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AIJSTRACT

The trar.sport of matter is ●xamined in the context of relativ-

istic quantum transport theory for the case of neutral scalar

fields. The goal is to formulate a theory valid off ❑ass shell and

out of equilibrium. We construct a conserved ❑oment tensor which

coincides with the ●nsemble average of the Noether tensor, or the

improved energy-momentum tensor within an additive constant of the

“improvement” term. Conditions for closure of the conservation

equation are given for the $4 coupling.

Relativistic Quantum Transport Theory reformulates field theo-

ry in a kinetic form convenient for the exhibition of transport

behavior and collective modes as well as classical behavior. i’z It

also provides a natural bridge between field theory and hydrodynam-

ics. Tntuitive but mathematically complex, this approach to t.hc

relativistic many-body problem can, we believe, b~ used to place in

cont?xt various models, limits, ●tc. , which presently are used to

obtain quantitative predictions, For a general drnsity matrix p

the aiug]e particle distribution function for a scalar field @ is

defined by

J d4reip”r Trp$(R-F(p,R) = ~r)$(li+~r) (1)

where p is not necessarily on lhc ma~s nhrl] (and is nol an opern-.,.,-.

tor) ●nd R is ~he ●ffrct.ive space-time coordinate. TIIFrqun(ion of

motion for F i~ 0! kinetic form, leading to a hierarchy of couplet

equntions 1“or dl~trihution fUtlct~ollsdt?~~-r;binK mnre ●nd morr

“p*rLirlrs.” AH in nonrelaLivislic many-body theory, al)proximuLr



methods can be used to identify (almost) normal modes (quasiparti-

cles) in terms of which the dynamics of the system (sometimes) can

be described. When p de~cribes scattering (p = [~in><~in[ with

normalized states), the knowledge of F(p,R) gives a complete know-

ledge of the sil.gle particle inclusive cross section. Hence, the

solution to a kinetic problem’ for F(p,R) (which is an inclusive

construct) allows the prediction of the inclusive cross section.

For simplicity we shall describe the dynamics of neutral

scalar fields. However, the density ❑atrix is typically nonequili-

brium and lacks translation invariance. We are especially inter-

●steal in the possibility of hydrodynamic behavicr in the absence of

LTE (local thermodynamic ●quilibrium) and for off-shell quanta.

(If LTE ●xists in some region of space time, this can be ascer-

tained by kinetiic theory, although this problem is not addressed

here. )

Throughout, our aim is to assess and correct the limiting

assumptions in the usual hydrodynamic and kinetic theories.

Hydrodynamics uses local thermodynamic equilibrium, thermody-

namics, equation of state (EOS), classical ●quations of motion and

often omits viscosity, heat conduction and dynamical fluctuations.

Conventional kinetic theory3 uses mass shell particles, omits

interaction energy in Lhe energy-momentum tensor, and formulates

dynamics in terms of (positive) single particle distribution, and

often uses number currents (not always conserved) instead of energy

momentum fluxes.

An nt?eaaed recently,2 nonrrlativistic quantum theory can he

recast in fluid rnechanicfiform rcgardl~ss of equilibrium assump-

tiOi:S . For a one-particle problem the first three moments of thr

Wigner function f[p,R,L) suffice. ~d3pf is the parLicle d?nsity,.—

Jd3ppt’ is the currenL and sd3ppip .f gives the prcn~ure tensor. In
J

the N-parLiclc pr~blem, Lhc problem is Rimilar excepL that thr

2-particle distribution occurs in thr presEurc tensor. Of course

the Ilnrd work ]ies in Ca]cll]MLillg Lht?Ne d~MtrihUliOIl functioll~

~sperially for Lhe N-body problem.



In order to illuminate these ideas for a relativistic field

theory, we consider a neutral scalar field ~ with polynomial inter-

action L
1“

the sum proceeding over integral d > 2. We shall use

j = Zgdl$‘-1 (Klein-Gordon current). The conserved

●nergy momentum tensor for (1) is T =TK+TV
pv pv pv

(2)

the notation

(Noether’ti)

(3)

Tv
pu

= -gpvL1

The breakup into kinetic (K) and po:.ential (V) pieces is partly

notational owing to the equations of motion. The Noether construc-

tion does not give a unique conserved tensor. Various improvements

or corrections are needed (synmmtrization terms, anomalies) and the

present case (spin zero) is no exception.. As defi~led by (3) T p is
P

highly singular. This can be cured 4’s by adding a conserved gradi-

mt term AT
pv

(5)

The improved tensor e obr~s the canonical trace theorem
l.lv

Opp= ~ (4-d)Ld
d

where Ld now includes the

zero when scale br?aking

(However corrrct.ions due

anom~li~s must be made in

The genrraLors of Lhc cl.mf’ormalgroup have a Eimple form in

termfi of El llere wr mssumr ihut in flal npacc it is El
pv .

Whosr
pv

. —. ---- _ —,

(6)

m~ss term. Canonically, Opp differs from

(d z 4) sr~lars appear In the Lagrangi~n.

LO anomalous dimension aad pcrturba~ive

grneral. These are ignored here.)



components give directly such physical quantities as pressure,

●nergy density, ●tc.

Next consider momentqp moments of the distribution function

(l).

~dp F(P,R) = <$2(R)> (7)

(8)

(9)

Here dp ia shorthand for d4p/(2n)4. Eq. (9) is the analoque

of the classical energy momentum tensor.
pK

Calculating a t we can
pu

define a “potential” tensor

(lo)

such

This

from

that t = t
K+

pv pv

~ <ap+~v~
‘~v=2

●xpression looks

(3):

v
‘pv is conserved

z
- $apav~> + gpv ~ ~<Ld> (11)

quite different from <T > = TrpT
pv pv

computed

Nevertheless one easily establishes the connections

=<T>+;
t p pv

<bTpv>

= <e >+ ; <ATPV>
l.lv

where the difference dependh on

<ATPV> = (gpvu - apav)fdp F(P,R)

(the latter vanishing for a uniform Gystem),

(13)

(14)



Note that to this point all equationa are completely general

for the chosen system. No assumption has been made that p corres-

ponds to a “fluid’’-type situation.

To condense our discussion we specialize to the $4 theory.

Now we write (g4 + A here)

‘p= f
C@ pppv F(p,R) + Ag J dpdp’ F2(PR,P’R)

pv
(15)

F2(pR,p’R’) s J
~4rd4r,eip”r + ip’.r~ (16)

l-particle distribution F2 along withThus the zeroth moment of the

the second moment of the 2-particle distribution F(p,R) are needed

for the construction of t These objects are connected by trans-
pv “

port-like equations of ❑otion which shall not be discussed here.

Note that the trace theorem gives”s”

‘000> -z ,1

<6..> = m2<@2>= m2JO F(P,R) (17)

with energy density c = <000> and pressure density <Oxx>. Referred

to the local rest frame of the fluid, (17) is essentially an equa-

tion of state (without equilibrium) becoming “ideal” (C = 3p) as

m+~, despite the presence of i?,teractions. Hence an ideal equa-

tion of state does not imply the absence of interactions,————-.-—— ~ _—_ —— .— —.. a point

recently stressed for the case of Lh? QCD plasma.a

Although expressions such as (15) are simple, they tacitly

involve an infinite number of degrees of freedom. Not only the

initial density matrix but the dynamical evolution of the system

must be considered to determine the validity of truncation (to

refer generically to the problem of the reduction of the number of

degrees of freedomj. For orientation refer to the perfect relativ-

istic fluid with T = (& + p) UJlv -
pv %Pvp with E and p Lorevtz

scalars (the local rest frame energ~ tindmomentum densities) and uv

the fluid four-velocity U2 = 1. These five independent variables

subject to the four EOM 8PT = O and the equation of state p =
pv

p(c) are eoluble once boundary conditions are specified.



In the general case t has ten independent components subject
pv

to only four ●quations of motion. To obtain a closed system, what

should be done? Without analyzing the ❑ost general case, consider

the traditional ❑ethod of ignoring two body correlations, i.e.,

F2(pR,p’R’) = F(pR) F(p’R’). In this case one can imagine solving

the kinetic (Vlasov) equaticn for F(p,R) or better, its Fourier

transform

2p-q F(p,q) = A
J

dp’dq’ F(p’q’)[F(p - } q’, q - q’) (18)

- F(p + ;q’,q - q’)]

for F(p,q) subject to a given bourtdary condition.

Since F is known, Eq. (17) provides one constraint on t

(this is the generalized analogue of the EC)S). Now tpv (Eq. l!;

is expressed in terms of F alone. To investigate further con-

straints we define a unit four velocity via

= epvuvl(uuuvepv)‘P (19)

tacitly understanding that the ensemble average of El is meant.
pv

Since u2 = 1 we can transform to the comoving frame to determine

constraints which are ●nforced in all frames by covariance. The

assumption of isotropy implies the existence of only four inde-
K K K tK tK

pendent components of ~ say t
pv ‘ 00’ ‘ox’ xx’ Xy”

Hence the equa-

tions of motion involve :he five functions Jdp F and four independ-

ent components of Jdp p p F. Thus factorization plus comoving
pv

igotropy allow closure and hydrodynamic structure without imposing

thermal ●quilibrium or mass shell moments. Isotropy is, of course,

a rather strong asBu.mpt.ion: among other things it precludes vis-

cous ehenr atre~aes for a general flow. The aforementioned closure

required the knnvledge of Lhe sir,Rie particle distribution func-

tion. Thi~ knowledgr all~wed us to obtain hydrodynamic ●quations

off-shell and out of ●quilibrium, But we have not yet succeeded in

substituting a traditional hydrodynamic calculation for the kinetic

theory. Analysis of thig and other questions will appear else-

where.
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