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Hydrodynamic equations for spherical gravitational collapse in the scalar-tensor theory 

of gravity are approximated by finite-difference equations. The dynamical motion of a gaseous 

sphere is calculated numerically on the assumption that the sphere consists of a perfect gas 

without energy flow and, therefore, its total mass is conserved. In order to avoid the difficulty 

of ~atching of the metric and scalar fields at .the surface of the gaseous sphere, the sphere 

is divided into two parts, i.e., a central core and an extended tenuous atmosphere. In the 

collapsing core, scalar waves are generated around its central region at the final stage, but 

their effect is not so large as to deviate various physical quantitiEs appreciably from those to 

be obtained in the general relativistic treatment, except in the inner-most region of self-closure. 

§ l. Introduction and summary 

Brans and Dicke1l have proposed a theory of gravitation called the scalar

tensor theory, according to which gravitational phenomena should be described 

by a combination of the metric tensor and a scalar field ¢> whose reciprocal is 

in proportion to the Newtonian gravitation constant G, in contrast with Einstein's 

general theory of relativity. Relevance of a theory of gravity should be decided 

by its experimental or observational test, but not by our taste or philosophy. It 

is therefore important to investjgate how a prediction of the Brans-Dicke theory 

would depart from that in general relativity. As regards the solar gravitational 

field, their predictions for the deflection of a light ray and the peripherion advance 

of the Mercury are somewhat different from Einstein's. There are, however, 

many unknown factors to settle the problem, such as an inner rotation of the 

sun and the nature of inter-planetary plasma. Accordingly it is difficult to com

pare directly their respective predictions with observational data. 

The departure of the tw~ theories will become important only when the gen

eral relativistic effect itself becomes dominant. Salmona2l has examined the struc

ture of a neutron star in the Brans-Dicke theory and shown that the effect of the 

inertial scalar field is small. Matsuda3l has reexamined the problem, but his con

clusion has been similar to Salmona's except for a slight difference in numerical 

results. As the gravitational field of a collapsing object is stronger than that of 

a neutron star, the phenomenon of gravitational collapse will be suitable to find 
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1196 T. Matsuda and H. Nariai 

out some characteristic feature of the Brans-Dicke theory of gravity to be com
pared with Einstein's. 

As regards the gravitational collapse occurring in the process of galaxy for
mation, there is a numerical analysis by Nariai and Fujimoto4l for the dynamical 
behavior of a rotating gaseous ellipsoid with uniform density in the Friedmann 
universe, according to which the ellipsoid becomes free from the cosmic expan
sion and starts to collapse _when the density contrast relative to the cosmological 
background attains the values of 5.4 to 5.6, provided that its angular momentum 
is moderate. Dynamical equations for such an ellipsoid in the Brans-Dicke uni
verse have been derived by Nariai,"l but their numerical analysis is not yet per
formed. 

On the other hand, Thorne and Dykla6l have analyzed qualitatively the prob
lem of gravitational collapse in the scalar-tensor theory and concluded that the 
gravitational collapse produces black holes identical with those in general relativity. 
Their argument is mainly based on the points: a) in the spherical gravitational 
collapse of an uncharged star, the scala,! field ¢ approaches a constant value when 
t---HXJ, b) as a result, the field equations and their solutions must agree with those 
in general relativity. However, Matsuda7l has pointed. out that their argument 
is not always true if the scalar field is taken to be asymptotically constant. An. 
other reason is that the Brans type-I solution for a spherically symmetric vacuum 
region does not approach the usual Schwarzschild solution, but the truncated 
Schwarzschild solution having a naked singularity.7l This means that the gravi
tational collapse beyond a non-singular event horizon may not occur in the scalar
tensor theory, while the optical appearance of a collapsing star is not so different 
from its general relativistic counterpart because of the fact that the metrics in 
the region R>Ru=2GM/c2 (M is the total mass) are similar in both theories.8l 

The aim of this paper is to study the gravitational collapse of a gaseous 
sphere by solving numerically the full field equations in the scalar~tensor theory, 
in contrast to Thorne and Dykla's6l method relying on a power series expansion 
of the field equations with respect to 1/ w, where w is the Dicke coupling con
stant. 

The gravitational collapse of -a gaseous sphere has been investigated by many 
authors in terms of general relativity. The hydrodynamic equations have b~en 
formulated by Misner and Sharp,9l and numerical calculations of the gravitation-al 
collapse of various astronomical objects have been performed by May and 
White/0a),IObJ Voropinov et al.,11l Schwarz/2l Matsuda and Sato.13l It has been 
shown that gaseous spheres with masses larger th~n a certain critical value can
not settle into hydrostatic equilibrium states but become black holes. 

The hydrodynamic equations requisite for our numerical analysis have recently 
been formulated by Nariai,14l where we must solve an inhomogeneous wave equa
tion for the scalar field as well as the field equations for th~e metric tensor. We 
have encountered with many difficulties in numerical calculations. a) As a scalar 
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Hydrodynamic Calculations of Spherical Gravitational Collapse 1197 

wave generated in the interior region propagates with the light velocity, finer 

time meshes for dealing with the finite-difference scheme are needed than in the 

general relativistic treatment, and therefore much computer time is needed. b) 

Unless we employ -a suitable difference scheme, which will be described in the 

Appendix, the wave equation for ¢ leads to the occurrence of oscillations of two 

zones in wave-length and large amplitudes. c) As the Birkoff theorem does not 

hold in the scalar-tensor theory of gravity, we cannot settle the time-dependent 

vacuum metric surrounding the collapsing object even in the case of spherical 

symmetry. Therefore we cannot settle the boundary conditions of the metric and 

scalar fields at the surfac~ of the object. [In Ref. 14), the Brans type-I metric 

was prop'osed to be adopted .as the vacuum metric, but this was shown to be 

insufficient in the course of our numerical analysis.] To avoid this difficulty, we 

must introduce a tenuous envelope surrounding the main bulk of the object such 

that any signal caused at the surface of the envelope cannot reach the bulk within 

the time considered. Then the evolution of bulk is not affected by the manner 

specifying the boundary conditions. 

In § 2 the hydrodynamic equations in the scalar-tensor theory are summarized. 

Our main concern is to clarify how the characters of gravitational collapse in 

that theory deviate from those in general relativity. Accordingly we assume a 

simple equation of state for gas and a simple configuration for gaseous sphere, 

so that the model considered does not necessarily correspond to a real astronomi

-cal object. 

In § 3 the numerical results are presented, which shows that the deviation 

is small if the relativi~tic effect itself is small and the bounce phenomenon occurs 

in the central region. In the case of a continued collapse, oscillations of the 

scalar field develop in the central region, but they cannot halt the collapsing. 

Therefore, characteristic nature of the collapse resembles qualitatively that in 

general relativity. The present method is, for numerical difficulties, incompetent 

to see the asymptotic (t~oo) state of the metric and scalar fields, so that we 

cannot say anything about the final state of the collapsing object, e.g., the validity 

of Thorne and 'Dykla's conjecture. 

§ 2. Hydrodynamic equations 

In this section, we briefly summarize the hydrodynamic equations in terms 

of the scalar-tensor theory of gravity. We consider an ideal fluid and neglect 

heat transfer, pair creations and magnetic fields. Assuming a spherical symmetry 

leads to the metric 

(1) 

where v and A are functions of t and r; r is a radial coordinate defined by the 

rest mass of matter included in a sphere with radius r, i.e., 

(2) 
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1198 T. Matsuda and H. Nariai 

where p is the rest-mass density. The coordinate system which moves with the 
fluid leads to the energy-momentum tensor: 

(3) 

where P is the pressure, s is the total density defined by s = p (1 + ejc2) and e is 
the internal energy per gram. We introduce comoving derivatives 

(4) 

and define the following quantities similar to those defined originally by Misner 
and Sharp :7> 

and 

U=DeR , u=tDe¢ , 

T=DrR , r=tDr¢ 

U=U+uR, T=T+rR, 

Gm:=tc2 Re~"{1 + (Ujc)2-T2}; 

where ¢=In (G¢) (¢ is the inertial scalar field). 

(5) 

(6) 

(7) 

.(8) 

On inserting above relations into the Brans-Dicke field equations, we obtain 
the following s.et of equations :14> 

Deu= _ _l_DrP+ 4nGe-~'> (s- 3P) +c2 (Dr+ 2T)t 
pw 3+2w c2 R 

-u (D-:__fl + 2[}) +u2 { 1- (3+2w) L~}, r R , r. 

D 1 ln(pR2)=-Djp +u {1-(3+2w) r;}. 

D1e= -PDe(l_), 
. p. 

Dr (V /2) = - - 1-DrP, 
c2pw 

D 1m = - 4nP ( ~) 2 
e-N2U , 

DerJ = - { (u2 + c2r2) U- 2c2ur T} R 2 e~" 12 , 

where m and rJ are defined by 

Gm =e~" 1 '{Gm +H3 + 2w) rJ}, 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 
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Hydrodynamic Calculations of Spherical Gravitational Collapse 1199 

and w is the relativistic enthalpy defined by 

w= e+Pc-2 1+!:... +~. (17) 
p c2 pc2 

Note that the mass function m is conserved at the surface of a star, but not m. 
As we are concerned only with the dynamical behaviour of a collapsing object 

in the scalar-tensor theory of gravity, in comparison with that in general relativity, 

we assume the following simple form as the equation of state: 

P=frpe. (18) 

These equations can be solved numerically, using a finite-difference method 

similar to the one used in the case of a general relativistic collapse.18l Shocks 

are treated by means of an artificial viscosity similar to that of Richtmyer and 

von Neumann. 

The boundary conditions used are 

R = U = (] = m = 11 = r = 0 at r = 0 , 

P=v=r=O, ¢=ln[(4+2w)l(3+2w)] at r=rb, 

(19) 

(20) 

where rb ( = const) is the radial coordinate specifying the surface of the collaps

ing object. It should be noted that true boundary conditions for rand¢ at r=rb 

are not known to us, unless we solve the time-dependent vacuum metric surround

ing the object. As was discussed in § 1, we avoid this difficulty by assuming a 

tenuous extended envelope surrounding the main bulk of the object, which we 

call a core, and removing the surface rb so far that any signal caused at rb can

not reach the core surface re within the time considered. Therefore any choices 

of boundary conditions at rb do not affect the evolution of the core. We assume 

Rb=Re+l.2c·t1, where t1. is a free-fall time of the core; t1 = (Gp0)-112, where Po 

1s the central ,density and rb is determined by Rb. 

Initial conditions are assumed to be 

U=(J =u=r=IJ=O, ¢=In[ (4+2w)l(3+2w)]. (21) 

The internal energy e is assumed to be constant, e0, in the core and decreases 

as e = e0 (Rei R)2 in the envelope, where Re is the radius of the core. As the 

density distribution, we adopt the Emden function of index 0.1 in the core and 

p = Pe (Rei RY in the envelope, where Pe is the density of the outermost shell of 

the core. The choice of that index is made, in part, because for a core with 

higher index there appears a central region of extreme curvature necessitating a 

finer zoning; and, in part, because the assumption of uniform density (index 0) 

leads to an unfavourable gap of physical quantities at the core surface. The 

mass function m is determined by Eqs. (6), (7), (8), (19) and 

Dr(Gm) =4nGp(1+elc2)R2T+rGm+ 3 + 2w {(u 2 +c 2 r 2 )T-2ur(J}R 2 e~, 
2 

(22) 
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1200 T. Matsuda and H. Nariai 

and m is determined by Eqs. (16) and (21). If we put cf;=u=r=O identically, 
the above equations are reduced to the hydrodynamic equations in general rela
tivity.9l 

§ 3. · Numerical results 

Numerical calculations have been performed for various initial configurations. 
When the mass of a gaseous sphere is so small that its contracting motion is 
halted, it has been found that there is no noticeable difference between the nu" 
merical results obtained by using the Brans-Dicke theory and the general relativity. 
Therefore, in this section, we present an example of continued collapse, in which 
we may expect noticeable differences. 

Initial model of the gaseovs sphere is assumed as R. = 3 ·109 em, p0 = 106 g/ cm8, 

e0 = 1015 erg/ g. .As was noted before, this model does not correspond to a real 
astronomical object. The Dicke. coupling constant ()) is assumed to be 10, because 
a larger ()) does not make noticeable difference and a smallar ()) has been rejected 
by recent observations.ul 

In Figs. 1 through 7, spatial distributions of p, R, m, U, r, rR, ¢ and e"l2 

are represented in the case of the Brans-Dicke hydrodynamics from the initial 
rest state to the final state where the calculation is stopped by numerical difficulty. 
The abscissa is the zone number of a space mesh. In these calculations, rather 
coarse zoning such as 36 zones for the core and 10 zones for the atmosphere is 
employed, partly because the hydrodynamic calculations in the Brans-Dicke theory 
consume computer time much longer than that in g~neral relativity and partly 
because we are concerned only with the qualitative nature of gravitational collapse 
but not precise numerical results. 

17 

0 

300 

600 

900 

1200 

II 

10 

0 

0.1895 

0.21 21 

0.2134 

0.2137 

sec 

sec 

sec 

sec 

sec 

Fig. 1. log p versus zone number J at various 
time during the collapse from rest of a spheri
cal gaseous object. The center of the object 
is J =1 which is not expressed in the figure, 
the surface of the core J=36, and the sur
face of the atmosphere J=46. Initially, den
sity distribution is expressed by the Emden 
function of index 0.1 in the core and by P"' 
R-5 in the atmosphere, the central density 
is p0 =108 g/cms, and internal energy is as
sumed to be homogeneous in the core, eo= 
1Ql5 erg/g, and e-..-R-2 in the envelope. Initial 
core radius is R 0 ( =3 ·109 em) and atmospheric 
radius Rb is determined Rb=R0 +1.2c(GPo)-112• 

The core baryon mass is r 0 ( = 6.97 ·1036 g) 
and the atmospheric baryon mass is rb ( = 
9.06 ·1036 g). The numbers denoted in the 
figure are numbers N of time mesh; N=300 
corresponds to t=0.1895 sec, N=600 to t= 

0.2121 sec, N=900 to t=0.2134 sec, N=1000 
7 2L-..J--'---'--1-'-o-'--'--'--'--2'-0--'--'--'--'--3'-0 -'-..l..-lW36 to t=0.2135 sec, N=llOO to t=0.2136 sec, 

Zone N=1200 to t=0.2137sec. 
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Hydrodynamic Calculations of Spherical Gravitational Collapse 1201 

E 
u 

"' 0 -

Zone 

Fig. 2. log R versus zone number at various 

time for the same model as in Fig. ~-

-0.01 r-'r-lr-1--r--r--r--r-,-,--r-,--,-,...,...,--r-, 

36 

Zone 

Fig. 4. 
Fig. 4. U versus zone number for the same 

model as in Fig. 1. 
Fig. 5. r versus zone number (upper figure) and 

102r R versus zone number (lower figure). Note 
that the departure of the Brans-Dicke hydrody
namics from the general relativistic one can be 
estimated by the ratio lrR/rl; the larger lrR/ 
rj, the larger departure. Therefore, in there
gion of r~o. the largest departure exists. 

0. 

"' 0 

Zone 

Fig. 3. m versus zone number for the same 

model as in Fig. 1. 

0:: ... 
No 

900 

-1.02 
4 6 8 

0 

10 12 

Zone 

Fig. 5. 

0.2 I 35 sec 

0.21 36 sec 

0.21 37 sec 

14 16 18 
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1202 T. Matsuda and H. Nariai 

2 4 6 8 10 12 14 16 18 
Zone 

Fig. 6. ¢(=:ln(G¢)) versus zone number. Note 

that scalar waves are generated in the inner re

gion of the object at the later stage of collapse. 

Zane 

Fig. 7. e•l2 versus 'zone number. 

These figures show the character-istic aspects of relativistic collapse with 
pressure, such as the proceeding of a central condensation, Fig. 1, the increase 
of mass in the central region, Fig. 3, and the occurrence of T ~o (or self-closure) 
at some intermediate shell, Figs. 2 and 5; compare these figures with those .of 
general relativistic collapse.10a),lOb),lS) Our calculation was stopped by a difficulty 
of increasing numerical errors. around inner zones. 

The' growing of scalar waves in the central region is shown in the lower 
figure of Fig. 5 and in Fig. 6. The departure of the Brans-Dicke hydrodynamics 
from the Einstein's can be estimated by the values of iuR/UI and irR/TI. If 
these values are small, the departure can be neglected, except for the fact that 
the gravitational coupling constant ¢-1 become smaller than G for positive (J). In 
our case, the value of iuRfUI is found to be smaller than 0.1 throughout the 
interior region, although it is not shown in these figures. As can be seen in 
Fig. 5, I r Rj Tl is small except in the region of r "-'0. This means that the effect 
of the scalar field on the dynamics can be neglected in the gaseous sphere except 
for the region of r "-'0. 

In the region of T ,..__,o, however, the departure of the Brans-Dicke hydrody
namics from the Einstein's is so large that the approximation6l to the Brans-Dicke 
theory, constructed by the method of a power series expansion with respect to 
1/ w, breaks down. In spite of this, the present method is, for numerical difficulty, 
incompetent to see the asymptotic (t~oo) state of the metric and scalar fields, 
so that we cannot say any conclusive statement about the final state of the col
lapsing object, e.g., the validity of Thorne and Dyklii's conjecture or not. Only 
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Hydrodynamic Calculations of Spherical Gravitational Collapse 1203 

some conjectures can be given. The asymptotic metric may have a naked singu

larity: (a) The Brans type-I solution for a static spherically symmetric vacuum 

region approaches the truncated Schwarzshild solution having a naked singularity 

when ¢ approaches a constant value ;7l (b) True singularity will appear first in the 

neighborhood of the region of T=O, which will become an event horizmi, and 

there is no other event horizon. (We conjecture that even in general relativity 

metrics with a singularity covered by a noncsingular event horizon, such as 

Schwarzshild metric and Kerr metric, are exceptional ones and general metric 

may have a naked singularity. Though this idea is not currently accepted, the 

discovery of the rotating W eyl metric by Tomimatsu and Sato/6l which has a 

naked singularity outside an event horizon, has strengthen the idea.) If we 

define a black h()le by a mass covered by non-singular event horizons and without 

naked singularity, it is conjectured that there are scarcely black holes in the 

universe. 

The optical appearance of a collapsing star for a distant observer in the Brans

Dicke theory is not so different from that in general relativity, because the metrics 

outside the event horizon are not so different. The only remarkable difference 

for a distant observer is the emission of scalar waves, while gravitational waves 

are not emitted from a spherical collapsing object in general relativity. 
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Appendix 

--Technique of solving a wave equation numerically--

The technique of solving hydrodynamic equations by a difference scheme IS 

discussed by many authors (see, for example, Refs. lOb), 12) and 13)). Here 

we discuss the method of solving Eq. (10), which governs the behavior of scalar 

field rfo and is originated from 

D¢= SrcT 
(3 + 2w) c4 

Although hydrodynamic equations are of the hyperbolic type, too, they are rather 

stable when pressure is negligible. The collapsing problem is this case. However, 

Eq. (10) is unstable and scalar waves with two zones in wavelength develop 

unless some, suitable procedure to damp out waves with short wavelength is em

ployed. We are not interested in scalar waves with short wavelength but those 

with wavelength comparable with the radius of the collapsing object. 
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1204 T. Matsuda and H. Nariai 

Let us consider the following equation : 

f}y f( I ") 
Bt = . Y; y ' y . ' 

where prime denotes spatial derivative. A natural difference scheme is 

y"+lf2=y"+if"·.dt' 

y"+l = y" + ]"+1/2 C51-"+lta ... ) Jt . 

This scheme is known to be unstable. To get stable solutions, we use the fol
lowing scheme 

y"+l=y"+ f"· .dt' 

y"+1 = y" + [ (1- a)f'" + a]"+1 (y"+1· · ·)] .dt, a>t. 
In the present calculations, we adopt a= 1. This difference scheme is a kind of 
low path filter, which damps out oscillations of high frequencies. This scheme 
is used recently in the numerical weather prediction. 
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