
J
H
E
P
0
6
(
2
0
2
1
)
1
8
0

Published for SISSA by Springer

Received: April 30, 2021

Accepted: June 13, 2021

Published: June 30, 2021

Hydrodynamic dispersion relations at finite coupling

Sašo Grozdanov,a Andrei O. Starinetsb and Petar Tadićc

aUniversity of Ljubljana, Faculty of Mathematics and Physics,

Jadranska ulica 19, SI-1000 Ljubljana, Slovenia
bRudolf Peierls Centre for Theoretical Physics, Clarendon Lab,

Oxford, OX1 3PU, U.K.
cSchool of Mathematics, Trinity College Dublin,

Dublin, D02 W272, Ireland

E-mail: saso.grozdanov@fmf.uni-lj.si,

andrei.starinets@physics.ox.ac.uk, tadicp@maths.tcd.ie

Abstract: By using holographic methods, the radii of convergence of the hydrodynamic

shear and sound dispersion relations were previously computed in the N = 4 supersym-

metric Yang-Mills theory at infinite ’t Hooft coupling and infinite number of colours. Here,

we extend this analysis to the domain of large but finite ’t Hooft coupling. To leading order

in the perturbative expansion, we find that the radii grow with increasing inverse coupling,

contrary to naive expectations. However, when the equations of motion are solved using a

qualitative non-perturbative resummation, the dependence on the coupling becomes piece-

wise continuous and the initial growth is followed by a decrease. The piecewise nature

of the dependence is related to the dynamics of branch point singularities of the energy-

momentum tensor finite-temperature two-point functions in the complex plane of spatial

momentum squared. We repeat the study using the Einstein-Gauss-Bonnet gravity as a

model where the equations can be solved fully non-perturbatively, and find the expected

decrease of the radii of convergence with the effective inverse coupling which is also piece-

wise continuous. Finally, we provide arguments in favour of the non-perturbative approach

and show that the presence of non-perturbative modes in the quasinormal spectrum can

be indirectly inferred from the analysis of perturbative critical points.

Keywords: Black Holes in String Theory, Effective Field Theories, Gauge-gravity

correspondence, Holography and quark-gluon plasmas

ArXiv ePrint: 2104.11035

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP06(2021)180

mailto:saso.grozdanov@fmf.uni-lj.si
mailto:andrei.starinets@physics.ox.ac.uk
mailto:tadicp@maths.tcd.ie
https://arxiv.org/abs/2104.11035
https://doi.org/10.1007/JHEP06(2021)180


J
H
E
P
0
6
(
2
0
2
1
)
1
8
0

Contents

1 Introduction 1

2 Critical points, quasinormal level-crossings and the “resummation” 3

2.1 Critical points, Puiseux series and quasinormal level-crossing 4

2.2 Non-perturbative “resummation” 5

3 Convergence of hydrodynamic series in the N = 4 SYM theory 7

3.1 Shear channel 10

3.1.1 Perturbative calculation 11

3.1.2 Non-perturbative calculation 11

3.2 Sound channel 16

3.2.1 Perturbative calculation 16

3.2.2 Non-perturbative calculation 17

4 Convergence of hydrodynamic series in the Einstein-Gauss-Bonnet

theory 17

4.1 Shear channel 19

4.1.1 Perturbative calculation 20

4.1.2 Non-perturbative calculation 20

4.2 Sound channel 21

4.2.1 Perturbative calculation 21

4.2.2 Non-perturbative calculation 21

5 Non-perturbative quasinormal modes and singular perturbation theory 22

5.1 An algebraic equation example 26

5.2 A signature of non-perturbative modes from the perturbative analysis of the

Einstein-Gauss-Bonnet critical points 29

5.3 A signature of non-perturbative modes from the perturbative analysis of

critical points in the N = 4 SYM theory 32

6 Discussion 32

A Critical points and the radius of convergence in holography 34

B How to reconstruct the Puiseux exponent from the power series 36

C Coefficients A(i) and B(i) of eq. (3.10) in the N = 4 SYM theory 38

D Coefficients A(i) and B(i) of eq. (4.6) in the Einstein-Gauss-Bonnet

theory 39

– i –



J
H
E
P
0
6
(
2
0
2
1
)
1
8
0

1 Introduction

In the hydrodynamic regime, quantum field theory is expected to contain collective ex-

citations such as sound waves [1, 2]. These hydrodynamic modes are characterised in

momentum space by their gapless dispersion relations ω = ω(q), where ω is the frequency

of the mode and q is its wave-vector. In the simplest case of a relativistic neutral isotropic

fluid, two hydrodynamic modes known as shear and sound modes have dispersion relations

ωshear(q
2) = −iDq2 + · · · , (1.1)

ωsound(q2) = ±vs(q2)
1

2 − i
Γ

2
q2 + · · · . (1.2)

These modes arise as linearised fluctuations of an equilibrium state and describe transverse

momentum (shear) and longitudinal energy-momentum (sound) transfer. The coefficients

of the series such as the speed of sound vs, the transverse momentum diffusion constant

D = η/sT and the sound attenuation constant Γ = (ζ + 4η/3)/sT , where η and ζ are,

respectively, shear and bulk viscosities and s is the equilibrium entropy density at temper-

ature T , are determined by the underlying microscopic quantum field theory [2]. In the

following, it will be convenient to use the frequency w = ω/2πT and the spatial momentum

q = q/2πT normalised by the Matsubara frequency.

Recently, in the context of exploring the domain of applicability of hydrodynamics, the

radii of convergence of the series (1.1), (1.2) have been investigated in some strongly inter-

acting quantum field theories by using their dual gravitational descriptions in refs. [3–8] and

by using field theory methods in refs. [9, 10]. In particular, by promoting q2 to a complex

variable and analysing critical points of the associated spectral curves, in refs. [4, 5], it was

found that for the N = 4 supersymmetric SU(Nc) Yang-Mills theory (SYM) in the limit

of infinite number of colours Nc → ∞ and infinite ’t Hooft coupling λ = g2
Y M Nc → ∞,

the radii of convergence R = |q2| of the hydrodynamic series w = w(q2) in the complex

q2-plane are given by

R
(∞)
shear ≈ 2.22 , (1.3)

R
(∞)
sound = 2 . (1.4)

The physical reason behind the breakdown of the convergence of hydrodynamic series is the

presence of the gapped non-hydrodynamic degrees of freedom whose spectra “cross levels”

with the hydrodynamic degrees of freedom at some (generically complex) value of q2.

Our main goal in this paper is to find the ’t Hooft coupling constant corrections to

the infinite coupling results (1.3), (1.4), similar to the coupling constant corrections to

the entropy [11, 12], shear viscosity [13, 14] and other transport coefficients (see ref. [15]

and references therein) computed for the N = 4 SYM theory earlier. Our methods are

discussed in detail in section 2, and in appendices A and B.

Naively, one may expect that the radius of convergence R(λ) decreases with the cou-

pling decreasing from its infinite value. Indeed, schematically [16], while at infinite coupling

the characteristic spectral distance ν(∞) (set by the location of quasinormal modes in the
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dual gravity theory [17–19]) is coupling-independent, its counterpart ν(0) at small coupling

(set by the eigenvalues of a suitable linearised collision operator [20, 21], [22]) is coupling-

dependent and parametrically small, hence,

R(∞) ∼ ν(∞)/T ∼ 1 , (1.5)

R(0) ∼ ν(0)/T ∼ λ2 ln λ−1 ≪ 1 , (1.6)

where eq. (1.5) is clearly consistent with the results (1.3), (1.4).

However, these expectations are shattered by a concrete calculation. Using pertur-

bative methods only, in section 3 we find instead that at large coupling the radius of

convergence increases with the coupling decreasing from its infinite value, namely,

Rshear(λ) = R
(∞)
shear

(

1 + 674.15 λ−3/2 + · · ·
)

, (1.7)

Rsound(λ) = R
(∞)
sound

(

1 + 481.68 λ−3/2 + · · ·
)

, (1.8)

where R
(∞)
shear and R

(∞)
sound are given by eqs. (1.3) and (1.4). This result is unexpected.

Admittedly, the large numerical coefficients in eqs. (1.7) and (1.8) may reflect the necessity

of a non-perturbative “resummation” along the lines of ref. [23]. Indeed, applying such

a resummation (discussed in detail below), we find that Rshear(λ) and Rsound(λ) become

decreasing functions of the decreasing λ after the initial growth that is well-approximated

by eqs. (1.7) and (1.8) (see figure 1). In consequence, for the N = 4 SYM theory, our

analysis implies that R(λ) should be a non-monotonic and piecewise continuous function.

The dependence of Rshear and Rsound on γ ∼ λ−3/2 shown in figure 1 constitutes the main

result of this paper. The non-perturbative part of the curve Rshear(γ) (the red segment

of the curve in the right panel of figure 1) coincides with the boundary of validity of

hydrodynamics previously discussed in ref. [16]. We note that the piecewise character

of this dependence is similar to the one recently observed for infinitely strongly coupled

theories with finite chemical potential [7, 24] and the Sachdev-Ye-Kitaev chain at finite

coupling [9].

To understand the non-perturbative aspects of the analysis better, in section 4, we com-

pute the radii of convergence of hydrodynamic series using the Einstein-Gauss-Bonnet grav-

ity in five dimensions as a theoretical laboratory. There, the second-order bulk equations

of motion can be solved fully non-perturbatively in the Gauss-Bonnet coupling [16, 25, 26],

and thus the outcome of relevant perturbative resummations can be compared with exact

results. We find (see figures 13 and 16) that the radius of convergence decreases (and the

dependence is piecewise continuous) with what can be phenomenologically identified as

the direction of decreasing CFT coupling [16, 26–28], which is qualitatively similar to the

results obtained for the N = 4 SYM theory in section 3.

The question of the hydrodynamic series convergence at finite coupling was recently

addressed in ref. [10] for experimentally realisable fluids, and in ref. [9] for the Sachdev-Ye-

Kitaev chain. The calculations of ref. [10] are based on estimating the size of the k-gap [29]

and show an increasing R with increasing Coulomb coupling strength, while ref. [9] finds a

non-monotonic dependence, with R growing towards weak coupling. Radii of convergence

– 2 –
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Figure 1. Radii of convergence Rshear and Rsound of the hydrodynamic shear (left panel) and sound

(right panel) modes in the N = 4 SYM theory as a function of the coupling γ ∝ λ−3/2. Solid blue

curves correspond to the perturbative results of eqs. (1.7), (1.8), black dots are the non-perturbative

results. The red curves are determined by the level-crossings of the hydrodynamic modes with the

modes not present in the perturbative spectrum.

of hydrodynamic series in relativistic kinetic theory (in the relaxation time approximation)

were recently studied in ref. [30].

This paper is structured as follows. In section 2, we briefly review the method of crit-

ical points of spectral curves introduced in refs. [4, 5] to compute the radii of convergence,

as well as the non-perturbative resummation approach for theories with higher-derivative

equations of motion. In section 3, we use the dual higher-derivative gravity to compute

the radii of convergence for the shear and sound modes in the N = 4 SYM theory at large

but finite ‘t Hooft coupling. This analysis is done perturbatively and non-perturbatively

by using the “resummed” version of the first-order theory. In section 4, we perform similar

calculations in Einstein-Gauss-Bonnet gravity to check the validity of our approach. We

also demonstrate level-crossings at higher momenta. Then, in section 5, we discuss the

validity of non-perturbative “resummations” used in holography. We first consider a toy

algebraic example and then study in detail the shear channel of the Einstein-Gauss-Bonnet

theory. These examples are used to draw plausible conclusions about the N = 4 SYM the-

ory and the emergence of purely relaxing gapped modes in that theory. We conclude with

a discussion of open problems in section 6. Appendix A is a short review of the methods

involving critical points and quasinormal level-crossing. Appendix B introduces a useful

method for determining the Puiseux exponent at a critical point by analysing the coeffi-

cients of hydrodynamic series of a dispersion relation w = w(q2). Finally, appendices C

and D contain the coefficients of the differential equations used in the paper.

2 Critical points, quasinormal level-crossings and the “resummation”

In this section, we briefly review the methods used to obtain the main results of the paper.

These methods were formulated in refs. [4, 5], where the interested reader can find more

details and examples.

– 3 –
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2.1 Critical points, Puiseux series and quasinormal level-crossing

In momentum space, the hydrodynamic dispersion relations arise from the hydrodynamic

spectral curve PH(q2,w) = 0 given by the zeros of the determinant of the matrix of lin-

earised fluctuations around an equilibrium state [4, 5]. Using the symmetry of the sys-

tem and applying the Newton polygon method, one can write generic expressions for the

dispersion relations describing transverse momentum and longitudinal energy-momentum

fluctuations in terms of the converging Puiseux series centred at the origin:

wshear(q
2) = −i

∞
∑

n=1

cn

(

q
2
)n

, (2.1)

wsound(q2) = −i
∞
∑

n=1

ane±
iπn

2

(

q
2
)n/2

. (2.2)

The modes (2.1) and (2.2) are gapless. The coefficients cn and an of the series are real

functions proportional to the transport coefficients. In particular, c1 = 2πTD, a1 = ±vs,

a2 = −ΓπT . In the underlying quantum field theory, the full spectral curve P (q2,w), which

reduces to PH(q2,w) in the hydrodynamic limit, is proportional to the denominator of the

two-point retarded correlation function of the corresponding conserved current (here, the

energy-momentum tensor). The spectral curve equation P (q2,w) = 0 contains the full

spectrum of modes w = w(q2), gapless and gapped. Identifying gapless modes with (2.1)

and (2.2), one reads off the transport coefficients in terms of the quantum field theory

parameters.

Each Puiseux series is an expansion around a critical point (q2
c ,wc) of order p which

is a solution of the following set of equations:

P (q2
c ,wc) = 0 , ∂wP (q2

c ,wc) = 0 , · · · , ∂p
wP (q2

c ,wc) 6= 0 . (2.3)

The order p determines the number of branches of the curve at the critical point. The

analytic properties of the branches can be found by using e.g. the Newton polygon method,

as explained in ref. [5] and references therein. Accordingly, a critical point may constitute

a branch point singularity (or worse) or be a regular point depending on the coefficients of

the original complex curve. For example, a point with p = 1 is always a regular point, as

guaranteeed by the implicit function theorem, in which case a Puiseux series is the ordinary

Taylor series. In terms of eq. (2.3), the shear mode is a Puiseux series in q2 of order p = 1

around the origin (q2
c ,wc) = (0, 0) (i.e., a Taylor series around a regular point), whereas

for the sound mode, the origin is a branch point singularity generating a Puiseux series of

order p = 2 [4, 5].

The radii of convergence of the series (2.1) and (2.2) are set by the locations of the

closest to the origin singularities of the functions wshear(q
2) and wsound(q2), respectively,

in the complex q2-plane. Critical points of the spectral curve P (q2,w) = 0 having branch

points at q2 = q2
c are the common source of such singularities. At the critical points with

p > 1, the equation P (q2
c ,wc) = 0 has multiple roots, and hence the hydrodynamic mode

“collides” with one or more gapped modes in the complex w-plane. If the corresponding

– 4 –
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q2 = q2
c is a branch point, this is the level-crossing phenomenon,1 albeit happening here

at complex values of frequency and momentum squared. We illustrate this with simple

examples in appendix A. In appendix B, we also introduce a method based on the Darboux

theorem which allows one to compute the Puiseux exponent at a critical point closest to

(but different from) the origin by analysing the coefficients of a series centred at the origin.

Computing a spectral curve in quantum field theory, even perturbatively, is a difficult

problem. However, for strongly interacting theories with gravity dual descriptions, this

task is rather straightforward. Indeed, the recipe for computing the two-point retarded

correlators from dual gravity [31] implies that the spectral curve P (q2,w) = 0 is determined

by the boundary value Z(u = 0, q2,w) of the solution Z(u, q2,w) to the bulk equations of

motion for the fluctuations coupled to the relevant conserved current: P (q2,w) = Z(u =

0, q2,w) = 0 [4, 5]. Analytic properties of the spectral curve such as the location of branch

point singularities are thus inherited from the properties of the bulk ODEs. In practice,

the ODEs are sufficiently complicated and have to be solved numerically. Having such

a solution, one first solves eqs. (2.3) to find the critical points in the complex q2-plane,

and then determines the degree of singularity at the critical points by considering the

quasinormal mode behaviour in the complex w-plane under the monodromy q2 = |q2|eiϕ,

where ϕ ∈ [0, 2π] (see appendix A). The closest to the origin (in the complex q2-plane)

critical point exhibiting a branch point singularity sets the radius of convergence of the

series (2.1), (2.2). In the N = 4 SYM theory at infinite Nc and infinite ‘t Hooft coupling,

the critical points closest to the origin in the shear and sound channels are located at

Shear : q
2
c ≈ 1.8906469 ± 1.1711505i, wc ≈ ±1.4436414 − 1.0692250i , (2.4)

Sound : q
2
c = ±2i, wc = ±1 − i , (2.5)

leading to the radii of convergence (1.3) and (1.4). In general, a multitude of critical points

is expected to exist in the complex q2-plane, representing level-crossings among two or

more branches of the spectrum. Moreover, at finite Nc or at weak coupling described by

kinetic theory, one may also expect other types of singularities to appear [30].

Here, we continue working in the limit Nc → ∞, and extend the approach of refs. [4, 5]

to bulk gravity theories with higher derivative terms, i.e., to the domain of large but finite

‘t Hooft coupling.

2.2 Non-perturbative “resummation”

Inverse ’t Hooft coupling corrections in the N = 4 SYM theory arise from higher-derivative

terms in the dual type IIB string theory low energy effective action (see e.g. refs. [11–15]).

In a holographic calculation of a quasinormal spectrum, the bulk equations of motion

typically produce a differential equation for the background fluctuation Z = Z(u,w, q2) of

the form [13–15]

∂2
uZ + A(u,w, q2)∂uZ + B(u,w, q2)Z = γH

[

Z, ∂uZ, ∂2
uZ, ∂3

uZ, . . .
]

, (2.6)

1At the critical points with regular branches we have “level-touching” rather than “level-crossing”, as

happens e.g. for the BTZ background [4]. See appendix A for details.
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where u is the radial coordinate in the bulk with u = 0 the location of the boundary, γ

is a small parameter proportional to the inverse coupling (e.g. γ ∼ λ−3/2 in the N = 4

SYM with the ‘t Hooft coupling λ), and the right hand side comes from the leading higher-

derivative correction to Einsten-Hilbert action (e.g. from the R4 term in type IIB super-

gravity). To avoid issues such as Ostrogradsky instability (see e.g. ref. [26] and references

therein), the higher-derivative terms in eq. (2.6) are usually treated as perturbations of the

second-order ODE, and its left-hand-side is used to eliminate all derivatives higher than

the first one from the right-hand-side, ignoring contributions of order γ2 and higher. The

resulting equation,

∂2
uZ + Ā(u,w, q2, γ)∂uZ + B̄(u,w, q2, γ)Z = 0 , (2.7)

is a homogeneous linear second-order ODE whose coefficients Ā and B̄ now depend on γ.

As discussed above, the spectral curve is then determined by the boundary value of the

solution Z(u,w, q2, γ) to that ODE, i.e. P (q2,w) ≡ Z(u → 0,w, q2, γ) = 0.

In the standard approach, one looks for a perturbative solution to eq. (2.7) in the form

Z = Z0 +γZ1. Similarly, the perturbative ansatz for the spectrum is w = w0 +γw1, where

w0 is the quasinormal frequency at γ = 0. Alternatively, one can solve eq. (2.7) without

assuming a perturbative ansatz. Such a non-perturbative solution, if it can be expanded

in series in powers of γ ≪ 1, will not be fully quantitatively correct beyond linear order

in γ, since both in the original equation (2.6) and in the steps leading to eq. (2.7) terms

of order γ2 and higher were ignored. Quantitatively, the solution only captures the non-

perturbative effects in γ related to eq. (2.7) and in this sense only partially “resums” the

contributions nonlinear in γ in the approximation to the full solution. However, such a

solution may provide a more faithful qualitative approximation to the exact solution at

finite γ. Moreover, if the exact solution is non-perturbative in γ ≪ 1, any perturbative

ansatz would necessarily miss it completely, whereas the non-perturbative approach is

capable of describing the situation qualitatively correctly. The choice of a correct ansatz

is the crucial step in singular perturbation theory [32]. We discuss these issues in more

detail in section 5 and illustrate them with simple examples. In the context of holography,

partial “resummations” have been used in refs. [23], [16, 33] and criticised in ref. [34]. A

crucial feature of such a “resummation” in holography, first pointed out in [16], is that the

quasinormal spectrum now contains new, non-pertubative gapped modes which seem to

play an important role in describing physics at finite coupling qualitatively correctly [16,

33, 35, 36]. We shall see in section 3 that the situation with the radii of convergence is

similar: the non-perturbative “resummation” reverses the tendency seen in eqs. (1.7), (1.8),

making the radii to decrease (after an initial rise) with the coupling decreasing. In section 4,

we compare this behaviour with that in the Einstein-Gauss-Bonnet theory, where both

perturbative and non-perturbative results are available, using it as a theoretical laboratory

to test our methods, and find a qualitative agreement with the N = 4 SYM case. Curiously,

in section 5 we find that it is in fact possible in some cases to infer the existence of non-

perturbative critical points by using perturbative data. While we are able to explicitly

demonstrate this in the Einstein-Gauss-Bonnet theory, for the N = 4 SYM theory, this

may serve as an indicative argument that the same behaviour is plausible.

– 6 –
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3 Convergence of hydrodynamic series in the N = 4 SYM theory

We begin by studying the coupling dependence of the radii of convergence of the hydrody-

namic shear and sound modes of the N = 4 SU(Nc) SYM theory in the Nc → ∞ limit and

at large but finite ’t Hooft coupling λ. Our analysis uses its gravitational dual, namely,

the type IIB supergravity with higher-derivative terms in the action. For the N = 4 SYM

theory, the source of finite ’t Hooft coupling corrections is the ten-dimensional low-energy

effective action of type IIB string theory

SIIB =
1

2κ2
10

∫

d10x
√−g

(

R − 1

2
(∂φ)2 − 1

4 · 5!
F 2

5 + γe−
3

2
φW + . . .

)

, (3.1)

where γ = α′3ζ(3)/8, with α′ set by the length of the fundamental string, and the term W
proportional to the contractions of the four copies of the Weyl tensor,

W = CαβγδCµβγνC ρσµ
α Cν

ρσδ +
1

2
CαδβγCµνβγC ρσµ

α Cν
ρσδ . (3.2)

Considering corrections to the AdS-Schwarzschild black brane background and its fluctua-

tions, potential α′ corrections to supergravity fields other than the metric and the five-form

field have been argued to be irrelevant [37]. Moreover, as discussed in [38], for the purposes

of computing the corrected quasinormal spectrum, one can use the Kaluza-Klein reduced

five-dimensional action

S =
1

2κ2
5

∫

d5x
√−g

(

R +
12

L2
+ γW

)

, (3.3)

where W is now given by eq. (3.2) in 5d. The effective five-dimensional gravitational

constant is related to the rank of the gauge group SU(Nc) by the expression κ5 = 2π/Nc.

The parameter γ is related to the value of the ’t Hooft coupling constant λ in the N = 4

SYM theory via γ = λ−3/2ζ(3)L6/8. This parameter is dimensionless in units of L. Higher

derivative terms in the equations of motion are treated as perturbations in γ. In the

following, we shall use λ and

γ =
ζ(3)

8λ3/2
≪ 1 (3.4)

interchangeably.

The black brane solution to the equations of motion following from the action (3.3),

which is dual to an equilibrium thermal state of the CFT at temperature T , is given

by [11, 12]

ds2 =
(πTL)2

u

(

−eA(u)f(u)dt2 + dx2 + dy2 + dz2
)

+ eB(u) L2du2

4u2f
, (3.5)

where f(u) = 1 − u2. The radial coordinate is denoted by u, with the boundary located at

u = 0 and the horizon at u = 1. To leading order in γ, the functions A(u) and B(u) were

found to be

A(u) = −15γ
(

5u2 + 5u4 − 3u6
)

, B(u) = 15γ
(

5u2 + 5u4 − 19u6
)

. (3.6)

– 7 –
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The correction to the N = 4 SYM entropy density is then given by [11]

s

s0
=

3

4
(1 + 15γ + · · · ) , (3.7)

where s0 = 2π2N2
c T 3/3 is the Stefan-Boltzmann entropy density of the ideal gas of particles

in the N = 4 SYM theory (i.e., in the theory at λ = 0). The metric (3.5) was also used to

compute ‘t Hooft coupling constant corrections to the ratio of shear viscosity η to entropy

density [13, 14],
η

s
=

1

4π
(1 + 120γ + · · · ) , (3.8)

and to all of the second-order transport coefficients of the N = 4 SYM plasma.2 Computing

transport coefficients and, in general, correlation functions of the energy-momentum tensor

in the N = 4 SYM plasma requires considering small fluctuations of the metric gµν =

g
(0)
µν + hµν(u, t, x, y, z), where g

(0)
µν is the background (3.5). Due to translational invariance

and spatial isotropy of the background, we can Fourier transform the fluctuations and

choose the direction of spatial momentum along z, so that

hµν(u, t, z) =

∫

dωdq

(2π)2
e−iωt+iqz hµν(u, ω, q) . (3.9)

Following the recipes of ref. [19] and choosing the radial gauge huν = 0, one can write

down the linearised equations of motion for the three gauge-invariant linear combinations

Zi, i = 1, 2, 3, of the modes hµν(u, ω, q) in the scalar, shear and sound channels, respec-

tively [16, 19, 39].

The linearised equations of motion obtained following the procedure outlined in

section 2 are given in the three channels by [16]

∂2
uZi + A(i)(u,w, q2, γ)∂uZi + B(i)(u,w, q2, γ)Zi = 0 , (3.10)

where A(i)(u,w,q2,γ) = A(0)
(i) (u,w,q2)+γA(1)

(i) (u,w,q2) and B(i)(u,w,q2,γ) = B(0)
(i) (u,w,q2)+

γB(1)
(i) (u,w,q2). The coefficients are given explicitly in appendix C. As discussed in sec-

tion 2, using the ODEs (3.10), the quasinormal spectrum can now be computed either

perturbatively by expanding Z = Z0+γZ1 along with w=w0+γw1 and q2 = q2
0+γq2

1 [40],

or non-perturbatively by treating eq. (3.10) as being exact in the parameter γ [23], [16, 33].

As an example, the shear channel quasinormal spectrum for γ = 1 · 10−5 is shown

in figure 2. Its novel feature, discussed in detail in ref. [16], is the existence of the non-

perturbative (in γ) gapped modes on the imaginary axis. The highest (closest to the real

axis) of those modes is shown in figure 2 by the red square: with real q2 increasing, this mode

moves up the axis and at q2 = q2
∗ it collides with the hydrodynamic shear mode (shown

in figure 2 by the red circle). For q2 > q2
∗, the two modes move off the imaginary axis,

effectively destroying the diffusive pole of the correlator. In ref. [16], this was interpreted

as the end of the hydrodynamic regime at sufficiently large spatial momentum (small

wavelength), where the microscopic effects prevail over the collective ones. The dependence

2The complete list of the coefficients can be found e.g. in refs. [15, 26].
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Figure 2. Quasinormal spectrum in the shear channel of the N = 4 SYM for γ = 1 ·10−5 and q2 = 1

(left panel). The hydrodynamic shear mode at w ≈ −0.60064i is shown by the red circle. The new

feature, not seen in a perturbative calculation, is the appearance of an extra mode on the imaginary

axis (shown by the red square), ascending from complex infinity with γ increasing [16]. With real q2

increasing, the hydrodynamic mode moves down the imaginary axis, while the new non-perturbative

mode moves up. They collide at q2
∗

≈ 2.72 and move off the axis for q2 > q2
∗

(right panel).

1 ·10-5
2 ·10-5

3 ·10-5
4 ·10-5

1

2

3

4

Figure 3. The value of the (real) spatial momentum squared, limiting the hydrodynamic regime, as

a function of the (inverse) coupling γ in the shear channel of the N = 4 SYM [16]. Hydrodynamics

has a wider range of applicability in q2 at smaller γ (larger ’t Hooft coupling).

q2
∗ = q2

∗(γ), shown in figure 3, suggests that the domain of applicability of the hydrodynamic

description is smaller at larger γ (i.e., at smaller ‘t Hooft coupling), but it seems to extend

to arbitrarily large momentum in the limit of infinite coupling (at γ → 0) [16].

To see how this qualitative picture is amended at very large but finite ’t Hooft coupling,

we now consider the radius of convergence of the hydrodynamic shear and sound dispersion

series in this theory, which requires us to solve eq. (2.3) and look for critical points with

p = 2. With P (q2,w) given by P (q2,w) = Z(w, q2) ≡ Z(u = 0,w, q2) for any channel (we

omit the index “i” labeling the channel), we are therefore looking for solutions w = wc and

q2 = q2
c to the system

Z(w, q2) = 0 , ∂wZ(w, q2) = 0 , (3.11)

with ∂2
wZ(w, q2) 6= 0. In the non-perturbative approach (in γ), critical points follow directly
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from eq. (3.11), where Z(w, q2) can be found by constructing a Frobenius series solution

Z(u,w, q2) to eq. (3.10) around the horizon in the standard way [17–19], and setting u = 0.

For γ = 0, this is the same procedure as the one used in refs. [4, 5].

To find the critical points perturbatively, we expand equations (3.11) as

Z0(w, q2) + γZ1(w, q2) = 0 ,

∂wZ0(w, q2) + γ∂wZ1(w, q2) = 0 ,
(3.12)

and also expand

wc = wc,0 + γwc,1 , q
2
c = q

2
c,0 + γq2

c,1 . (3.13)

Together, these expansions yield a system of equations at O(γ0):

Z0(wc,0, q2
c,0) = 0 ,

∂wZ0(wc,0, q2
c,0) = 0 ,

(3.14)

and a system at O(γ):

Z1(wc,0, q2
c,0) + ∂q2Z0(wc,0, q2

c,0) q2
c,1 = 0 ,

∂wZ1(wc,0, q2
c,0) + ∂2

wZ0(wc,0, q2
c,0)wc,1 + ∂w∂q2Z0(wc,0, q2

c,0) q2
c,1 = 0 .

(3.15)

Eqs. (3.14) and (3.15) are sufficient to find wc,0, wc,1, q2
c,0 and q2

c,1. More explicitly,

eq. (3.15) allows us to express

q
2
c,1 = − Z1(wc,0, q2

c,0)

∂q2Z0(wc,0, q2
c,0)

,

wc,1 =
1

∂2
wZ0(wc,0, q2

c,0)

(

Z1(wc,0, q2
c,0)∂w∂q2Z0(wc,0, q2

c,0)

∂q2Z0(wc,0, q2
c,0)

− ∂wZ1(wc,0, q2
c,0)

)

.

(3.16)

As before, the function Z0(w, q2) can be obtained as the boundary value of the Frobenius

solution to eq. (3.10) with γ = 0 and Z1(w, q2) as the boundary value of the Frobenius

solution to the corresponding inhomogeneous equation.

3.1 Shear channel

At infinite ‘t Hooft coupling, the shear mode dispersion relation w = w(q2) has numerous

branch point singularities [4, 5]. At finite coupling, we expect those singularities, now

parametrised by γ ∝ λ−3/2, to move in the complex q2-plane with γ varying. As discussed

in section 2.2, one can compute relevant corrections by using either the “conservative”

perturbative or the non-perturbative approach.
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3.1.1 Perturbative calculation

For a perturbative calculation of the coupling constant correction to the radius of conver-

gence in the shear channel of the N = 4 SYM theory, we use eq. (3.10) with i = 2. To first

order in γ ∝ λ−3/2, from eqs. (3.16) we find the following first set of critical points closest

to the origin in the complex q2-plane:

q
2
c ≈ 1.89065 ± 1.17115i + γ(4081.99 ± 1862.06i) , (3.17)

wc ≈ ±1.44364 − 1.06923i + γ(±3671.27 + 1360.52i) . (3.18)

The value of q2
c in eq. (3.17) gives the convergence radius |q2

c | quoted in eq. (1.7). The radius

increases with γ increasing (i.e. with the coupling λ decreasing from its infinite value). The

numerical coefficients multiplying the parameter γ in eqs. (3.17), (3.18) are large: the

perturbative terms give small corrections to the γ = 0 result only for γ . 10−4 − 10−5.

The next closest to the origin critical point (i.e. the critical point with larger value of

|q2| than (3.17)) is located on the negative real axis of q2:

q
2
c,1 ≈ −2.37737 + γ 2608.88 , (3.19)

wc,1 ≈ −1.64659i − γ 6599.64i . (3.20)

At γ = 0, this critical point plays no role in determining the radius of convergence. At

finite γ, the point (3.19) moves closer to the origin with γ increasing, whereas the pair

of points (3.17) moves away from it. At γ = γ∗ ≈ 2.172 · 10−5, the critical point (3.19)

formally becomes dominant (closest to the origin), changing the situation qualitatively. We

view this as an indication of the breakdown of linear (in γ) approximation.

The next two sets of critical points with yet larger values of |q2| are

q
2
c,2 ≈ −3.11051 ∓ 0.81050i + γ(−52560.3 ± 77406.3i) , (3.21)

wc,2 ≈ ±1.41043 − 2.87086i + γ(±31019.2 − 11091.7i) , (3.22)

q
2
c,3 ≈ 2.90684 ± 1.66612i + γ(40520.1 ± 17681.1i) , (3.23)

wc,3 ≈ ±2.38819 − 2.13154i + γ(±26733.9 + 13539.1i) . (3.24)

Notice again the large numerical coefficients multiplying the perturbative parameter γ in

eqs. (3.21)–(3.24). For illustration, several perturbative closest to the origin critical points

in the complex q2-plane for γ = 1 · 10−5 are shown in figure 4 in blue colour.

3.1.2 Non-perturbative calculation

For a non-perturbative calculation, we solve eqs. (3.10) and (3.11) numerically without

assuming γ to be small. We observe three qualitatively different scenarios of quasinormal

modes’ behaviour, and illustrate them by showing the modes at γ = 1 · 10−5, γ = 2 · 10−5

and γ = 3 · 10−5, respectively (see figures 5, 7, 8):

(a) At γ = 1 · 10−5, the top modes in the spectrum are shown in figure 5 in the complex

plane of w, for complex values of the spatial momentum squared q2 = |q2|eiϕ, where

the phase ϕ is varied from 0 to 2π. The figure shows how the critical points (we show

– 11 –
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Figure 4. The closest to the origin branch points (see table 1) of the N = 4 SYM shear mode

dispersion relation w = w(q2) in the complex q2-plane at γ = 1 · 10−5. The critical points seen

in perturbation theory and their branch cuts are shown by blue colour, the two non-perturbative

critical points on the real axis are shown in red. The radius of convergence at γ = 1 · 10−5,

Rshear ≈ 2.27, is determined by the pair of branch points at q2 ≈ 1.93 ± 1.19i. We note that it is

the sole inclusion of the non-perturbative red critical point on the positive real q2-axis that leads

to the non-perturbative result of figure 3.

# q2
c (non-pert.) |q2

c | (non-pert.) q2
c (pert.) |q2

c | (pert.)

1 1.93027 ± 1.19123i 2.268 1.93147 ± 1.18977i 2.269

2 −2.34715 2.347 −2.35128 2.351

3 −2.46848 2.469 n/a n/a

4 2.70094 2.701 n/a n/a

5 −3.69434 ± 0.18770i 3.699 −3.63611 ± 0.03644i 3.528

6 3.22474 ± 1.88845i 3.737 3.31204 ± 1.84293i 3.790

Table 1. The six closest to the origin (in the complex q2-plane) critical points for γ = 1 · 10−5.

the first four points closest to the origin) arise from the collision of quasinormal modes

trajectories as the phase ϕ varies. The closest to the origin (in the complex q2-plane;

see figure 4) pair of critical points sets the radius of convergence Rshear = |q2
c | ≈ 2.27

of the hydrodynamic series (in the complex w-plane, this point is shown in the top

left panel in figure 5). The location of the six closest to the origin critical points at

γ = 1 · 10−5 is given in tables 1 and 2, where a comparison between perturbative and

non-perturbative results is also made. For γ = 1 · 10−5, the location of the critical

points is in a reasonably good agreement with the perturbative results (3.17), (3.18)

and (3.19), (3.20), except when the collision of modes involves the mode on the

imaginary axis which has no perturbative analogue.
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Figure 5. Quasinormal spectrum in the shear channel at γ = 1·10−5, computed non-perturbatively

in γ. The trajectories are plotted for complex values of the spatial momentum squared, q2 = |q2|eiϕ,

where phase ϕ is varied from 0 to 2π. The positions of quasinormal modes at ϕ = 0 are shown

by dots. The positions of the two critical points (closest to the origin in the complex q2-plane) are

shown by red stars. The first pair of critical points corresponds to the collision of trajectories of the

two top gapped modes (shown in green) with the hydrodynamic shear mode trajectory (shown in

blue) at q2
c ≈ 1.93027±1.19123i and wc ≈ ±1.47755−1.05400i. The corresponding value |q2| ≈ 2.27

sets the radius of convergence of the hydrodynamic mode (top left panel). The second critical point

arises from the collision on the imaginary axis between the parts of the common curve involving

the three top modes including the shear mode (top right panel). The two plots in the bottom row

show the third and the fourth critical points. Both points arise on the imaginary axis of complex

frequency from the collision involving the new, non-perturbative mode in the quasinormal spectrum.

(b) At γ = 2 · 10−5, the top modes in the spectrum are shown in figure 7. Here, the first

level-crossing (i.e., the level-crossing with the minimal value of |q2|) occurs between

the two top gapped modes and the non-perturbative mode on the imaginary axis,

as shown in the top left panel of figure 7. However, the shear mode is not affected

by this crossing: its first non-analyticity still arises as a result of the collision with

the top two gapped modes as shown in the top right panel of figure 7. This collision

sets the radius of convergence of the shear mode at Rshear(γ) = |q2
c | ≈ 2.31. In the
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# wc (non-perturbative) wc (perturbative)

1 ±1.47755 − 1.05400i ±1.48035 − 1.05562i

2 −1.73447i −1.71258i

3 −2.60274i n/a

4 −2.93397i n/a

5 ±1.53654 − 2.71700i ±1.72062 − 2.98177i

6 ±2.54972 − 1.99267i ±2.65553 − 1.99615i

Table 2. The six closest to the origin (in the complex w-plane) critical points for γ = 1 · 10−5.

Figure 6. The closest to the origin branch points of the shear mode dispersion relation w = w(q2)

in the complex q2-plane (shown schematically). The radius of convergence is determined by the

pair of branch points (left panel) or the branch point on the real axis (right panel).

complex q2-plane, the position of the branch point singularities is thus qualitatively

the same as at γ = 1 · 10−5 (see figure 6, left panel), but the radius of convergence

Rshear(γ) increases with γ increasing (i.e. with the coupling λ decreasing).

c) Finally, at γ = 3 · 10−5, the top modes in the spectrum are shown in figure 8. In

this case, the situation is qualitatively different. Now the first level-crossing occurs

at a real value of q2
c ≈ 2.12157 and at wc ≈ −2.096i, which is a result of the collision

between the shear mode and the non-perturbative mode on the imaginary axis (top

left panel in figure 8). This is the collision of the type shown in figure 2 and interpreted

in ref. [16], where it was discovered, as the end point q2
∗(γ) of the hydrodynamic regime

(in the sense that for real q2 > q2
∗ the hydrodynamic purely imaginary shear mode

does not exist). The radius of convergence in the q2-plane is set by the corresponding

value of |q2
∗| = |q2

c | ≈ 2.12157 (see figure 6, right panel, where this situation is shown

schematically). Thus, at γ = 3 · 10−5, the radius of convergence is determined by

the non-perturbative mode. In this regime, the convergence radius decreases with

γ increasing.
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Figure 7. Quasinormal spectrum in the shear channel at γ = 2·10−5, computed non-perturbatively

in γ. The level-crossing occurring at the smallest value of |q2| (top left panel) does not affect the

hydrodynamic mode (shown in blue colour). The first (smallest in |q2|) critical point of the shear

mode arises from the level-crossing with the top gapped modes (top right panel). This point sets

the radius of convergence of the hydrodynamic series. The critical point with an even higher value

of |q2| is shown in the bottom panel.
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Figure 8. Quasinormal spectrum in the shear channel at γ = 3·10−5, computed non-perturbatively

in γ. The radius of convergence is set by the level-crossing between the shear mode and the non-

perturbative mode on the imaginary axis (left panel). This critical point coincides with the endpoint

of the hydrodynamic regime discussed in ref. [16]. An example of critical points with a larger |q2|
is shown in the right panel.
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The three examples considered above illustrate the general situation fully. For in-

finitesimally small γ, the radius of convergence of the shear mode dispersion relation is

an increasing function of γ. In the complex q2-plane, the obstacle to convergence is the

pair of critical points, as shown in figure 6 (left panel). These points move away from the

origin with γ increasing. At γ = γ∗ ≈ 2.05 · 10−5, the picture changes qualitatively, as

the transition between the regimes a) and c) occurs. Now the new critical point arising

from the level-crossing with the non-perturbative mode is located closer to the origin in

the complex q2-plane than the previous pair of critical points (figure 6, right panel). This

new critical point is located on the positive real axis of q2 and corresponds to the end point

of hydrodynamic regime as discussed in ref. [16]. This point moves closer to the origin

with γ increasing. The dependence of the radius of convergence on γ is thus a piecewise

continuous function,3 shown in figure 1 (left panel), which is the main result of this sec-

tion. The results of the perturbative and non-perturbative calculations for the closest to

the origin critical points (the ones seen in perturbation theory) are in good agreement, as

can be observed from table 1.

We emphasise that the non-perturbative effects discussed in this section are at best

qualitative, since terms of order γ2 and higher will inevitably modify them. We believe

these effects are qualitatively correct as they fit well with various physical expectations [16,

23, 33, 36]. In particular, the existence of the non-perturbative critical point makes the

radius of convergence decrease with the ‘t Hooft coupling decreasing from its infinite value.

Admittedly, an alternative conservative point of view would simply limit any considerations

by the range of γ up to γ . 2 · 10−5, beyond which the perturbative treatment becomes

unreliable.

3.2 Sound channel

For the sound channel, the analysis follows the strategy used in the previous section and

in refs. [4, 5] very closely. The relevant equation of motion is eq. (3.10) with i = 3.

3.2.1 Perturbative calculation

Solving the equations perturbatively to linear order γ, we find the following correction to

the location of the closest to the origin critical point

q
2
c ≈ ±2i + γ(166.844 ± 3201.39i) , (3.25)

wc ≈ ±1 − i + γ(±2948.55 + 1459.36i) . (3.26)

Eq. (3.25) gives the radius of convergence Rsound = |q2
c | stated in eq. (1.8). The next critical

point is given by

q
2
c,1 ≈ −0.01681 ± 3.12967i + γ(9108.90 ± 36862.6i) , (3.27)

wc,1 ≈ ±1.90135 − 2.04492i + γ(±24615.9 + 12589.5i) . (3.28)

3Curiously, the same type of a piecewise smooth dependence is observed when considering the radius of

convergence as a function of chemical potential [7, 24] and as a function of the coupling in the Sachdev-Ye-

Kitaev chain [9].
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As in the case of the shear mode, the coefficients of the perturbative expansion are quite

large: the correction becomes comparable to the γ = 0 result already for γ ∼ 10−4–10−5.

3.2.2 Non-perturbative calculation

Non-perturbative treatment implies solving the equation of motion (3.10) without assuming

γ to be small. As in the shear mode case, there are essentially two qualitatively different

scenarios of the distribution of critical points. We illustrate them by showing trajectories

of quasinormal modes in the complex w-plane at complex q2 = |q2|eiϕ, ϕ ∈ [0, 2π], for

γ = 2 · 10−5 and γ = 4.5 · 10−5 in figures 9 and 10, respectively.

In figure 9, left panel, the critical point limiting the radius of convergence of the sound

mode’s dispersion relation arises from the level-crossing between that mode and the top

gapped modes (this situation is qualitatively the same as at γ = 0 [4, 5]). The pair of

critical points closest to the origin in the complex q2-plane is well approximated by the

perturbative expression (3.27) for γ . 3 · 10−5 (figure 1, right panel). The radius of

convergence, Rsound = |q2
c |, increases with γ (see the blue curve in figure 1, right panel).

For γ > γ∗ ≈ 3.225·10−5, the situation changes qualitatively, as illustrated in figure 10.

Now the sound mode first collides with the non-perturbative mode (in figure 10, i.e. at γ =

4.5 ·10−5, this happens at q2
c = 0.9568±1.7083i, wc ≈ ∓0.16513−1.8681i, corresponding to

Rsound = |q2
c | ≈ 1.958). In this regime, the radius of convergence, Rsound = |q2

c |, decreases

with γ (see the red curve in figure 1, right panel). This dependence is very similar, although

not identical, to the one observed in figure 1 (left panel) for the shear channel.

As before, in a conservative approach we would limit ourselves to the blue part of

the curve in the right panel of figure 1, which ends in the region where perturbation

theory becomes unreliable. We believe, however, that the red part of the curve, although

not quantitatively precise, reflects the dependence of the radius of convergence on coupling

qualitatively correctly. The piecewise smooth dependence on the coupling, shown in figure 1

(right panel), is likely to persist even with γ2 and higher terms in the action taken into

account quantitatively correctly, since it corresponds to the discrete change of “status” of

the closest to the origin critical point, even though the critical points move continuously

in the complex plane with varying coupling.

4 Convergence of hydrodynamic series in the Einstein-Gauss-Bonnet

theory

We now consider the radii of convergence of gapless quasinormal modes in five-dimensional

Einstein-Gauss-Bonnet gravity. Although this theory may not have a healthy QFT

dual [41], it is nevertheless a very useful theoretical laboratory for relevant bulk calcu-

lations in higher-derivative gravity: by design, its equations of motion are second-order in

derivatives and can thus be solved fully non-perturbatively in terms of the higher-derivative

coupling.

The Einstein-Gauss-Bonnet action in 5d is

SGB =
1

2κ2
5

∫

d5x
√−g

[

R +
12

L2
+

l2
GB

2

(

R2 − 4RµνRµν + RµνρσRµνρσ
)

]

, (4.1)
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Figure 9. Quasinormal spectrum in the sound channel at γ = 2·10−5, computed non-perturbatively

in γ. The positions of critical points are shown by red stars.
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Figure 10. Quasinormal spectrum in the sound channel at γ = 4.5 · 10−5, computed non-

perturbatively in γ.
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where the scale l2
GB

of the higher-derivative term can be chosen to be set by a cosmological

constant, l2
GB

= λGBL2, where λGB is a dimensionless parameter.

The black brane metric solution of Einstein-Gauss-Bonnet equations of motion can be

found analytically and is given by4

ds2 = −f(r)N2
GB

dt2 +
1

f(r)
dr2 +

r2

L2

(

dx2 + dy2 + dz2
)

, (4.2)

where

f(r) =
r2

L2

1

2λGB



1 −

√

√

√

√1 − 4λGB

(

1 − r4
0

r4

)



 (4.3)

and the constant NGB can be chosen to normalise the speed of light at the boundary to

c = 1:

N2
GB

=
1

2

(

1 +
√

1 − 4λGB

)

. (4.4)

The position of the horizon is at r = r0. The Hawking temperature corresponding to the

solution (4.2) is given by

T =
NGBr0

πL2
=

r0
√

1 + γGB√
2πL2

, (4.5)

where we introduced the notation γGB ≡
√

1 − 4λGB. We shall use λGB and γGB inter-

changeably in the following. The range λGB < 0 corresponds to γGB ∈ (1, ∞) and the

interval λGB ∈ (0, 1/4] maps onto γGB ∈ [0, 1), with λGB = 0 corresponding to γGB = 1.

To compute the quasinormal mode spectrum, we again consider linearised metric per-

turbations. In analogy with our discussion in section 3, we arrive at three gauge-invariant

equations of motion for the scalar, shear and sound channels (i = 1, 2, 3, respectively):

∂2
uZi + A(i)(u,w, q2, λGB)∂uZi + B(i)(u,w, q2, λGB)Zi = 0 , (4.6)

where the coefficients A(i) and B(i) are given in appendix D. All relevant details regarding

the theory and the derivation of these equations can be found in ref. [26].

4.1 Shear channel

The shear channel spectrum is determined by eq. (4.6) with i = 2. As in the case of the

N = 4 theory, we compare calculations done perturbatively and non-perturbatively in the

Gauss-Bonnet coupling λGB.

4Exact solutions and thermodynamics of black branes and black holes in Einstein-Gauss-Bonnet gravity

were considered in [42] (see also [43–46]).
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4.1.1 Perturbative calculation

Solving eqs. (3.16) (with the eq. (4.6), i = 2, as the underlying equation of motion) per-

turbatively in λGB, we find the critical point closest to the origin in the complex q2-plane:

q
2
c ≈ 1.89065 ± 1.17115i + λGB(−2.01742 ± 22.5317i) + O(λ2

GB
) , (4.7)

wc ≈ ±1.44364 − 1.06923i + λGB(∓1.69340 + 8.39996i) + O(λ2
GB

) . (4.8)

The radius of convergence for the shear hydrodynamic mode is then given by Rshear = |q2
c |:

Rshear(λGB) ≈ 2.22 + 22.6 λGB + O(λ2
GB

) . (4.9)

The coefficient in front of λGB is a positive number, which is similar to the N = 4 case.

However, the “physical” regime of the hypothetical field theory dual to Gauss-Bonnet

gravity corresponds to λGB < 0 [16, 26–28, 47]. In this case, the radius of convergence

decreases with |λGB| increasing, the trend opposite to the one found for the N = 4 SYM

theory in section 3.1.

We also compute perturbative λGB corrections to the next three higher critical points,

finding

q
2
c,1 ≈ −2.37737 − 2.59245 λGB + O(λ2

GB
) , (4.10)

wc,1 ≈ −1.64659 − 3.44719 λGB + O(λ2
GB

) , (4.11)

for the first point,

q
2
c,2 ≈ −3.11051 ∓ 0.81050i + λGB(−1.70074 ± 5.98722i) + O(λ2

GB
) , (4.12)

wc,2 ≈ ±1.41043 − 2.87086i + λGB(∓0.31643 − 4.26447i) + O(λ2
GB

) , (4.13)

for the second, and

q
2
c,3 ≈ 2.90684 ± 1.66612i + λGB(−2.16892 ± 68.0434i) + O(λ2

GB
) , (4.14)

wc,3 ≈ ±2.38819 − 2.13154i + λGB(∓3.28617 + 19.0509i) + O(λ2
GB

) , (4.15)

for the third.

4.1.2 Non-perturbative calculation

Eqs. (3.16) and (4.6) can be solved fully non-perturbatively in λGB. Several examples of the

shear channel Gauss-Bonnet quasinormal spectrum are shown in figure 11 and figure 12.

Their characteristic feature, explored in refs. [16, 26], is the presence of non-perturbative

modes located (for real q2) on the imaginary axis in the complex w-plane. At sufficiently

small values of |λGB|, these modes lead to new critical points only for large values of |q2|:
the closest to the origin critical points setting the radius of convergence of the shear mode

are not affected by them (see figure 11, where the spectrum is shown for λGB = −0.01 and

various values of complex q2). At larger values of |λGB|, however, the situation changes

qualitatively. Now the closest to the origin critical point and thus the radius of convergence

are set by the non-perturbative mode (this is illustrated by figure 12, where the spectrum is

shown for λGB = −0.03). The transition between the two regimes occurs at λGB ≈ −0.0198.

The dependence of the radius of convergence of the shear mode’s dispersion relation on

Gauss-Bonnet coupling is shown in figure 13.
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Figure 11. Quasinormal spectrum in the shear channel of Gauss-Bonnet theory, computed non-

perturbatively in λGB, at λGB = −0.01. The trajectories are plotted for complex values of the

spatial momentum squared, q2 = |q2|eiϕ, where phase ϕ is varied from 0 to 2π. The positions of

quasinormal modes at ϕ = 0 are shown by dots. The positions of the critical points are shown by

red stars.

4.2 Sound channel

Finally, we repeat the same analysis for the sound channel of the Einstein-Gauss-Bonnet

theory using eqs. (3.16) and the equation of motion (4.6) with i = 3.

4.2.1 Perturbative calculation

To linear order in the perturbative expansion in λGB, we find the closest to the origin pair

of critical points at

q
2
c ≈ ±2i + λGB(−10.8809 ± 10.4314i) + O(λ2

GB
) , (4.16)

wc ≈ ±1 − i + λGB(∓2.05394 + 3.49495i) + O(λ2
GB

) . (4.17)

Hence, the radius of convergence in the sound channel is given (perturbatively) by

Rsound(λGB) ≈ 2 + 15.0735 λGB + O(λ2
GB

) . (4.18)

For “physical” values of λGB (λGB < 0), this is a decreasing function of |λGB| (which is

different from the N = 4 SYM theory).

4.2.2 Non-perturbative calculation

Computing critical points in the sound channel of the Einstein-Gauss-Bonnet theory non-

perturbatively in λGB, we find that for sufficiently small |λGB|, the situation remains qual-

itatively the same as in the λGB = 0 case: the radius of convergence is determined by the

level-crossing between sound modes and the top gapped modes in the complex w-plane, as

– 21 –



J
H
E
P
0
6
(
2
0
2
1
)
1
8
0

★★

-4 -2 0 2 4

-6

-4

-2

0

★★

-4 -2 0 2 4

-6

-4

-2

0

★★

-4 -2 0 2 4

-6

-4

-2

0

Figure 12. Quasinormal spectrum in the shear channel of Gauss-Bonnet theory, computed non-

perturbatively in λGB, at λGB = −0.03.

shown in figure 14 (left panel). The non-perturbative mode also leads to critical points,

but this happens at larger value of |q2| (see the right panel of figure 14).

At larger value of the coupling |λGB|, the picture changes qualitatively and the radius

of convergence of the sound dispersion relation is now determined by the level-crossing with

the non-perturbative quasinormal mode, as shown in the left panel of figure 15.

The transition between the two regimes happens at λGB ≈ −0.0338. The dependence

of Rsound (including both perturbative and non-perturbative results) is shown in figure 16.

5 Non-perturbative quasinormal modes and singular perturbation

theory

In our analysis of the radii of convergence in the N = 4 SYM theory, as well as in pre-

vious works on higher-derivative holography [23], [16, 33, 35, 36], the non-perturbative

“resummation” and the appearance of the non-perturbative quasinormal modes played

a rather prominent role. In particular, the existence of these non-perturbative features

seems to be fully consistent with the requirement of a physically reasonable interpolation
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Figure 13. Radius of convergence of the hydrodynamic shear mode in the Einstein-Gauss-Bonnet

theory as a function of the higher-derivative coupling λGB (λGB < 0). The blue line is the pertur-

bative result (4.9). Black dots on top of the blue line denote the radius of convergence computed

non-perturbatively in λGB (see figure 11, top left panel). The red dots correspond to the critical

point involving the shear mode and the non-perturbative mode (see figure 12, top left panel). The

transition between the two regimes occurs at λGB ≈ −0.0198.
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Figure 14. Quasinormal spectrum in the sound channel of Gauss-Bonnet theory, computed non-

perturbatively in λGB, at λGB = −0.02. The trajectories are plotted for complex values of the

spatial momentum squared, q2 = |q2|eiϕ, where phase ϕ is varied from 0 to 2π. The positions of

quasinormal modes at ϕ = 0 are shown by dots. The positions of the critical points are shown by

red stars.
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Figure 15. Quasinormal spectrum in the sound channel of Gauss-Bonnet theory, computed non-

perturbatively in λGB, at λGB = −0.04. The trajectories are plotted for complex values of the

spatial momentum squared, q2 = |q2|eiϕ, where phase ϕ is varied from 0 to 2π. The positions of

the quasinormal modes at ϕ = 0 are shown by dots. The positions of the critical points are shown

by red stars.

between strongly coupled (holographic) regime and weakly coupled (e.g. kinetic) regime in

the same theory. This interpolation, even for simplest theories such as CFTs considered at

finite temperature, is not fully understood [16, 33, 36, 48–52]. Admittedly, relying — even

only qualitatively — on the non-perturbative treatment in models arising as truncations

of a perturbative expansion may seem to be unwarranted [34]. However, before dismissing

such an approach as ineffable nonsense, one may wish to consider examples where it is

known to be successful.
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Figure 16. Radius of convergence of the hydrodynamic sound mode in the Einstein-Gauss-Bonnet

theory as a function of the magnitude of the higher-derivative coupling λGB (λGB < 0). The blue

line is the linear approximation (4.18). Black dots are the non-perturbative result for the radius

of convergence arising as shown in figure 14, left panel. Red dots are the radius of convergence

arising as a result of the level-crossing between the sound mode and the non-perturbative mode

(see figure 15, top left panel). The transition between the two regimes occurs at λGB ≈ −0.0338.

In this section, we first outline the problem as we see it, and then discuss in detail

a simple example of an algebraic equation containing a small parameter, where similar

issues arise.

Consider the full set of solutions to an equation (algebraic or differential), which we

schematically write as

L[x, ǫ] = 0 . (5.1)

We denote this (possibly infinite) set of solutions by X = {x1(ǫ), x2(ǫ), . . .}. Here ǫ is a

small parameter such that L[x, ǫ] can be formally expanded in a series,

L[x, ǫ] = L(0)[x] + ǫL(1)[x] + ǫ2L(2)[x] + . . . = 0 . (5.2)

Truncating the series (5.1) at order ǫ0, ǫ1, ǫ2, . . . , and solving the corresponding equations,

we obtain sets of solutions X(0) = {x
(0)
1 , x

(0)
2 , . . .}, X(1) = {x

(1)
1 (ǫ), x

(1)
2 (ǫ), . . .}, X(2) =

{x
(2)
1 (ǫ), x

(2)
2 (ǫ), . . .} and so on. A natural question to ask is in what sense the solutions

X(0), X(1), X(2), . . . approximate the true solution X. Note that even the number of roots

in each “truncated” set X(n) depends on n. For example, the equation

L[x] = L(0)[x] = 1 − x = 0 (5.3)

has a single solution X(0) = {x
(0)
1 = 1}, whereas extending L[x] by adding a term ǫx2,

L[x, ǫ] = L(0)[x] + ǫL(1)[x] = 1 − x + ǫx2 = 0 , (5.4)

leads to two solutions, X(1) = {x
(1)
1 (ǫ), x

(1)
2 (ǫ)}, one of which is perturbative and another

one is non-perturbative in ǫ:

x
(1)
1 (ǫ) =

1

2ǫ

(

1 −
√

1 − 4ǫ
)

= 1 + ǫ + O(ǫ2) , (5.5)

x
(1)
2 (ǫ) =

1

2ǫ

(

1 +
√

1 − 4ǫ
)

=
1

ǫ
− 1 − ǫ + O(ǫ2) . (5.6)
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The solution x
(1)
1 (ǫ) can be constructed order by order in ǫ via standard perturbation

theory (i.e., assuming a perturbative ansatz for the solution), whereas the x
(1)
2 (ǫ) is “invis-

ible” in the standard perturbative approach yet it can be built consistently using singular

perturbation theory [32]. Now imagine that eq. (5.4) is a truncation of the equation

L(N)[x, ǫ] = x − 1 +
N
∑

n=1

ǫnxn+1 = 1 − x + ǫx2 + O(ǫ2) = 0 . (5.7)

At any finite N , among the N + 1 roots of the equation (5.7), one is perturbative in ǫ (it

is a regular perturbation of the solution x = 1 of the equation (5.3)) and the remaining

N roots are non-perturbative: they disappear to infinity in the limit ǫ → 0. These extra

N roots are located (approximately) along the circle |x| = 1/ǫ in the complex x-plane.

Finally, we note that eq. (5.7) can be regarded as a truncation at order ǫN of an exact

function

L(∞)[x, ǫ] = x − 1 +
ǫx2

1 − ǫx
= 0 . (5.8)

Note that eq. (5.8) has only one solution,

x =
1

1 + ǫ
, (5.9)

whose small ǫ expansion coincides (for |ǫ| < 1) with the perturbative solution of the equa-

tion (5.7) at the appropriate order. Thus, in this example, truncating the small ǫ expansion

of eq. (5.8) at order N produces one correct and N spurious roots located approximately

at the boundary of analyticity of the function L(∞)[x, ǫ], i.e. at |x| = 1/ǫ.

This simple example seems to reinforce the “conservative” approach to the quasinormal

spectrum in higher-derivative gravity suggesting that only perturbative solutions can be

trusted. Non-perturbative solutions exist (and can be constructed via singular perturbation

theory) at each given order of the expansion in a small parameter, but these solutions

appear to be artefacts of the expansion and disappear when the full function is considered.

However, such a verdict might be too quick, as the example in the next subsection shows.

5.1 An algebraic equation example

Consider the algebraic equation

L[x, ǫ] = ix − 1 − x sinh ǫx = 0 , (5.10)

where ǫ is a parameter. At ǫ = 0, eq. (5.10) has a single root, x = x0 = −i. For ǫ > 0,

however, there are infinitely many solutions, parametrised by ǫ (see figure 17, left panel,

where the roots of eq. (5.10) closest to the origin in the complex x-plane are shown for

ǫ = 0.5). Note that all these solutions but one are non-perturbative in ǫ, since they must

disappear from the set of solutions in the limit ǫ → 0 leaving the single root x = x0 at ǫ = 0.

The solutions to eq. (5.10) can be constructed as series in ǫ ≪ 1. One such solution is

the finite ǫ correction to the solution x0 = −i of the equation at ǫ = 0. Using the standard

perturbation theory, we find

x0(ǫ) = −i

[

1 − ǫ + 2ǫ2 − 29

6
ǫ3 + 13ǫ4 − 4481

120
ǫ5 +

5048

45
ǫ6 + O(ǫ7)

]

. (5.11)
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Figure 17. The roots of eq. (5.10) (at ǫ = 0.5) closest to the origin in the complex x-plane (left

panel). The large red dot corresponds to the perturbative root at x ≈ −0.735544i. (Note that the

perturbative series (5.11) fails to converge for this value of ǫ.) The other roots on the imaginary axis

are at x ≈ −8.4414i, x ≈ −10.3128i, x ≈ −21.3770i, x ≈ −22.5885i, x ≈ −34.0718i, x ≈ −35.0365i,

x ≈ −46.7093i, x ≈ −47.5349i. In the right panel, the same set of roots as in the left panel is

approximated by the first 100 roots of the polynomial (5.14). The blue dots accurately reproduce

the actual values from the left panel. The purpose of the zoomed-out plot is to show the spurious,

unphysical red dots which move to infinity as the order of approximation is increased.

The non-perturbative roots can be found analytically by using the methods of singular

perturbation theory [32]. Introducing a new variable x = x̄/ǫ and taking the limit of ǫ → 0

in eq. (5.10) while keeping x̄ fixed, we find the equation

i − sinh x̄ = 0 . (5.12)

The infinite set of solutions to this equation, x̄n = iπ(1 + 4n)/2, where n ∈ Z, then gives

all the non-perturbative roots of the original eq. (5.10) as

x±

n (ǫ) =
1

ǫ

[

iπ (1 + 4n)

2
± 2
√

π (1 + 4n)
ǫ1/2 +

4i

[π (1 + 4n)]2
ǫ ± O(ǫ3/2)

]

. (5.13)

The series in eqs. (5.11) and (5.13) converge5 for ǫ < |ǫc| ≈ 0.2625.

We now replace L[x, ǫ] by a finite polynomial (a truncated Taylor expansion of

eq. (5.10)),

L(2N+2)[x, ǫ] = ix − 1 − ǫx2
N
∑

n=0

ǫ2nx2n

(2n + 1)!
= 0 , (5.14)

and ask whether the 2N +2 roots of eq. (5.14) approximate the exact solutions of eq. (5.10)

as we increase N . Our previous discussion implies that at least one such approximation,

a regular perturbative correction to the zeroth-order root x0 = −i, should exist. Indeed,

solving the corresponding equations L(2)[x, ǫ] = 0, L(4)[x, ǫ] = 0, etc., perturbatively in ǫ,

we reproduce the series (5.11) term by term. All others roots are non-perturbative in ǫ,

disappearing to complex infinity in the limit ǫ → 0.

To mimic our approach to the quasinormal spectra in higher-derivative gravity, we

now solve eq. (5.14) numerically at each order of N , without assuming ǫ to be small. A

5The radius of convergence is determined by the closest to the origin critical point of the function (5.10).
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Figure 18. The two closest to the origin solutions x0 and x1 to eq. (5.10) in the complex x-plane

as functions of the complexified parameter ǫ = −|ǫ|eiϕ, where ϕ ∈ [0, 2π] for |ǫ| = 0.25 (left panel)

and |ǫ| = 0.27 (right panel). Coloured dots correspond to ϕ = 0. The critical point setting the

radius of convergence of the series (5.11) is located at x ≈ −2.1176i (it is shown by the red star).

generic result is illustrated in the right panel of figure 17, where ǫ = 0.5, and both the exact

solutions to eq. (5.10) and the roots of the polynomial (5.14) with N = 50 are shown. It

is clear that in a (large) region of the complex plane containing the origin, the solutions

of eq. (5.10) (both perturbative and non-perturbative) are well approximated by some of

the roots of the polynomial (5.14). There are also “spurious roots”, forming the top and

the bottom red “arcs” in figure 17, right panel: they do not approximate any solution.

The exact solutions of eq. (5.10) located outside of the domain bounded by the red arcs

are not approximated by any of the roots of the polynomial (5.14) and remain “invisible”.

The domain bounded by the red arcs of spurious roots increases with N increasing. Our

main conclusion is that it is possible in principle to approximate at least some of the exact

non-perturbative solutions by the non-perturbative roots of the perturbative truncation of

the exact equation. Of course, this example is not a justification of our “resummation” of

quasinormal spectra but we hope it shows that such an approach has the right to exist.

We now ask a different question. As noted in footnote 5, the radius of convergence of

the series (5.11) representing the perturbative solution x0 = x0(ǫ) of eq. (5.10) is set by

the closest to the origin (in the complex ǫ-plane) critical point of the complex curve (5.10)

determined by the conditions

L[x, ǫ] = 0 , ∂xL[x, ǫ] = 0 . (5.15)

The solution of eqs. (5.15) with the smallest |ǫ| is x ≈ −2.1176i, ǫ ≈ −0.2625. In the

complex x-plane, the critical point corresponds to the level-crossing between the per-

turbative mode x0 and the nearest non-perturbative solution of eq. (5.10), as shown in

figure 18. Now suppose that we only have access to the successive polynomial approx-

imations (5.14) to the full equation (5.10). Can we detect the existence of the correct
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Figure 19. The critical points ǫc(N) computed perturbatively using the polynomial approxima-

tions (5.14) of order 2N + 2 (blue line) converges to the “exact” critical point ǫc ≈ −0.2625 (flat

red line) of the full equation (5.10) (left panel). The dependence of real and imaginary parts of the

root x on ǫ (right panel). The level-crossing occurs at ǫc ≈ −0.2625. The same transition in the

complex x-plane is shown in figure 18.

critical point and hence the non-perturbative solution by using only these polynomial ap-

proximations and the regular perturbation theory? The answer is affirmative: solving

perturbatively eqs. (5.15) with L[x, ǫ] replaced by the polynomial approximation (5.14) of

order 2N +2, we find that the (smallest in magnitude) critical value ǫc(N) converges to the

“exact” result ǫc ≈ −0.2625 with N increasing (see figure 19, left panel). Since the critical

point corresponds to the level-crossing (see figure 19, right panel), i.e., a collision between

perturbative and non-perturbative roots in the complex x-plane (see figure 18), the above

observation suggests that the perturbative calculation “knows” about this collision, even

though the non-perturbative root responsible for it is inaccessible in perturbation theory

and remains “invisible”. This raises a question of whether the non-perturbative quasinor-

mal modes arising in higher-derivative gravity can be indirectly detected by a perturbative

analysis of the relevant critical points. We investigate this question in the next section.

5.2 A signature of non-perturbative modes from the perturbative analysis of

the Einstein-Gauss-Bonnet critical points

The quasinormal spectrum in the shear channel of Einstein-Gauss-Bonnet gravity contains

modes located on the imaginary axis which are non-perturbative in the Gauss-Bonnet

coupling λGB (see figure 11 and refs. [16, 26]). As discussed in section 4, for some range

of parameters, the top (closest to the origin) non-perturbative mode collides with the

hydrodynamic shear mode at real q2
c and purely imaginary wc, as illustrated in figure 12.

This collision is followed by another collision between the emergent pair of propagating

modes with the pair of gapped modes from the standard “Christmas tree” sequence. For a

fixed value of λGB, the second collision again occurs at real q2
c . We illustrate this in figure 20,

where the shear channel Einstein-Gauss-Bonnet spectrum is shown at λGB ≈ −0.04956 for

several values of real q2: as q2 is increased from q2 = 0.81 to q2 = 1.17, the hydrodynamic

mode and the non-perturbative mode on the imaginary axis approach each other, colliding

at q2
c ≈ 1.18544 and forming a pair of propagating modes, which move off the axis and at

q2
c ≈ 1.87785 collide again, now with the pair of the “Christmas tree” gapped modes. The
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two (sets of) critical points resulting from these collisions are given by

λGB ≈ −0.04956 : (5.16)

q
2
c ≈ 1.18544 , wc ≈ −1.63793i , (5.17)

q
2
c ≈ 1.87785 , wc ≈ ±1.67253 − 1.41811i . (5.18)

We emphasise that the existence of the critical points (5.17) and (5.18) is the direct con-

sequence of the existence of the non-perturbative mode on the imaginary axis, absent at

λGB = 0. Indeed, for λGB = 0 (which corresponds to the N = 4 SYM theory at infinite ‘t

Hooft coupling), the hydrodynamic shear mode travels unobstructedly along the imaginary

w axis towards negative infinity as the real q2 is increased: no critical point exists in the

theory for purely imaginary wc at purely real and positive q2
c . In contrast, at finite λGB, the

shear mode collides with the non-perturbative mode on the imaginary axis at real and pos-

itive q2
c given by eq. (5.17), and then the resulting two propagating modes give rise to the

pair of critical points at another real value of q2
c (eq. (5.18)). The pair of the propagating

modes leading to the pair of critical points in eq. (5.18) does not exist in the perturbative

spectrum: it is created by the collision of the shear mode and the non-perturbative mode

on the imaginary axis.

Can the existence of non-perturbative critical points such as the ones in eq. (5.18) be

inferred from the perturbative data (i.e., from eqs. (2.3), solved perturbatively in λGB), in

analogy with what has been observed in section 5.1? The goal is to find a perturbative

approximation to the pair of critical points (5.18) with real q2.

Perturbatively, to leading order in λGB, the closest to the origin critical point is given

by eq. (4.7), reproduced here for convenience:

q
2
c ≈ 1.89065 ± 1.17115i + λGB(−2.01742 ± 22.5317i) + O(λ2

GB
) , (5.19)

wc ≈ ±1.44364 − 1.06923i + λGB(∓1.69340 + 8.39996i) + O(λ2
GB

) . (5.20)

Eq. (5.19) implies that the critical value of q2 is purely real for λGB ≈ −0.0519780, and is

given by

λGB ≈ −0.0519780 : (5.21)

q
2
c ≈ 1.9955 + O(λ2

GB
) , wc ≈ ±1.53166 − 1.50584i + O(λ2

GB
) . (5.22)

We conjecture that the critical point (5.22) at λGB ≈ −0.0519780 is the perturbative

approximation to the “exact” critical point (5.18) at λGB ≈ −0.04956. To see that this is

indeed the case, we extend the perturbative expansion in eqs. (5.19), (5.20) to order O(λN
GB

).

At each N , we then numerically compute the value of λGB (denoted by λGB(N)) from the

algebraic condition that sets Im q2
c(λGB) = 0 (among multiple roots λGB(N), we choose the

solution which is real and closest to the non-perturbative value λGB ≈ −0.04956). Then,

we use thus obtained λGB(N) to evaluate wc(N) and q2
c(N) from the perturbative series

in λGB. The numerical sequences wc(N), q2
c(N) do not converge and have to be Padé-

resummed. The Padé-resummed values then converge to the corresponding values for the

non-perturbative critical point (5.18) with N increasing (see figure 21).
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Figure 20. The non-perturbative quasinormal spectrum in the shear channel of the Einstein-Gauss-

Bonnet theory at λGB ≈ −0.04956, plotted for several (increasing) values of q2 ∈ R. At q2 = 0.81,

the shear mode and the non-perturbative mode are present on the imaginary axis; with q2 increasing,

the two modes approach each other on the imaginary axis, collide at the critical point (5.17), move off

the axis as the pair of propagating modes (shown in plots with q2 = 1.19; 1.32; 1.70; 1.85; 1.87) and

then collide with the pair of the “Christmas tree” gapped modes at the second critical point (5.18).
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Figure 21. Parameters of the critical point λGB(N), |wc(N)|, q2
c(N) obtained from the perturbative

analysis of eqs. (2.3) supplemented by a Padé resummation (blue dots). The orders of the Padé

approximant [a/b] were chosen as follows: [N/N ] for 1 ≤ N < 5; [N − 3/2] for 5 ≤ N < 15; [N −
11/10] for 15 ≤ N ≤ 50. The red lines are the non-perturbative results given by eqs. (5.16), (5.17)

and (5.18).

Hence, a perturbative analysis of eqs. (2.3) (admittedly, aided by a Padé resummation)

seems to be capable of reproducing at least one of the non-perturbative critical points of

the full quasinormal spectrum. Since such a point can only occur due to the presence

of a non-perturbative mode in the spectrum, we conclude that the calculation indirectly

confirms the existence of the non-perturbative mode itself.
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Another example of an inherently non-perturbative critical point that can be repro-

duced this way is the critical point located at

λGB ≈ −0.02327 :

q
2
c ≈ 2.8462 , wc ≈ ±2.6329 − 2.4987i . (5.23)

The appropriate perturbative critical point is given by eq. (4.14). Requiring Im q2
c(λGB) =

0, to first order in λGB we have

λGB ≈ −0.024486 :

q
2
c = 2.95995 + O(λ2

GB
) , wc = ±2.46865 − 2.59802i + O(λ2

GB
) . (5.24)

Continuing the expansion (5.24) to higher orders of λGB as described above, we find that

the sequence of order-N critical points λGB(N), wc(N), q2
c(N) converges to the non-

perturbative result (5.23) with N increasing.

5.3 A signature of non-perturbative modes from the perturbative analysis of

critical points in the N = 4 SYM theory

We now turn to the perturbative analysis of critical points in the N = 4 SYM theory. Can

we detect the existence of non-perturbative modes in the quasinormal spectrum by using

the approach of the previous section? The recipe is to look for a pair of critical points

with real value of q2. Considering the lowest perturbative critical point (3.17) and finding

γ from the condition Im q2
c(γ) = 0, we find to leading order in γ:

γ ≈ −0.0006290 :

q
2
c ≈ −0.67674 , wc ≈ ±0.86542 − 1.92493i . (5.25)

Such a pair of critical points at a single real q2
c does not exist in an infinitely strongly

coupled theory (at γ = 0). At finite γ, it can arise as a result of the collision on the

imaginary axis between the shear mode and the non-perturbative mode, followed by the

second collision between the pair of the resulting propagating modes and the two gapped

“Christmas tree” modes, similarly to what happens in the Einstein-Gauss-Bonnet case as

described in section 5.2. We conjecture that eqs. (5.25) are approximations to the non-

perturbative critical point appearing in the right panel of figure 8. Of course, unlike in the

Einstein-Gauss-Bonnet theory, here we have no access to γ2 and higher terms in the action

and thus cannot verify this conjecture. Nevertheless, we can interpret the existence of the

point (5.25) as an indirect evidence for the existence of the non-perturbative modes in the

full quasinormal spectrum of the gravitational background dual to the N = 4 SYM theory.

6 Discussion

In this paper, we have determined the dependence on the coupling of the radii of conver-

gence of the shear and sound hydrodynamic dispersion relations in the strongly coupled

N = 4 SYM theory. This dependence is shown in figure 1. Limiting ourselves to the results
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obtained using the standard perturbation theory only, the coupling constant dependence

of the radii in the shear and sound channels is given by eqs. (1.7), (1.8) (the blue lines

in figure 1), respectively. These perturbative results suggest that the radii of convergence

increase with the ‘t Hooft coupling decreasing from its infinite value.

However, we argued that the presence of non-perturbative modes in the quasinormal

spectrum of the dual black brane background at large but finite coupling will modify the

perturbative result by making the radii’s dependence on the coupling piecewise continuous,

as shown in figure 1. This type of dependence is familiar from the finite density examples

of holographic theories at infinite coupling [7, 24] and from the Sachdev-Ye-Kitaev (SYK)

chain at finite coupling [9]. The origin of this similarity is not entirely clear to us.6 In

the SYK case, it is the coupling dependence that gives rise to the piecewise behaviour, in

parallel to what we observe in this paper. The strong-weak dependence in that case is,

however, reversed. In the charged case, the chemical potential normalised by temperature

plays the role of the coupling in the present paper being responsible both for the extra

modes on the imaginary axis and the piecewise continuous dependence of the radius of

convergence. One plausible guess is the emergence of approximate symmetries in all these

cases in line with what was discussed in ref. [35].

Curiously, in the regime where the non-perturbative mode becomes relevant, the radius

of convergence of the shear mode dispersion relation coincides with the endpoint q2
c(λ) of

the hydrodynamic regime introduced earlier in ref. [16]. We then repeated our analysis for

the case of the Einstein-Gauss-Bonnet theory using it as a theoretical laboratory to test

our methods. Again, due to the presence of non-perturbative quasinormal modes in the

spectrum, we found the piecewise dependence of the radii of convergence on the coupling

(see figures 13 and figure 16 for the shear and sound channel results, respectively). The role

of the non-perturbative modes in a quasinormal spectrum thus appears to be significant.

Their properties are similar to the properties of non-perturbative roots of algebraic equa-

tions with a small parameter, where singular perturbation theory is often useful. We have

discussed in detail a simple example of an algebraic equation whose perturbative and non-

perturbative roots can be consistently found using singular perturbation theory. Although

at present we cannot offer a generalisation of such a discussion to differential operators,

we believe a qualitatively similar picture should hold there, too, and therefore the non-

perturbative quasinormal modes can represent the qualitatively correct feature of the full

theory. Finally, we show that the presence of the non-perturbative modes in the spectrum

can be indirectly inferred by the analysis of critical points using the perturbative data only.

From the work in refs. [4, 5] it is clear that thermal two-point functions of the energy-

momentum tensor in the N = 4 SYM theory at infinite ‘t Hooft coupling contain multiple

branch point singularities in the complex plane of q2. At large but finite coupling, the

location of these singularities acquires a dependence on the coupling. Our analysis in the

present paper suggests that the property of being a singularity closest to the origin (and

thus setting the radius of convergence) may change discretely as a function of the coupling,

leading to the piecewise nature of the dependence of the radii of convergence on coupling,

6We would like to thank the anonymous referee for raising this issue.
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and that such a change is induced by the presence of non-perturbative quasinormal modes in

the spectrum of a dual gravitational theory. It would be interesting to investigate whether

a similar phenomenon is observed at small but finite coupling. Of special interest are the

studies of the hydrodynamic series convergence in strongly coupled theories with non-zero

chemical potential [6, 7], [53], where the coupling dependence has not yet been explored.
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A Critical points and the radius of convergence in holography

Here, we briefly review the main points of the method introduced in refs. [4, 5] to determine

the radii of convergence of hydrodynamic dispersion relations in holography. In the limit

where the dual gravity description of a QFT is valid (e.g. in the Nc → ∞ limit of the N = 4

SU(Nc) SYM theory), information about the hydrodynamic and other dispersion relations

is contained in the quasinormal spectrum of the bulk equations of motion. In terms of a

gauge-invariant variable Z, a typical bulk equation of motion is a second-order ODE

∂2
uZ + A(u,w, q2)∂uZ + B(u,w, q2)Z = 0 , (A.1)

where u is the bulk radial coordinate with u = 0 corresponding to the boundary of the

dual gravity background. The dependence of the coefficients of the equation on q2 reflects

the rotation invariance of the theory, whereas the dependence on w is a consequence of the

choice of the boundary condition at the horizon. The quasinormal spectrum wi = wi(q
2)

is determined by the equation

P (q2,w) ≡ Z(u = 0, q2,w) = 0 , (A.2)

which also defines the spectral curve. The critical point condition (2.3) means that p ≥ 2

branches wi = wi(q
2) collide at (wc, q

2
c) ∈ C

2. The branches are locally represented by

Puiseux series whose analytic structure is determined by the coefficients of the spectral

curve via, e.g., the Newton polygon method. The situations when wi ∼ (q2 − q2
c)−ν ,

where ν is a fractional power, e.g. ν = −1/2, are common. The closest to the origin

(in the complex q2-plane) critical point with such a branch point singularity limits the

convergence of the series wi = wi(q
2) centered at q2 = 0 and thus sets its radius of

convergence, R = |q2
c |. This is the phenomenon of quasinormal level-crossing, analogous

to the quantum-mechanical level-crossing [4, 5]. When ν is a negative integer or zero, the

branches are locally analytic, and we have “level-touching” rather than “level-crossing” [5].

In practice, the bulk ODEs are sufficiently complicated and have to be solved numer-

ically. With such a solution in hand, one first solves eqs. (2.3) to find the critical points
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Figure 22. Level-touching: the two branches y
(1,2)
1 (x2) of the spectral curve P1 at complex x2 =

|x2|eiϕ, with ϕ varying from 0 to 2π, at fixed |x2
1| < |x2

c | (left panel) and |x2
2| > |x2

c | (right panel).

in the complex q2-plane, and then determines the degree of the singularity at the critical

points by considering the quasinormal mode behaviour in the complex w-plane under the

monodromy q2 = |q2|eiϕ, where ϕ ∈ [0, 2π]. We illustrate the difference between “level-

crossing” and “level-touching” by the following simple example.

Consider the complex curves

P1(x2, y) = a2 − b2 + 2bcx2 − c2x4 − 2ay + y2 = 0 , (A.3)

P2(x2, y) = a2 − b + cx2 − 2ay + y2 = 0 , (A.4)

where x2 ∈ C, y ∈ C, and the coefficients a, b, c are some fixed complex numbers. Applying

the criterium (2.3) to P1 and P2, we find that both curves have the p = 2 type crtitical

point at (x2
c , yc) = (b/c, a). The two branches of the curve P1 are given by

y
(1)
1 (x2) = a + b − cx2 = yc − c(x2 − x2

c) , (A.5)

y
(2)
1 (x2) = a − (b − cx2) = yc + c(x2 − x2

c) , (A.6)

whereas the two branches of P2 are

y
(1)
2 (x2) = a −

√

b − cx2 = yc − i
√

c(x2 − x2
c)1/2 , (A.7)

y
(2)
2 (x2) = a +

√

b − cx2 = yc + i
√

c(x2 − x2
c)1/2 . (A.8)

For the curve P1, the two branches at the critical point are analytic functions of x2. For the

curve P2, the critical point is a branch point singularity. Numerically, one can distinguish

between the regular and the singular behaviour by finding local solutions yi = yi(x
2) to

eqs. (A.3), (A.4) at complex x2 = |x2|eiϕ, with fixed |x2| and ϕ ∈ [0, 2π]. The “trajectories”

traced by the branches as the phase ϕ varies from 0 to 2π are shown in figure 22 for the

curve P1 and in figure 23 for the curve P2 at fixed |x2
1| < |x2

c | < |x2
2|. The regular branches of

P1 approach and touch each other at x2 = x2
c , with individual trajectories remaining closed

under monodromy at |x2| > |x2
c |, as shown in figure 22. This is “level-touching”, observed

e.g. in the case of the BTZ quasinormal spectrum [5]. In case of a branch point singularity

at the critical point, the two branches merge into a single trajectory for |x2| > |x2
c |, as they

are mapped into each other under the monodromy (figure 23). This is the level-crossing

phenomenon [4, 5].
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Figure 23. Level-crossing: the two branches y
(1,2)
2 (x2) of the spectral curve P2 at complex x2 =

|x2|eiϕ, with ϕ varying from 0 to 2π, at fixed |x2
1| < |x2

c | (left panel) and |x2
2| > |x2

c | (right panel).

B How to reconstruct the Puiseux exponent from the power series

Given the hydrodynamic expansion (e.g. (2.1) or (2.2)) of the dispersion relation w = w(q2)

around q2 = 0, one can determine, at least in principle, the exponent of the Puiseux

expansion w ∼ (q2 − q2
c)−ν at the nearest to the origin critical point q2

c , given by eq. (2.3).

This can be done by using the Darboux theorem (see e.g. [54], Theorem 11.10b) which

states that if a function p(t) has a singularity at t = t0 of the form

p(t) ∼ r(t)

(

1 − t

t0

)−ν

, t → t0 , (B.1)

where r(t) is an analytic function and ν is not a negative integer or zero, then the coeffi-

cients an of the Taylor expansion of p(t) at the origin, p(t) =
∞
∑

n=0
antn, have the following

asymptotic form as n → ∞

an ∼ Γ(n + ν)

Γ(ν)tn
0 n!

[

r(t0) − (ν − 1)t0r′(t0)

(n + ν − 1)
+

(ν − 1)(ν − 2)t2
0r′′(t0)

2!(n + ν − 1)(n + ν − 2)
+ · · ·

]

. (B.2)

Keeping only the leading term in eq. (B.2), we find

ν = lim
n→∞

(

t0(n + 1)
an+1

an
− n

)

. (B.3)

Then, using the subdominant terms in eq. (B.2), one can in principle reconstruct the

function r(t) by recovering its derivatives. In practice, a finite (and often relatively small)

number of the coefficients an (e.g. computed numerically) is sufficient to determine ν with

a good precision. Thus, if t0 is the critical point closest to the origin, one can determine

(or, strictly speaking, conjecture) whether this point is a singularity of p(t) (i.e., whether

ν is a fractional or positive integer number) and therefore sets the radius of convergence

and reconstruct the Puiseux expansion around t0 by analysing the coefficients an.

A complication arises when there are two or more critical points located at the same

distance from the origin. This is the case for the hydrodynamic dispersion relations in the

N = 4 SYM theory at infinite ‘t Hooft coupling, where for the shear and sound modes we

have a pair of complex conjugate critical points in the complex q2-plane [4]. Such cases
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were studied for example in ref. [55]. Instead, we find it more convenient to reduce the case

with two critical points to the previous one with the help of a conformal transformation.

Indeed, let t = t1 and t = t2, where |t1| = |t2|, be the critical points located at the same

distance from the origin t = 0. By performing a Möbius transformation

t → z =
at + b

ct + d
(B.4)

and requiring that under the map, 0 → 0, t1 → 1 and t2 → z2, where |z2| > 1, we reduce

the situation to the one of the Darboux theorem: e.g., the exponent ν1 of the branch point

t = t1 is determined by applying the Darboux procedure to the point z = 1. The inverse

transformation is

t =
dz − b

a − cz
. (B.5)

We must also require that the singularity at z ≡ zs = a/c stays outside of the unit

circle in the complex z-plane, so that any analytic part of p(t) remains analytic after the

transformation. This implies the requirement |a/c| > 1. Moreover, removing zs sufficiently

far from the unit circle is advisable from the following technical point of view: analytic

functions such as et acquire an essential singularity ∼ exp[1/(z − zs)] at z = zs, and this

would complicate numerics if zs were too close to the unit circle. Explicitly, we have

t → z =
tz2(t1 − t2)

t(t1z2 − t2) + t1t2(1 − z2)
, (B.6)

whereas the inverse transformation is given by

t =
zt1t2(z2 − 1)

(t1z2 − t2)z + (t2 − t1)z2
. (B.7)

The singularity zs is at

zs =
(t1 − t2)z2

t1z2 − t2
=

(α − 1)z2

αz2 − 1
,

where α ≡ t1/t2, with |α| = 1. We need to choose |z2| > 1. Let z2 = x + iy. Then,

|zs|2 =
|α − 1|2(x2 + y2)

x2 + y2 + 1 − 2 x Re α + 2 y Im α
. (B.8)

The zero of the denominator of (B.8) is at x = Re α, y = −Im α, with |z2|2 = x2 + y2 = 1,

since |α| = 1. By choosing x = Re α + ǫ and y = −Im α − ǫ, where ǫ > 0, we can satisfy

the requirements |z2| > 1 and |zs| ≫ 1. Indeed,

|zs|2 =
|α − 1|2

2ǫ2

(

1 + 2 ǫ Re α + 2 ǫ Im α + 2ǫ2
)

, (B.9)

and so |zs| ∼ |α − 1|/
√

2ǫ for small ǫ (in numerical calculations, ǫ should not be too small,

otherwise we need a large number of the coefficients an to achieve a satisfactory convergence

in eq. (B.3)).

Applying this procedure to the hydrodynamic series of the N = 4 SYM theory using

the data of ref. [4], we find ν = −1/2 to a good precision, confirming that the dispersion

relations have branch point singularities of the square root type at the closest to the origin

critical points. This is fully consistent with the characteristic quasinormal mode behaviour

described in appendix A.
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C Coefficients A(i) and B(i) of eq. (3.10) in the N = 4 SYM theory

The coefficients can be written in the form

A(i)(u,w, q, γ) = A(0)
(i) (u,w, q) + γA(1)

(i) (u,w, q) , (C.1)

B(i)(u,w, q, γ) = B(0)
(i) (u,w, q) + γB(1)

(i) (u,w, q) , (C.2)

where i = 1, 2, 3 for the scalar, shear and sound channels, respectively. We have for the

scalar channel:

A(0)
(1)(u,w,q) = − 1+u2

u(1−u2)
, (C.3)

B(0)
(1)(u,w,q) =

w2−q2
(

1−u2
)

u(1−u2)2 , (C.4)

A(1)
(1)(u,w,q) = 6u

(

160q2u3+129u4+94u2−25
)

, (C.5)

B(1)
(1)(u,w,q) =

192q4u5−q2
(

851u6−789u4+75u2+30
)

+6
(−89u4+30u2+5

)

w2

u(1−u2)
. (C.6)

For the shear channel:

A(0)
(2)(u,w, q) = −

(

1 + u2
)

w2 − q2
(

1 − u2
)2

u (1 − u2) (w2 − q2 (1 − u2))
, (C.7)

B(0)
(2)(u,w, q) =

w2 − q2
(

1 − u2
)

u (1 − u2)2 , (C.8)

A(1)
(2)(u,w, q) =

2u

(w2 − q2 (1 − u2))2

[

640q6u3
(

u2 − 1
)2

− 4q4u2
(

135u6 − 450u4 − 248u3
w

2 + 495u2 + 200uw2 − 180
)

+ q
2
w

2
(

−462u6 + 1374u4 + 160u3
w

2 − 1002u2 + 75
)

+ 3
(

129u4 + 94u2 − 25
)

w
4
]

, (C.9)

B(1)
(2)(u,w, q) = − 3

u (1 − u2) (w2 − q2 (1 − u2))

[

− 64q6u5
(

u2 − 1
)

+ q
4
(

425u8 − 880u6 − 64u5
w

2 + 480u4 − 15u2 − 10
)

+ q
2
(

699u6 − 693u4 + 75u2 + 20
)

w
2 + 2

(

89u4 − 30u2 − 5
)

w
4
]

. (C.10)
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For the sound channel:

A(0)
(3)(u,w, q) = −3

(

1 + u2
)

w2 − q2
(

3 − 2u2 + 3u4
)

u (1 − u2) (3w2 − q2 (3 − u2))
, (C.11)

B(0)
(3)(u,w, q) =

3w4 − 2
(

3 − 2u2
)

w2q2 − q2
(

1 − u2
) (

4u3 + q2
(

u2 − 3
))

u (1 − u2)2 (3w2 − q2 (3 − u2))
, (C.12)

A(1)
(3)(u,w, q) =

2u

(3w2 − q2 (3 − u2))3

[

32q8u3
(

35u6 − 291u4 + 753u2 − 585
)

− 3q6
(

3741u10 − 27911u8 − 2720u7
w

2 + 60804u6 + 12992u5
w

2 − 50112u4

−12960u3
w

2 + 16887u2 − 225
)

+ 3q4
w

2
(

−19401u8 + 59832u6 + 4960u5
w

2

−53892u4 − 7200u3
w

2 + 26094u2 − 1125
)

+ 9q2
w

4
(

−1263u6 + 99u4

+160u3
w

2 − 3915u2 + 525
)

+ 81
(

129u4 + 94u2 − 25
)

w
6
]

, (C.13)

B(1)
(3)(u,w, q) =

1

u (1 − u2) (3w2 − q2 (3 − u2))3

[

192q10u5
(

u2 − 3
)3

− q
8
(

u2 − 3
) (

5811u10 − 41287u8 − 1728u7
w

2 + 74004u6 + 5184u5
w

2

−35169u4 + 495u2 + 270
)

− 3q6
(

11184u13 − 90072u11 + 17099u10
w

2

+223952u9 − 106323u8
w

2 − 16u7
(

108w4 + 12971
)

+ 185876u6
w

2

+1728u5
(

3w4 + 34
)

− 91107u4
w

2 + 1800u3 + 2835u2
w

2 + 1080w2
)

+ 3q4
w

2
(

−68316u11 + 279504u9 − 40333u8
w

2 − 319056u7 + 121158u6
w

2

+36u5
(

48w4 + 2713
)

− 81018u4
w

2 + 3600u3 + 6075u2
w

2 + 1620w2
)

− 9q2
w

4
(

21708u9 − 37140u7 + 7003u6
w

2 + 12972u5 − 10017u4
w

2

+600u3 + 1755u2
w

2 + 360w2
)

− 162
(

89u4 − 30u2 − 5
)

w
8
]

. (C.14)

See ref. [16] for details.

D Coefficients A(i) and B(i) of eq. (4.6) in the Einstein-Gauss-Bonnet

theory

In the scalar, shear and sound channels (i = 1, 2, 3) we have, correspondingly,

A(1) = − 1

u
−u

[

1

(γ2
GB

−1)(1−u2)2+1−u2
+

1

(1−u2)
√

γ2
GB

−(γ2
GB

−1)u2

]

, (D.1)

B(1) =
(γGB −1)(γGB +1)2

(

3
(

γ2
GB

−1
)

u2−γ2
GB

)(−γ2
GB

+
(

γ2
GB

−1
)

u2+U
)

4u(γ2
GB

−(γ2
GB

−1)u2)3/2 (−γ2
GB

+(γ2
GB

−1)u2+2U −1)
q

2

+

(

γ2
GB

−1
)2 (−γ2

GB
+
(

γ2
GB

−1
)

u2+U
)

4u(U −1)
√

γ2
GB

−(γ2
GB

−1)u2 (−γ2
GB

+(γ2
GB

−1)u2+2U −1)
w

2 , (D.2)
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A(2) = −
2γ4

GB
(γGB +1)

[

1
2

(

1−γ2
GB

)(

u2−1
)

(U −2)+U −1
]

u(U −1)U3 [γ2
GB

(γGB +1)(U −1)q2−(γ2
GB

−1)U2w2]
q

2

−
(

1−γ2
GB

)

(

γ4
GB

+
(

1−γ2
GB

)2
u4−2

(

1−γ2
GB

)

u2
(

U −γ2
GB

)−γ2
GB

U
)

u(U −1)U [γ2
GB

(γGB +1)(U −1)q2−(γ2
GB

−1)U2w2]
w

2 , (D.3)

B(2) =
γ2

GB
(γGB +1)(U +1)

4u(u2−1)U2
q

2+

(

U2+2U +1
)

4u(u2−1)2 w
2 , (D.4)

A(3) =
3

2u
+

3(γGB −1)
[(

γ2
GB

−1
)

u2−γ2
GB

][(

γ2
GB

−1
)

u2(5U −7)−5γ2
GB

(U −1)
]

2u(U −1)U2D1
w

2

+

(

γ2
GB

−1
)2

u4
(−3γ2

GB
+5U −7

)

+γ2
GB

(

γ2
GB

−1
)

u2
(

18γ2
GB

−13U +10
)

2u(U −1)U2D1
q

2

− 15γ4
GB

(

γ2
GB

−2U +1
)

2u(U −1)U2D1
q

2 , (D.5)

B(3) =

(

γ2
GB

−1
)2

D0

{

12(γGB −1)2γ2
GB

(γGB +1)q2u5−4(γGB −1)γ2
GB

q
2u3

(

3γ2
GB

−7U +4
)

+
(

γ2
GB

−1
)3

q
2u6

(

3(γGB −1)w2+q
2
)

−u2γ2
GB

(

γ2
GB

−1
)[

q
4
(

γ2
GB

+2U
)

+(γGB −1)q2
w

2
(

9γ2
GB

−4U
)

−6(γGB −1)2Uw
4
]

+
(

γ2
GB

−1
)2

u4
[

q
4
(

3γ2
GB

(U −2)+U
)

+2(γGB −1)q2Uw
2−3(γGB −1)2Uw

4
]

−3γ4
GB

[

q
4
(

γ2
GB

(U −2)+U
)

+2(γGB −1)q2
w

2
(

U −γ2
GB

)

+(γGB −1)2Uw
4
]

}

, (D.6)

where we have defined

D1 ≡
(

γ2
GB

− 1
)

u2
(

3(γGB − 1)w2 + q
2
)

+ 3γ2
GB

(

q
2(U − 1) − (γGB − 1)w2

)

, (D.7)

D0 ≡ 4(γGB − 1)u(U − 1)2U3D1 . (D.8)

In the above expressions, we also used U2 = u2 + γ2
GB

− u2γ2
GB

, as well as the dimensionless

frequency and momentum w = ω/2πT , q = q/2πT , where T is the Hawking temperature

of the black brane background. See ref. [26] for details.
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