (5S,6R,7R,E)-5,7-dihydroxy-2,6-dimethylundec-2-enoic
acid (96) [192]. In addition, lagunamide A and D exhibited antiproliferative activity even
in the low-nanomolar range against A549 human lung adenocarcinoma cells with an IC50
value of 6.7 and 7.1 nM, respectively.

Okinawan marine cyanobacterium Okeania sp. led to the isolation of the cyclodepsipep-
tide named odoamide. Notably, this compound containing (5S,6S,7R,8S,E)-5,7-dihydroxy-
2,6,8-trimethylundec-2-enoic acid (97) showed potent cytotoxicity against HeLa S3 human
cervical cancer cells with an IC50 value of 26.3 nM [193].

The extract of a species of Lyngbya sp. from Palau has yielded the cyclodepsipep-
tide palauamide with (5S,6R,7R,E)-5,7-dihydroxy-2,6-dimethyldodec-2-en-11-ynoic acid
(100), which had an IC50 value of 13 nM against the KB tumor cell line [93].

The Baltic Sea cyanobacterium Anabaena cylindrica Bio33, cultivated in the laboratory,
has provided the antifungal lipopeptides balticidins A–D. An unusual, chlorinated FA
(101, for structure see Figure 23, and activity see in Table 10) was detected in balticidins A
and B, and dechlorinated acid (102) was found in balticidins C and D. Antifungal activity
with these compounds is also observed against Candida albicans, C. krusei, Aspergillus
fumigatus, Microsporum gypseum, Mucor sp., and Microsporum canis [194,195]. Antibiotic
lipopeptides from Pseudomonads (see Figure 24), brabantamides A–C, were isolated from
plant-associated Pseudomonas sp. SH-C52. Brabantamides A–C displayed moderate to
high in vitro activities against Gram-positive bacterial pathogens. Brabantamide B contains
unsaturated fatty acid (103), and brabantamide A and C contains saturated FA (104) and
(105), respectively [196].
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Figure 23. Bioactive glycosidic FA derived from cyanobacterial peptides.

Table 10. Predicted biological activity of FA derived from cyanopeptides.

No. Predicted Biological Activity, Pa *

101 Anti-hypercholesterolemic (0.936); Antifungal (0.848); Antibacterial (0.798)
Hypolipemic (0.723); Anti-infective (0.718); Atherosclerosis treatment (0.522)

102

Anti-infective (0.936); Anti-hypercholesterolemic (0.928); Antifungal (0.853)
Antioxidant (0.848); Antineoplastic (0.833); Antidiabetic (0.807)

Antibacterial (0.774); Hypolipemic (0.774)
Acute neurologic disorders treatment (0.702)

Proliferative diseases treatment (0.690); Atherosclerosis treatment (0.603)

103

Vasoprotector (0.970); Anti-infective (0.966); Hemostatic (0.950)
Neuroprotector (0.942)

Anti-hypercholesterolemic (0.915); Lipid metabolism regulator (0.903)
Acute neurologic disorders treatment (0.845); Hypolipemic (0.770)
Atherosclerosis treatment (0.624); DNA synthesis inhibitor (0.584)

Dementia treatment (0.582)

104

Anti-infective (0.961); Vasoprotector (0.960); Neuroprotector (0.905)
Anti-hypercholesterolemic (0.875); Antithrombotic (0.850)

Hypolipemic (0.757); Atherosclerosis treatment (0.627); DNA synthesis
inhibitor (0.590)
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Table 10. Cont.

No. Predicted Biological Activity, Pa *

105

Anti-infective (0.961); Vasoprotector (0.960); Neuroprotector (0.905);
Sclerosant (0.891)

Anti-hypercholesterolemic (0.875); Antithrombotic (0.850); Lipid metabolism
regulator (0.807)

Hypolipemic (0.757); Atherosclerosis treatment (0.627); DNA synthesis
inhibitor (0.590)

106

Anti-infective (0.966); Vasoprotector (0.953); Anti-hypercholesterolemic (0.890)
Antihypoxic (0.881); Lipid metabolism regulator (0.853); Antineoplastic (0.835)

Hypolipemic (0.751); Acute neurologic disorders treatment (0.684); DNA
synthesis inhibitor (0.566)

107

Vasodilator (0.868); Anti-infective (0.865); Antifungal (0.829);
Antineoplastic (0.809)

Anti-hypercholesterolemic (0.609); Hypolipemic (0.566);
Antimycobacterial (0.545)

* Only activities with Pa > 0.5 are shown.
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Figure 24. Photos of different types of bacteria: (a), Actiniplanus sp.; (b), Pseudomonas aeruginosa; (c), 
Saccharomonospora viridis; (d), Streptomyces sp., which inhabit various environments and produce 
lipopeptides with rare and unusual FA. 

Figure 24. Photos of different types of bacteria: (a), Actiniplanus sp.; (b), Pseudomonas aeruginosa;
(c), Saccharomonospora viridis; (d), Streptomyces sp., which inhabit various environments and produce
lipopeptides with rare and unusual FA.

The cyanobacterium Hassallia sp. produces a family of bioactive compounds which
exhibits a broad spectrum of antifungal activities. One of the bioactive glycolipopeptides
is hassallidin B, which contains glycosidic FA (106, activity of this glycosidic FA sees in
Figure 25) [197], and hassallidin D, which contains glycosidic FA (107) [198].
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acids with oxazole and thiazole rings, as well as sulfur- and chlorine-containing FA, are 
an interesting feature. 
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Many algae and invertebrate species have long been used as human food, animal 
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polyunsaturated FA and are of potential value as sources of essential FA, important in the 
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ophyta), and red (Rhodophyta) [226]. Since ancient times, seaweeds have been of great 
practical interest since they contain bioactive elements such as iodine, bromine or chlorine, 
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Figure 25. 3D graph showing the predicted and calculated activity of an anti-infective agent of
glycosidic FA (106). This acid is a fragment of the glycolipopeptide hassallidin B, which was isolated
from the cyanobacterium Hassallia sp.

Characterizing the fatty acids of lipopeptides of bacteria and cyanobacteria, some
conclusions can be drawn. So, these lipopeptides are characterized by fatty acids containing
an aromatic ring, as measured by cryptophycins. Acetylene-containing FA are a hallmark
of bacterial lipopeptides produced by Nostoc species. For bacterial lipopeptides, fatty acids
with oxazole and thiazole rings, as well as sulfur- and chlorine-containing FA, are an
interesting feature.

3. Linear and Cyclic Peptides Derived from Seaweeds and Invertebrates

Many algae and invertebrate species have long been used as human food, animal
fodder and sources of valuable substances, including lipids. Marine seaweeds and inverte-
brates are rich in unusual lipids, steroids, triterpenoids, phospholipids, glycolipids, and
polyunsaturated FA and are of potential value as sources of essential FA, important in the
nutrition of humans and animals [199–218]. In addition, proteins of marine algae and inver-
tebrates, which are natural reservoirs of bioactive peptides, are of great interest [219–225].

3.1. Fatty Acids Derived from Seaweed Lipopeptides

Marine and freshwater algae are a phylogenetically heterogeneous group of aquatic
plants that belong to three main taxonomic groups: green (Chlorophyta), brown (Phaeo-
phyta), and red (Rhodophyta) [226]. Since ancient times, seaweeds have been of great
practical interest since they contain bioactive elements such as iodine, bromine or chlorine,
and metabolites, steroids, carotenoids, fatty acids, lipopeptides, alkaloids, and other or-
ganic molecules that have antimicrobial, antiviral, anti-inflammatory and immunotropic
properties [227–231].
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Two cyclic lipopeptides, mebamamide A and B, containing FA (108, for structure see
Figure 26, and activity see in Table 11) and (3R,8S)-3,8-dihydroxy-9-methyldecanoic acid
(109), respectively, were isolated from the green alga Derbesia marina [232].
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Figure 26. Graphical display of the chemical structure of the green alga Derbesia marina lipopeptide
and the free FA formed by hydrolysis of the amide bond.

The sacoglossan mollusc Elysia rufescens is known to use the green algae Bryopsis
pennata and B. plumosa as its main diet [233–237]. Analysis of lipid extracts from molluscs
and algae showed that they contain biologically active cyclic depsipeptides, (kahalalides
A–F, iso-KF, 5-OHKF, K, O–S, R′, S′, W, and Y) and five linear depsipeptides (kahalalides
G, H, J, V, and X), which exhibit cytotoxic, antitumour, antimicrobial, antileishmanial and
immunosuppressive activities [233].

The (R)-2-methylbutanoic acid (110, for structures see Figure 27, and biological ac-
tivity is shown in Table 11) was found in kahalalide A and 5-methylhexanoic acid (111)
was included in the structure of the kahalalides B, F, G, O, R2 and S2. 3-Hydroxy-9-
methyldecanoic acid (112) was present in kahalalides E, H, J, K, and Y. (R)-4-Methylhexanoic
acid (113), 5-hydroxy-5-methylhexanoic acid (114), (S)-2-hydroxy-9-methyldecanoic acid
(115), 5-hydroxy-7-methyloctanoic acid (116), and (R)-3-hydroxy-7-methyloctanoic acid
(117) were incorporated into the lipopeptides iso-kahalalide F, 5-OH-kahalalide F, ka-
halalide P and Q, kahalalide R1 and S1, and kahalalide V, respectively. As specimens,
Figure 28 shows the green alga Bryopsis pennata, B. plumosa and the sacoglossan mollusc
Elysia rufescens.
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According to the PASS data, FA (115) showed properties as a cerebral anti-ischemic
agent with a confidence level of more than 94%. This FA is found in cyclic depsipeptides,
kahalalides P and Q, and a 3D graph of its predicted and calculated cerebral anti-ischemic
activity is shown in Figure 29.

Table 11. Predicted biological activity of FA from peptides of seaweeds and molluscs.

No. Predicted Biological Activity, Pa *

108
Hypolipemic (0.858); Lipid metabolism regulator (0.835);

Anti-hypercholesterolemic (0.634)
Antifungal (0.648); Atherosclerosis treatment (0.603)

109
Hypolipemic (0.858); Lipid metabolism regulator (0.835);

Anti-hypercholesterolemic (0.634)
Antifungal (0.648); Atherosclerosis treatment (0.603)

110

Preneoplastic conditions treatment (0.779); Hypolipemic (0.775);
Anesthetic general (0.772)

Lipid metabolism regulator (0.768); Acute neurologic disorders
treatment (0.694)

111

Preneoplastic conditions treatment (0.805); Acute neurologic
disorders treatment (0.723)

Antiviral (Arbovirus) (0.716); Anti-inflammatory (0.650); Antiviral
(Picornavirus) (0.649)

112

Lipid metabolism regulator (0.890); Hypolipemic (0.870);
Anti-hypercholesterolemic (0.802)

Atherosclerosis treatment (0.692); Cholesterol synthesis
inhibitor (0.511)

113

Lipid metabolism regulator (0.895); Preneoplastic conditions
treatment (0.778)

Anti-hypercholesterolemic (0.777); Hypolipemic (0.758);
Atherosclerosis treatment (0.683)

114

Mucositis treatment (0.886); Anesthetic general (0.852); Lipid
metabolism regulator (0.842)

Autoimmune disorders treatment (0.798); Transplant rejection
treatment (0.795)

115

Anti-ischemic, cerebral (0.943); Acute neurologic disorders
treatment (0.797)

Anticonvulsant (0.702); Anti-hypercholesterolemic (0.642);
Antihypertensive (0.627)

116

Lipid metabolism regulator (0.822); Vasodilator, peripheral (0.803);
Vasoprotector (0.793)

Hypolipemic (0.757); Anti-hypercholesterolemic (0.677);
Atherosclerosis treatment (0.647)

117

Lipid metabolism regulator (0.890); Hypolipemic (0.870);
Anti-hypercholesterolemic (0.802)

Atherosclerosis treatment (0.692); Cholesterol synthesis
inhibitor (0.511)

* Only activities with Pa > 0.5 are shown.
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Figure 28. The green algae Bryopsis plumosa (a) and B. pennata (b) are the staple food for the sea slug, 
Elysia rufescens (c,d). This mollusk is similar to nudibranch, but is not classified in this order of Figure 28. The green algae Bryopsis plumosa (a) and B. pennata (b) are the staple food for the sea
slug, Elysia rufescens (c,d). This mollusk is similar to nudibranch, but is not classified in this order of
gastropods, but belongs instead to a closely related clade, Sacoglossa. These molluscs synthesize a
class of cyclic depsipeptides called kahalalides.
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3.2. Fatty Acids Incorporated into Lipopeptides of Marine Sponges

Marine and freshwater sponges (class Demospongiae) are known to be home to many
symbiotic microorganisms, including fungal endophytes, bacteria, and some unicellular
organisms. Sponges, including their symbiotic microorganisms, synthesize many secondary
metabolites such as steroids, terpenoids, carotenoids, halogenated and unusual fatty acids, al-
kaloids, and of course cyclic and linear lipopeptides [1,4,6,17,23,58,60,61,65,66,128,201–215].

The marine sponges of the genus Theonella synthesize a wide variety of lipopeptides,
and in the sponge Theonella aff. mirabilis, a pentapeptide was found that contained a rare
(2R,3R)-aziridine-2,3-dicarboxylic acid (118, see Figure 30) [238]. The isolated lipopeptide
inhibits the proteolytic activity of trypsin-like serine proteases, papain-like cysteine pro-
teases, and pepsin-like aspartyl proteases [239]. Previously, this FA (118) was found and
isolated from the ascomycete Streptomyces sp. MD 398-A1 [240]. A similar lipopeptide
was isolated from the Red Sea sponge Theonella swinhoei (order Lithistida, see Figure 31)
and is a potent inhibitor of cathepsin B, protease, and HIV [241]. The aziridine-containing
compounds are powerful immuno-modulatory and anticancer agents and are of practical
interest to pharmacologists [242,243].
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Figure 31. Samples of marine sponges: (a), Theonella cylindrica; (b), T. swinhoei; (c), T. swinhoei; (d), T.
swinhoei. It is known that sea sponges from the genus Theonella are home to many associated bacteria
that occupy up to 40% of their body volume. Entotheonella sp. (Tectomicrobia) is a filamentous
symbiont that produces almost all known biologically active compounds derived from the sponge
Theonella swinhoei.

3.2.1. Saturated, Methyl-Branched, and Unsaturated Fatty Acids

We have previously mentioned that neo fatty (carboxylic) acids have been isolated
from cyanobacteria, microalgae, and some marine invertebrates [128]. Highly cytotoxic
polypeptides named polytheonamides A and B are found in extracts of the marine sponge
Theonella swinhoei [244–247]. Both polypeptides are quite unusual in that one peptide
molecule contains nine amino acids with tert-butyl units, and both linear polypeptides
contain a rare neo-FA, 5,5-dimethyl-2-oxohexanoic acid (119, for structure see Figure 32,
and activity see in Table 12).

Linear peptides named yakuamides A and B were found and isolated from extracts of
the Japanese sponge Ceratopsia sp. and they showed activity against P388 murine leukemia
cells [245] and both contained 2,2,4,6-tetramethyl-3-oxoheptanoic acid (120).
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Table 12. Predicted biological activity of FA from peptides of marine sponges.

No. Predicted Biological Activity, Pa *

118

Antineoplastic (0.883); Lipid metabolism regulator (0.836);
Anti-inflammatory (0.845)

Apoptosis agonist (0.847); Acute neurologic disorders treatment (0.795);
Antifungal (0.793)

119
Phobic disorders treatment (0.859); Psychostimulant (0.731);

Antiviral (0.731)
Acute neurologic disorders treatment (0.586); Neuroprotector (0.574)

120
Antiarthritic (0.805); Preneoplastic conditions treatment (0.730);

Sclerosant (0.726)
Acute neurologic disorders treatment (0.696); Anti-inflammatory (0.641)

121

Antineoplastic (0.813); Antiviral (Arbovirus) (0.748); Lipid metabolism
regulator (0.693)

Cytoprotectant (0.668); Antiviral (Picornavirus) (0.585);
Hypolipemic (0.575)

122
Lipid metabolism regulator (0.880); Antineoplastic (0.863);

Hypolipemic (0.816)
Anti-hypercholesterolemic (0.672); Atherosclerosis treatment (0.590)

123
Lipid metabolism regulator (0.924); Antineoplastic (0.873);

Hypolipemic (0.839)
Anti-hypercholesterolemic (0.642); Atherosclerosis treatment (0.592)
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Table 12. Cont.

No. Predicted Biological Activity, Pa *

124

Hypolipemic (0.911); Lipid metabolism regulator (0.829);
Anti-inflammatory (0.765)

Anti-hypercholesterolemic (0.718); Acute neurologic disorders
treatment (0.715)

125 Lipid metabolism regulator (0.929); Hypolipemic (0.908)
Anti-hypercholesterolemic (0.825); Atherosclerosis treatment (0.680)

126 Antineoplastic (0.788); Hypolipemic (0.754); Acute neurologic disorders
treatment (0.687)

127 Dermatologic (0.909); Anti-psoriatic (0.888); Anti-eczematic (0.856);
Antifungal (0.605)

128 Anti-psoriatic (0.862); Antineoplastic (0.846); Antifungal (0.625);
Anti-eczematic (0.601)

129 Hypolipemic (0.880); Antineoplastic (0.821); Antifungal (0.707); Antiviral
(Arbovirus) (0.654)

130 Hypolipemic (0.880); Antineoplastic (0.821); Antifungal (0.707);
Antibacterial (0.555)

131 Hypolipemic (0.880); Antineoplastic (0.821); Antifungal (0.707);
Antibacterial (0.555)

132 Antifungal (0.688); Antiprotozoal (Plasmodium) (0.570);
Antibacterial (0.514)

133 Antineoplastic (0.876); Antifungal (0.771); Lipid metabolism regulator
(0.763); Hypolipemic (0.707)

* Only activities with Pa > 0.5 are shown.

The marine sponge Poecillastra sp. (Bahamas) yielded the potently cytotoxic poecil-
lastrins A–C, which are related to the chondropsin D, and the closely related cytotoxic
poecillastrin D was isolated from Jaspis serpentina (Oshimashinsone, Japan) [248]. All the
above mentioned lipopeptides contain (E)-7-hydroxy-4,4,6,8-tetramethyl-5-oxonon-2-enoic
acid (121).

Rare cyclic lipodepsipeptides, lipodiscamides A and C, were found in extracts of the
marine sponge Discodermia kiiensis. Lipodiscamides A and C contain (3S,5R,6E,8E,11Z)-3-
hydroxy-5-methoxy-2,2,15-trimethylhexadeca-6,8,11-trienoic acid (122), and lipodiscamide
B contains FA (123) [249].

Two “head-to-side-chain” depsiundecapeptides named stellatolide A and B were
present in lipid extracts from the marine sponge Ecionemia acervus. Both compounds showed
strong antiproliferative activity against three human cancer cell lines (Lung-NSCLC A549,
Colon HT-29 and Breast MDA-MB-231). (3S,6S,Z)-3-Hydroxy-6,8-dimethylnon-4-enoic acid
(124) was isolated from stellatolide A, and (3S,6S,Z)-3-hydroxy-6-methylnon-4- enoic acid
(125) was found in stellatolide B [250].

HIV-inhibitory cyclic depsipeptides known as neamphamide A–C were isolated from
Papua New Guinea in the marine sponge Neamphius huxleyi. All lipopeptides contain
2R,3R,4R)-3-hydroxy-2,4,6-trimethylheptanoic acid (126) [251].

Cyclic depsipeptides named halipeptin A and B were found in extracts from the marine
sponge Haliclona sp. (see Figure 33). (3R,4R,7S)-3,7-Dihydroxy-2,2,4-trimethyldecanoic
acid (127) was present in halipeptin B and C, and (3R,4R,7S)-3-hydroxy-7-methoxy-2,2,4-
trimethyldecanoic acid (128) was found in halipeptin A and D [252].
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Figure 33. The marine sponges belonging to the genus Haliclona contain more than fifty species of
actinobacteria belonging to the genera Streptomyces, Nocardiopsis, Micromonospora and Verrucosispora.
Members of this genus produce large amounts of bioactive metabolites such as lipids, steroids, FA,
lipopeptides and amino acids.

Cytotoxic depsipeptides, seragamides A–F, containing (2R,6S,8R,E)-8-Hydroxy-2,4,6-
trimethylnon-4-enoic acid (129) were detected in the lipid extracts in the Okinawan sponge
Suberites japonicus. The same FA has been found in jasplakinolide D, M, Q, and R1, as well
as in cyclic depsipeptides named geodiamolides J, P, and R, which have been isolated from
the marine sponge Cymbastela sp. and found in geodiamolides A and B from the sponge
Geodia sp., and geodiamolide D from the sponge Pseudoaxinyssa sp. [253].

A cyclic depsipeptide, Jaspamide (jasplakinolide), containing (2R,6S,8S,E)-8-hydroxy-
2,4,6-trimethylnon-4-enoic acid (130) was found in the lipid fraction of Fijian sponges of
the genus Jaspis [254], and a similar peptide was found in other types of sponges [255].
The cytotoxic peptides, jaspamide and geodiamolide TA containing (E)-8-hydroxy-2,4,6-
trimethylnon-4-enoic acid (131), found in the lipid fraction of the sponge Hemiasterella, while
lipopeptides the geodiamolides J, K, and jaspamide B containing (2R,6S,8R)-8-hydroxy-2,6-
dimethyl-4-methylene-5-oxononanoic acid (132) were isolated as minor metabolites from
the sponge Cymbastela sp. [256].

Homophymines A–E and A1–E1 are a series of cyclodepsipeptides isolated from Homo-
phymia sp. collected from shallow waters off the east coast of New Caledonia [257,258]. They
are similar in structure to the previously published antiviral marine cyclodepsipeptides
callipeltin A, neamphamide A, papuamides, theopapuamides, and mirabamides [259–265].
Homophymine A was cytotoxic against uninfected PBMC cells with an IC50 of 1.19 µM,
but it was almost sixteen times more effective against infected cells and exhibited potent
cytotoxicity with IC50 values ranging from 2 to 100 nM. These compounds were the most
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potent against the PC3 human prostate adenocarcinoma and the SK-OV3 human ovarian
adenocarcinoma cell lines [257–265]. (2S,3S,4S,6S)-3-Hydroxy-2,4,6-trimethyloctanoic acid
(134, for structure see Figure 34, and activity is shown in Table 13) was isolated from the ho-
mophymines A and A1, (2S,3S,4S)-3-hydroxy-2,4,6-trimethylheptanoic acid (135) from the
homophymines B and B1, (2S,3S,4S,6S)-3-hydroxy-2,4,6-trimethylnonanoic acid (136) from
the homophymines C and C1, (2S,3S,4S,6S)-3-hydroxy-2,4,6,8-tetramethylnonanoic acid
(137) from the homophymines D and D1, and (2S,3S,4S,6S,8S)-3-hydroxy-2,4,6,8-tetramethy-
ldecanoic acid (138) was isolated from the homophymines E and E1.
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Table 13. Predicted biological activity of FA derived from sponge peptides.

No. Predicted Biological Activity, Pa *

134 Sclerosant (0.834); Hypolipemic (0.825); Antineoplastic (0.779);
Anti-inflammatory (0.731)

135 Sclerosant (0.835); Antineoplastic (0.788); Hypolipemic (0.754);
Anti-inflammatory (0.716)

136 Sclerosant (0.853); Hypolipemic (0.824); Antineoplastic (0.775);
Anti-inflammatory (0.734)

137 Sclerosant (0.815); Hypolipemic (0.807); Antineoplastic (0.781);
Anti-inflammatory (0.730)

138 Sclerosant (0.834); Hypolipemic (0.825); Antineoplastic (0.779);
Anti-inflammatory (0.731)

139 Lipid metabolism regulator (0.903); Hypolipemic (0.848); Antineoplastic
(0.805); Antifungal (0.782)

140 Sclerosant (0.834); Hypolipemic (0.825); Antineoplastic (0.779);
Anti-inflammatory (0.731)

141 Restenosis treatment (0.827); Sclerosant (0.738); Neurodegenerative
diseases treatment (0.722)

142 Sclerosant (0.834); Hypolipemic (0.825); Antineoplastic (0.779);
Anti-inflammatory (0.731)

143

Antineoplastic (0.880); Antiviral (Arbovirus) (0.829); Apoptosis
agonist (0.804)

Hypolipemic (0.794); Antiprotozoal (Coccidial) (0.684); Antiviral
(Picornavirus) (0.599)

144

Antineoplastic (0.885); Antiviral (Arbovirus) (0.814); Apoptosis
agonist (0.800)

Hypolipemic (0.794); Antiprotozoal (Coccidial) (0.621); Antiviral
(Picornavirus) (0.598)

145
Anti-infective (0.934); Anti-hypercholesterolemic (0.916); Vasodilator (0.915)

Antineoplastic (0.911); Vasoprotector (0.864); Lipid metabolism
regulator (0.856)

146
Anti-infective (0.934); Anti-hypercholesterolemic (0.916); Vasodilator (0.915)

Antineoplastic (0.911); Vasoprotector (0.864); Lipid metabolism
regulator (0.856)

147
Anti-infective (0.934); Anti-hypercholesterolemic (0.916); Vasodilator (0.915)

Antineoplastic (0.911); Vasoprotector (0.864); Lipid metabolism
regulator (0.856)

* Only activities with Pa > 0.5 are shown.

According to PASS data, among methyl-branched FA (119–133), of particular interest
is FA (127). A rare feature of this acid that has been shown to be anti-psoriatic and anti-
eczematic under the general concept of dermatologic activity with a high certainty of over
90%. The 3D graph of this methyl-branched FA (127) is shown in Figure 35.

(4E,6E)-2,3-Dihydroxy-2,6,8-trimethyldeca-4,6-dienoic acid (139) has been found in the
depsipeptides papuamide A–D, which are produced by the sponge Theonella [262,263].
HIV-inhibitory depsipeptides, mirabamides A–D, contain (2R,3R,4R)-3-hydroxy-2,4,6-
trimethyloctanoic acid (140) and were extracted from Siliquariaspongia mirabilis, while the
cyclic depsipeptide neamphamide D also contains this FA and was found in the Australian
marine sponge Neamphius huxleyi [266].
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Figure 35. 3D graph showing the predicted and calculated dermatologic activity of methyl-branched
FA (127). This acid is incorporated into the cyclic depsipeptide halipeptin A, which is found in the
marine sponge Haliclona sp.

It is known that depsipeptides called didemnins, which are cytotoxins and immunosup-
pressive agents, were first isolated over 40 years ago from the Caribbean tunicate Trididem-
num solidum, and contain (2S,4S)-4-hydroxy-2,5-dimethyl-3-oxohexanoic acid (141) [267].
However, recent data indicate that didemnins do not synthesize tunicate, but rather the sym-
biotic bacteria Tistrella mobilis [268]. These the symbiotic bacteria of the genus Tistrella have
been found in marine sponges and appear to synthesize depsipeptides like didemnins [269].

Cytotoxic undecapeptides, theopapuamides and celebesides A–C from the sponge
Theonella swinhoei, showed anticancer activity against HCT–116 cells (colon cancer) [270].
(2R,3R)–3–Hydroxy–2,4,6–trimethyloctanoic acid (142) was present in the undecapep-
tides theopapuamide A–D, (2E,4E,7S,8R,9S,10R)–7,9–dihydroxy–8,10-dimethyltrideca–2,4–
dienoic acid (143) was isolated from celebeside A and C, and (2E,4E,7S,8R,9S,10R)–7,9–
dihydroxy–8,10–dimethyldodeca–2,4–dienoic acid (144) was found in celebeside B [264].
Cytotoxic cyclic peptides, aciculitins A–C, were found in the active lipid fraction of the
lithistid sponge Aciculites orientalis. Aciculitin A, containing FA (145) and FA (146), was
present in aciculitin B, and aciculitin C contains FA (147) [271].

According to PASS data, among the group of fatty acids (134–147), glycosidic FA (145,
146 and 147) are of the greatest interest, which demonstrate anti-infective and antineoplastic
activities with a high degree of confidence, more than 93%. Figure 36 demonstrates the 3D
graph of the activities of these acids.

A potent cytotoxin, psymberin, also known as irciniastatin A, is found in the sponge
Psammocinia sp. with (2S)-2-hydroxy-3-methoxy-5-methylhex-5-enoic acid (148, for struc-
ture see Figure 37, and predicted activity is shown in Table 14) [272–275] and the keto
analogue irciniastatin B was isolated from Ircinia ramosa (Borneo) and contains 2-hydroxy-
3-methoxy-5-methylhex-5-enoic acid (149) [276,277].
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Marine sponges belonging to the Jaspidae family produce related bioactive lipopep-
tides, bengamides [278–282]. Thus, bengamides AE, G, H, J, L, M, O, Y, and Z contain
(2R,3R,4S,5R,E)-3,4,5-trihydroxy-2-methoxy-8-methylnon-6-enoic acid (150), bengamides
E’ and F’ contain (2R,3R,4S,5R,E)-3,4,5-trihydroxy-2-methoxy-8-methyldec-6-enoic acid
(151), bengamides P and Q contain (2R,3R,4R,5R,E)-3,4-dihydroxy-2-methoxy-8-methyl-5-
(tetradecanoyloxy)non-6-enoic acid (152), and (2R,3R,4R,5R,E)-3,4-dihydroxy-2-methoxy-
8-methyl-5-(palmitoyloxy)non-6-enoic acid (153, activity see in Figure 38) was found in
bengamide R [278–283].

(6S,7S,E)-7-Hydroxy-4,4,6,8-tetramethyl-5-oxonon-2-enoic acid (154) was incorporated
into a macrocyclic lactam, mirabalin, which was found and isolated from extracts of
Siliquariaspongia mirabilis. Mirabalin is known to inhibit the growth of the HCT-116 cell
line [284–286]. Poecillastrin C and D are isolated from the deep-sea sponge, Japsis serpen-
tine [287,288]. These compounds showed potent cytotoxicity against various tumor cell
lines, and both poecillastrins contain (E)-7-hydroxy-4,4,6,8-tetramethyl-5-oxonon-2-enoic
acid (153) [287].

Table 14. Predicted biological activity of FA derived from peptides of marine sponges.

No. Predicted Biological Activity, Pa *

148 Antineoplastic (0.752); Lipid metabolism regulator (0.715); Antiviral
(Arbovirus) (0.642)

149 Antineoplastic (0.752); Lipid metabolism regulator (0.715); Antiviral
(Arbovirus) (0.642)

150 Cell adhesion molecule inhibitor (0.883); Lipid metabolism regulator
(0.801); Apoptosis agonist (0.752)

151 Cell adhesion molecule inhibitor (0.866); Hypolipemic (0.816);
Antineoplastic (0.780)

152 Lipid metabolism regulator (0.931); Antineoplastic (0.826); Apoptosis
agonist (0.634)

153 Lipid metabolism regulator (0.931); Antineoplastic (0.826); Apoptosis
agonist (0.634)

154 Antineoplastic (0.813); Antiviral (Arbovirus) (0.748); Lipid metabolism
regulator (0.693)

156 Antineoplastic (0.813); Antiviral (Arbovirus) (0.748); Lipid metabolism
regulator (0.693)

157 Antineoplastic (0.779); Acute neurologic disorders treatment (0.681);
Antiviral (Arbovirus) (0.680)

158 Sclerosant (0.815); Antineoplastic (0.781); Acute neurologic disorders
treatment (0.722)

159 Sclerosant (0.834); Antineoplastic (0.799); Acute neurologic disorders
treatment (0.725)

160 Sclerosant (0.835); Antineoplastic (0.795); Acute neurologic disorders
treatment (0.731)

161 Sclerosant (0.815); Antineoplastic (0.781); Acute neurologic disorders
treatment (0.722)

162 Sclerosant (0.835); Antineoplastic (0.781); Acute neurologic disorders
treatment (0.764)

163 Sclerosant (0.815); Antineoplastic (0.781); Acute neurologic disorders
treatment (0.722)

164 Antineoplastic (0.881); Hypolipemic (0.797); Antifungal (0.793);
Antimitotic (0.787)

* Only activities with Pa > 0.5 are shown.
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droxy-2,4,6,9-tetramethyldecanoic acid (162) [257,258]. 

The sponge Homophymia lamellosa from the coast of Madagascar yielded cytotoxic cy-
clic depsipeptides, pipecolidepsins. Both pipecolidepsins A and B contain FA (134), and 
3-hydroxy-2,4,6,8-tetramethylnonanoic acid (163) is found in pipecolidepsin C [292]. 
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Figure 38. 3D graph showing the predicted and calculated activity of a regulator lipid metabolism of
FA (153). Acid 153 has a similar activity since the structures of both metabolites are similar. These
acids are found in lipopeptides, bengamides P and Q, and are produced by marine sponges belonging
to the Jaspidae family.

An aqueous extract of the marine sponge Chondropsis sp. contains several macrolides
called chondropsins [289]. Chondropsin A, B, and D and deoxychondropsin A contain
(E)-7-hydroxy-9-methoxy-4,4,6,8,8-pentamethyl-5,9-dioxonon-2-enoic acid (156), and (E)-7-
hydroxy-4,4,6,8-tetramethyl-5-oxonon-2-enoic acid (155) was found in chondropsin C [289].

Cytotoxic peptides, theopapuamides A–D, which contain (2R,3R)-3-hydroxy-2,4,6-
trimethyloctanoic acid (157) were obtained from Theonella swinhoei sponge extracts [290],
while geodiamolide TA was isolated from the marine sponge Hemiasterella minor, which
also contained the same FA [291].

The cyclodepsipeptides named homophymines A–E and A1–E1 were obtained from lipid
extracts of the marine sponge Homophymia sp. living in the island of Barneo [257,258]. All the
members described so far exhibit potent cytotoxic activity. (2R,3R,4R,6R)-3-Hydroxy-2,4,6,8-
tetramethylnonanoic acid (158) is found in homophymines B and B1, (2R,3R,4R,6R,8R)-3-
hydroxy-2,4,6,8-tetramethyldecanoic acid (159) in homophymines A and A1. Homophymines
C and C1 contain (2R,3R,4R,6R)-3-hydroxy-2,4,6-trimethylnonanoic acid (160), homophymines
D and D1 contain (2R,3R,4R,6R)-3-hydroxy- 2,4,6,8-tetramethylnonanoic acid (161), and ho-
mophymines E and E1 contain (2R,3R,4R,6R)-3-hydroxy-2,4,6,9-tetramethyldecanoic acid
(162) [257,258].

The sponge Homophymia lamellosa from the coast of Madagascar yielded cytotoxic
cyclic depsipeptides, pipecolidepsins. Both pipecolidepsins A and B contain FA (134), and
3-hydroxy-2,4,6,8-tetramethylnonanoic acid (163) is found in pipecolidepsin C [292].

(2E,4E,7R,8S,9S,10S)-9-Hydroxy-7-methoxy-8,10-dimethyltrideca-2,4-dienoic acid (164)
is incorporated into depsipeptide nagahamide A, which demonstrated antibacterial proper-
ties and was found in a water–methanol extract of the marine sponge Theonella swinhoei [293].
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3.2.2. Chlorinated Fatty Acids Derived from Sponge Lipopeptides

It is known that chlorinated fatty acids are widely distributed in nature and are part of
neutral lipids, phospholipids, and glycolipids, and are also found in natural lipopeptides of
marine invertebrates [203]. Polychlorinated peptides from Lamellodysidea herbacea such as
dysidin and dysidenin contain (S)-4,4,4-trichloro-3-methylbutanoic acid (165, for structure
see Figure 39, and activity is shown in Table 15) [294]. Five dysideaprolines A–F contain FA
(166 and 167), and barbaleucamides A and B, which contain (E)-6,6,6-trichloro-3-methoxy-
5-methylhex-2-enoic acid (168), were obtained from the Philippines sponge Dysidea sp. (E)-
6,6,6-Trichloro-5-methylhex-2-enoic acid, 169) or herbacic acid is the major trichloroleucine
metabolite of herbaceamide A in the sponge Dysidea herbacea [294,295] and FA (170) was
isolated from chlorinated lipopeptides found in the marine sponge Dysidea sp.
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Table 15. Predicted biological activity of FA from lipopeptides of Dysidea species.

No. Predicted Biological Activity, Pa *

165 Antineoplastic (0.841); Preneoplastic conditions treatment (0.689);
Antiprotozoal (0.586)

166 Antineoplastic (0.841); Preneoplastic conditions treatment (0.689);
Antiprotozoal (0.586)

167 Antineoplastic (0.960); Anti-infective (0.613); Acute neurologic disorders
treatment (0.572)

168 Antineoplastic (0.774); Preneoplastic conditions treatment (0.690);
Antiprotozoal (0.557)

169 Antineoplastic (0.850); Antiviral (Arbovirus) (0.765); Acute neurologic
disorders treatment (0.574)

170 Antineoplastic (0.965); Anti-infective (0.628); Acute neurologic disorders
treatment (0.589)

* Only activities with Pa > 0.5 are shown.

Analyzing the PASS data, all chlorine-containing FA (165–170) show the dominant
property of anticancer activity with varying degrees of reliability. Strong antitumor activity
is characteristic of 165 and 170 acids. Figure 40 demonstrates the 3D graph which shows
the predicted and calculated antitumor activity of fatty acid (170).
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tremely strong cytotoxic activity against KB 3-1 cells (human epidermoid carcinoma cell 
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Figure 40. 3D graph showing the predicted and calculated antineoplastic activity of chlorinated FA
(170). The figure shows that a single peak (red zone) dominates, which corresponds to the strong
antitumor activity of (S)−4,4−dichloro−3−methylbutanoic acid.

3.2.3. Miscellaneous Fatty Acids Incorporated into Sponge Lipopeptides

A cytotoxic cyclic didepsipeptide named arenastatin A containing (5S,6S,7S,E)-6-hydroxy-
5,6-dimethyl-7-(3-phenyloxiran-2-yl)oct-2-enoic acid (171, for structure see Figure 41, and
activity is shown in Table 16) was found in a chloroform–methanol extract of the Okinawan
marine sponge Dysidea arenaria [296–299]. This cyclodepsipeptide has an extremely strong
cytotoxic activity against KB 3-1 cells (human epidermoid carcinoma cell line) [300–303].
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Figure 41. Miscellaneous FA derived from sponge lipopeptides.
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The cytotoxic compounds onnamide A, B, and C were obtained from marine sponge
Theonella sp. Onnamide A contains (S)-2-hydroxy-2-((2R,5R,6R)-2-methoxy-5,6-dimethyl-4-
methylene-tetrahydro-2H-pyran-2-yl)acetic acid (172), onnamide B contains (S)-2-hydroxy-
2-((2S,5R,6R)-2-methoxy-5,6-dimethyl-4-methylenetetrahydro-2H-pyran-2-yl)acetic acid
(173), and onnamide C contains (R)-2-hydroxy-2-((2S,5R,6R)-2-methoxy-5,6-dimethyl-4-
methylenetetrahydro-2H-pyran-2-yl)acetic acid (174). Onnamide A analogues, 21,22-
dihydroxyonnamides A1–A4, containing FA (172), were isolated from an Okinawan collec-
tion of Theonella swinhoei [304–306]. A cyclic peptide oriamide with 2,5-dihydroxybenzoic
acid (175), was detected in the marine sponge Theonella sp. collected in Sodwana Bay [307].

It is known that dysinosin A is an inhibitor of Factor VIIa and thrombin and is
produced by the Australian sponge of the family Dysideidae, and contains a sulfated
glyceric acid, (R)-2-methoxy-3-(sulfooxy)-propanoic acid (176), as its analogues dysinosins
B and C contain this FA (176) [308,309].

Table 16. Predicted biological activity of FA from sponge lipopeptides.

No. Predicted Biological Activity, Pa *

171 Anti-hypercholesterolemic (0.873); Lipid metabolism regulator (0.713);
Atherosclerosis treatment (0.559)

172 Antineoplastic (0.962); Apoptosis agonist (0.955); Antiparasitic (0.703);
Antiprotozoal (0.590)

173 Antineoplastic (0.962); Apoptosis agonist (0.955); Antiparasitic (0.703);
Antiprotozoal (0.590)

174 Antineoplastic (0.962); Apoptosis agonist (0.955); Antiparasitic (0.703);
Antiprotozoal (0.590)

175 Antiseptic (0.945); Antiinfective (0.900); Preneoplastic conditions
treatment (0.818)

176 Acute neurologic disorders treatment (0.858); Antidiabetic (0.818); Antidiabetic
(type 2) (0.645)

177 Atherosclerosis treatment (0.857); Sweetener (0.635); Restenosis treatment (0.602)

178 Antihypertensive (0.765); Antidiabetic (0.757); Antithrombotic (0.522)

179 Antineoplastic (0.855); Transplant rejection treatment (0.591); Autoimmune
disorders treatment (0.574)

180 Antineoplastic (0.667); Angiogenesis stimulant (0.566); Antidiabetic (0.531)
* Only activities with Pa > 0.5 are shown.

The cyclic peptide, scleritodermin A with sodium (S)-(1-carboxy-2-methoxyethyl)-
sulfamate (177) inhibited tubulin polymerization and showed significant in vitro cyto-
toxicity against human tumor cell lines [310] and was isolated from the lithistid sponge
Scleritoderma nodosum. The bioactive hexapeptide, keramamide A, from the Okinawan
marine sponge Theonella sp. contains (R)-3-formamido-2-hydroxypropanoic acid (178),
which was also found in keramamides A, J, K, H, and G [311].

(4R,5S,6E,11E)-5-Hydroxy-4,7,9,11-tetramethyl-12-(oxazol-5-yl)-3-oxododeca-6,11-dienoic
acid (179) is incorporated into a cytotoxic lipodepsipeptide named taumycin A, which was
obtained from the Madagascar sponge Fascaplysinopsis sp. [256], and the sponge Discodermia
kiiensis yielded the cyclic depsipeptides, discokiolide A–C, with (E)-3-hydroxy-2-methyl-3-(2-
(4-phenylbut-3-en-2-yl)-oxazol-4-yl)-propanoic acid (180) [312].

According to PASS data, among FA (171–180), tetrahydro-2H-pyran-containing FA
(172, 173 and 174) are of the greatest interest, which demonstrate antineoplastic activity
with a high degree of certainty, more than 96%. Figure 42 shows the 3D graph of FA
(173) activity, and a single peak in the red area corresponds to strong antitumor activity.
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which exhibits highly cytotoxic activity against the P388 cell line.

Marine sponges, like their freshwater relatives, often contain dense and diverse mi-
crobial communities or symbionts, with many microorganisms specific to sponge hosts.
Symbiont microorganisms can include bacteria, archaea, and unicellular eukaryotes (fungi
and microalgae), and account for up to 40% of the volume of the sponge. These symbionts
synthesize a wide variety of organic molecules, including lipopeptides, which can have a
profound effect on the biology of the host sponge. To date, there is no definite answer as
to who the true producer of certain organic molecules isolated from the body of sponges
is. Therefore, when we say that lipopeptides are isolated from sea sponges, this does not
mean that these lipopeptides were synthesized by the sponge; they can be synthesized, for
example, by fungal endophytes, microalgae, or bacteria.

It is very difficult to characterize the FA composition of lipopeptides in algae and
invertebrates, and especially in marine and freshwater sponges. This is since sponges and
other invertebrates contain a huge pool of various symbiotic bacteria and fungi. And it is
not easy to determine what contribution the symbionts of invertebrates make. It should
be noted that most invertebrate lipopeptide FA contain similar fragments of bacterial
FA, such as chlorine-containing, oxirane, polymethyl- or phenyl-containing FA. But there
are fragments of FA that are not found in bacterial lipopeptides, such as aziridine and
tetrahydro-2H-pyran-containing FA.

4. Fatty Acids Derived from Mollusca Lipopeptides

Numerous scientific publications have shown that gastropods are a rich source of
bioactive compounds that include steroids, terpenoids, polyketides, FA, and lipopeptides.
Many of the drugs found demonstrate anticancer, antibacterial, and antifungal proper-
ties [313–319].

(2E,5S,6S,7S,8E)-5,7-Dihydroxy-2,6,8-trimethyldeca-2,8-dienoic acid (181, for struc-
ture see Figure 43, activity is shown in Table 17, and picture of this mollusc is shown in
Figure 43) is found in a cytotoxic depsipeptide, kulokekahilide-2, which is derived from a
cephalaspidean mollusc, Philinopsis speciosa [320]. Kulolide-1 contains (S)-3-hydroxy-2,2-
dimethyloct-7-enoic acid (182), kulolide-2 contains (S)-3-hydroxy-2,2-dimethyloct-7-enoic
acid (183) [321,322] and kulomoopunalide-2 contains (2R,3S)-3-hydroxy-2-methyloct-7-
ynoic acid (184) [323]. All depsipeptides were obtained from Ph. Speciosa [321–323]. Cyto-
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toxic depsipcptides, onchidin A and B, were found in extracts of the ulmonated mollusc
Onchidium sp. and contain (S)-2-hydroxy-3-methylbutanoic acid (185) and 3-hydroxy-2-
methyloct-7-ynoic acid (186), respectively [324,325].
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Figure 43. FA derived from mollusc lipopeptides. 
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Figure 43. FA derived from mollusc lipopeptides.

Table 17. Predicted biological activity of FA from lipopeptides of molluscs.

No. Predicted Biological Activity, Pa *

181 Antineoplastic (0.871); Apoptosis agonist (0.764); Anti-inflammatory (0.729)

182 Anti-psoriatic (0.923); Anti-eczematic (0.721); Alzheimer’s disease
treatment (0.591)

183 Anti-psoriatic (0.924); Anti-eczematic (0.879); Antifungal (0.603)

184 Anti-inflammatory (0.751); Antiviral (Arbovirus) (0.595); Antifungal (0.579)

185 Anti-hypoxic (0.768); Antihypertensive (0.730); Antiviral
(Picornavirus) (0.613)

186 Anti-inflammatory (0.751); Antiviral (Arbovirus) (0.595); Antifungal (0.579)

187 Lipid metabolism regulator (0.822); Hypolipemic (0.757);
Anti-hypercholesterolemic (0.677)

188 Lipid metabolism regulator (0.889); Hypolipemic (0.685);
Anti-hypercholesterolemic (0.644)

189 Antineoplastic (0.859); Apoptosis agonist (0.765); Atherosclerosis
treatment (0.640)

190 Antidiabetic (0.916); Leukopoiesis stimulant (0.822); Atherosclerosis
treatment (0.568)

191 Antineoplastic (0.834); Apoptosis agonist (0.818); Acute neurologic
disorders treatment (0.795)

192 Anesthetic general (0.759); Antiviral (Arbovirus) (0.737); Antitoxic (0.728);
Antihypoxic (0.726)
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Table 17. Cont.

No. Predicted Biological Activity, Pa *

193 Antihypoxic (0.758); Antiviral (Arbovirus) (0.735); Antiviral
(Picornavirus) (0.671)

194 Antineoplastic (0.796); Apoptosis agonist (0.719); Antiparasitic (0.711);
Antifungal (0.675)

195 Acute neurologic disorders treatment (0.754); Antiviral (Arbovirus) (0.733);
Antineurotic (0.555)

196
Lipid metabolism regulator (0.809); Hypolipemic (0.758);

Antihypertensive (0.741)
Anti-hypercholesterolemic (0.616); Atherosclerosis treatment (0.535)

197 Hypolipemic (0.796); Antineoplastic (0.614); Preneoplastic conditions
treatment (0.547)

198 Hypolipemic (0.804); Antineoplastic (0.689); Preneoplastic conditions
treatment (0.588)

* Only activities with Pa > 0.5 are shown.

Cyclic depsipeptides, kahalalides R, S and kahalalides F, D, were isolated from the mol-
lusc Elysia grandifolia [326], and kahalalide F was also found in the molluscs Elysia rufescens,
the bivalve mollusc Spisula polynyma, and from the green alga Bryopsis sp. [327]. Kahalalide
S contains 5-hydroxy-7-methyloctanoic acid (187), kahalalide F contains 5-methylhexanoic
acid, and kahalalide D contains 3-hydroxy-7-methyloctanoic acid (188).

A 26-membered cyclodepsipeptide, aurilide, with (2E,5R,6R,7S,8E)-5,7-dihydroxy-
2,6,8-trimethylundeca-2,8-dienoic acid (189), has been isolated from the Japanese sea
hare Dolabella auricularia (Figure 44) [328], and an antineoplastic agent, dolastatin 13 with
3-hydroxy-2-methoxypropanoic acid (190) was found in the same sea hare [329,330].
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Figure 44. Marine molluscs: (a), The pulmonate mollusc Onchidium sp.; (b), a cephalaspidean mollusc,
Philinopsis speciosa; (c), Sea hare Dolabella auricularia. All these marine molluscs share the ability to
synthesize lipopeptides, although it is possible that they can obtain related lipopeptides from algae.
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(2E,4Z,10E)-15-Hydroxy-7-methoxy-2-methylhexadeca-2,4,10-trienoic acid (191) was
incorporated into a cytostatic depsipeptide, dolastatin 14 from the Indian Ocean shell-
less mollusc Dolabella auricularia [331], while dolastaine C was found in the Japanese
sea hare D. auricularia and contains (2S,3R)-2-(dimethylamino)-3-methylpentanoic acid
(192) [332]. Dolastatin H, isodolastatin H, and dolastatin 10 contain (S)-2-(dimethylamino)-
3-methylbutanoic acid (193) [333]. Two 35-membered depsipeptides, dolastatin G and
nordolastatin G, demonstrated strong cytotoxicity against HeLa cells. Both the depsipep-
tides contain (2Z,4E,7R,8S)-8-hydroxy-3-methoxy-4,7-dimethylnona-2,4-dienoic (194) and
(2R,3R,7S)-3,7-dihydroxy-2,8-dimethyl-nonanoic (195) acids [334]. Two antineoplastic cyclic
depsipeptides, designated dolastatin 11 and dolastatin 12, were isolated from the Indian
Ocean D. auricularia, and both depsipeptides contain (3S)-2-hydroxy-3-methylpentanoic acid
(196) [330,335,336], dolastatin 18 contain 2,2-dimethyl-3-oxohexanoic acid (197) [337–339],
and the cytotoxic cyclic depsipeptide, (-)-doliculide, similar to jasplakinolide, contains
(2S,3S,5S,6S,8S)-6,8-dihydroxy-2,3,5,9-tetramethyl-decanoic acid (198) [340].

According to the PASS data, among FA (181–198) isolated from mollusc lipopeptides, the
most interesting is FA (183), which demonstrates anti-psoriatic activity with a high degree of
certainty, more than 92%. Figure 45 shows the 3D graph of the activity of acid 183; two peaks
in the red area correspond to strong anti-psoriatic and anti-eczematic activities.

Hydrobiology 2022, 1, FOR PEER REVIEW 57 
 

 

 
Figure 44. Marine molluscs: (a), The pulmonate mollusc Onchidium sp.; (b), a cephalaspidean mol-
lusc, Philinopsis speciosa; (c), Sea hare Dolabella auricularia. All these marine molluscs share the ability 
to synthesize lipopeptides, although it is possible that they can obtain related lipopeptides from 
algae. 

 
Figure 45. 3D graph showing the predicted and calculated anti-psoriatic activity of FA (183). 
(S)−3−hydroxy−2,2−dimethyloct−7−enoic acid (183) was incorporated into the lipopeptide kulolide 
2 from cephalaspidean molluscs, Philinopsis speciosa. 

Figure 45. 3D graph showing the predicted and calculated anti-psoriatic activity of FA (183).
(S)−3−hydroxy−2,2−dimethyloct−7−enoic acid (183) was incorporated into the lipopeptide ku-
lolide 2 from cephalaspidean molluscs, Philinopsis speciosa.

Lipopeptide FA isolated from marine or freshwater molluscs are not very diverse. It is
known that molluscs tend to eat microalgae, macrophytes, and algae residues where there
may be various bacterial communities. The mollusc lipopeptides found in their bodies are
likely to be ingested, since FA do not fundamentally differ in structure from bacterial FA.
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5. Fatty Acids Derived from Tunicate Lipopeptides

Marine ascidians are considered one of the richest sources of biologically active
substances, including lipopeptides [341–350]. Many biologically active compounds of
marine ascidians are already at different stages of clinical and preclinical research. Vari-
ous lipopeptides have antitumor, antihypertensive, antioxidant and antimicrobial proper-
ties [58,351–354]. Below we present some data on lipopeptides that are the most interesting
from the point of view of medicine and pharmacology.

Sagittamide A and B have been isolated from a tropical tunicate, Dolabella auricularia
(Micronesia) [355,356]; other minor congeners, sagittamides C–F were isolated from Didem-
nidae ascidia [355–357]. According to published data, sagittamides A-F each have different
fatty acids (199–204, for structures see Figure 46, activity see in Table 18, and the same
samples of tunicate are shown in Figure 47).
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Table 18. Predicted biological activity of FA from lipopeptides of tunicates.

No. Predicted Biological Activity, Pa *

199 Neuroprotector (0.748); Immunosuppressant (0.710); Acute neurologic
disorders treatment (0.645)

200 Lipid metabolism regulator (0.901); Macrophage stimulant (0.829);
Antineoplastic (0.777)

201 Neuroprotector (0.748); Immunosuppressant (0.710); Acute neurologic
disorders treatment (0.645)

202
Lipid metabolism regulator (0.850); Antidiabetic symptomatic (0.740)

Atherosclerosis treatment (0.654); Hypolipemic (0.653);
Antidiabetic (0.605)

203
Lipid metabolism regulator (0.850); Antidiabetic symptomatic (0.740)

Atherosclerosis treatment (0.654); Hypolipemic (0.653);
Antidiabetic (0.605)

204
Lipid metabolism regulator (0.850); Antidiabetic symptomatic (0.740)

Atherosclerosis treatment (0.654); Hypolipemic (0.653);
Antidiabetic (0.605)

205 Lipid metabolism regulator (0.857); Apoptosis agonist (0.729);
Immunosuppressant (0.689)

206 Lipid metabolism regulator (0.879); Immunosuppressant (0.760);
Apoptosis agonist (0.744)

207

Hypolipemic (0.880); Lipid metabolism regulator (0.861);
Anti-hypercholesterolemic (0.683)

Atherosclerosis treatment (0.634); Neurodegenerative diseases
treatment (0.610)

208 Restenosis treatment (0.827); Neurodegenerative diseases treatment
(0.722); Antidiabetic (0.655)

209 Restenosis treatment (0.827); Neurodegenerative diseases treatment
(0.722); Antidiabetic (0.655)

210 Restenosis treatment (0.827); Neurodegenerative diseases treatment
(0.722); Antidiabetic (0.655)

211 Mucositis treatment (0.803); Antimutagenic (0.727);
Cytoprotectant (0.719)

* Only activities with Pa > 0.5 are shown.

Cyclic polyether lipopeptides named bistramides B, C, D, and K, which were related
to bistramide A from the ascidian Lissoclinum bistratum, were found in the extracts and
their structures were determined. Bistramides A–C contain FA (205), bistramide D contains
FA (206), and bistramide K contains FA (207) [358–361].

Cyclic depsipeptide from a tunicate of the genus Trididemnum, didemnins A, B and
D, contain (2R,4R)-4-hydroxy-2,5-dimethyl-3-oxohexanoic (208), (2S,4R)-4-hydroxy-2,5-
dimethyl-3-oxohexanoic [209], and (2R,4S)-4-hydroxy-2,5-dimethyl-3-oxohexanoic (210)
acids, respectively [362,363], and two other cyclic peptides named Eudistomides A and B,
which are derived from a Fijian ascidian Eudistoma sp. contain identical FAs (211) [364].

Sea squirts are sedentary and filter water containing plankton, microalgae, and bacteria.
For sea squirts, the obligate cyanobacterial symbionts are Prochloron spp. Apparently,
ascidian metabolites are organic molecules, including lipopeptides, which are synthesized
by microorganisms associated with ascidians. Therefore, if we are talking about ascidian
lipopeptides, then we mean organic metabolites isolated from the body of ascidians and
nothing more.
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Figure 47. 3D graph showing the predicted and calculated FA (208–210) activities as an anti-restenosis
agent. Recurrence, called restenosis or vasoconstriction, is rare. Various drugs, mechanical devices
such as stents, genetic treatments such as gene transfer or stem cell infusion, or combinations of the
above are commonly used to treat restenosis. For FA, this property is apparently described for the
first time.

6. Fatty Acids Incorporated into Actinomycete and Fungal Lipopeptides

Marine fungi, fungal endophytes and fungi growing in other ecosystems synthesize
linear and/or cyclic lipopeptides. These organisms are an inexhaustible source of new
biologically active compounds. These compounds are unique because the aquatic environ-
ment requires many specific and potent biologically active molecules. Various lipopeptides
have been discovered with a wide spectrum of biological activity, including antimicrobial,
antitumor and antiviral activity, and toxins [365–368].

An Australian marine-derived fungus, Acremonium sp. (MST-MF588a), yielded a fam-
ily of lipodepsipeptides, acremolides A–D [369]. 3,5,11-trihydroxy-2,6-dimethyl-dodecanoic
FA (212, for structures see Figure 48, activity is shown in Table 19) was incorporated into
acremolides A, C, and D, and 3,5-dihydroxy-2,6-dimethyl-11-oxododecanoic FA (213) was
found in the structure of acremolide B.

As inhibitors of topoisomerases, the cyclic lipopeptides fusaristatins A and B were
isolated from rice cultures of endophytic fungus Fusarium sp. YG-45. An unusual (8E,10E)-
3-hydroxy-2,6,10,14-tetramethyl-7-oxoicosa-8,10-dienoic acid (214) was found in cyclic
lipopeptides of fusaristatin A and B, as well as the linear lipopeptide YM 170320. Figure 49
shows the 3D graph of the predicted and calculated activity of this FA [370,371].
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Figure 48. Unusual FA derived from fungal lipopeptides.

Table 19. Predicted biological activity of FA from fungal lipopeptides.

No. Predicted Biological Activity, Pa *

212 Hypolipemic (0.845); Antihypertensive (0.622); Lipid metabolism
regulator (0.621)

213 Lipid metabolism regulator (0.791); Hypolipemic (0.778);
Antihypertensive (0.643)

214 Acute neurologic disorders treatment (0.944); Lipid metabolism
regulator (0.868)

215

Natural killer cell stimulant (0.785); Antineoplastic (0.785); Leukopoiesis
stimulant (0.733)

Acute neurologic disorders treatment (0.701); Immunosuppressant (0.697);
Neuroprotector (0.664)

216

Natural killer cell stimulant (0.785); Antineoplastic (0.785); Leukopoiesis
stimulant (0.733)

Acute neurologic disorders treatment (0.701); Immunosuppressant (0.697);
Neuroprotector (0.664)
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Table 19. Cont.

No. Predicted Biological Activity, Pa *

217

Hypolipemic (0.807); Acute neurologic disorders treatment (0.722);
Immunosuppressant (0.710)

Leukopoiesis stimulant (0.687); Natural killer cell stimulant (0.685);
Erythropoiesis stimulant (0.551)

218

Natural killer cell stimulant (0.795); Leukopoiesis stimulant (0.784);
Hypolipemic (0.765)

Immunosuppressant (0.702); Acute neurologic disorders treatment (0.696);
Neuroprotector (0.684)

219
Hypolipemic (0.851); Acute neurologic disorders treatment (0.844);

Anticonvulsant (0.733)
Natural killer cell stimulant (0.715); Leukopoiesis stimulant (0.713)

220
Hypolipemic (0.851); Acute neurologic disorders treatment (0.844);

Anticonvulsant (0.733)
Natural killer cell stimulant (0.715); Leukopoiesis stimulant (0.713)

221

Natural killer cell stimulant (0.795); Leukopoiesis stimulant (0.784);
Hypolipemic (0.765)

Immunosuppressant (0.702); Acute neurologic disorders treatment (0.696);
Neuroprotector (0.684)

222

Hypolipemic (0.828); Acute neurologic disorders treatment (0.774); Natural
killer cell stimulant (0.746)

Leukopoiesis stimulant (0.736); Immunosuppressant (0.726); Lipid
metabolism regulator (0.685)

223
Lipid metabolism regulator (0.881); Hypolipemic (0.851); Leukopoiesis

stimulant (0.822)
Natural killer cell stimulant (0.795); Anti-hypercholesterolemic (0.728)

224
Lipid metabolism regulator (0.881); Hypolipemic (0.851); Leukopoiesis

stimulant (0.822)
Natural killer cell stimulant (0.795); Anti-hypercholesterolemic (0.728)

225

Platelet antagonist (0.800); Acute neurologic disorders treatment (0.701);
Fibrinolytic (0.700)

Natural killer cell stimulant (0.696); Erythropoiesis stimulant (0.619);
Immunosuppressant (0.612)

226 Leukopoiesis stimulant (0.780); Antineoplastic (0.773); Hypolipemic (0.748)
Natural killer cell stimulant (0.744); Lipid metabolism regulator (0.650)

227

Lipid metabolism regulator (0.809); Leukopoiesis stimulant (0.776);
Hypolipemic (0.758)

Antihypertensive (0.741); Natural killer cell stimulant (0.730);
Antineoplastic (0.683)

228 Antidiabetic (0.781); Leukopoiesis stimulant (0.725); Bone diseases
treatment (0.679)

* Only activities with Pa > 0.5 are shown.

Rakicidins A–D are the 15-membered cytotoxic depsipeptides produced by the actino-
mycetes Micromonospora and Streptomyces [372,373], while rakicidin D was isolated from
the culture broth of an actinomycete strain of the genus Streptomyces sp. MWW064 [374].
3-Hydroxy-2,4,15-trimethylhexadecanoic acid (215) was found in rakicidin A, 3-hydroxy-
2,4,16-trimethylheptadecanoic acid (216)—in rakicidin B, 3-hydroxy-2,4,6,8-tetramethyl-
nonanoic acid (217)—in rakicidin C, and 3-hydroxy-2,4-dimethyldecanoic acid (218) was
detected in rakicidin D.
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lipopeptide YM-170320.

The cyclic depsipeptides tumescenamides A and B were isolated from the fermentation
broth of a marine bacterium, Streptomyces tumescens YM23-260 [375], and tumescenamide
C was detected in a culture broth of an actinomycete Streptomyces sp. KUSC F05 [376].
(2S,4S)-2,4-dimethylheptanoic acid (219) was found in tumescenamide A and C, and (2S,4S)-
2,4,6-trimethylnonanoic acid (220) was isolated from tumescenamide B.

In a mixture of cultures of fungal Emericella sp. and the actinomycete Salinispora areni-
cola, two cyclic depsipeptides, emericellamides A and B, were found. It is known that Salin-
ispora arenicola was isolated from marine sediments and exhibited weak cytotoxicity against
human colon cancer cells HCT-116 [377]. (2R,3R,4S)-3-hydroxy-2,4-dimethyl-decanoic acid
(221) found in emericellamide A, and (2R,3R,4S,6S)-3-hydroxy-2,4,6-trimethyldodecanoic
acid (222)—in emericellamides B. The cyclic hexadepsipeptides arenamides A and B are
characterized by a 19-membered macrocycle with six subunits—Phe, Ala, Val, Gly, Leu,
were isolated from the marine actinomycete S. arenicola. These two compounds, having an
aromatic amino acid phenyl alanine in the molecule, inhibited NO production in a dose-
dependent manner (2–10 µM), besides displaying weak activity against HCT116 cells [378].
The arenamide A and B blocked TNF-induced activation in a dose- and t-dependent manner
with IC50 values of 3.7 and 1.7 µM respectively. Two different FA, (3R,4R)-3-hydroxy-4-
methyldecanoic (223), and (3S,4S)-3-hydroxy-4-methyldecanoic (224), were isolated from
arenamide A (A1) and arenamide B (A2), respectively.

Bicyclic depsipeptide antibiotics, salinamides A and B, with anti-inflammatory prop-
erties, were produced by fermentation of a specific marine actinomycete, a Streptomyces sp.
(CNB-091) in saltwater-based media [379]. (2S,3S)-3-hydroxy-2,4-dimethylpentanoic acid
(225) was present in both the bicyclic depsipeptides salinamides A and B.
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Vinylamycin, a depsipeptide antibiotic, was isolated from the culture broth of a
Streptomyces sp. It has showed antimicrobial activities against Gram-positive bacteria
including methicillin-resistant Staphylococcus aureus [380]. 3-hydroxy-2-(2-hydroxyethyl)-
4-methyl-decanoic acid (226) was found in vinylamycin. A cyclic depsipeptide antibiotic
NA30851A useful for insecticides or microbicides, is manufactured by culturing Strep-
tomyces sp. NA30851A (FERM P-16214) [381,382]. Two 2-hydroxy-3-methylpentanoic
(227) and 3,4-dihydroxy-2,2-dimethyl-5-phenyl-pentanoic (228) FA were present in cyclic
depsipeptide antibiotic NA 30851A.

A metabolite of antimycin family, JBIR-06, was isolated from Streptomyces sp. ML55,
and it inhibited the expression of GRP78 induced by 2-deoxyglucose at the IC50 value of
250 nM [383]. An actinomycete, Streptomyces sp. ML55, produced the antibiotic JBIR-52
and containing the FA 4-Hydroxy-2,2-dimethyl-3-oxo-nonanoic acid (229, for structure see
Figure 50, and activity see in Table 20) was found in JBIR-06, and 4-hydroxy-2-methyl-3-
oxo-nonanoic acid (230) was present in JBIR-52 [384].
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Table 20. Predicted biological activity of FA derived from fungal lipopeptides.

No. Predicted Biological Activity, Pa *

229 Lipid metabolism regulator (0.861); Leukopoiesis stimulant (0.840);
Hypolipemic (0.685)

230 Fibrinolytic (0.760); Natural killer cell stimulant (0.746); Leukopoiesis
stimulant (0.746)

231

Antiviral (Arbovirus) (0.834); Antimutagenic (0.827); Mucositis treatment
(0.812)

Preneoplastic conditions treatment (0.766); Lipid metabolism regulator
(0.718)

232 Antiviral (Arbovirus) (0.861); Lipid metabolism regulator (0.844); Antiviral
(Picornavirus) (0.776)

233 Antiviral (Arbovirus) (0.861); Lipid metabolism regulator (0.844); Antiviral
(Picornavirus) (0.776)

234 Antiviral (Arbovirus) (0.947); Lipid metabolism regulator (0.884); Antiviral
(Picornavirus) (0.782)

235 Antiviral (Arbovirus) (0.891); Lipid metabolism regulator (0.743); Antiviral
(Picornavirus) (0.730)

236 Apoptosis agonist (0.886); Antineoplastic (0.763); Chemoprotective (0.700)

237 Antiviral (Arbovirus) (0.904); Lipid metabolism regulator (0.828); Antiviral
(Picornavirus) (0.688)

238 Antiviral (Arbovirus) (0.886); Lipid metabolism regulator (0.874); Antiviral
(Picornavirus) (0.744)

239 Lipid metabolism regulator (0.942); Anti-hypercholesterolemic (0.855);
Hypolipemic (0.793)

240 Antiviral (Arbovirus) (0.853); Antiviral (Picornavirus) (0.760); Apoptosis
agonist (0.731)

241 Antiviral (Arbovirus) (0.873); Lipid metabolism regulator (0.850); Antiviral
(Picornavirus) (0.735)

242 Anti-ischemic, cerebral (0.910); Leukopoiesis stimulant (0.708);
Antidiabetic (0.698)

243 Antiviral (Arbovirus) (0.944); Lipid metabolism regulator (0.882); Antiviral
(Picornavirus) (0.766)

244 Anti-inflammatory (0.785); Antineoplastic (0.782); Preneoplastic conditions
treatment (0.661)

245 Lipid metabolism regulator (0.846); Anti-hypercholesterolemic (0.827);
Atherosclerosis treatment (0.538)

246 Lipid metabolism regulator (0.943); Hypolipemic (0.860);
Anti-hypercholesterolemic (0.844)

247 Antineoplastic (0.844); Hypolipemic (0.782); Lipid metabolism
regulator (0.699)

* Only activities with Pa > 0.5 are shown.

The depsipeptides WS9326A, WS9326C, WS9326D, and WS9326E were detected in
a culture of Streptomyces sp. 9078 [385]. Phenyl-containing (E)-3-(2-((Z)-pent-1-en-1-yl)-
phenyl)-acrylic acid (231) was found in all depsipeptides, and other antibiotics with un-
saturated fatty acids were obtained from Streptomyces hawaiiensis culture extracts [386].
Thus, antibiotic A 54556A contains (2E,4E)-hexa-2,4-dienoic acid (232), antibitotic A 54556B
contains (2E,4E,6E)-octa-2,4,6-trienoic acid (233), and four same acyl depsipeptides contain
(2E,4E)-octa-2,4-dienoic (234), (2E,4E)-7-hydroxyhepta-2,4-dienoic (235), (2E,4E)-6-oxohexa-
2,4-dienoic (236), and (2E,4E)-7-hydroxyocta-2,4-dienoic acids (237), respectively.
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Structurally and functionally similar lipodepsipeptide antibiotics, enduracidin and ramo-
planin, have been found in cultivated cultures of Streptomyces fungicidicus B5477 [387–390].
(2Z,4E)-10-Methylundeca-2,4-dienoic acid (238) was detected in the structures of enduracidin
A, C, D, F and (2Z,4E)-10-methyldodeca-2,4-dienoic acid (239) was found in enduracidin B, E,
and G.

Streptomyces macrosporeus ATCC 21 strain produces janiemycin as the main peptide
antibiotic, which serves as a bactericidal ointment against Streptococcus pyogenes C203 and
Diplococcus pneumoniae [388–391]. Janiemycin and ramoplanin A1 contain (2E,4E)-octa-2,4-
dienoic acid (234), ramoplanin contains A2-(2Z,4E)-7-methylocta-2,4-dienoic acid (240),
and ramoplanin A3 contains (2Z,4E)-8-methylnona-2,4-dienoic acid (241) [390].

It is known that the endophytic fungus Pestalotiopsis sp. produces the cyclopeptolide
antibiotic HUN-7293 pesthivin and anti-HIV agent pesthivin DM, which are used to treat
chronic inflammatory diseases and inhibit VCAM-1 expression on activated endothelial
cells [392–394]. All antibiotics contain the same unusual (R)-4-cyano-2-hydroxybutanoic
acid (242).

The lipopeptides rotihibin A and B, known as plant growth inhibitors, were obtained
from Streptomyces graminofaciens 3C02 filtrate [395], and both contain (Z)-dec-2-enoic acid
(243). The predicted and calculated antiviral activity of unsaturated FA (234, 237 and 243)
is shown in Figure 51.
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A cultivated endophytic fungus from Copris tripartitus is a producer of coprisamides
A and B, which have significant activity for the induction of quinone reductase [396].
Both cyclic peptides contain (Z)-3-(2-((1Z,3E,5E)-hepta-1,3,5-trien-1-yl)-phenyl)-acrylic acid
(244). A lipopeptide antibiotic related to amphomycin and named laspartomycin has a side
chain in the form of (E)-13-methyltetradec-2-enoic acid (245) [397].

The Floridian marine sediment-derived fungus Microascus sp. EGM-556 produces a
hybrid biosynthetic cyclodepsipeptide [398], which was structurally identical to turnagaino-
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lide A. It is known that turnagainolide A is produced in culture by a Bacillus sp. [399]. These
cyclodepsipeptides, EGM-556 and turnagainolide A, contain (E)-3-hydroxy-5-phenylpent-
4-enoic acid (246).

The actinomycete Streptomyces pristinaespiralis synthesizes a mixture of antibiotics
called pristinamycin IA and IIA in a ratio of 30:70 [400,401]. Both antibiotics are known to
inhibit protein synthesis elongation, exhibiting powerful bacteriostatic activity [402,403].
(4R,5R,E)-5-hydroxy-4,6-dimethylhept-2-enoic (247) FA was incorporated into both antibi-
otics IA and IIA.

Unusual guanidine-containing fatty acids (248–251) are produced by some fungus
species. Monoamidocin, N-[(S)-5-guanidino-2-hydroxypentanoyl]-l-phenylalanine, is a
dipeptide analogue has been isolated from Streptomyces sp. NR 0637. Monoamidocin
inhibits the binding of fibrinogen to GP IIb/IIIa receptors [404]. This compound contains
(S)-5-guanidino-2-hydroxypentanoic acid (248, for structure see Figure 52, and activity is
shown in Table 21). The monoamidocin analogue was shown to have a 10-fold increase
in activity and contains (R)-5-guanidino-2-hydroxypentanoic acid (249). The fusaricidins
A, B, C and D, depsipeptide antibiotics, have been isolated as minor components from
the culture broth of Bacillus polymyxa KT-8 which was obtained from the rhizosphere of
garlic suffering from basal rot caused by Fusarium oxysporum. The fusaricidins B, C and D
are active against fungi and Gram-positive bacteria, as well as fusaricidin A [405]. All the
fusaricidins contain 15-guanidino-3-hydroxypentadecanoic acid (250).

Hydrobiology 2022, 1, FOR PEER REVIEW 67 
 

 

 
Figure 52. Unusual FA derived from fungi and fungal endophyte lipopeptides. 

Table 21. Predicted biological activity of FA from lipopeptides of fungi. 

No. Predicted Biological Activity, Pa * 

248 Anti-ischemic, cerebral (0.919); Mucositis treatment (0.913); Lipid metabolism regulator (0.885)   
Antithrombotic (0.745); Platelet antagonist (0.685); Antihypertensive (0.555)  

249 Anti-ischemic, cerebral (0.919); Mucositis treatment (0.913); Lipid metabolism regulator (0.885)   
Antithrombotic (0.745); Platelet antagonist (0.685); Antihypertensive (0.555)  

250 Lipid metabolism regulator (0.923); Mucositis treatment (0.910); Antithrombotic (0.805)   
Anti-ischemic, cerebral (0.801); Platelet antagonist (0.751); Fibrinolytic (0.684)    

251 Mucositis treatment (0.960); Lipid metabolism regulator (0.869); Platelet antagonist (0.836)   
Antithrombotic (0.773); Anti-ischemic, cerebral (0.740); Fibrinolytic (0.717)  

252 Antineoplastic (0.844); Antiviral (Arbovirus) (0.790); Antiviral (Picornavirus) (0.659)    

253 Antihypertensive (0.962); Anti-Helicobacter pylori (0.839); Chemoprotective (0.718)   
Antineoplastic (myeloid leukemia) (0.707); Apoptosis agonist (0.674); Antineoplastic (0.656)  

254 Anti-Helicobacter pylori (0.744); Antiviral (Arbovirus) (0.715); Antiviral (Picornavirus) (0.547)   

255 Hypolipemic (0.795); Antineoplastic (0.791); Antiviral (Arbovirus) (0.742)   
Preneoplastic conditions treatment (0.740); Lipid metabolism regulator (0.739)  

256 Lipid metabolism regulator (0.902); Anti-hypercholesterolemic (0.871)   
Hypolipemic (0.812); Atherosclerosis treatment (0.603)    

257 Antiviral (Arbovirus) (0.890); Antiviral (Picornavirus) (0.817); Mucositis treatment (0.743)   

258 Hypolipemic (0.845); Antihypertensive (0.622); Lipid metabolism regulator (0.621)   
Atherosclerosis treatment (0.590); Antiprotozoal (Coccidial) (0.569); Antibacterial (0.562)    

Figure 52. Unusual FA derived from fungi and fungal endophyte lipopeptides.
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Table 21. Predicted biological activity of FA from lipopeptides of fungi.

No. Predicted Biological Activity, Pa *

248
Anti-ischemic, cerebral (0.919); Mucositis treatment (0.913); Lipid

metabolism regulator (0.885)
Antithrombotic (0.745); Platelet antagonist (0.685); Antihypertensive (0.555)

249
Anti-ischemic, cerebral (0.919); Mucositis treatment (0.913); Lipid

metabolism regulator (0.885)
Antithrombotic (0.745); Platelet antagonist (0.685); Antihypertensive (0.555)

250

Lipid metabolism regulator (0.923); Mucositis treatment (0.910);
Antithrombotic (0.805)

Anti-ischemic, cerebral (0.801); Platelet antagonist (0.751);
Fibrinolytic (0.684)

251
Mucositis treatment (0.960); Lipid metabolism regulator (0.869); Platelet

antagonist (0.836)
Antithrombotic (0.773); Anti-ischemic, cerebral (0.740); Fibrinolytic (0.717)

252 Antineoplastic (0.844); Antiviral (Arbovirus) (0.790); Antiviral
(Picornavirus) (0.659)

253

Antihypertensive (0.962); Anti-Helicobacter pylori (0.839);
Chemoprotective (0.718)

Antineoplastic (myeloid leukemia) (0.707); Apoptosis agonist (0.674);
Antineoplastic (0.656)

254 Anti-Helicobacter pylori (0.744); Antiviral (Arbovirus) (0.715); Antiviral
(Picornavirus) (0.547)

255
Hypolipemic (0.795); Antineoplastic (0.791); Antiviral (Arbovirus) (0.742)

Preneoplastic conditions treatment (0.740); Lipid metabolism
regulator (0.739)

256 Lipid metabolism regulator (0.902); Anti-hypercholesterolemic (0.871)
Hypolipemic (0.812); Atherosclerosis treatment (0.603)

257 Antiviral (Arbovirus) (0.890); Antiviral (Picornavirus) (0.817); Mucositis
treatment (0.743)

258

Hypolipemic (0.845); Antihypertensive (0.622); Lipid metabolism
regulator (0.621)

Atherosclerosis treatment (0.590); Antiprotozoal (Coccidial) (0.569);
Antibacterial (0.562)

259 Lipid metabolism regulator (0.874); Anti-hypercholesterolemic (0.785);
Hypolipemic (0.707)

260
Lipid metabolism regulator (0.942); Anti-hypercholesterolemic (0.855);

Hypolipemic (0.793)
Atherosclerosis treatment (0.635); Multiple sclerosis treatment (0.521)

261 Antiviral (Arbovirus) (0.927); Lipid metabolism regulator (0.887); Antiviral
(Picornavirus) (0.669)

YM-170320 Antifungal (0.867); Antibacterial (0.744); Antineoplastic (0.711);
Chemoprotective (0.594)

262
Acute neurologic disorders treatment (0.944); Lipid metabolism

regulator (0.868)
Antineoplastic (0.814); Antifungal (0.829); Antibacterial (0.698)

* Only activities with Pa > 0.5 are shown.
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Eulicin is a potent antibiotic against a broad range of Gram-positive and Gram-
negative bacteria which was isolated from a Streptomyces sp. [406]. More recently, eulicin
and its related analogues, as a muscarinic receptor antagonist, have also been isolated from
a Streptomyces strain SCC 2268 [407]. Recently, it has been shown that eulicin inhibits human
immunodeficiency virus infection and replication in a dose-dependent manner [408]. Both
compounds contain 9-guanidinononanoic acid (251).

It is known that depsipeptides and streptogramins are potent drugs against numer-
ous highly resistant pathogens and are used for human treatment, and one of them is
virginiamycin [409,410]. This depsipeptide was obtained by fermentation of a culture of
Streptomyces sp. G-89 [411], and contains (4R,5S,E)-5-hydroxy-4,6-dimethylhept-2-enoic
acid (252).

Pterulamides I-VI are linear lipopeptides that were isolated from the fruiting bodies of
a Malaysian fungus Pterula sp. Pterulamides I and IV are cytotoxic against the P388 cell
line with IC50 values of 0.55 and 0.95 µM/mL (0.79 and 1.33 µM), respectively [412]. Two
sulfur-containing acids, (E)-3-(methylsulfinyl)-acrylic (253) and (E)-3-(methylthio)-acrylic
(254) acids were present in pterulamides I–VI.

The arylomycins are lipopeptide antibiotics, and they were detected in the culture
filtrate and mycelium extracts of Streptomyces sp. Tu6075b. The isolated antibiotics demon-
strate antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseu-
domonas aeruginosa [413]. Two monoenoic fatty acids, (E)-2,4-dimethylhept-2-enoic acid
(255) and (E)-11-hydroxy-14-methylpentadec-2-enoic acid (256), were isolated from ary-
lomycin D.

Analysis of a fermentation broth of Streptomyces RK-1051 showed that the solution
contains two depsipeptides that inhibit the growth of Staphylococcus pyogenes [414]. Both
depsipeptides contain (2E,4E,6E,8E,10E)-dodeca-2,4,6,8,10-pentaenedioic acid (257). This
fatty acid also was found in enopeptin A, which was isolated from Streptomyces griseus and
showed antimicrobial activity against several microorganisms, and enopeptin A exhibited
anti-bacteriophage activity [415,416]. A cyclic depsilipopeptide, colisporifungin, was
isolated from a fungal isolate of Fusarium sp. and contained 3,5,11-trihydroxy-2,6-dimethyl-
dodecanoic acid (258) [417].

The actinomycete Streptomyces fungicidicus has yielded three enduracidin analogues.
(2Z,4E)-10-methylundeca-2,4-dienoic acid (259) was found in enduracidin and monodeschloro-
enduracidin A, and (2Z,4E)-10-methyldodeca-2,4-dienoic acid (260) was present in mono-
deschloroenduracidin B [418]. Enamidonin, a cyclic lipopeptide antibiotic, has been isolated
from a culture broth of Streptomyces sp. 91–75 [419]. (2E,4E,9E)-13-hydroxytetradeca-2,4,9-
trienoic acid (261) was found in structure of enamidonin.

Strain YL-03706F, a mutant of Candida tropicalis pK233, has produced a lipopeptide
antibiotic designated YM-170320 (for structure see Figure 52) [420,421]. (8E,10E)-3-Hydroxy-
2,6,10,14-tetramethyl-7-oxoicosa-8,10-dienoic acid (262) was included into the lipopeptide
structure. Comparative analysis of the biological activity of this linear lipopeptide YM-
170320 and FA (262) included in its structure showed that this lipopeptide demonstrates
antifungal and antibacterial activity, and the same activity is demonstrated by FA (see
Table 21).

Analyzing the activity of FA (248–262), which was obtained using PASS, acid (253) showed
antihypertensive properties with a confidence level of more than 96%. Figure 53 presents the
3D graph which shows the predicted and calculated activity of this FA.

The fermentation broth actinomycete Streptomyces sp. contains two cyclic lipopeptides
K97-0239 A and B, both having (2E,4E)-13-hydroxytetradeca-2,4-dienoic acid (263, for
structure see Figure 54, and biological activity see in Table 22) [422].



Hydrobiology 2022, 1 396

Hydrobiology 2022, 1, FOR PEER REVIEW 69 
 

 

Analyzing the activity of FA (248–262), which was obtained using PASS, acid (253) 
showed antihypertensive properties with a confidence level of more than 96%. Figure 53 
presents the 3D graph which shows the predicted and calculated activity of this FA. 

 
Figure 53. 3D graph shows the predicted and calculated antihypertensive activity of a rare sulfur-
containing FA (253). The antihypertensive property of this acid appears to be related to the presence 
of sulfur monoxide. It is known that many antihypertensive drugs, such as indapamide, chlorthali-
done, metalozone, xipamide or clopamide, contain sulfur dioxide molecules. 

The fermentation broth actinomycete Streptomyces sp. contains two cyclic lipopep-
tides K97-0239 A and B, both having (2E,4E)-13-hydroxytetradeca-2,4-dienoic acid (263, 
for structure see Figure 54, and biological activity see in Table 22) [422]. 

Ulleungamides A and B, cyclic depsipeptides, were obtained from cultures of Strep-
tomyces sp. Ulleungamide A with (S)-2-isopropylsuccinic acid (264) displayed growth in-
hibitory activity against Staphylococcus aureus and Salmonella typhimurium without cyto-
toxicity [423]. 

Figure 53. 3D graph shows the predicted and calculated antihypertensive activity of a rare sulfur-
containing FA (253). The antihypertensive property of this acid appears to be related to the presence of
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metalozone, xipamide or clopamide, contain sulfur dioxide molecules.

Ulleungamides A and B, cyclic depsipeptides, were obtained from cultures of Strep-
tomyces sp. Ulleungamide A with (S)-2-isopropylsuccinic acid (264) displayed growth
inhibitory activity against Staphylococcus aureus and Salmonella typhimurium without cyto-
toxicity [423].

More than 40 years ago, Eli Lilly published the isolation of a similar depsipeptide
antibiotic A54556, a complex of eight depsipeptide factors A-H, which was produced by
aerobic fermentation of Streptomyces hawaiiensis NRRL 15010 [424]. The depsipeptides had
promising in vitro activity against enterococci and streptococci but only moderate in vitro
potency against staphylococci. A complex antibiotic A54556 depsipeptide factor contains
several acids: A and F a (2E,4E,6E)-octa-2,4,6-trienoic acid (265), B-(2E,4E)-6-hydroxyhexa-
2,4-dienoic acid (266), C and D-(2E,4E)-hexa-2,4-dienoic acid (267), and H-(2E,4E)-octa-2,4-
dienoic acid (268).

The peptide–polyketide glycoside totopotensamide A and its aglycone totopoten-
samide B were detected in the fermentation broth of Streptomyces sp. 1053U. This Acti-
nomycete was isolated from the gastropod mollusc, Lienardia totopotens, collected in the
Philippines (Mactan Is., Cebu) [425]. Similar to the glycolipid, (269) and (8S,9R,10S,11R,12S)-
9,11,12-trihydroxy-4,6,8,10-tetramethyl-3-oxotri-decanoic (270) FA were found in totopoten-
samide A and B, respectively.
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Figure 54. Rare and unusual FA derived from fungal lipopeptides.

Table 22. Predicted biological activity of FA derived from lipopeptides of fungi.

No. Predicted Biological Activity, Pa *

263 Antiviral (Arbovirus) (0.927); Lipid metabolism regulator (0.887); Antiviral
(Picornavirus) (0.669)

264 Antitoxic (0.733); Leukopoiesis stimulant (0.730); Preneoplastic conditions
treatment (0.721)

265 Antiviral (Arbovirus) (0.861); Lipid metabolism regulator (0.844); Antiviral
(Picornavirus) (0.776)

266 Antiviral (Arbovirus) (0.860); Antiviral (Picornavirus) (0.751);
Antidiabetic (0.713)
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Table 22. Cont.

No. Predicted Biological Activity, Pa *

267 Antiviral (Arbovirus) (0.861); Lipid metabolism regulator (0.844); Antiviral
(Picornavirus) (0.776)

268 Antiviral (Arbovirus) (0.947); Lipid metabolism regulator (0.884); Antiviral
(Picornavirus) (0.782)

269 Antineoplastic (0.902); DNA synthesis inhibitor (0.675); Angiogenesis
inhibitor (0.668)

270 Antineoplastic (0.872); Apoptosis agonist (0.653); Antiarthritic (0.611)

271 Hypolipemic (0.808); Anti-hypercholesterolemic (0.695); Lipid metabolism
regulator (0.691)

272 Lipid metabolism regulator (0.887); Atherosclerosis treatment (0.690);
Hypolipemic (0.647)

273 Lipid metabolism regulator (0.886); Hypolipemic (0.788);
Anti-hypercholesterolemic (0.755)

274 Lipid metabolism regulator (0.886); Hypolipemic (0.788);
Anti-hypercholesterolemic (0.755)

275 Apoptosis agonist (0.886); Antineoplastic (0.763); Chemoprotective (0.700)

276 Apoptosis agonist (0.781); Antimutagenic (0.777); Preneoplastic conditions
treatment (0.600)

277 Natural killer cell stimulant (0.795); Leukopoiesis stimulant (0.784);
Antineoplastic (0.778)

278 Natural killer cell stimulant (0.795); Leukopoiesis stimulant (0.784);
Antineoplastic (0.778)

279 Leukopoiesis stimulant (0.802); Natural killer cell stimulant (0.769);
Immunosuppressant (0.686)

280 Lipid metabolism regulator (0.929); Hypolipemic (0.786);
Lymphocytopoiesis inhibitor (0.726)

281 Antidiabetic (0.763); Antihypoxic (0.736); Natural killer cell
stimulant (0.570)

282 Myasthenia Gravis treatment (0.962); Cell adhesion molecule inhibitor
(0.863); Antidiabetic (0.757)

283
Angiogenesis stimulant (0.915); Lipid metabolism regulator (0.913);

Myasthenia Gravis treatment (0.779)
Cell adhesion molecule inhibitor (0.745); Antidiabetic (0.664)

284 Angiogenesis stimulant (0.914); Myasthenia Gravis treatment (0.844)
Cell adhesion molecule inhibitor (0.788); Antidiabetic (0.700)

285
Angiogenesis stimulant (0.915); Lipid metabolism regulator (0.913);

Myasthenia Gravis treatment (0.779)
Cell adhesion molecule inhibitor (0.745); Antidiabetic (0.664)

286 Antihypertensive (0.824); DNA intercalator (0.707); Antidiabetic (0.692)

287 Leukopoiesis stimulant (0.763); Natural killer cell stimulant (0.721);
Antidiabetic symptomatic (0.659)

288 Myasthenia Gravis treatment (0.962); Cell adhesion molecule inhibitor
(0.863); Antidiabetic (0.757)

* Only activities with Pa > 0.5 are shown.
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(E)-6-Hydroxy-4-methylhex-2-enoic acid (271) was detected in several lipopeptides and
cyclic peptides, called asperchrome A, B1, B2, B3, C, D1, D2, D3, and rerrirubin. These an-
tibiotics are produced by Aspergillus ochraceous; fusarinine C, and N,N’N”-triacetylfusarinin
C are produced by Aspergillus fumigatus, A.nidulans and Fusarium cubense; coprogen and
dimerumic acid are produced by Aspergillus terreus; fusarinine C and asperchrome F1 is
produced by fungus Aureobasidium pullulans and Penicillium chrysogenum; basidiochrome
is produced by Ceratobasidium cornigerum; basidiochrome, ferrirhodin, and Ceratobasidium
globisporum [426].

The unique cyclic peptide thioviridamide is an apoptosis inducer found in the fer-
mentation broth of Streptomyces olivoviridis with 2-hydroxy-2-methyl-4-oxopentanoic acid
(272) [427]. The fermentation broths of the fungal strains Chalara sp. no. 22210 and
Tolypocladium parasiticum 16616 contain the antifungal lipopeptides FR227673 and FR190293,
with 10,12-dimethyltetradecanoic (273), and 12,14-dimethylhexadecanoic (274) FA, respec-
tively [428].

A tripeptide, pre-sclerotiotide F, was isolated from a marine sediment-derived fungus,
Aspergillus insulicola, and has showed cytotoxicity against selected cancer cells in vitro.
The effects of pre-sclerotiotide F and sclerotiotide F on LPS-induced NF-κB and iNOS
expression were also reported [429]. (2E,4E)-6-Oxohexa-2,4-dienoic acid (275) was present
in pre-sclerotiotide F and sclerotiotide F.

The marine mangrove endophytic unidentified fungus from the South China Sea pro-
duced xyloallenoide A with (E)-3-(4-(buta-2,3-dien-1-yloxy)-phenyl)-acrylic acid (276) [430].

The marine fungus Hypoxylon oceanicum LL-15G256 is a producer of several lipodep-
sipeptides with antifungal activity. Compound 15G256γ contains (2S,3S,4R)-3-hydroxy-2,4-
dimethyl-dodecanoic (277), 15G256d-(2R,3R,4R)-3-hydroxy-4-(hydroxymethyl)-2-methyl-
dodecanoic (278), and 15G256e-(2S,3S,4R)-3-hydroxy-2,4-dimethyldecanoic (279) acids,
respectively [431,432], and butanone extracts of another marine-derived fungus Beauveria
feline with cytotoxic and anti-tuberculosis activity contains destruxin E chlorohydrin and
pseudodestruxin C with (2S,4R)-5-chloro-2,4-dihydroxypentanoic acid (280) [433].

The fungal endophyte Metarhizium anisopliae produces several destruxins A, B, and E
(DA, DB and DE). Destruxin-A4 chlorohydrin and destruxin Ed1 contain 2-hydroxy-3-((S)-
oxiran-2-yl)-propanoic acid (281) [434–436].

The antibiotic E-64 is a thiol protease inhibitor, and its producer is Aspergillus japonicus
TPR-64, which contains (2R,3R)-oxirane-2,3-dicarboxylic acid (282) [437,438] and a lipopep-
tide called cystargamide has been identified in the fermentation broth of the actinomycete
Kitasatospora cystarginea and contains 3-heptyloxirane-2-carboxylic acid (283) [439].

The acidic lipopeptides produced by Streptomyces sp. such as CDA1b, CDA2a, CDA2b,
CDA3a, CDA3b, CDA4a and CDA4b contain 3-pentyloxirane-2-carboxylic acid (284), and
CDA1 and CDA2 contain 3-propyloxirane-2-carboxylic acid (285) [440–442]. The antitumor
antibiotic carzinophilin A was derived from Streptomyces sahachiroi and azinomycin B was
found in Streptomyces griseofuscus S42227, and both lipopeptides contain a 2-hydroxy-2-((S)-
2-methyloxiran-2-yl)-acetic acid (286) [443]. The Streptomyces sp. strain associated with
fungus-growing termites is a producer of microtermolide A, which contains a (2S,3R,4R)-3-
hydroxy-2-(2-hydroxyethyl)-4-methylheptanoic acid (287) [444]. Oxirane-2,3-dicarboxylic
acid (288) is part of many antibiotics that produce different fungal species, and it found in:
antibiotic TMC 52A, TMC 52B, TMC 52C, rexostatine, cathestatin A, B, C, antibiotic AM
4299B, antibiotics WF 14861A, 14865A, 14865B, and antibiotic 460B [445].

Very interesting data were obtained in the analysis of the biological activity of FA
(263–288). Acids containing the epoxy group 282, 283, 284, 285 and 288 have been shown
to treat Myasthenia Gravis with a confidence level of 78 to 96%. This is a rare property that
epoxy FA exhibit (282, 283 and 284), and their 3D activity is shown in Figure 55.
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Figure 55. 3D graph showing the predicted and calculated Myasthenia Gravis activity of epoxy FA
(282, 283 and 284) at 78 to 96% confidence. Aspergillus japonicus TPR-64 synthesized acid (282), the
actinomycete Kitasatospora cystarginea produces acid (283), and the fungus Streptomyces produces
acid (284).

Pyrane-containing FA (289–301, for structures see Figure 56, and biological activity see
in Table 23) have been found in the structures of many lipopeptides. Thus, two hexadep-
sipeptides were detected in a fermentation broth of Streptomyces nobilis JCM4274. Isolated
hexadepsipeptides have shown an IC50 of 30 nM against human lung cancer NCI-H358
cells [446], and both compounds contained (289) FA. A fermentation broth of Streptomyces
sp. contained a cyclic hexadepsipeptide antibiotic GE3 A and a linear lipopeptide GE3 B,
which had the same acid (290, see 3D graph in Figure 57) [447]. Polyoxypeptins A and
B with FA (291) are potent apoptosis-inducing peptides and were detected in the culture
broth of Streptomyces sp. [448].

The hexadepsipeptide antibiotics named aurantimycins A, B, and C with FA (292) were
detected in the mycelium of Streptomyces aurantiacus JA4570 [449,450], and another acti-
nomycete, Streptomyces flavidovirens, produced a cyclic hexadepsipeptide antibiotic, cit-
ropeptin, and contained pyrane-containing acid (293).

The hexadepsipeptide antibiotic, azinothricin with (294) FA was detected in extracts
of the culture filtrate of Streptomyces sp. X-14950 [451], and a culture of the Streptomyces
karnatakensis contained a cyclic hexadepsipeptide antibiotic designated A83586C with (295)
FA [452].

Glyco-hexadepsipeptide-polyketide with FA (296) named mollemycin A is produced
by a marine-derived Streptomyces sp. (CMB-M0244), which was isolated from a sediment
collected off South Molle Island (Queensland) [453]. The cyclic hexadepsipeptide antibiotics
which contained FA (297, 3D graph of activity sees in Figure 57) were obtained from a
fermentation broth of Streptomyces species (PM0895172/MTCC 684) and showed antitumor
activity [454].



Hydrobiology 2022, 1 401Hydrobiology 2022, 1, FOR PEER REVIEW 74 
 

 

O

HO O

OH

OH
289 O

HO

O
HO

HO

O

290

O

HO

O

OH

HO

291

O
HO

HO
HO

O

292

HO O

HO O

O

OH

293
O

O

OHO

OHHO H
294

O

O

OHO

OHHO H
295

O

O

OH

OH

O

HO
HO 296

O
OH

HO

HO O 297

O
OH

HO O

HO

298

O
H

O

HO O

OH

HO

299

O
OH

HO

HO O
300

301

O

OMe

OHHO

HO O

O
HO

Cl
HOOC

OH
H

Cl
H

Cl

302

O
HO

Cl
HOOC

H

Cl
H

Cl

303

HOOC

O

HO

H

304

HOOC

O

HO

H

305

Cl

307

308

309 310

HO

O OH

HO

O

HO

O

HO

OH

HO

O

HO

OH

OH

306

HO

O

OH

 
Figure 56. Unique, rare, and unusual FA derived from fungal and bacterial lipopeptides. 

The cyclic hexadepsipeptide named pipalamycin with the rare FA (298) was isolated 
from a culture filtrate of Streptomyces sp. ML297-90F8 as an apoptosis-inducing agent 
[455]. 

Table 23. Predicted biological activity of FA of fungal lipopeptides. 

No. Predicted Biological Activity, Pa * 
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Figure 56. Unique, rare, and unusual FA derived from fungal and bacterial lipopeptides.

Table 23. Predicted biological activity of FA of fungal lipopeptides.

No. Predicted Biological Activity, Pa *

289 Antibiotic Glycopeptide-like (0.908); Antineoplastic (0.877); Apoptosis
agonist (0.798)

290 Antineoplastic (0.942); Apoptosis agonist (0.897); Antibiotic
Glycopeptide-like (0.785)

291 Antibiotic Glycopeptide-like (0.892); Antineoplastic (0.850);
Antiprotozoal (Plasmodium) (0.834)

292 Antineoplastic (0.890); Antibiotic Glycopeptide-like (0.883); Apoptosis
agonist (0.802)
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Table 23. Cont.

No. Predicted Biological Activity, Pa *

293 Antineoplastic (0.942); Apoptosis agonist (0.897); Antibiotic
Glycopeptide-like (0.785)

294 Antineoplastic (0.913); Apoptosis agonist (0.882); Antibiotic
Glycopeptide-like (0.771)

295 Antineoplastic (0.938); Apoptosis agonist (0.881); Antibiotic
Glycopeptide-like (0.769)

296 Antibiotic Glycopeptide-like (0.813); Antineoplastic (0.800); Apoptosis
agonist (0.684)

297 Antibiotic Glycopeptide-like (0.908); Antineoplastic (0.877); Apoptosis
agonist (0.798)

298 Antibiotic Glycopeptide-like (0.879); Antineoplastic (0.857); Apoptosis
agonist (0.803)

299 Antineoplastic (0.942); Apoptosis agonist (0.897); Antibiotic
Glycopeptide-like (0.785)

300 Antibiotic Glycopeptide-like (0.906); Antineoplastic (0.865); Apoptosis
agonist (0.763)

301 Antineoplastic (0.913); Antibiotic Glycopeptide-like (0.782); Apoptosis
agonist (0.779)

302 Antidiabetic symptomatic (0.732); Leukopoiesis stimulant (0.671);
Multiple sclerosis treatment (0.663)

303 Natural killer cell stimulant (0.739); Antidiabetic symptomatic (0.733);
Leukopoiesis stimulant (0.687)

304 Antiviral (Arbovirus) (0.927); Lipid metabolism regulator (0.887);
Antiviral (Picornavirus) (0.669)

305 Lipid metabolism regulator (0.881); Hypolipemic (0.851);
Anti-hypercholesterolemic (0.728)

306 Lipid metabolism regulator (0.819); Natural killer cell stimulant (0.797);
Hypolipemic (0.759)

307 Lipid metabolism regulator (0.919); Anti-hypercholesterolemic (0.803);
Hypolipemic (0.763)

308 Anti-hypercholesterolemic (0.897); Lipid metabolism regulator (0.819);
Antimutagenic (0.784)

309 Anti-inflammatory (0.842); Analgesic (0.766); Leukopoiesis
stimulant (0.584)

310 Anti-inflammatory (0.814); Analgesic (0.746); Erythropoiesis
stimulant (0.611)

* Only activities with Pa > 0.5 are shown.

The cyclic hexadepsipeptide named pipalamycin with the rare FA (298) was isolated
from a culture filtrate of Streptomyces sp. ML297-90F8 as an apoptosis-inducing agent [455].

Variapeptin and citropeptin were found to be hexadepsipeptide antibiotics produced
by Streptomyces variabilis and Streptomyces flavidovirens, respectively. Both antibiotics were
structurally related to azinothricin and A83586C, respectively. A culture of Streptomyces
variabilis was also to produce a variapeptin. This antibiotic was active against Gram-
positive bacteria and showed cytotoxic activity against mammalian cells [456,457], and
acid (299) was present in variapeptin. Two antibacterial cyclic hexadepsipeptides named
oleamycin A and B were detected in Streptomyces sp. [458] and contain pyrane-containing
FA (300, see 3D graph in Figure 58)).
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Figure 57. 3D graph shows the predicted and calculated antineoplastic activity of FA (290, 293 and 
299) with a confidence level of over 94%. 

The mycoparasitic fungus Acremonium domschii (NRRL 39465) was obtained from a 
basidioma of Rigidoporus microsporus found on a dead branch in a Hawaiian forest. The 
crude EtOAc extract of solid-substrate fermentation cultures of A. domschii showed signif-
icant antiinsectan and antifungal activities, and contained four depsipeptides, named 
domschisins A–D. Domschisin A exhibited significant antiinsectan activity against 
Spodoptera frugiperda. All isolated compounds contained (2R,3S,5S,6S,11S)-3,5,11-trihy-
droxy-2,6-dimethyldodecanoic acid (311, for structures see Figure 59, and biological ac-
tivity see in Table 24) [467]. Depsipeptide β-D-glucosyl-hydroxydestruxin B is produced 
by the fungus Alternaria alternata f. sp. mali, belongs to the phytotoxins and contains FA 
(312, 3D graph of activity is shown in Figure 60) [468]. 

Figure 57. 3D graph shows the predicted and calculated antineoplastic activity of FA (290, 293 and
299) with a confidence level of over 94%.

Hydrobiology 2022, 1, FOR PEER REVIEW 77 
 

 

 
Figure 58. 3D graph shows the predicted and calculated antibiotic glycopeptide activity of FA (297 
and 300) with a confidence level of over 90%. 

Linear lipopeptides named curmenins contain an α-substituted β-methoxyacrylate, 
and fatty acids, (2E,4Z)-2,11-dimethyldodeca-2,4-dienoic (313), and (2E,4Z)-2,10-dime-
thyl-undeca-2,4-dienoic (314) FA, and have been isolated by several higher fungi. Both 
peptides were inhibitors of the mitochondrial respiratory energy metabolism [469]. Lipo-
sidomycines, complex molecules, and two derivatives such as liposomycin A contain 
(S,7Z,10Z)-3-hydroxyhexadeca-7,10-dienoic acid (315, for structure see Figure 61) and lip-
osomycin K contains (S,9Z,12Z)-3-hydroxyoctadeca-9,12-dienoic acid (316) [470]. Lipo-
sidomycins A, B and C strongly inhibited peptidoglycan synthetase prepared from Esch-
erichia coli, and these lipopeptides are synthesized by the fungus Streptomyces griseosporeus. 

Several lipopeptide antibiotics, friulimicin A–D and lipopeptides A1437 A, A1437 B, 
A1437 E, A1437 G, were detected in extracts of Actinoplanes friuliensis. These compounds 
showed activity against Gram-positive bacteria, such as methicillin-resistant Staphylococ-
cus epidermidis and Staphylococcus aureus strains [469]. Friulimicin A and A1437 A contain 
(Z)-11-methyldodec-3-enoic (317), friulimicin B and A1437 B-(Z)-12-methyltridec-3-enoic 
(318), friulimicin C and A1437 E-(Z)-10-methyldodec-3-enoic (319), and friulimicin D and 
A1437 G-(Z)-12-methyltetradec-3-enoic (320) FA [468]. FA (317–320) also found in ampho-
mycin-type lipopeptide antibiotics include: amphomycin (glumamycin) [184,471–484]. 
Antibiotic F contains (E)-10-methyldodec-3-enoic acid (321), antibiotics G and H-(E)-12-
methyl-tetradec-3-enoic acid (322) [470]. 

Glycinocins A–D, types of cyclolipopeptides, were isolated from the fermentation 
broth of an unidentified Actinomycete species [485]. Glycinocins A and D contain FA 
(245), glycinocin B contains (E)-14-methylpentadec-2-enoic (323), and glycinocin C con-
tains (E)-12-methyltridec-2-enoic acid (324). A rare (R)-2-hydroxypent-4-enoic acid (325) 
was detected in the toxic cyclodepsipeptides named roseotoxin B and destroxin A, which 
are produced by the fungus Trichothecium roseum [486,487]. 

Figure 58. 3D graph shows the predicted and calculated antibiotic glycopeptide activity of FA
(297 and 300) with a confidence level of over 90%.
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Verucopeptin with FA (301) is an antitumor antibiotic and was found in the culture
broth of Actinomadura verrucosospora Q886-2 [459,460]. Urauchimycins A and B are an-
timycin antibiotics and were isolated from a fermentation broth of a Streptomyces sp. Ni-80.
Both antibiotics showed inhibitory activity against of Candida albicans, and contain differ-
ent FA, 2-(1,2-dihydroxypropyl)-4-methylhexanoic (302) and 2-(1,2-dihydroxypropyl)-5-
methylhexanoic acid (303) [461]. Two cyclic lipopeptides, K97-0239A and B, are produced by
Actinomycete Streptomyces sp., and both compounds contain (2E,4E)-13-hydroxytetradeca-
2,4-dienoic acid (304) [462].

A depsipeptide SCH 58149 containing 3-hydroxy-4-methyloctanoic acid (305) was
found in the organic extract of the fermentation broth of a fungus of Acremonium sp. SCH
58149, which exhibited weak activity against cholesterol ester transfer protein (CETP) with
an IC50 of 50 mM [463]. Tachykinin (NK2) receptor inhibitors named SCH 378161, SCH
217048, SCH 378199, and SCH 378167 with 2-hydroxy-3-methylhexanoic (306) FA were
detected in the fermentation broth of a taxonomically unidentified fungus [464].

Chlorinated polyketide peptides named peritoxins were produced only by a pathogenic
fungus, Periconia circinata. For both compounds A and B, biologically inactive intermediates,
N-3-(E-pentenyl)-glutaroyl-aspartate, circinatin with (E)-3-(pent-1-en-1-yl)-pentanedioic
acid (307), and 7-chlorocircinatin with (2S,3R)-2-chloro-3-((E)-pent-1-en-1-yl)-pentanedioic
acid (308) were detected only in the culture fluids of the Tox(+) strains, and peritoxin
B contains FA (309); other toxins, peritoxin A, periconin A and B, contain the same FA
(310) [465,466].

Tetrahydro-2H-pyran containing FA (289–301) isolated from fungal and bacterial
lipopeptides are of considerable interest, since the lipopeptides themselves show antitumor
activity, many of the acids incorporated into these lipopeptides also demonstrate antitumor
activity, and some acids are both inhibitors of glycopeptide antibiotics. This is a rather rare
function for FA. Figures 56 and 57 show 3D graphs of some biologically active FA.

The mycoparasitic fungus Acremonium domschii (NRRL 39465) was obtained from a ba-
sidioma of Rigidoporus microsporus found on a dead branch in a Hawaiian forest. The crude
EtOAc extract of solid-substrate fermentation cultures of A. domschii showed significant anti-
insectan and antifungal activities, and contained four depsipeptides, named domschisins A–
D. Domschisin A exhibited significant antiinsectan activity against Spodoptera frugiperda. All
isolated compounds contained (2R,3S,5S,6S,11S)-3,5,11-trihydroxy-2,6-dimethyldodecanoic
acid (311, for structures see Figure 59, and biological activity see in Table 24) [467]. Dep-
sipeptide β-D-glucosyl-hydroxydestruxin B is produced by the fungus Alternaria alternata f.
sp. mali, belongs to the phytotoxins and contains FA (312, 3D graph of activity is shown in
Figure 60) [468].

Linear lipopeptides named curmenins contain an α-substituted β-methoxyacrylate,
and fatty acids, (2E,4Z)-2,11-dimethyldodeca-2,4-dienoic (313), and (2E,4Z)-2,10-dimethyl-
undeca-2,4-dienoic (314) FA, and have been isolated by several higher fungi. Both peptides
were inhibitors of the mitochondrial respiratory energy metabolism [469]. Liposidomycines,
complex molecules, and two derivatives such as liposomycin A contain (S,7Z,10Z)-3-
hydroxyhexadeca-7,10-dienoic acid (315, for structure see Figure 61) and liposomycin K
contains (S,9Z,12Z)-3-hydroxyoctadeca-9,12-dienoic acid (316) [470]. Liposidomycins A, B
and C strongly inhibited peptidoglycan synthetase prepared from Escherichia coli, and these
lipopeptides are synthesized by the fungus Streptomyces griseosporeus.

Several lipopeptide antibiotics, friulimicin A–D and lipopeptides A1437 A, A1437 B,
A1437 E, A1437 G, were detected in extracts of Actinoplanes friuliensis. These compounds
showed activity against Gram-positive bacteria, such as methicillin-resistant Staphylococ-
cus epidermidis and Staphylococcus aureus strains [469]. Friulimicin A and A1437 A con-
tain (Z)-11-methyldodec-3-enoic (317), friulimicin B and A1437 B-(Z)-12-methyltridec-3-
enoic (318), friulimicin C and A1437 E-(Z)-10-methyldodec-3-enoic (319), and friulimicin
D and A1437 G-(Z)-12-methyltetradec-3-enoic (320) FA [468]. FA (317–320) also found in
amphomycin-type lipopeptide antibiotics include: amphomycin (glumamycin) [184,471–484].
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Antibiotic F contains (E)-10-methyldodec-3-enoic acid (321), antibiotics G and H-(E)-12-
methyl-tetradec-3-enoic acid (322) [470].

Glycinocins A–D, types of cyclolipopeptides, were isolated from the fermentation
broth of an unidentified Actinomycete species [485]. Glycinocins A and D contain FA
(245), glycinocin B contains (E)-14-methylpentadec-2-enoic (323), and glycinocin C contains
(E)-12-methyltridec-2-enoic acid (324). A rare (R)-2-hydroxypent-4-enoic acid (325) was
detected in the toxic cyclodepsipeptides named roseotoxin B and destroxin A, which are
produced by the fungus Trichothecium roseum [486,487].

Hydrobiology 2022, 1, FOR PEER REVIEW 78 
 

 

HO

O OH H OH OH

311 HO

O

OH

O
O

OH
OH

OH

OH

312

HO

O

HO

O

313

314

HO

O OH

HO

O OH 315

316
HO

O

HO

O

HO

O

HO

O

HO

O

317

318 319 320

3

HO

O

321
HO

O

322
HO

O

323

324
HO

O

H

H CH2HO

325
HO

O O

OH
326

HO

O O

OH

327

HO

O

OH

328

OH
HO

O

329

HO

O

330
HO

O

331

OH O

HO

O

OH

HO

O OH

332 333
 

Figure 59. Unusual and rare FA derived from fungal and bacterial lipopeptides. 

The marine and endophytic fungus Calcarisporium sp. strain KF525 produced cal-
caripeptides A, B, and C from the German Wadden Sea [488]. The calcaripeptides A and 
B contain (6R,9S,E)-9-hydroxy-4,6-dimethyl-3-oxodec-4-enoic acid (326), and calcaripep-
tide C contains (2S,4R,7S)-7-hydroxy-2,4-dimethyl-3-oxooctanoic acid (327). The cy-
clodepsipeptide trichomide A with (2R,4R)-2,5-dihydroxy-4-methylpentanoic acid (328) 
was isolated from the fermentation products of the fungus Trichothecium roseum [489]. 

The marine-derived fungus Penicillium purpurogenum G59 from the unidentified 
sponge produced antitumor lipopeptides, penicimutanin A, and penicimutanin B, and 
these drugs contain (E)-4,6-dimethyldodec-2-enoic acid (329) [490]. 

The lipopeptide topostatin with (8E,10E)-3-hydroxy-2,6,10,13-tetramethyl-7-ox-
oicosa-8,10-dienoic acid (330) is an inhibitor of topoisomerases and was isolated from the 
culture filtrate of Thermomonospora alba strain No. 1520 [491]. The cyclic lipopeptides pneu-
mocandin A and pneumocandin B produced by the fungus Glarea lozoyensis contain 
(10S,12R)-10,12-dimethyltetradecanoic acid (331). [492–494]. The liquid culture broth of 
Pseudomonas sp. MF381-IODS yielded two antimicrobial peptides named pseudotrienic 
acid A and B, and both compounds contain (3E,5E)-7-hydroxy-4-methylhexadeca-3,5-
dienoic (332) and (3E,5E)-7-hydroxy-4-methyltetradeca-3,5-dienoic (333) FA [495]. 

Cyclodepsipeptide derivatives named emericellamides A and B were produced by 
the marine-derived fungus Emericella sp. strain CNL-878 [496]. Emericellamides A, C, D, 
E, and F were also found in Aspergillus nidulans. Emericellamide A contains (2R,3R,4S)-3-

Figure 59. Unusual and rare FA derived from fungal and bacterial lipopeptides.

The marine and endophytic fungus Calcarisporium sp. strain KF525 produced cal-
caripeptides A, B, and C from the German Wadden Sea [488]. The calcaripeptides A and B
contain (6R,9S,E)-9-hydroxy-4,6-dimethyl-3-oxodec-4-enoic acid (326), and calcaripeptide
C contains (2S,4R,7S)-7-hydroxy-2,4-dimethyl-3-oxooctanoic acid (327). The cyclodepsipep-
tide trichomide A with (2R,4R)-2,5-dihydroxy-4-methylpentanoic acid (328) was isolated
from the fermentation products of the fungus Trichothecium roseum [489].
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Table 24. Predicted biological activity of FA derived from fungal peptides.

No. Predicted Biological Activity, Pa *

311 Acute neurologic disorders treatment (0.793); Natural killer cell
stimulant (0.711)

312 Anti-infective (0.945); Antitoxic (0.908); Natural killer cell stimulant (0.900)

313
Lipid metabolism regulator (0.923); Apoptosis agonist (0.849);

Antineoplastic (0.803)Acute neurologic disorders treatment (0.799);
Preneoplastic conditions treatment (0.649)

314
Lipid metabolism regulator (0.923); Apoptosis agonist (0.849);

Antineoplastic (0.803)Acute neurologic disorders treatment (0.799);
Preneoplastic conditions treatment (0.649)

315 Lipid metabolism regulator (0.960); Hypolipemic (0.898);
Anti-hypercholesterolemic (0.886)

316 Lipid metabolism regulator (0.960); Hypolipemic (0.898);
Anti-hypercholesterolemic (0.886)

317 Lipid metabolism regulator (0.848); Anti-hypercholesterolemic (0.770);
Hypolipemic (0.760)

318 Lipid metabolism regulator (0.848); Anti-hypercholesterolemic (0.770);
Hypolipemic (0.760)

319 Lipid metabolism regulator (0.930); Anti-hypercholesterolemic (0.842);
Hypolipemic (0.830)

320 Lipid metabolism regulator (0.930); Anti-hypercholesterolemic (0.842);
Hypolipemic (0.830)

321 Lipid metabolism regulator (0.930); Anti-hypercholesterolemic (0.842);
Hypolipemic (0.830)

322 Lipid metabolism regulator (0.930); Anti-hypercholesterolemic (0.842);
Hypolipemic (0.830)

323 Lipid metabolism regulator (0.846); Anti-hypercholesterolemic (0.827)

324 Lipid metabolism regulator (0.846); Anti-hypercholesterolemic (0.827)

325 Anti-ischemic, cerebral (0.907); Cell adhesion molecule inhibitor (0.876);
Antidiabetic (0.702)

326 Antineoplastic (0.857); Apoptosis agonist (0.746); Preneoplastic conditions
treatment (0.517)

327 Anti-ischemic, cerebral (0.835); Acute neurologic disorders treatment
(0.783); Hypolipemic (0.749)

328 Anti-ischemic, cerebral (0.845); Leukopoiesis stimulant (0.783);
Antitoxic (0.675)

329 Hypolipemic (0.879); Lipid metabolism regulator (0.825);
Anti-hypercholesterolemic (0.769)

330 Acute neurologic disorders treatment (0.947); Antineoplastic (0.816);
Apoptosis agonist (0.771)

331 Preneoplastic conditions treatment (0.770); Acute neurologic disorders
treatment (0.757)

332 Lipid metabolism regulator (0.937); Acute neurologic disorders
treatment (0.832)

333 Lipid metabolism regulator (0.937); Hypolipemic (0.866)Acute neurologic
disorders treatment (0.832); Atherosclerosis treatment (0.653)

* Only activities with Pa > 0.5 are shown.
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Figure 60. 3D graph shows the predicted and calculated anti-infective activity of glycosidic FA (312) 
with a confidence level of over 94%. This acid produced by fungus Alternaria alternata f. sp. mali. 

The macrocyclic depsipeptide named ngercheumicin D with 3-hydroxy-4-(methyl-
thio)-butanoic acid (340) produced by Photobacterium strains was active against the non-
pathogenic Pseudovibrio denitrificans [500,501]. Aetherobacter yielded the cyclic peptides 
aetheramides A and B. Aetheramides showed cytostatic activity against human colon car-
cinoma (HCT-116) cells with IC50 values of 0.11 µM. Both peptides contained 
(4E,10E,12E,14S,15S)-14,15-dihydroxy-9-methoxy-2,4,10-trimethyl-3-oxo-15-phenyl-pen-
tadeca-4,10,12-trienoic (341) acid and (4E,10E,12E,14R,15R)-14,15-dihydroxy-9-methoxy-
2,4,10-trimethyl-3-oxo-15-phenyl-pentadeca-4,10,12-trienoic acid (342), respectively [502]. 

Figure 60. 3D graph shows the predicted and calculated anti-infective activity of glycosidic FA
(312) with a confidence level of over 94%. This acid produced by fungus Alternaria alternata f. sp. mali.
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Figure 61. 3D Graph shows the predicted and calculated activity of FA (315 and 316) as lipid me-
tabolism regulators with a confidence level of over 96%. Both unsaturated acids have been incorpo-
rated into liposidomycines A and K which are synthesized by the fungus Streptomyces griseosporeus. 

The depsipeptides known as miuraenamides A–D are produced by a slightly halo-
philic myxobacterial strain, SMH-27-4 [503]. All miuraenamides contain (S,E)-9-hydroxy-
6-methyldec-5-enoic acid (343). Antifungal metabolites, cyrmenin A with (2E,4Z)-2,11-di-
methyldodeca-2,4-dienoic acid (344) and cyrmenin B with (2E,4Z)-2-methyldodeca-2,4-
dienoic acid (345), have been isolated from Cystobacter armeniaca and Archangium gephyra, 
respectively [504,505]. 

Figure 61. 3D Graph shows the predicted and calculated activity of FA (315 and 316) as lipid
metabolism regulators with a confidence level of over 96%. Both unsaturated acids have been incor-
porated into liposidomycines A and K which are synthesized by the fungus Streptomyces griseosporeus.

The marine-derived fungus Penicillium purpurogenum G59 from the unidentified
sponge produced antitumor lipopeptides, penicimutanin A, and penicimutanin B, and
these drugs contain (E)-4,6-dimethyldodec-2-enoic acid (329) [490].
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The lipopeptide topostatin with (8E,10E)-3-hydroxy-2,6,10,13-tetramethyl-7-oxoicosa-
8,10-dienoic acid (330) is an inhibitor of topoisomerases and was isolated from the culture
filtrate of Thermomonospora alba strain No. 1520 [491]. The cyclic lipopeptides pneumocan-
din A and pneumocandin B produced by the fungus Glarea lozoyensis contain (10S,12R)-
10,12-dimethyltetradecanoic acid (331). [492–494]. The liquid culture broth of Pseudomonas
sp. MF381-IODS yielded two antimicrobial peptides named pseudotrienic acid A and B,
and both compounds contain (3E,5E)-7-hydroxy-4-methylhexadeca-3,5-dienoic (332) and
(3E,5E)-7-hydroxy-4-methyltetradeca-3,5-dienoic (333) FA [495].

Cyclodepsipeptide derivatives named emericellamides A and B were produced by
the marine-derived fungus Emericella sp. strain CNL-878 [496]. Emericellamides A, C, D,
E, and F were also found in Aspergillus nidulans. Emericellamide A contains (2R,3R,4S)-3-
hydroxy-2,4-dimethyldecanoic acid (334, for structures see Figure 62, and activity is shown in
Table 25), and emericellamide B contains (2R,3R,4S,6S)-3-hydroxy-2,4,6-trimethyldodecanoic
acid (335).
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Table 25. Predicted biological activity of FA from fungal peptides. 

No. Predicted Biological Activity, Pa * 
334 Natural killer cell stimulant (0.795); Leukopoiesis stimulant (0.784); Antineurotic (0.700)    
335 Hypolipemic (0.828); Acute neurologic disorders treatment (0.774); Leukopoiesis stimulant (0.736)    
336 Hypolipemic (0.880); Antineoplastic (0.858); Lipid metabolism regulator (0.732)    

337 Lipid metabolism regulator (0.859); Acute neurologic disorders treatment (0.811)   
Hypolipemic (0.800); Mucositis treatment (0.756); Antidiabetic symptomatic (0.696)    

338 Lipid metabolism regulator (0.891); Hypolipemic (0.861); Anti-hypercholesterolemic (0.784)    
339 Lipid metabolism regulator (0.888); Acute neurologic disorders treatment (0.761)    
340 Hypolipemic (0.816); Lipid metabolism regulator (0.793); Mucositis treatment (0.779)    

Figure 62. Unusual FA derived from fungal and bacterial lipopeptides.



Hydrobiology 2022, 1 409

Table 25. Predicted biological activity of FA from fungal peptides.

No. Predicted Biological Activity, Pa *

334 Natural killer cell stimulant (0.795); Leukopoiesis stimulant (0.784);
Antineurotic (0.700)

335 Hypolipemic (0.828); Acute neurologic disorders treatment (0.774);
Leukopoiesis stimulant (0.736)

336 Hypolipemic (0.880); Antineoplastic (0.858); Lipid metabolism
regulator (0.732)

337

Lipid metabolism regulator (0.859); Acute neurologic disorders
treatment (0.811)

Hypolipemic (0.800); Mucositis treatment (0.756); Antidiabetic
symptomatic (0.696)

338 Lipid metabolism regulator (0.891); Hypolipemic (0.861);
Anti-hypercholesterolemic (0.784)

339 Lipid metabolism regulator (0.888); Acute neurologic disorders
treatment (0.761)

340 Hypolipemic (0.816); Lipid metabolism regulator (0.793); Mucositis
treatment (0.779)

341 Antifungal (0.836); Antibacterial (0.653); Antiparasitic (0.614)

342 Antifungal (0.836); Antibacterial (0.653); Antiparasitic (0.614)

343
Lipid metabolism regulator (0.952); Antineoplastic (liver cancer) (0.909)

Anti-hypercholesterolemic (0.815); Antineoplastic (0.777); Atherosclerosis
treatment (0.649)

344

Lipid metabolism regulator (0.923); Apoptosis agonist (0.849);
Antineoplastic (0.803)

Hypolipemic (0.712); Atherosclerosis treatment (0.651); Preneoplastic
conditions treatment (0.649)

345

Lipid metabolism regulator (0.942); Antiviral (Arbovirus) (0.903);
Hypolipemic (0.741)

Acute neurologic disorders treatment (0.728); Antiviral
(Picornavirus) (0.676)

346 Antiviral (Arbovirus) (0.952); Lipid metabolism regulator (0.903); Antiviral
(Picornavirus) (0.790)

347 Antiviral (Arbovirus) (0.952); Lipid metabolism regulator (0.903); Antiviral
(Picornavirus) (0.790)

348 Antiviral (Arbovirus) (0.952); Lipid metabolism regulator (0.903); Antiviral
(Picornavirus) (0.790)

349 Antiviral (Arbovirus) (0.952); Lipid metabolism regulator (0.903); Antiviral
(Picornavirus) (0.790)

350 Platelet antagonist (0.800); Anticoagulant (0.702); Fibrinolytic (0.700)

351 Apoptosis agonist (0.879); Antineoplastic (0.878); Preneoplastic conditions
treatment (0.618)

352 Antiviral (Arbovirus) (0.861); Lipid metabolism regulator (0.844); Antiviral
(Picornavirus) (0.776)

353 Antiviral (Arbovirus) (0.917); Antiviral (Picornavirus) (0.781);
Antimutagenic (0.699)

354 Antiviral (Arbovirus) (0.861); Lipid metabolism regulator (0.844); Antiviral
(Picornavirus) (0.776)

355 Antiviral (Arbovirus) (0.917); Antiviral (Picornavirus) (0.781);
Antimutagenic (0.699)

* Only activities with Pa > 0.5 are shown.
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The depsipeptides named chondramides A–D were produced by several myxobacteria
from the genus Chondromyces, and isolated compounds contain (E)-7-hydroxy-2,4,6-
trimethyloct-4-enoic acid (336) [497]. The fungus Schizosaccharomyces pombe produced
the antitumor antibiotic depsipeptide, FK228, and this drug contained an unusual (R)-3-
hydroxy-7-mercaptoheptanoic acid (337) and (R)-3-hydroxy-7-(methylthio)-heptanoic acid
(338) [498].

(S,E)-3-hydroxy-7-mercaptohept-4-enoic acid (339) was present in an anticancer dep-
sipeptide named romidepsin, which was isolated from a culture of a Gram-negative,
facultative anaerobic, coccobacillus known as Chromobacterium violaceum [499].

The macrocyclic depsipeptide named ngercheumicin D with 3-hydroxy-4-(methylthio)-
butanoic acid (340) produced by Photobacterium strains was active against the non-pathogenic
Pseudovibrio denitrificans [500,501]. Aetherobacter yielded the cyclic peptides aetheramides
A and B. Aetheramides showed cytostatic activity against human colon carcinoma (HCT-
116) cells with IC50 values of 0.11 µM. Both peptides contained (4E,10E,12E,14S,15S)-14,15-
dihydroxy-9-methoxy-2,4,10-trimethyl-3-oxo-15-phenyl-pentadeca-4,10,12-trienoic (341) acid
and (4E,10E,12E,14R,15R)-14,15-dihydroxy-9-methoxy-2,4,10-trimethyl-3-oxo-15-phenyl-pent-
adeca-4,10,12-trienoic acid (342), respectively [502].

The depsipeptides known as miuraenamides A–D are produced by a slightly halophilic
myxobacterial strain, SMH-27-4 [503]. All miuraenamides contain (S,E)-9-hydroxy-6-
methyldec-5-enoic acid (343). Antifungal metabolites, cyrmenin A with (2E,4Z)-2,11-
dimethyldodeca-2,4-dienoic acid (344) and cyrmenin B with (2E,4Z)-2-methyldodeca-2,4-
dienoic acid (345), have been isolated from Cystobacter armeniaca and Archangium gephyra,
respectively [504,505].

Antitumor agents BU-2867T A, B, and C with (2E,4E)-dodeca-2,4-dienoic acid (346, 3D
graph sees in Figure 63), (2E,4E,8E)-tetradeca-2,4,8-trienoic acid (347), and (2E,4E)-tetradeca-
2,4-dienoic acid (348) were produced by Polyangium brachysporum sp. nov [506,507]. Peptide
antibiotics designated herein as BU-2867T F with (2E,4E)-deca-2,4-dienoic (349) and G with
(346) FA were produced by fermentation of the Polyangium brachysporum strain K481-
B101 [507].
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A rare class of bicyclic depsipeptide antibiotics, desmethylsalinamide C and sali-
namide A, were derived from the marine Streptomyces sp. CNB-091 [508] (specimens
of Streptomyces found in various ecosystems, see in Figure 64). Desmethylsalinamide C
contains (2S,3R)-3-hydroxy-2,4-dimethylpentanoic acid (350) and salinamide A contains
(2Z,4E)-4-methylhexa-2,4-dienoic acid (351).
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Many fungi belonging to this genus synthesizes a lot of biologically active metabolites, including
linear and cyclic peptides and their FA. Pictures adapted by the author.

Myxobacterial species such as Myxococcus xanthus and Stigmatella aurantiaca produce
cyclic depsipeptides, myxochromides with an unsaturated polyketide side chain [509].
Thus, myxochromide S contains (352) acid, myxochromides A2 and S2 contain FA (353), A3
and S3—(354), and A4—(355) FA.

In this group, we included lipopeptides that are produced by Actinomycetes, fungal
endophytes and fungi. A very interesting group, since these microorganisms themselves
synthesize many biologically active substances. Many FAs are similar in structure and
diversity to bacterial FA. Apparently, many of these microorganisms are symbionts in more
complex biological structures.
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7. Conclusions

The present review is devoted to an interesting topic of studying the biological activity
of FAs that are part of linear and cyclic peptides produced by organisms living in both
marine and freshwater habitats. The most extensively studied lipopeptides are marine and,
to a lesser extent, freshwater invertebrates.

The study of FAs in various types of complex molecules such as neutral lipids, glyco-
and phospholipids isolated from various organisms is of great interest to biochemists and
molecular biologists due to the high biological activity of FAs. In recent years, more and
more attention has been paid to lipopeptides by scientists since these complex molecules
have pronounced and specific biological activities. Given such a great interest in this
group of natural complex molecules, we tried to combine known and published data
on the activity of lipopeptides and their constituent fragments. This review presents the
biological activity of both individual lipopeptides, and more than 350 FAs incorporated
into these molecules.

Based on the presented data on the biological activity of lipopeptides and individual
fragments such as FA, we can draw a preliminary conclusion that the study of the activity
of such complex molecules as lipopeptides is already a fait accompli, however, in the future,
an important area of research is to determine the biological activity of individual fragments,
in particular FA, as well as amino-containing fatty acids.

Of undoubted interest are activities that demonstrate FAs incorporated into lipopep-
tides. So, several fatty acids showed pronounced antibacterial, antineurotic, antimicrobial,
antitoxic, antifungal, or antitumor activity. In addition, FAs were found that exhibited rare
beneficial properties, such as antiparasitic, antidiabetic, anthelmintic, anti-inflammatory,
and anti-psoriasis effects. Separate fatty acids were stimulants of leukopoiesis, natural
killer cells, and had anti-infective action.

We must be aware that the activities of FA incorporated into lipopeptides presented
in this review are computer simulations. In the pool of this program (QSAR) there are
about 1,000,000 natural and synthesized complex molecules that are associated with more
than 10,000 experimentally obtained biological activities. The prospects for this predictive
activity (QSAR) in medicine and pharmacology are developing very rapidly, and the
probability of predicting the activity of simple and complex molecules currently reaches
about 90% in many cases. Currently, about 20 million organic and inorganic compounds
have been synthesized, but their biological activity has not yet been determined, and
using the QSAR method, several new useful active molecules can be identified to combat
numerous human diseases.

For readers and researchers who are interested in PASS, they can go to the website
of this program [510]. In addition, those who wish can use this program to determine any
organic molecule, both of natural origin and synthetic type, may find it useful. The site also
describes all the details of the PASS.
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