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Abstract—Fish and amphibians can sense their hydrodynamic
environment via fluid flow sensing organs, called lateral lines.
Using this lateral line they are able to detect disturbances in the
hydrodynamic near field which enables hydrodynamic imaging,
i.e. obstacle detection. Via two experiments we demonstrate a
novel artificial lateral line of four bio-inspired 2D fluid flow sen-
sors and show that the measurements of the enacted sensors agree
with an established hydrodynamic model. These measurements
from the array are then used to localize both vibrating and
unidirectionally moving objects using an artificial neural network
in a bounded area of 36 by 11 cm which extends beyond the area
directly in front of the sensor array. In this area, the average
Euclidean localization error is 1.3 cm for a vibrating object, while
for moving a object it is on average 3.3 cm.

Index Terms—artificial lateral line, hydrodynamics, neural
networks, sensor array, extreme learning machine

I. INTRODUCTION

The development of our sensory array is based on a

biomimetic approach as the design is directly inspired by a

sensory modality used for flow detection by aquatic verte-

brates; fish and amphibians have the unique ability to detect

and localize moving and vibrating underwater objects [1].

Along the head and trunk they have an array of discrete

mechanical sensors at their disposal called neuromasts. With

these neuromasts they can perceive the local water motion –

or flow – relative to their body.

Artificial lateral lines (ALLs) provide a passive sensor

system that works in the hydrodynamic near field which does

not rely on vision or an active beacon. Other technologies, e.g.

sonar, do require an active beacon which is detectable and can

affect marine ecosystems.

ALLs can be used in two modes. It can be used to

help autonomous underwater vehicles (AUVs) safely navigate

murky waters in terms of obstacle detection, bridging the gap

between touch and vision. Secondly, the system could be used

in harbors and other waterways to passively monitor marine

traffic or marine life.

Several implementations of ALLs exist [2]. Most imple-

mentations are scaled down versions called mechanical micro

This research has been supported by the Lakhsmi project that has received
funding from the European Union’s Horizon 2020 research and innovation
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sensors (MEMs), which make use of piezo-strain sensing,

while others use pressure sensors or optical levers with LEDs

[3]. The present work demonstrates the first use of all-optical

sensors in an ALL, which does not rely on electrical signals

and could therefore be more reliable in operation. In addition,

some ALLs [4], [5] show varying sensor orientations, allowing

to partly capture the information of fluid flow perpendicular

to the array. The presented sensor array is one of the first

artificial lateral lines that combines the parallel and orthogonal

velocity profile components in single measurement points,

which has been shown to be beneficial for location estimation

in simulation [6].

In this paper, we demonstrate hydrodynamic imaging [7],

i.e. the ability to detect an object near the sensor array, via

two benchmarks. The first benchmark task sets out to localize

a stationary vibrating (dipole) object positioned at discrete

locations, while the second task involves tracking and localiz-

ing a unidirectionally moving object. To estimate the location

from the sensor data, we make use of a fast artificial neural

network architecture. This type of neural network is also used

in [6], [8], which are both simulation studies for continuous

moving objects; whereas the current study aims to demonstrate

hydrodynamic imaging via real-world experiments.

The rest of the paper is structured as follows: In section II

we further describe the nature of velocity profiles, the sensors,

and other relevant literature. In section III and IV, we present

an experiments for localizing a vibrating object and a moving

object respectively. We discuss our findings in section V and

conclude in section VI.

II. BACKGROUND

A. Bioinspiration

The fish lateral line is made up from two types of

mechanosensory neuromasts, each with their own beneficial

physical properties to help the fish perceive freestream (DC)

and dynamic or oscillatory (AC) flow [1]. Superficial neuro-

masts (SNs) are present on the fish bodies’ surface and are in

direct contact with the surrounding. They are tailored to per-

ceive steady flow i.e. fluid velocity. Canal neuromasts (CNs)

are embedded in subdermal canals and therefore shielded from

the DC flow and tailored towards AC fluid flow.

This full text paper was peer-reviewed at the direction of IEEE Instrumentation and Measurement Society prior to the acceptance and publication.
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The perceived local fluid flow can be concatenated to a spa-

tial velocity profile through combining information from other

CNs and SNs in the lateral line system, which augments the

fish sensory perception [9]. In behavioral fish experiments, the

lateral line has been shown to be instrumental in many specific

behaviors, for instance: prey detection, predator avoidance,

schooling behavior, and spatial orientation [9]. The sensors

described in this work are used as superficial neuromasts.

B. Velocity profiles

In previous research, theoretical models are described that

predict velocity profiles (i.e. the local fluid velocities at each

sensor unit on a given time) along a 1D array. Here, an object

is either vibrating in a direction with a specific angle with

respect to the array [10]–[13] or moving in a specific direction

[14]. Using these models based on non-viscous flow around a

sphere, velocity profiles can be modeled for different locations

and movement directions for a spherical object located at

coordinate (b, d).

The local fluid velocity component parallel to the array, vx,

on position s on the sensor array is given by a combination

of two wavelets [11]. The magnitude of the velocity profile

scales with the radius of a sphere a, its speed magnitude W ,

and its distance d to the array.

vx =
Wa3

2d3
(Ψo sinϕ−Ψe cosϕ). (1)

The angle of the object with respect to the sensor array is

ϕ. The even wavelet Ψe and odd wavelet Ψo are described by:

Ψe =
1− 2ρ2

(1 + ρ)
5

2

, (2)

Ψo =
−3ρ

(1 + ρ)
5

2

, (3)

ρ =
s− b

d
, (4)

where −Ψe describes the vx profile when the object is moving

parallel to the array and Ψo when the object is moving

orthogonal to the array (ϕ = π/2).

We extend this family of wavelets to also consider the

velocity profile component orthogonal to the array, vy . Here,

Ψo describes vy when the object is moving parallel to the array

and Ψn when it is moving orthogonal to the array:

vy =
Wa3

2d3
(Ψn sinϕ+Ψo cosϕ), (5)

Ψn =
2− ρ2

(1 + ρ)
5

2

. (6)

A graphical representation of the wavelet family and ve-

locity profiles can be found in Fig.1. At increasing distances,

the velocity profiles decrease in magnitude, but also undergo

spatial broadening [11]. The broadening is reflected in the

minima, maxima, and zero crossings of the velocity profile;

they displace further from the center of the profile, while the

general shape remains.
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Fig. 1. Depiction of the wavelet family (a), the setup geometry (d), and
example velocity profiles. The setup geometry (d) depicts the location of the
four sensors (grey spheres) and an object (white) moving in a certain direction
ϕ with respect to the array at coordinate (b, d). subfigures (b, c, e, f) show
the expected velocity pattern for a vibrating object at 5, 7, and 9 cm distance.

C. Optical 2D sensing

Our sensor array consists of four novel, isotropic, all-optical,

2D-sensitive fluid flow sensors [15], which enables measuring

a planar projection of the hydrodynamic environment. These

sensors consist of a fluid force recipient sphere and a fiber

support, constructed from four standard communication SMF-

28 fibers.

The four fibers are each inscribed with a fiber Bragg

grating (FBG) near the sensor base and have an associated

distinct Bragg wavelength. The Bragg wavelength denotes

a reflectance peak, which can be measured via an optical

interrogator. When the sensor is deflected, the internal fibers

stretch and compress, producing a measurable Bragg wave-
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Fig. 2. Schematic overview of sensor design and sensing principles, adapted
from [15]. When the sensor is deflected, opposite fiber cores will stretch and
compress respectively, producing a shift in the measured Bragg wavelength.



length shift, see also Fig.2. The FBGs are also linearly affected

by temperature, but this effect is smaller and can be factored

out by using the wavelength shift difference between pairs of

FBGs, since the temperature difference between FBGs in a

sensor unit is negligible [16].

In [15] we show that this sensor design is isotropic, i.e.

equally sensitive in both directions. Furthermore, a hydro-

dynamic model inspired by the fish neuromast provides an

analytical frequency response that can be used to relate sensor

deflection to local fluid velocity, taking into account both

inertial and viscous drag fluid forces.

D. Processing methods

For both simulated and physical artificial lateral line arrays,

several algorithms have been put forth to decode a velocity

profile to retrieve the location of a dipole source. In [11]

a continuous wavelet transform was proposed, based on the

mother wavelets as described in section II-B. A data-matching

approach where a measured excitation pattern is compared to

a large set of templates was suggested by [17]. This template

matching approach was later shown to be outperformed by

Capon’s beamforming algorithm [5]. More recently, artificial

neural network architectures, including the Extreme Learning

Machine, have been used to determine an object’s location [8],

[18] and orientation [6].

E. Neural network

To demonstrate the localization performance on a limited

size data set with our array, we make use of an efficient single-

layer feed-forward neural network, the Extreme Learning

Machine (ELM) [19]. This type of neural network has a

single hyper parameter, the size of the hidden layer, which

allows for fast optimization while preventing over fitting. This

type of neural network has shown the best performance for

hydrodynamic object localization compared to more advanced

neural networks [8].

III. DIPOLE OBJECT LOCALIZATION

In this experiment, we benchmark hydrodynamic imaging

by the task of localizing a dipole source (i.e. vibrating object)

positioned at discrete locations.

Fig. 3. Four sensors are mounted 3 cm from the back wall of a 25 × 50 cm
testing tank. The stimuli are leveled with the fluid force recipient spheres
during the experiments.

A. Setup

In our experimental setup, four sensors form an array of

14 cm, or artificial lateral line, at one side of a water tank

measuring 25 × 50 cm, see Fig.3. The sensors are positioned

3 cm from the back wall via a guiding rail parallel to

the long side of the tank. The drag force recipient spheres

are leveled about 3 cm under the water surface. During all

experiments, the object is leveled with the sensors. The Bragg

wavelengths of the sensors are measured at 1 kHz using an

optical interrogator (Micron Optics sm125, Atlanta, USA).

B. Methods

A B&K 4810 mini shaker is used in combination with a

signal generator to vibrate the submerged sphere, 6 cm in

diameter, at 8 Hz with a motion amplitude of 1 mm. We direct

the motion towards the array (ϕ = −π/2), we therefore expect

to see Ψo in the x-component of the measured velocity pattern

and Ψn in the y-component (see section II-B).

For each location, we record 40 seconds of sensor data while

the object is vibrating. Via a discrete Fourier transform, we

obtain the magnitude of fluid flow at the stimulation frequency

for the four sensors and 2 dimensions, reducing the sensor data

to a vector of 8 points per location.

C. Results

Since the current array lacks the spatial resolution to prop-

erly assert the velocity profile, we first present the measured

flow velocities per sensor rather than location. In Fig.4 we

show the measured amplitudes for 11 lateral locations at

three distance levels together with a parametric fit based on

the expected wavelets. Especially for the profiles measured

close to the array, the sensor readings correlate very well

with theory. At further distances, both the effects of reduced

amplitude and spatial broadening of the velocity patterns are

present.
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Finally, we trained an ELM neural network for localizing

the object based on the sensor responses, the results of which

are shown in Fig.5. Here, we used a 5-fold validation on

84 locations, where a random 80% portion of the measured

locations is used for training while the remaining 20% is given

to the neural network to predict. Therefore not all locations

are used for training. The ELM hidden layer size was 1000.

We calculate the mean Euclidean localization error by

combining the 5 folds and averaging the error distances of the

5 test sets and the 5 training sets. This error for the (unseen)

test set was 1.3 cm, while the (seen) training set had a better

estimate with an error of 0.45 cm. The ALL and ELM are

therefore able to reconstruct locations from excitation patterns

for unseen locations (Fig.5).

IV. MOVING OBJECT LOCALIZATION

As was shown in [14], the velocity patterns resulting from

motion with constant speed are, ignoring vorticity and other

viscous effects, identical to those from dipole sources. How-

ever, the object is moving rather than vibrating, we therefore

adapt the setup and apply different preprocessing steps before

Fig. 6. Adapted setup for moving the object with the 2D plotter (blue). The
optical interrogator is visible in the bottom right corner.

feeding the data to the ELM neural network for localizing the

object.

A. Setup

For this bench marking task, the water tank setup is fitted

with an Arduino controlled XY plotter (Makeblock) to enable

an object to be moved in a straight path at constant height.

Both the optical interrogator, which reads out the sensors, and

the Arduino controller board are controlled through a Matlab

script to allow for simultaneous stimulation and recording

of sensor data. Furthermore, the Arduino board reports its

location on preset intervals as to provide accurate training

labels, i.e. annotated locations.

The object (6 cm diameter) is leveled with the sensors and

moved at a constant speed of 7 cm/s, with a ramp up and

down at the start and end of its motion. The sensor positions

have been changed to form a slightly smaller array of 12 cm.

B. Preprocessing and validation

To determine valid preprocessing steps and the hyper pa-

rameter of the neural network, we first record a pilot data

set of motion parallel to the array at six distances from 4 to

9 cm. This pilot data set consists of 10 repetitions of both

forward and backward motion for each distance, so 120 runs

in total. We use 5-fold stratified cross validation to validate

the performance of the chosen settings.

We varied the hidden layer size between {1000, 1500, 2000,

2500}. Furthermore we varied a down sampling factor between

1 (no down sampling) to 53. Since this experiment produces

time traces, we can take past detection into account. We

implement this via feeding time windows to the ELM, rather

than a single time step. To determine the optimal window

length, we vary the history window size from 1 (no history) to

45. To make sure that the algorithm can provide timely output,

we limit the amount of effective history (∆t per frame after

down sampling × history size) to 500 ms.

From these settings, the estimator with the lowest test error

has a hidden layer size of 1500, down samples by averaging

37 samples and takes 13 history steps as input and therefore

requires a history buffer of 481 ms.
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Fig. 7. Prediction and true location of the object for the pilot data test set
for one fold. Shown here is the concatenation of 12 different run cases.
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The output on the test set of a single fold of the optimal

estimator is shown in Fig.7. Here we observe that the predic-

tion of the x-coordinate (b) is of better quality than the y-

coordinate (d) prediction, which can be caused by the former

having more variation in the pilot data set. Another observation

is that the prediction performance decreases over the distance

d, which aligns with the fact that velocity patterns from objects

at distances further away also have a lower signal to noise

ratio.

C. Methods

For the final benchmark experiment, the XY plotter is

instructed to move the object back and forth 5 times across

313 straight paths within an x,y bounding box of 36 × 11 cm.

Fig.8 indicates this bounding box and shows a small selection

of the used paths. Here, b was divided in 13 points from -18

to 18 cm, and d was divided in 12 points from 4 to 15 cm.

The set of motions was constructed from all points of one

side to all points on its opposing side. The total data set

consists of 3130 runs. With this set, we apply 5-fold stratified

cross validation (four of the recorded sets of motions are used

for training; the fifth set is used for testing).

D. Results

The averaged Euclidian error on the whole test set is 3.3 cm

(see also Fig.9) and 3.2 cm for training. The localization error

is comparable to the object radius and inter-sensor distance,

but other relative interpretations are possible. Furthermore, the

very small difference between the training and testing error

indicates that there there is very little over fitting taking place.

These results indicate that moving object localization is

feasible with an all-optical ALL of four sensors.

V. DISCUSSION

We first showed that the 2D velocity profiles as measured

by the four-sensor artificial lateral line (ALL) agree with those

derived from a hydrodynamic model. Even though the sensors

are not equally sensitive, the spatial variations such as wavelet

broadening, zero crossings and maxima are clearly present in

the measured data. Based on the sensitivity of the individual
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2 4 6 8 10

Fig. 9. Meshed interpolation of the Euclidean localization error with respect
to the true location of the object. While the edges display an increase in esti-
mation error, a large central area in front of the array has an error comparable
to the object radius and could be interpreted as correct localization.

sensors, these spatial variations are progressively obscured at

further distances, as expected.

The first benchmark test for hydrodynamic imaging was

to localize a vibrating sphere. Using a small dataset (< 100

samples) of discrete object locations, we were able to show

that an extreme learning machine (ELM) neural network

can be easily trained to reliably predict an object’s location

based on the amplitudes of the excitation profiles. The mean

Euclidian prediction error on the test set with 67 trained

locations per fold was 1.3 cm in a bounded area of 27 × 11 cm.

In a different dipole localization task [18], they achieved an

average localization error of 0.28 cm with 90 training points

and 4 enabled sensors in a 18 × 9 cm bounded area with

a stronger source. With 50 training points, they achieved an

average error of 0.4 cm. Between our area being larger, using

a lower intensity dipole source, and the vibration direction

being different, it is difficult to conclude which algorithm or

array performs best based on the current experiment.

From the ELM and preprocessing optimization for moving

objects, we found that considering past perceived excitation

patterns helps in increasing localization performance. The

most influential factor was not the amount of past inputs, but

rather the effective amount of history taken into account. This

makes sense from the point of view that excitation patterns not

only encode location, but also direction: the object’s direction

remains the same throughout a path of motion. Data sets with

other, non-straight motions might therefore call for taking a

shorter amount of history into account.

The final performance on the second benchmark test came to

an average Euclidian localization error of 3.3 cm in a bounded

area of 36 × 11 cm. This task is somewhat harder to achieve,

since there’s no direct mapping from location to perceived

excitation pattern; the object passed some points several times,

but from different angles. To the best of our knowledge, there

are no direct experimental comparisons for this task in the

literature. Simulation results with 16 sensors and an ELM [6]

indicate that an error of 0.9 cm is the lower bound for a 12 cm

array in noiseless conditions. Considering that our error of

3.3 cm is in the same order of magnitude, it performs quite

well.



The current sensors have shown to be sufficiently sensitive

for the hydrodynamic stimuli used in this study, but tied with

their sensitive nature is that the sensors are fragile. In the

current environment we controlled the object’s position, but for

future deployments these sensors could be fitted in protective

housings, which may also increase the robustness to noise and

DC offsets for dynamical signals [20].

Another step to improve the accuracy concerns the number

of sensors and the array geometry. As shown in [8], the number

of sensors greatly affects localization performance; a first step

would be to increase the spatial resolution of the array. Here,

the inter-sensor distance can also have an influence [10]. Other

sensor configurations than the bio inspired equally spaced line

might also be improve the performance.

Furthermore, given that the predicted location for a moving

object is quite noisy (e.g. Fig.7), post processing methods such

as particle filters or median filtering could be considered for

stabilizing the network output.

VI. CONCLUSION

Both benchmark tests were successful in the sense that

object localization was possible using the novel, all-optical, 2D

artificial lateral line (ALL) whether the object was vibrating

at discrete positions or unidirectionally moving through a

bounded area. We consider this result encouraging, even more

so when considering that these results only stem from a

relatively sparse four-sensor artificial lateral line.

Summarizing, our results show that the current sensor

design and ALL implementation is very well suited for hydro-

dynamic imaging of moving and vibrating objects. The current

sensor design, results, and analysis provide promising future

developments.
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