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Hydrodynamic loading of microcantilevers oscillating near rigid walls
Ryan C. Tung,a� Anirban Jana,b� and Arvind Ramanc�

School of Mechanical Engineering, Birck Nanotechnology Center, Purdue University, West Lafayette,
Indiana 47907, USA

�Received 12 July 2008; accepted 15 October 2008; published online 5 December 2008�

The vibrations of microcantilevers in atomic force microscopes �AFMs� or radio frequency �RF�
switches are strongly influenced by the viscous hydrodynamics of the surrounding fluid in the
vicinity of a rigid wall. While prior efforts to model this hydrodynamic loading have focused on
squeeze film damping effects at high Knudsen and squeeze numbers, the regimes of low Knudsen
and squeeze numbers are also very important for which squeeze film models need to be discarded
in favor of unsteady Stokes hydrodynamics. We extend the work of Green and Sader �Phys Fluids
17, 073102 �2005�; J. Appl. Phys. 98, 114913 �2005�� and present compact semianalytical formulas
for the unsteady viscous hydrodynamic function of slender microbeams oscillating near rigid walls,
in terms of key nondimensional numbers. Using these closed-form expressions, it becomes possible
to predict easily the wet natural frequencies and quality factors of multiple modes of
microcantilevers near rigid walls in diverse applications ranging from AFM in liquids to RF
microswitches under ambient conditions. The semianalytical formulas are extensively validated by
comparing their predicted wet natural frequencies and quality factors with those based on
three-dimensional, transient flow-structure interaction simulations, as well as previous experiments
performed in the field by other researchers. © 2008 American Institute of Physics.
�DOI: 10.1063/1.3033499�

I. INTRODUCTION

The hydrodynamic loading of microcantilever resonators
is of great interest to the microelectromechanical system
�MEMS� community. Of particular interest are the hydrody-
namic loading of atomic force microscope �AFM� probes
and radio frequency �RF� switches moving in a viscous fluid
near a solid surface.1 For example, the hydrodynamic damp-
ing of microcantilevers adversely affects imaging forces and
sensitivity especially on soft biological samples.2 For RF
switches hydrodynamic damping influences the impact ve-
locity and wear at the contact interface, and also the switch
bounce.3 An a priori knowledge of the quality factors and
resonant frequencies of such resonators in fluidic environ-
ments is crucial for their effective design and operation.

This paper focuses primarily on microcantilevers oscil-
lating in a viscous fluid near a wall under ambient tempera-
ture and pressure that fall within the low Knudsen and
squeeze number regimes. The Knudsen number, defined as
Kn=�� /H� where �� is the mean free path for the fluid mol-
ecules and H� is the gap between the beam and the wall,
measures the degree to which the noncontinuum nature of
the fluid is important. A low Knudsen number �Kn�0.001�
signifies that the fluid can be treated as a continuum. The
squeeze number, defined as �=12� f

���b�2 / �H�2P0
�� where

� f
� is the dynamic viscosity of the fluid, �� is the angular

frequency of the beam, P0
� is the ambient pressure, and H� is

the gap height, measures the degree of compression in the
fluid. A low squeeze number means that compressibility ef-

fects of the fluid are negligible. The low Knudsen and
squeeze number regimes for microcantilever resonators are
important because they are directly applicable to AFM
probes oscillating in fluids at ambient pressure with signifi-
cant gap, as well as to many RF switches under ambient
conditions.

In our applications of interest the oscillations of the mi-
crobeam are small and the nonlinear convective fluid inertia
terms in the Navier–Stokes equation are negligible, allowing
us to use the unsteady Stokes equation. Using unsteady
Stokes hydrodynamics provides the opportunity to develop
hydrodynamic loading theories that are uniformly valid for
large gaps tending to structures oscillating in unbounded
fluid on one hand, and small gaps with strong squeeze film
effects on the other hand. In contrast, squeeze film models
such as those of Langlois,4 Griffin et al.,5 Blech,6 Darling et
al.,7 Gallis and Torczynski,8 and Veijola et al.9 all rely on
different versions of the Reynolds lubrication equation, and
are not directly applicable to arbitrary gap heights. Unsteady
Stokes hydrodynamics for long slender oscillating structures
was mainly developed by Tuck,10 who provided semianalyti-
cal solutions for a long, slender beam vibrating in an un-
bounded fluid with small amplitude. More recently Green
and Sader11,12 extended Tuck’s10 method to include the hy-
drodynamic effects introduced by a nearby surface. Clarke et
al.13–15 also calculated the drag on microcantilevers using
two- and three-dimensional unsteady Stokes hydrodynamics.
Furthermore, Clark and Paul16 used a stochastic approach to
calculate the damping of a microcantilever in a viscous fluid
near a wall. However, these recent works do not provide a
convenient way or an expression to calculate the hydrody-
namic loading on the microbeam and instead require exten-
sive computation.

a�Electronic mail: rtung@purdue.edu.
b�Electronic mail: janaanir@ecn.purdue.edu.
c�Electronic mail: raman@purdue.edu.

JOURNAL OF APPLIED PHYSICS 104, 114905 �2008�

0021-8979/2008/104�11�/114905/8/$23.00 © 2008 American Institute of Physics104, 114905-1

Downloaded 29 Jun 2009 to 128.46.220.88. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp

http://dx.doi.org/10.1063/1.3033499
http://dx.doi.org/10.1063/1.3033499


In this paper we extend the theoretical techniques used
by Tuck10 and Green and Sader11,12 to develop semianalyti-
cal solutions for the hydrodynamic loading of slender micro-
beams oscillating close to a rigid wall that are easy and con-
venient to use. Using these semianalytical expressions it
becomes possible to predict the quality factors and natural
frequencies of multiple modes of microcantilever beams near
rigid walls in diverse low Knudsen and squeeze number ap-
plications ranging from AFM in liquids to RF microswitches
under ambient conditions. For several microcantilevers, we
also compare these theoretically predicted quality factors
with those based on detailed three-dimensional finite element
based computational fluid dynamics simulations, as well as
existing experimental data. To the best of our knowledge,
this is the first validation of the theory of Green and
Sader11,12 for microcantilevers oscillating close to a wall.
From the above comparison, we see that the theory makes
good predictions of the quality factors when the gap between
the microcantilever and the wall is greater than a certain
minimum threshold. For smaller gaps, the theoretical predic-
tions start to diverge from the experimentally measured qual-
ity factors.

II. THEORY

In this section we briefly outline the theory of Tuck10

and Green and Sader.11,12 Figure 1�a� shows a typical micro-
beam system immersed in a fluid and near a rigid wall, to-
gether with the relevant dimensions and the coordinate sys-
tem. We begin with the following assumptions.

�1� The beam is long, thin, and of uniform cross section.
�2� The beam oscillates transversely with an amplitude that

is small compared to its width b� and gap H�.
�3� The fluid is incompressible and viscous.
�4� The axial flow velocity, as well as all gradients in the

axial direction, is negligible.

These assumptions allow for the analysis of the flow in
the two-dimensional plane containing the cross section of the
beam as shown in Fig. 1�b�.

Given the small fluid velocities in typical microcantile-
ver resonators, such as AFM probes and RF switches, the
nonlinear convective fluid inertia is negligible compared to
the viscous fluid stresses. Under such conditions the fluid
flow is governed by the unsteady Stokes and the continuity
equation. We adopt a nondimensional Fourier transformed
version of the unsteady Stokes and the continuity equation

i Re u = − �p + �2u, � · u = 0, �1�

where distances are nondimensionalized by the cantilever
half width b� /2, the fluid velocity is nondimensionalized as
u=uj+vk=u� / �b����, and the fluid pressure is nondimen-
sionalized as p=2� f

���p�. The nondimensional number Re
=� f

���b�2 / �4� f
�� is the ratio of the unsteady fluid inertia to

the viscous fluid stresses, and is often called the unsteady
Reynolds number in literature. Note that we use asterisks to
denote dimensional quantities.

For the low Knudsen number range that we consider
here, the boundary conditions at solid-fluid interfaces can be
assumed to be the classical no-slip boundary conditions.
Thus, we have

u = 0, v = 0 on z = 0 �wall� ,

u = 0, v = Vb on z = H �beam� , �2�

where Vb is the transverse velocity amplitude of the beam
cross section.

Next, following Tuck10 and Green and Sader,11 we refor-
mulate the problem by introducing a stream function
��y ,z ��� such that �,z=u and −�,y =v, where � �,y denotes
differentiation with respect to y and so on. In terms of the
stream function, the boundary conditions in Eq. �2� become

�,z�y,0� = 0, �,y�y,0� = 0, �,z�y,H�

= 0, and �,y�y,H� = Vb. �3�

Furthermore, using the divergence theorem and Green’s
identities, the stream function can be expressed as

FIG. 1. �Color online� Schematic of a microcantilever immersed in a fluid
near a rigid wall. L� is the cantilever length, b� is the cantilever width, H� is
the gap height, and �� is the frequency of oscillation. The coordinate system
is fixed relative to the wall. �b� shows the two-dimensional cross section of
the cantilever beam. Cb+ and Cb− describe the contour around the top and
bottom of the beam, respectively. Cw describes the contour along the wall.
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��y,z��� = �
−�

�

�	w�y�,0���
,z��y�,0�y,z�

− pw�y�,0���
,y��y�,0�y,z��dy�

+ �
−1

1

��	b�y�,H���
,z��y�,H�y,z�

− �pb�y�,H���
,y��y�,H�y,z��dy�, �4�

where 	w is the fluid vorticity at the wall, pw is the pressure
at the wall, �	b=	top

b −	bottom
b is the vorticity jump across the

beam, and �pb= ptop
b − pbottom

b is the pressure jump across the
beam. Finally, 
�y ,z �y� ,z�� is Green’s function for the op-
erator �4�·�− i Re �2�·�,


�y,z�y�,z�� =
1

2�i Re
�K0��iReR� + log R� , �5�

where K0 is the modified Bessel function of the third kind17

and R=��y−y��2+ �z−z��2. The system of four coupled inte-
gral equations arising from substituting the expression for �
from Eq. �4� in the boundary condition �3� is solved numeri-
cally for the unknown pressures and vorticities. The numeri-
cal procedure is described briefly in Sec. III.

III. NUMERICAL PROCEDURE

The four coupled integral equations are first discretized
using a numerical scheme similar to the one used by Tuck10

and Green and Sader.11 For the discretization, a nonuniform
grid with nodes at �yj ,H�, where yj =−cos��j /N�, j
=0,1 , . . . ,N, is employed to divide the width of the beam
into N unequal elements. Additionally, the infinite wall is
replaced with a wall of finite extent from �−Lw ,0� to �Lw ,0�,
albeit with the wall’s extent chosen to be much greater than
the beam width �Lw1�. The finite wall is also segmented
into N unequal elements using a nonuniform grid with nodes
at �Lwyj ,0�, j=0,1 , . . . ,N. This type of nonuniformity of the
grids possesses a square root bias toward the edges, which
mitigates the effect of the square root singularity of the pres-
sure at the edges. The discretization is then carried out by �i�
requiring the integral equations to be exactly satisfied at the
midpoints of the beam and wall elements, �ii� rewriting each
of the integrals over the beam and the wall as a sum of
integrals over the individual elements, and �iii� simplifying
the integrals over the individual elements by assuming that
the unknown pressures and vorticities are constant over each
element and equal to their values at the element midpoints.
This discretization results in the following linear system of
4N algebraic equations in as many unknowns:

A1	̄w + A2�	̄b − A3�P̄b = 0, �6a�

B1P̄w − A3�	̄b + B3�P̄b = 0, �6b�

C1	̄w − C2P̄w − C3�	̄b = 0, �6c�

− C2	̄w + D2P̄w − D3�P̄b = V̄b, �6d�

FIG. 2. �Color online� Hydrodynamic function � as a function of the un-
steady Reynolds number, Re, and the nondimensional gap, H, computed
based on the Tuck–Green theory. �a� shows the real part of � and �b� shows
the imaginary part of �. The red lines divide the parameter space into re-
gions of high, moderate, and low Re.

FIG. 3. �Color online� Two different excitation mechanisms for which the
semianalytical expression for � can be used to predict the FRF. In �a� the
microcantilever is held at a fixed distance from a rigid wall, and is excited
by means of external fields such as magnetic or electrostatic forces as in
magnetic mode AFM and RF switches. In �b� the microcantilever is excited
inertially by means of a dither piezo at its base, as in acoustic mode AFM.
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where 	̄w and P̄w are the N�1 vectors of the unknown pres-

sures and vorticities at the centers of the wall elements, �P̄b

and �	̄b are the N�1 vectors of the unknown pressure and
vorticity jumps across the beam at the centers of the beam

elements, and V̄b is the N�1 vector of the known beam
velocities at the centers of the beam elements. Ak, Bk, Ck, and
Dk are N�N complex matrices, whose entries involve inte-
grals of the derivatives of Green’s function 
�y ,z �y� ,z��
over the wall and beam elements. Green and Sader11 pro-
vided closed-form analytical expressions for the entries of all
these submatrices except A2 and C1. They computed the en-
tries A2 and C1 via numerical quadrature, and so do we. In
addition, since the closed-form formulas provided by Green
and Sader11 for the entries of A1 and C3 are very compli-
cated, we compute these also by numerical quadrature. We
employ the n-point Gauss–Legendre quadrature for con-
structing A2, C1, A1, and C3. The entries of all remaining
submatrices are computed analytically.

Once all the submatrices are constructed, linear system
�6� is solved in MATLAB. From the extracted pressure jump
across the beam, the nondimensional hydrodynamic force on
the beam can be computed as

fhydro = − �
−1

1

�pb�y�dy � 	
j=1

N

�P̄j
b�yj − yj−1� . �7�

An extensive convergence study was performed in order
to obtain the optimum values for the number N of wall and
beam elements, the wall length Lw as defined previously, and
the order n of the Gauss–Legendre quadrature used for com-
puting the entries of some of the submatrices. These opti-
mum values need to be chosen such that the discretization
and numerical errors are sufficiently small and the computa-
tional cost is not exceedingly high. The convergence study
revealed that values of n=10, N=500, and Lw=15 are the
optimum choices, for which the computational cost is rea-
sonable, and the errors in the computed hydrodynamic forces
are less than 1% for all values of the nondimensional gap H
and the unsteady Reynolds number Re under consideration.

IV. COMPACT CORRELATIONS FOR THE
HYDRODYNAMIC FUNCTION

Rather than directly present the computed hydrodynamic
forces, we present the computational results in terms of the
hydrodynamic function �,10,11 defined as

��Re,H� =
i

� Re
fhydro. �8�

The hydrodynamic function is a complex quantity that only
depends on the unsteady Reynolds number Re and the non-
dimensional gap H. The imaginary part of the hydrodynamic
function represents the fluid damping, while the real part
represents the added mass effect of the surrounding fluid.
Since the hydrodynamic function is dependent on only two
nondimensional variables �Re and H� it is possible to accu-
rately and conveniently describe the hydrodynamic loading
of both AFM microcantilevers and RF switches under ambi-
ent conditions with the use of only two parameters.

The hydrodynamic function was then computed over a
wide range of values of the unsteady Reynolds numbers,
Re� �10−2 ,104�, and the nondimensional gap, H� �0.1,10�,
each consisting of 40 points equally spaced in log space. The
resulting two-dimensional surfaces of the real and imaginary
parts of the hydrodynamic function are shown in Fig. 2. By
way of example, a soft AFM microcantilever of width
30 �m oscillating in its first eigenmode at a resonance fre-

FIG. 4. �Color online� The computational mesh employed in the three-
dimensional FSI simulations in ADINA.

FIG. 5. �Color online� Plot showing the semianalytical predictions and those
of the three-dimensional fluid structure interaction simulation performed
using ADINA. Parts �a�, �c�, and �e� show the wet natural frequencies of the
cantilever C2 in water, and cantilever F in air and water, respectively. Parts
�b�, �d�, and �f� show the quality factors of the cantilever C2 in water, and
cantilever F in air and water, respectively. All calculations are performed for
ambient temperature and pressure. The circles represent the semianalytical
predictions, while the crosses are the predictions based on the ADINA simu-
lations. The dashed lines represent the asymptotic limit as the gap is in-
creased infinitely, as in Ref. 10.
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quency of 5 kHz in water at a gap of 5 �m �approximately
the tip length of such AFM probes� possesses an unsteady
Reynolds number of approximately 8 and a nondimensional
gap of H=0.3. In contrast, a millimeter sized cantilever of
width 1 mm oscillating in its first eigenmode at a resonance
frequency of 2.9 kHz in air at a gap of 1 mm possesses an
unsteady Reynolds number of approximately 300 and a non-
dimensional gap of H=1. If the hydrodynamic loading of
higher eigenmodes is of interest then the angular frequency,
�, increases and the Re becomes larger. Clearly the chosen
range of Re and H values covers a wide range of situations
for AFM probes and RF switches.

Because it is difficult to find compact correlations that
are uniformly valid over the entire range of Re and H com-
puted, we instead choose to break up the results into three Re
regimes: �a� the low Re regime, 10−2�Re�5, �b� the mod-

erate Re regime, 5�Re�800, and �c� the high Re regime,
800�Re�104. For each of the above Re regimes, 10−1

�H�101. For example, typical soft AFM microcantilevers
oscillating in air or water in the first bending mode would lie
in the low Re regime, while AFM microcantilevers or RF
switches oscillating in air in higher eigenmodes could lie in
the moderate Re or high Re regimes depending on the fre-
quency. In each of the above regimes a linear least-squares fit
is performed on the computed hydrodynamic function data.
The resulting closed-form compact correlations for the real
and imaginary parts of the hydrodynamic function � in terms
of Re and H for the three Re regimes are provided in the
Appendix. We find that over the vast parameter space con-
sidered here, these closed-form expressions reproduce the
computed data to within 10% at most, and typically within
3% for most of the parameter space.

V. PREDICTION OF WET RESONANCE FREQUENCIES
AND Q-FACTORS USING THE COMPACT
CORRELATIONS

In order to use the correlations in the Appendix to pre-
dict the resonance frequency and quality factor of different
modes of a microbeam oscillating close to a rigid wall, first
the correct transfer function between the input forcing and
structural response needs to be identified. For instance, in
Fig. 3, we show two typical situations in which a microcan-
tilever close to a rigid wall may be excited and its response
measured. In the first case �Fig. 3�a��, the cantilever is ex-
cited by external fields alone, as might happen for electro-
statically actuated RF switches or for magnetically excited
AFM microcantilevers. The corresponding frequency re-
sponse function �FRF� can be shown to be18

TABLE I. Comparison between the experimental measurements of Naik et al.�Ref. 20� and the predictions
based on our semianalytical formula. For these results, the nondimensional gap H=2.

Wet natural frequencies �kHz� Quality factors

Fluid Eigenmode Expt. Semianalytical %Diff. Expt. Semianalytical %Diff.

Air 1st bending 2.9 2.92 −0.590% 23 23.04 −0.154%
2nd bending 18.6 18.29 1.672% 24 23.82 0.770%
3rd bending 50.6 51.22 −1.215% 36 35.12 2.448%

FC-72 1st bending 2.43 2.50 −2.844% 19 21.43 −12.797%
2nd bending 15.6 15.50 0.641% 23 25.06 −8.964%
3rd bending 42.7 42.46 0.564% 31 37.35 −20.473%

FC-77 1st bending 2.44 2.48 −1.475% 18 19.83 −10.151%
2nd bending 15.6 15.49 0.705% 22 24.04 −9.285%
3rd bending 42.7 42.81 −0.260% 31 35.74 −15.304%

FC-40 1st bending 2.41 2.45 −1.502% 17 17.01 −0.039%
2nd bending 15.5 15.44 0.394% 22 22.13 −0.581%
3rd bending 42.3 43.08 −1.832% 29 32.98 −13.739%

FC-70 1st bending 2.41 2.39 0.797% 11 11.41 −3.695%
2nd bending 15.5 15.26 1.574% 17 17.17 −1.002%
3rd bending 42.1 42.97 −2.055% 24 25.89 −7.863%

FIG. 6. �Color online� Comparison between the experimental measurements
of Naik et al.�Ref. 20� and the predictions based on our semianalytical
formula, for the second bending mode of the Bimorph® cantilever in two
different Flourinert™ liquids, and at varying gap heights. Circles and tri-
angles represent Fluourinert™ liquids FC-40 and FC-70, respectively. Data
points connected by broken lines represent the semianalytical predictions,
while those connected by solid lines represent the experimental measure-
ments of Naik et al. �Ref. 20�.
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w����,x� = L��
f�����

=

1

m�
�n�L���

0

L�

�n�x��dx�


�n
�2 − ��2 −

�

4m�
� f

���2b�2��r − i�i� + i��c0
���

0

L�

�n
2�x��dx�

, �9�

where w���� ,x�=L�� is the tip displacement relative to the
base, f����� is the amplitude of external forcing per unit
length, �� is the forcing frequency, m� is the mass per unit
length of the beam, x� is the lengthwise coordinate along the
beam as defined in Fig. 1, �n

� is the natural frequency of the
nth bending mode of the beam, �n�x� is the corresponding
modeshape normalized such that �n�L��=1, c0

� is the coeffi-

cient of structural damping of the beam, and �r�Re,H� and
�i�Re,H� are the magnitudes of the real and imaginary por-
tions of the hydrodynamic function that need to be deter-
mined from the Appendix. In the second case �Fig. 3�b��, an
AFM microcantilever can be excited inertially by means of a
dither piezo in the vicinity of a substrate. For this situation,
the FRF is given by

w����,x� = L��
y�����

=


��2 +
�

4m�
� f

���2b�2��r − i�i���n�L���
0

L�

�n�x��dx�


�n
�2 − ��2 −

�

4m�
� f

���2b�2��r − i�i� + i��c0
���

0

L�

�n
2�x��dx�

, �10�

where y����� is the amplitude of the absolute base displace-
ment, and the other variables are as defined previously.
These FRFs are valid in the vicinity of resonance of a spe-
cific eigenmode.

The aforementioned FRFs can be computed using the
Re-regime dependent correlations for �r�Re,H� and
�r�Re,H� provided in the Appendix. From the FRFs the wet
natural frequency �or the frequency when immersed in fluid
near the rigid wall� can be easily calculated. Furthermore the
Q-factor of that mode can be determined from the FRF by
using the half-power method.

VI. VALIDATION

To validate the accuracy of the semianalytical formulas
�Appendix�, their predicted Q-factors and resonance frequen-
cies of different eigenmodes at varying gaps are compared to
the following: �a� the computational results of Basak et al.,19

�b� our own fully three-dimensional transient fluid-structure
interaction �FSI� simulations, and �c� the experimental data
of Naik et al.20

First, we compare the predictions based on our semiana-
lytical formulas with those based on the computational re-
sults of Basak et al.,19 and our own results to lower Reynolds
numbers. Both sets of computations use the commercially
available finite element package called ADINA �Ref. 21� to
perform fully three-dimensional transient FSI simulations of
the ringdowns of a number of different cantilevers immersed
in different fluids and at various gaps above a rigid wall.
Figure 4 shows the computational mesh. The details of the
computational setup, along with the numbers and types of

solid and fluid elements chosen, can be found in Ref. 19.
Each ringdown simulation is initiated by imposing on the
undeflected cantilever, a transverse velocity field with a spa-
tial distribution corresponding to one of its structural mode-
shapes. The time history of the cantilever tip displacement
from each ringdown is analyzed to obtain the corresponding
modal wet natural frequency and quality factor. Note that the
ADINA models do not incorporate any structural damping
�c0

�=0�.
Figures 5�a� and 5�b� compare the wet natural frequen-

cies and quality factors predicted by the semianalytical for-
mula and the ADINA FSI simulations for the first and second
bending modes of the cantilever C2 �Ref. 19� �whose dimen-
sions are 197�29�2 �m3�, oscillating in water at room
temperature, and at various gap heights. Here Re
� �101 ,103�. Figures 5�c�–5�f� present the same comparison
for a rectangular silicon cantilever with dimensions 250
�25�1 �m3 �which we label cantilever F�, oscillating in
air and water under ambient conditions. Here Re
� �10−1 ,102�. In the above figures, the wet natural frequen-
cies and quality factors of the cantilevers when they are very
far away from the rigid wall �Tuck10� are also plotted.
Clearly the quality factors and wet natural frequencies pre-
dicted using the semianalytical formula for ��Re,H� agree
closely with those based on the ADINA simulations for all
values of Re and H considered above. A maximum error of
6.5% exists between the semianalytical and ADINA-based
predictions for the quality factors, while a maximum error of
19% exists for the wet natural frequencies. The greatest dis-
crepancies are observed for the quality factors corresponding
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to the second bending mode. This is mainly because the axial
flow in the gap, which was neglected in developing the semi-
analytical formulas, becomes increasingly important for
higher modes; other effects deleterious to our results include
gradients in the axial direction and boundary layer growth,
which again become increasingly important for higher
modes.

Finally, comparisons of the predictions of our semiana-
lytical formulas with the experimental data of Naik et al.20

were also performed. In Ref. 20, Naik et al. measured the
dynamic response of a Bimorph® cantilever �10�1
�0.5 mm3� experimentally in air and in Flourinert™ liquids
with varying viscosities �but almost similar densities�. Ex-
perimental procedures and material properties for Flouri-
nert™ can be found in Ref. 20. In comparing with their
experimental data, some care must be taken to account for
the structural damping of their microcantilever. This is done
by setting c0

� in the FRFs �9� and �10� equal to its measured
value �based on the cantilever’s response in vacuum20�.

Table I compares the semianalytical and experimental
wet natural frequencies and quality factors for the first, sec-
ond, and third bending modes of the Bimorph® cantilever,20

oscillating in air and four different Flourinert™ liquids, at a
fixed nondimensional gap of H=2. The semianalytical pre-
dictions are in close agreement with the experimental mea-
surements of Ref. 20. The semianalytical and experimental
wet natural frequencies agree to within 3%. The semianalyti-
cal and experimental quality factors agree to within 10% for
most cases, with the maximum disagreement �20%. Again,
the disagreement tends to be the maximum for the highest
mode �third bending�. Finally, Fig. 6 compares the semiana-
lytical and experimental wet natural frequencies and quality
factors for the second bending mode of the Bimorph® can-
tilever in Fluourinert™ liquids FC-40 and FC-70, for varying
nondimensional gaps. Again, the two sets agree quite favor-
ably, except at very small gaps. At very small gaps �Kn
�0.001�, the number of fluid molecules in the gap becomes
sufficiently small to give rise to noncontinuum effects such

as slip at the solid boundaries. Such effects are expected to
decrease the hydrodynamic damping and increase the quality
factors. Since the semianalytical formula does not account
for any noncontinuum effects, its predicted quality factors
should be less than those measured experimentally at very
small gaps, which is consistent with the trend observed in
Fig. 6.

Overall, the predictions of our compact semianalytical
formulas derived from two-dimensional unsteady Stokes
flow are in close agreement with those based on fully three-
dimensional FSI simulations, and experimental measure-
ments, for a number of cantilever bending modes, many dif-
ferent fluidic environments, and a large range of unsteady
Reynolds numbers and gap heights.

VII. CONCLUSIONS

This paper investigates the hydrodynamic loading of mi-
crocantilevers oscillating in a fluid close to a rigid wall, un-
der the conditions of low Knudsen and squeeze numbers.
The hydrodynamic function for such cantilevers is computed
based on the two-dimensional Tuck–Green theory for a large
range of unsteady Reynolds numbers and gap heights. Com-
pact semianalytical formulas for the hydrodynamic function
are extracted based on these computations. Using these semi-
analytical formulas, researchers can easily and accurately es-
timate the wet natural frequencies and quality factors for
microcantilever resonators immersed in various fluids, in-
cluding such diverse applications as AFM probes and RF-
MEMS switches. Tuck–Green theory and our semianalytical
formulas based on it are extensively validated by comparing
with fully three-dimensional FSI simulations as well as ex-
periments.
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TABLE II. Values of the coefficients in the semianalytical formula for the hydrodynamic function.

Re=10−2–5 Re=5–800 Re=800–104

Real Imaginary Real Imaginary Real Imaginary

a1 0.447563 1.166451 0.454992 1.048232 0.115690 −0.055778
a2 −0.128094 −0.939118 −0.123600 −0.671922 0.041530 −0.052844
a3 −0.026524 0.041405 −0.050658 −0.167450 0.000631 −0.042005
a4 0.015513 0.006618 0.030315 0.096639 −0.011091 −0.022982
a5 0.004567 −0.000518 −0.004347 −0.012839 0.001875 0.004113
a6 −0.162957 0.205767 −0.199080 0.414505 −0.042464 −0.116570
a7 0.037071 −1.480452 0.053699 −1.621577 −0.216779 −0.647854
a8 0.291576 1.084622 0.196494 1.122649 0.153418 0.541078
a9 −0.094668 0.043579 −0.143066 0.294719 −0.077252 −0.482199
a10 −0.100082 −0.214250 −0.049848 −0.228261 −0.040086 −0.021487
a11 −0.083228 0.127148 0.003749 0.159247 0.050556 0.206033
a12 0.017776 0.066614 0.033247 0.110112 0.025747 0.090325
a13 −0.015890 −0.033979 0.070494 −0.430455 0.012889 0.055147
a14 0.024807 −0.005172 0.001729 −0.038745 −0.003101 −0.010253
a15 0.017239 0.022154 0.006254 −0.086469 −0.006375 −0.058274
a16 −0.010929 0.017535 −0.004849 0.025019 −0.001033 0.001208
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tract No. 623235, “Fluid-structure interactions in microsys-
tems.”

APPENDIX

The general form of the semianalytical formula for the
hydrodynamic function � is

��Re,H� = 10�L, �A1�

where

�L�ReL,HL� = a1 + a2ReL + a3ReL
2 + a4ReL

3 + a5ReL
4

+ a6ReLHL + a7HL + a8HL
2 + a9HL

3 + a10HL
4

+ a11ReLHL
2 + a12ReL

2HL + a13ReLHL
3

+ a14ReL
3HL + a15�ReLHL�2 + a16�ReLHL�3,

HL=log10�H�, and ReL=log10�Re�. The coefficients ak ,k
=1,2 , . . . ,16 are complex valued. They are tabulated in
Table II.
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