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Abstract

Interacting surfaces are frequently found in mechanical systems and components. A lubri-

cant is often added between the surfaces to separate them from mechanical contact in order

to increase life and performance of the contacting surfaces. In this work various aspects of

hydrodynamic lubrication are investigated theoretically. This is where interacting surfaces

are completely separated by a fluid film which is often the desired operating condition of

machine components when wear and friction is to be reduced. Different flow regimes can

be identified within the scope of hydrodynamic lubrication.

If the surfaces are separated by a thick fluid film the influence from surface asperities is

small and the surfaces can be treated as smooth. If the rate of change in film thickness with

respect to the spatial directions is significantly large and if the flow velocity or Reynolds

number is large, the ordinary fluid mechanical approach treating viscous flow with Com-

putational Fluid Dynamics (CFD) has to be used. CFD is used to investigate influence

from the use of an artificial microscopic surface pattern on one of the two interacting sur-

faces. The influence from the pattern is isolated from any other pressure generating effects

by keeping the interacting surfaces parallel. Results are shown for different shapes of the

micro-pattern. If the Reynolds number decreases, the system enters a regime called Stokes

flow where the inertia effects are neglected. The full CFD approach is compared with the

Stokes for various physical and geometrical cases.

If the change in film thickness is small in the spatial directions, the thin film approxi-

mation is applicable and the full momentum equations describing fluid flow together with

the mass continuity equation can be reduced to the Reynolds equation. Depending on

boundary conditions, low pressures can occur at location of expanding fluid gap leading to

tensile stress applied to the lubricant. However, a real liquid lubricant can only resist small

tensile stresses until it cavitates into a mixture of gas and liquid. This often happens close

to atmospheric pressure due to contamination and dissolved air into the liquid and oc-

curs at higher pressures than the actual vaporization. To avoid pressures reaching too low

levels, a general cavitation algorithm applied to the Reynolds equation is presented that

accommodates for an arbitrary density-pressure relation. It is now possible to model the

compressibility of the lubricant in such a way that the density-pressure relation is realistic

through out the contact. The algorithm preserves mass continuity which is of importance

when inter-asperity cavitation of rough surfaces is considered.

For small film thicknesses the surface roughness becomes important in the perfor-

mance of the lubricated contact. Even the smoothest of real surfaces is rough at a micro-

scopic level and will influence the contact condition. The Reynolds equation still applies

since the heights of the surface asperities are small compared to the spatial elongation.

Treatment of the roughness of a real surface in a deterministic fashion is however beyond
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the scope of today’s computers. Therefore other approaches need to be employed in or-

der to take the surface roughness into account. In this work a homogenization method is

used where the governing equation of the flow condition is formulated with a two-scale

expansion, the global geometry and the roughness. Solutions are achieved for the limit

of the roughness wavelength, ε → 0 and the method renders a possibility to treat the two

scales separately. A method to generate dimensionless flow factors compensating for the

surface roughness is developed. The flow factors, once solved for a particular surface, can

be used to compensate for the surface roughness in any smooth global problem for any

film thickness.
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Nomenclature

φx Couette flow factor

α rmax/h̄

φs Poiseuille flow factor

h̄(x) Nominal fluid film clearance m

p̄ Dimensionless pressure, p/pc

x̄ Dimensionless x-coordinate, (6ηux)/(β(zmax)
2)

β Bulk modulus Pa

χ Solution to the local problem

∆x Local grid size m

η Dynamic viscosity Ns/m2

Λ 6ηu/β

L x, L y Typical length scales in x-, y-direction m

u(x,y,z) Velocity field m/s

ψ Solution to the local problem

ρ Mass density kg/m3

ρc Density at atmospheric pressure kg/m3

σ Standard deviation

θ Dimensionless density, ρ/ρc

r Spatial coordinate or surface topography height m

rmax Maximum surface asperity height m

ε Wavelength measure of a local surface roughness scale

ξ x/ε
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Awall Wall area, Lx ×Lz m2

d Groove depth m

d+ d/Ly

Fx Tangential wall force N

F+
x Dimensionless tangential wall force, 100 ∗FxL

2
y/(AwallηuLx)

Fy, W Load carrying capacity N

F+
y Dimensionless normal wall force, 100 ∗FyL

2
y/(AwallηuLx)

G Dimensionless surface topography height, −z/zmax

g Switch function, 0 if θ ≤ 1 and 1 if θ > 1

H Dimensionless film thickness, h/h̄

h(x) Film thickness, m

h0 Minimal fluid film clearance m

K Kurtosis of surface topography

Lx, Ly, Lz Fluid domain length in x-, y- and z-direction m

N Number of grid nodes for the cell problem

p Pressure Pa

p+ Dimensionless pressure, 100∗ pL2
y/(ηuLx)

pc Atmospheric pressure Pa

Pe Peclet number, ρu∆x/η

Ra Average surface roughness µm

Rq RMS surface roughness µm

Re Reynolds number, ρuLy/η

SK Skewness of surface topography

u, v, w Velocity in x-, y− and z-direction m/s

ui(x,y,z) Velocity field tensor m/s

w Groove width m

w+ w/Lx

x, y, z Spatial coordinate directions m

x+ Dimensionless x-coordinate, 2x/Lx −1

xd Groove displacement m

xd+ xd/w



Chapter 1

Introduction

The widespread range of mechanical applications with interacting surfaces and an in-

creased industrial competition for improved performance and more cost effective products

have lead to an increased attention to research in the science of friction, wear and lubri-

cation, i.e. tribology. The rapid improvements of computers allow for more advanced

tribological problems to be solved in a numerical fashion. This has led to an increased

potential of numerical research and virtual experiments as a supplement to experimental

approaches. Theoretical research is beneficial in terms of reducing expensive tribological

testing and opens opportunities for more detailed investigations of the influence of spe-

cific physical parameters in order to increase the understanding of the physical problem

considered.

In this thesis theoretical research is carried out to cover various aspects of sliding

lubrication. A vast number of mechanical applications contain interfaces with sliding in-

teracting surfaces. These interfaces operate under various loading conditions and relative

sliding speeds. To reduce friction and minimize wear, the interacting surfaces are often

separated by a thin layer of lubricant. Depending on the surface geometries, relative speed,

surface topography and applied load among other things, the surfaces could be partly or

completely separated from each other. Surfaces must form a converging gap or wedge to

generate an effect of separation. When the lubricating fluid is dragged into the converging

gap because of the relative motion of the surfaces, pressure will rise due to fluid compres-

sion because of the decrease in film thickness, producing a hydrodynamic load carrying

capacity of the lubricated contact.

There are several lubrication regimes describing different operating conditions of the

contact. An instructive illustration is shown in Fig. 1.1. The surface mean separation h̄

scaled with the standard deviation of the surface roughness σ is plotted as a function of

the lubricant viscosity and relative velocity divided by the applied load on the surfaces.

For highly loaded lubricated surfaces at a small relative sliding speed, the regime is called

boundary lubrication. In this regime all of the load is carried by the asperities of the sur-

faces. If the speed increases or load decreases the film thickness increases and the regime

becomes the mixed lubrication. At this regime the load is carried by both the lubricat-

ing fluid and asperity contact. Next to the mixed lubrication regime is the hydrodynamic

lubrication (HL) which is considered in this thesis. Within this regime the surfaces are

completely separated by the fluid film and load is carried by hydrodynamic action.

Contacts operating in the hydrodynamic regime are found in various machine elements.

1
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Figure 1.1: Different lubrication regimes.

Typical examples are the conformal hydrodynamic slider bearings, for example journal

and thrust bearings. They are often designed to carry high loads and are typically found

in engine crank shafts and turbines. Fig. 1.2 shows a thrust bearing having six pads with

Figure 1.2: A typical tilting pad thrust bearing.

self-adjusting tilt angle. The pads of the bearing are loaded against a collar on a rotating

shaft. When the bearing is operating the pads are self-adjusted to form a converging gap.

The lubricant is pulled into the interface to produce pressure and a load carrying capacity.

Bearing design is complex and involves optimizing several parameters such as the

bearing geometry, lubricant properties and flow rate. The surface topography affects the

performance of the bearing and is thus also an important design parameter. Simplistic de-

sign tools are available in the engineering community but their solutions are often limited

in accuracy. More general comprehensive equations taking into account surface topogra-
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phy are often difficult and time consuming to solve which limits their use in industry. For

this reason theoretical research is important to gain more understanding of the effects of

surface topography on a lubricated contact performance and to find more effective tools of

bearing design.





Chapter 2

Hydrodynamic Lubrication

To theoretically describe the nature of a hydrodynamically lubricated contact the physics

needs to be mathematically interpreted. The complexity of nature implies the need of a

simplified interpretations. This is a process of deciding which physical parameters could

be neglected and which must be retained in order to solve the problem in a way that is

satisfactory. The simplifications of the problem also open an opportunity to isolate certain

physical parameters and to study their specific effects on the system.

In the subject of hydrodynamic lubrication some important output parameters are fric-

tion force, pressure and load carrying capacity of the surfaces, film thickness, temperature

and the flow field. Friction force and load carrying capacity are properties that can directly

be related to the performance of the bearing. Most often a small coefficient of friction is

desired in a bearing.

In this thesis, is the main focus is pressure and load carrying capacity. But friction force

and velocity field are also considered. To treat these properties various fluid mechanical

problems are considered by solving equations governing different regimes of fluid flow.

The equations considered in this work are derived and discussed in Appendix A.

The physical scales in a hydrodynamic contact are of importance. Consider Fig. 2.1

which is a schematic view of a lubricated contact of two wavy surfaces. The lower surface

is sliding with a velocity u dragging liquid lubricant (White) with viscosity η and density ρ
into the contact. L x and L y are typical length scales for the global geometry irregularities.

When modeling such a contact there are several important factors to consider. The values

of η, ρ, u, h and the ratio L y/L x play important roles. Also the surface topography visual-

ized in the enlarged elliptic area is an important factor to consider. It should be noted that

the scales of the surface topography are highly exaggerated. The local topography ratio

of scales is typically of the order of L y/L x ∼ 10−2. All these properties determine which

governing equations can be used to simulate the fluid mechanics. Let us categorize three

types of equations valid in different sub regimes in hydrodynamic lubrication, namely:

1. Navier-Stokes equations

2. Stokes equations

3. Reynolds equation

All these sub regimes are affected by the surface topography if the film thickness h is small.

These equations are derived and discussed in Appendix A. The Navier-Stokes equations

5
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Figure 2.1: Different scales of a lubricated contact.

are the most general and are applicable to all hydrodynamic sub regimes. The Stokes

equations which are simplifications of the Navier-Stokes are applicable to viscous flow

with small Reynolds numbers. Reynolds equation is the most simplified and is considered

in thin film flow with small Reynolds numbers. The Stokes equations are valid whenever

the Reynolds equation is valid. An attempt to visualize which sub regimes are govern by

these equations considering pressure as the output variable is shown in Fig. 2.2. It is a map

with the mean film thickness scaled with the standard deviation of the surface asperities

on the vertical axis and the Reynolds number Re times the length scale ratio of the surface

irregularities on the horizontal axis. The gradient color visualizes that the influence of

surface asperities increases as the ratio h̄/σ decreases. The three different flow equation

regimes are divided by the dashed lines. It is important to keep in mind that the locations

of the divider lines are not exact and only reflects the trends to some extent. The work in

the appended papers A, B and C are categorized in terms of the hydrodynamic regime in

the map, Fig. 2.2.

All sub regimes within the map signifies high viscosity flow since the film thickness

h̄ is small compared to other spatial coordinates. The Navier-Stokes flow regime, see

Fig. 2.2, signifies large Reynolds numbers and also a rapid change in film thickness with

respect to the spatial coordinates. Here inertia forces of the fluid are significant. If the

Reynolds number and the geometrical irregularities L y/L x are decreased, inertia forces

become negligible and the regime is switched to the Stokes flow sub regime. By decreasing

the film thickness the sub regime becomes the thin film flow govern by the Reynolds

equation. If the viscous effects can negligible the Euler equations are valid, however, they

are not applicable in the field of hydrodynamic lubrication.
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Figure 2.2: A qualitative map of hydrodynamic fluid sub regimes and the governing equa-

tions. The locations of the appended papers A, B and C in this map are also shown.
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Chapter 3

Research Objectives

It is known that the surface roughness may affect lubricated contact performance in various

ways. Even if the surfaces are smooth on a macroscopic level, asperities on a microscopic

level may affect the overall performance in terms of pressure build-up, film thickness and

friction. It is of importance to optimize surface topography to improve machine perfor-

mance. This requires better fundamental understanding of contact conditions.

Deterministic computations of rough tribological contacts are difficult even with mod-

ern computers due to a large number of degrees of freedom imposed by the roughness.

Thus, research aiming at finding simplified models that take into account surface rough-

ness, thermal influence and asperity contact becomes important in order to develop effec-

tive computational tools for industrial applications.

The objectives of the present work are as follows:

1. To investigate how surface texture can improve sliding contact performance

2. To investigate the effect of surface topography on thin film contact performance

3. To develop engineering tools for design of efficient sliding contacts of rough sur-

faces

9



10 CHAPTER 3. RESEARCH OBJECTIVES



Chapter 4

Summary of Appended Papers

Paper A

In Paper A the effect of introducing an artificial surface texture or a micro-pattern to one

of the interacting surfaces is investigated. The pattern is modeled as a pocket and the

ratio of scales, L y/L x, of the pocket is in the order of 0.1 to 1 which is a large value

when speaking of thin fluid film flows. Thus, the Navier-Stokes equations have to be used

since the effects of fluid inertia are large. The influence from the pattern is isolated from

any other pressure generating effects by keeping the interacting surfaces parallel. This

approach provides a way to study of how surface texture affects the flow field and pressure

for different Reynolds numbers and geometries of the pockets that constitutes the surface

texture.

Paper B

It was shown in Paper A that pressure can be low in the diverging part of the pocket if

the boundary pressure is low. A liquid lubricant cannot withstand tensile strain and will

cavitate into a mixture of liquid and gas. This happens due to contamination particles

and gas desolved in the liquid. For this reason the cavitation has to be taken into account

when treating certain geometries and textures, typically if there is a considerable divergent

part of the domain. It may also become important to consider the lubricant liquid as

compressible. In Paper B a cavitation algorithm is developed where an arbitrary lubricant

compressibility relation in the form ρ = ρ(p) can be treated. This algorithm is developed

for the thin film regime. In this work the influence from the surface asperities is neglected.

This assumption is valid for values of h̄/σ that are sufficiently large, Fig. 2.2. However,

with smaller surface separation the influence of surface asperities becomes important.

Paper C

In this paper an approach to deal with the influence of surface asperities is considered,

Fig. 2.2. The thin film regime is considered and it should be noted that the local ratio

of scales of the surface asperities is typically in the order of L y/L x ∼ 10−2 which allows

the approach. Even if the surface is smooth on a macroscopic level the surface roughness

on a microscopic level will often influence the performance of a bearing in terms of load

11
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carrying capacity. Discreetly resolving the asperities and performing deterministic com-

putations of the hydrodynamics demands computing powers beyond the scope of today’s

computers due to the numbers of degrees of freedoms involved. Here a homogenization

technique is used where the global geometry is separated from the local roughness scale by

a two-scale asymptotic expansion. The local scale is an arbitrary periodic function with a

wavelength ε → 0. With this approach a method of computing flow factors, compensating

for the surface roughness, is developed. The flow factors can be computed for a measured

surface topography with high resolution and once computed, they can be used as scale

factors in a coarsely resolved global bearing problem.



Chapter 5

Conclusions

In this thesis, simulation of hydrodynamic lubrication has been considered. Different ap-

proaches in solving the fluid flow in the contact has been made.

1. The fluid mechanics of hydrodynamic lubrication between parallel surfaces is stud-

ied for isothermal, incompressible and steady 2D conditions. Normally no pressure

rise in the film would occur when the surfaces are parallel. However, it is shown

that the introduction of a micro groove on one of the surfaces affects the flow and

pressure pattern. This gives a net pressure build-up and a load carrying capacity of

the film. Negligible hydrodynamic effects are achieved when the advective terms

are excluded from the Navier-Stokes equations, i.e when the Stokes equations are

considered which proves the significance of inertia for this type of flow condition.

It is shown that load carrying capacity increases with Reynolds number and the

width of the groove. A general optimum is achieved when the depth of the groove is

between 50 to 75 % of the filmthickness for all geometries and groove widths. The

load carrying capacity can, to some extent, be related to the amount of circulation in

the groove. A vortex appears at a certain value of groove depth. Near this value the

maximum load carrying capacity is achieved.

2. When some part of the fluid gap is expanding pressure can become low and even

cavitate into a mixture of liquid and gas. For some conditions it also becomes im-

portant to take the lubricant compressibility into account. To treat this, a generalized

Reynolds equation accommodating for an arbitrary compressibility relation and cav-

itation was been derived. It has been shown that different compressibility models

can produce significantly different results in a hydrodynamic pressure range. Load

carrying capacity is especially sensitive to the type of compressibility relation used

if the inlet is starved. Surface roughness close to the inlet has been shown to have

important effects on load carrying capacity.

3. For small film thickness the surface roughness becomes important in most cases.

Due to the amount of degrees of freedom required to resolve the surface roughness

a homogenization technique for the compressible Reynolds equation was consid-

ered. With this technique a novel method of computing dimensionless flow factors

compensating for the effects from arbitrary surface roughness has been developed.

13
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By using the flow factors, the hydrodynamics can be solved on a coarsely resolved

bearing geometry.



Chapter 6

Future Work

Computations of hydrodynamic problems involving surface roughness are complex due to

the number of degrees of freedom involved in resolving the roughness. The future work is

to continue studying various effects that surface roughness introduces in lubrication prob-

lems. The work will be extended to mixed lubrication regime. More physical quantities,

such as thermal influence will be introduced in the theoretical analysis. Suggested future

work will also cover developing engineering tools that can be used to predict different

contact conditions and improve machine performance. These tools should be fast and able

to cover most lubrication regimes.

15
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Appendix A

Fluid Flow Equations

The fluid flow in hydrodynamic lubrication is govern by various equations depending on

the physics to model. These are often described by non-linear partial differential equation

and solving these equations describing the fluid motion is often complex. Therefore it

is always desirable to simplify the modeling of fluid flow whenever possible. This is a

process of determining scales of importance and dropping vanishing terms in the model

which are not affecting the overall solution.

The basic governing equations for fluid motion of a viscous fluid are known as the

Navier-Stokes equations of motion. They are derived by considering the dynamic equilib-

rium of forces acting at any given region of the fluid and involves conservation of mass

and momentum.

A.1 Forces

The forces considered are surface forces, body forces and inertia forces. Body forces

are proportional to the mass of the fluid and are distributed throughout the mass, e.g.

gravity force field. Here we will neglect the influence of body force. Surface forces are

proportional to the extent of the area of the fluid and are exerted on an area element by the

surroundings through direct contact. The surface forces can be expressed in terms of the

stress tensor

τi j =
dFi j

dA
(A.1)

where F is the force tensor, A a control area and the first index denotes the components

normal to the surface and the second components tangential to the surface. In three spatial

dimensions the stress tensor has nine elements and completely specifies the stress at a

point anywhere. The stress tensor is symmetric, i.e.,

τi j = τ ji (A.2)

and thus has six independent components for three spatially dimensions. Also forces acting

on line, so called line forces, can exist in nature and are typically surface tension but is

not considered here. The inertia forces come from the acceleration of a fluid element, or

17



18 APPENDIX A. FLUID FLOW EQUATIONS

advection, and are expressed in terms of the material derivative

Dui

Dt
=

∂ui

∂t
+ u j

∂ui

∂x j
(A.3)

The derivative describes the change in velocity as the element moves in space.

A.2 Conservation of Momentum

By applying Newton’s law of motion to an infinitesimal fluid element the equation of

motion relating the inertia to the net force at a point for any continuum becomes

ρ
Dui

Dt
=

∂τi j

∂x j
. (A.4)

which is the Cauchy’s equation of motion. The constitutive equation for a particular fluid

relates the shear stress to the strain rate. This relation is embedded in the stress tensor and

could take a complex form. Many fluids may be approximated by a Newtonian model.

The Newtonian model uses the assumption that the shear stress is linearly proportional to

the strain rate. When the rate of shear strain is zero, the shear stress is zero.

A.3 Navier-Stokes Equations

The Navier-Stokes equations are obtained by substituting a constitutive relation into Eq. (A.4)

and by assuming a Newtonian fluid becomes

ρ
Dui

Dt
= −

∂p

∂xi
+

∂

∂x j

[
2ηei j −

2

3
η(∇ ·u)δi j

]
(A.5)

which is a general form of the Navier-Stokes equations where η and ρ could be functions

of for example pressure and temperature. δ is the Kronecker delta and the strain rate tensor

e is defined as

ei j ≡
1

2

(
∂ui

∂x j
+

∂u j

∂xi

)
. (A.6)

If the Navier-Stokes equations are written in a three dimensional coordinate system they

are three in numbers but include four unknowns, u and p. To be able to solve the problem,

a complement to the conservation of momentum the principle of conservation of mass can

be employed, called the continuity equation:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0. (A.7)

If the variation in viscosity is small the Navier-Stokes equations can be reduced to

ρ
Dui

Dt
= −

∂p

∂xi
+ η

[
∇2ui +

1

3

∂

∂xi
(∇ ·u)

]
. (A.8)
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If the variation in density is small, ∇u = 0 and the Navier-Stokes and the continuity equa-

tions reduce to

ρ
Dui

Dt
= −∇p + η∇2u

∇ ·u = 0.

If the no variation in time occurs the Navier-Stokes equations can be further reduced:

ρ(u ·∇)u = −∇p + η∇2u. (A.9)

If the viscous effects (the rightmost term) are negligible the equations can be reduced to

the Euler equations:

ρ(u ·∇)u = −∇p. (A.10)

A.4 Stokes Equations

In lubrication problems however the fluid shear stress is normally high due to the small

film thickness and cannot be neglected. On the other hand, since the shear stress often

is high in hydrodynamic lubrication the fluid inertia or advection often becomes small in

comparison. Hence, a more realistic simplification would be to neglect the advection:

−∇p + η∇2u = 0 (A.11)

which are known as the Stokes equations. These are more convenient equations to handle

since the non-linear advective term is dropped. These equations are well suited for creep-

ing flows with large viscosity and small velocities. In Paper A, Navier-Stokes Eq. (A.9)

and Stokes Eq. (A.11) are compared in a hydrodynamic lubrication application.

A.5 Reynolds Equation

The Navier-Stokes equations can be reduced further by assuming that the length scales

L y/L x ≪ 1 see Fig. 2.1. Consider the Stokes equations (A.11) written in two dimensions:

−
∂p

∂x
+ η

(
∂2u

∂x2
+

∂2v

∂x2

)

−
∂p

∂y
+ η

(
∂2u

∂y2
+

∂2v

∂y2

)
= 0.

We will consider a scale analysis which could equally well be applied in three dimen-

sions but for simplicity reason we consider a two-dimensional case here. Introduce the

dimensionless parameters:

x̄ =
x

L x
; ȳ =

y

L y
; ū =

u

u0
; v̄ =

v

v0
; p̄ =

L
2
y p

L xη0u0
(A.12)
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Inserting these dimensionless parameters into Eq. (A.12), dividing by (η0u0) and multi-

plying by L 2
y gives:

−
∂p̄

∂x̄
+

(
L y

L x

)2

η̄

(
∂2ū

∂x̄2
+

v0

u0

∂2v̄

∂x̄2

)

−
L x

L y

∂p̄

∂ȳ
+ η̄

(
∂2ū

∂ȳ2
+

v0

u0

∂2v̄

∂ȳ2

)
= 0.

The ratio v0/u0 has the same order of magnitude as L y/L x. Neglecting these terms and

assuming that that pressure variation in the y-direction can be neglected the equation be-

comes:
∂p̄

∂x̄
= η̄

∂2ū

∂ȳ2
(A.13)

and the Navier-Stokes equations have been reduced by applying the thin film approxima-

tion. This equation is in dimensionless form. However, let us express the equation with

dimensional quantities and integration twice with respect to y yields

u =
1

2η

∂p

∂x
y2 + Ay + B. (A.14)

A and B in this case are either constants or functions of x and can be solved by applying a

boundary condition for u:

u = U0 at y = 0 and

u = Uh at y = h. (A.15)

where h = h(x). Substituting (A.14) into (A.15) gives

B = U0 and A =
1

h
(Uh −U0)−

h

2η

∂p

∂x
. (A.16)

The Velocity becomes

u =
1

2η

∂p

∂x
(y2 − yh)+

y

h
(Uh −U0)+U0. (A.17)

Revisiting the continuity equation for incompressible conditions:

∂u

∂x
+

∂v

∂y
= 0 (A.18)

and integration with respect to y from 0 to h(x) yields:

−(V0 −Vh) = x−

Z h(x)

0

∂u

∂x
dy (A.19)

By substituting (A.17) into (A.19) interchanging the differentiation and integration through

the use of applying Leibnitz’s rule we get

−(V0 −Vh) = −
∂

∂x

[
1

2η

∂p

∂x

Z h(x)

0
(y2 − yh)dy

]

−
∂

∂x

Z h(x)

0

[ y

h
(Uh −U0)+U0

]
dy−Uh

∂h

∂x

−(V0 −Vh) = −
∂

∂x

(
h3

12η

∂p

∂x

)
+

∂

∂x

[
h(Uh +U0)

2

]
−Uh

∂h

∂x
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The left-hand term −(V0 −Vh) = ∂h/∂t. In this case ∂h/∂t = 0 because of steady state

conditions and the equation can be written:

∂

∂x

(
h3

12η

∂p

∂x

)
=

h

2

∂

∂x
(Uh +U0)+

(U0 −Uh)

2

∂h

∂x
. (A.20)

This is the incompressible Reynolds equation describing fluid film flows where the scales

L y/L x ≪ 1 and pressure variations across the film is neglected. The equation is here one

dimensional with the y-component transformed to the film thickness equation h depending

only on x. If the coordinate z was not dropped the film thickness would be a function of

both x and z. In either case, all the Navier-stokes equations and the continuity equation are

reduced to one equation with pressure as the dependent variable. If Uh zero and u = U0

the Reynolds equation is reduced to

d

dx

(
h3

12η

d p

dx

)
=

u

2

dh

dx
. (A.21)

In a similar form the compressible Reynolds equation can be written

d

dx

(
ρh3

12η

d p

dx

)
=

u

2

d

dx
(ρh). (A.22)

This equation is used as a basis and modified in different ways in Paper B and C.
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Abstract

Results of a numerical study of the influence of micro-patterned surfaces in hydrodynamic

lubrication of two parallel walls are reported. Two types of parametrized grooves with the

same order of depth as the film thickness are used on one stationary wall. The other wall

is smooth and is sliding with a specified tangential velocity. Isothermal incompressible

two dimensional full film fluid flow mechanics is solved using a Computational Fluid Dy-

namics method. It is shown that, by introducing a micro-pattern on one of two parallel

walls, a net pressure rise in the fluid domain is achieved. This produces a load carrying

capacity on the walls which is mainly contributed by fluid inertia. The load carrying ca-

pacity increases with Reynolds number. The load carrying capacity is reported to increase

with groove width and depth. However, at a certain depth a vortex appears in the groove

and near this value the maximum load carrying capacity is achieved. It is shown that the

friction force decreases with deeper and wider grooves. Among all geometries studied,

optimum geometry shapes in terms of hydrodynamic performance are reported.
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A.1 Introduction

The purpose of lubrication is to separate surfaces in relative motion in order to reduce

friction and wear. The separation and load carrying capacity are achieved by generating

a pressure in the fluid film between the surfaces. The most significant pressure build-

up in hydrodynamic lubrication is achieved when a converging gap is allowed to form

the surfaces. A relative velocity between the surfaces will start driving fluid into the gap

leading to a pressure build-up.

In order to improve performance and efficiency and to reduce wear and the risk of fail-

ure in hydrodynamic lubrication, it is important to study various effects that can contribute

to the pressure build-up.

The subject for this work is to investigate the influence of surface gesturing in hy-

drodynamic lubrication of two parallel surfaces. Experimental research in this area, such

as reported in [1, 2] shows that significant improvements in hydrodynamic journal bear-

ing performance can be achieved by surface gesturing. Textured reciprocating surfaces are

studied experimentally in [3] where a clear reduction in friction force is found. Glavatskih,

et al. [4] investigated hydrodynamic performance of thrust bearings and conclude that

higher film thickness and lower power loss are obtained through the use of micro-patterned

pads.

All mechanisms contributing to bearing efficiency using surface gesturing are far from

known. Therefore theoretical analysis is important to be able to study individual effects.

Numerical studies are presented in [5, 6] where Reynolds equation is used to simulate the

effects of spherical grooves applied on a stationary surface in hydrodynamic lubrication.

One effect contributing to the load carrying capacity could be local cavitation at the

diverging part of surface grooves. Local cavitation could contribute to the pressure build-

up in a bearing. Such analysis is done by Brizmer et al. [7] who study parallel thrust

bearings with spherical grooves using Reynolds equation with a cavitation model.

In the diverging part of the groove cavitation may occur leading to a two-phase flow.

This two-phase flow will then enter the convergent part of the groove. To achieve a net

pressure build-up this flow must be transformed to a single-phase liquid flow. Because of

the groove and film geometry, this can only be achieved if an additional amount of liquid

is supplied from outside the groove. In practical cases, it is unclear how this liquid supply

to the dimples is achieved, especially when side leakage is considered. That is why there

is a possibility that cavitation has a limited effect. Thus, other effects that may lead to a

pressure build-up must be studied.

Arghir, et al. [8] report a Computational Fluid Dynamics (CFD) analysis of fluid flow

between parallel surfaces with relative speeds. One of the surfaces contains a groove which

is represented by three different geometries. The main conclusion of this study is that there

is a net pressure build-up caused by the combined effect of the presence of a groove and

of the increasing Reynolds number.

Although there are many physical effects contributing to hydrodynamic efficiency, it is

important to study them individually to be able to distinguish between them. For different

applications and running conditions, different physical effects will be present, contributing

to the hydrodynamic performance in various ways. In this paper the fluid mechanical

effects will be isolated and analyzed. The importance of inertia for certain types of flow

conditions and micro-patterns will be discussed further in this work. The hydrodynamic

performance in terms of friction force and load carrying capacity and how it depends on
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groove geometry and flow conditions will be studied by using CFD.

A.2 CFD-Model

In this work the Navier-Stokes equations are solved using a commercial CFD code. The

equations are applied without body force, with constant viscosity and density. The equa-

tions are steady and solved in the x- and y-direction only. With these properties the Navier-

Stokes and the continuity equations can be written, respectively:

ρ(u ·∇)u = −∇p + η∇2u

∇ ·u = 0.

The equations are solved in dimensional form, however, all results are represented in

non-dimensional form in such way identical result are achieved for the same Reynolds

number, Re. Hence, the dimensional values do not have any meaning, only the value of

Re. Information about the non-dimensionalization of the quantities can be found in [9].

In this work, two types of geometries for the fluid domain have been studied. The first

geometry is defined as the cylindrical geometry and is seen in Figure A.1. The groove is
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Figure A.1: The fluid domain of the cylindrical geometry. Included are the geometrical

parameters and boundary conditions.

described by a circular arc of depth d and width w. The constant quantity Lx = 1e−3 m is

the length in the x-direction of the domain and the constant quantity Ly = 3e−5 m is the

film thickness of the fluid domain. In the same figure, the boundary conditions for the fluid

domain are shown. The fluid is experiencing no-slip conditions at the walls. The upper

wall is moving with a velocity u whilst the lower wall is stationary. The edges at high and

low x-coordinates are bound by a periodic boundary. A symmetry condition is applied in

the z-plane.

The second geometry is defined as the splined geometry and is seen in Figure A.2. The

geometrical parameters for this case are defined as for the cylindrical geometry except that

the groove is described as a splined curve. Another parameter, xd, is introduced to describe

the x-displacement of the low y point of the groove. The same boundary conditions are

applied for the splined as for the cylindrical geometry.

In all the equations, terms are discretized in space using second-order centered differ-

encing apart from the advection. For these terms, a hybrid differencing scheme is used

which is close to first-order accuracy [10]. This scheme is slightly better than upwind

differencing because second-order central differencing will be used across streams and in

regions of low flow where Pe < 2. If Pe ≥ 2, upwind discretization will be applied. These
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Figure A.2: The fluid domain of the the splined geometry. Included are the geometrical

parameters and boundary conditions.

discretizations are based on a conservative finite-volume method [11]. For information of

the computational grids and error analysis, see Sahlin [9].

A parametrized fluid model is used where certain parameters are being changed in a

systematic order. All the parameters that are being varied, entirely independently from

one another, are listed in Table A.1. Results from some complementary simulations with

Table A.1: Individually varied parameters.
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⎧
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0

+0.3
Re

⎧
⎪⎪⎨

⎪⎪⎩

40
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160

values different than those in the table will occasionally be shown.

A.3 Results and Discussion

Results are presented and discussed in terms of advection, fluid film pressure, streamlines

and forces acting on the walls. It should be emphasized that the fluid flow effects are com-

pletely isolated from any other effects that might occur in a real thin film fluid flow. The

interest in this paper is thus to analyze the fluid mechanical effects in hydrodynamic per-

formance. However, other effects such as cavitation and thermodynamics would certainly

influence the hydrodynamics.

A.3.1 Advective Influence

The advective (convective) contribution in the fluid flow can be studied by comparing the

Navier-Stokes solution with the Stokes where the advective terms (inertia) are truncated

from the Navier-Stokes equations. In Fig. A.3 the pressure distribution on the upper wall
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Figure A.3: Comparison between Navier-Stokes and Stokes solutions for pressure distri-

bution on the upper smooth wall for the cylindrical geometry. w+ = 0.2 and d+ = 0.25 for

both plots. The vertical dotted lines represent the grove edges.

has been plotted as a function of the spatial dimension x+ for Navier-Stokes and Stokes

solutions respectively. In this figure the cylindrical geometry is used where Re is set to

10 in A.3(a) and 160 in A.3(b). With the value of Re in Fig. A.3(a), the Navier-Stokes

and Stokes solutions are much alike. A small displacement to the left of the Navier-Stokes

curve is seen next to the portion of the groove. When Re is increased in Fig. A.3(b), great

differences between the two solutions arise. From Fig. A.3(b), the Stokes curve seems to

be entirely antisymmetric whereas the Navier-Stokes curve shows a net pressure rise in the

domain from the zero boundary.

Following the pressure curves in Fig. A.3(b) starting from low x+, an almost linear

pressure drop is encountered for both curves. Slightly before arriving at the groove edge,

located at x+ = −0.2, pressure increases rapidly for the Navier-Stokes solution producing

a net pressure build-up in the fluid film. For the Stokes solution, the pressure continues

its descent until it passes the groove edge where the curve changes to an almost linear

pressure rise. The solutions from the Stokes case produces close to an antisymmetry-axis

at the line x+ = 0.

The area between the two curves in Fig. A.3(a) as well as in A.3(b) is equal to the

contribution of inertia in the flow only, because the advective term is completely dropped

in the Stokes equations. This confirms findings of a recent study made by Arghir et al. [8].

A quantitative measure of the difference between the Navier-Stokes and Stokes So-

lutions can be seen in Fig. A.4, which shows the dimensionless normal force F+
y as a

function of w+ for Navier-Stokes and Stokes solutions. As an example, the cylindrical

geometry with the lowest simulated groove depth, d+ = 0.25, is chosen. This is in order

to provide as low an influence of inertia as possible. In Fig. A.4(a) Re = 10.
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Figure A.4: F+
y on a 10-base logarithmic scale as a function of w+ for Navier-Stokes and

Stokes solution respectively, d+ = 0.25.

It is seen that there is indeed a positive net force in the direction normal to the wall for

the Stokes solution, evolving from diffusion.

However, the force for the Navier-Stokes solution is one order of magnitude greater. In

Fig. A.4(b) the value of Re is 16 times greater and the force for the Navier-Stokes solution

is two orders of magnitude greater than the force from the Stokes solution.

This shows the importance of the advective terms in the Navier-Stokes equations for

this type of geometries and flow conditions. It implies that further simplifications to the

Navier-Stokes equations would not be appropriate here.

A.3.2 Pressure Distribution

Figures of pressure distributions are shown with values at the periodic boundary set to

zero only because it gives a convenient representation. The incompressible Navier-Stokes

equations are solved, hence, the absolute pressure has no meaning in this study and the

pressure distribution across the domain could be shifted any amount. Only the gradient of

the pressure is affecting the flow and has meaning in this case.

Comparisons of pressure distribution for the cylindrical geometry are made in Fig. A.5

where p+ is plotted as a function of the non-dimensional spatial dimension x+ for different

values of Re. w+ = 0.3 is constant for all sub-figures but d+ is varied between the sub-

figures. All pressure distributions show a linear pressure drop at the beginning and at the

end of the domain. The length in the x-direction where the pressure is deviating from this

linearity at the mid part of the domain will be called the affected elongation. If Fig. A.5(a)

where d+ = 0.25 is considered, it is clear that the pressure build-up in the groove increases

with the value of Re, and the differences are substantial. The pressure curves are con-

vexly shaped across the entire affected elongation, i.e., the curvature ∂2 p/∂x2 is negative

throughout the pressure rise for all values of Re. With Re = 160, the maximum dimension-

less pressure is about 9. In Fig. A.5(b) the groove depth is increased to d+ = 0.75 and it

is seen that the maximum non-dimensional pressure has increased to about 12. However,

the curves do not show as extreme convexity as in the previous figure. In other words,
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Figure A.5: Upper wall pressure distribution for the cylindrical geometry with w+ = 0.30.

The vertical dotted lines represent the grove edges.

the curves are flattened out in the affected elongation. In Fig. A.5(c) the greatest groove

depth d+ = 1.25 is used. Here the pressure maximum is decreased compared to the case

of d+ = 0.75 and the difference in solutions between the Reynolds numbers are decreased.

At the right half of the affected elongation the pressure distributions have concave shapes.

Some preliminary conclusions can now be made regarding how the pressure distribu-

tions are affected, which will later be proved with further results. By studying Fig. A.5 it

seems that the affected elongation depends on the groove width w+. On the other hand,

the value of d+ seems to affect the elevation and form of the pressure build-up curve. In

terms of load carrying capacity, a convexity in the affected elongation which gives the

maximum possible area beneath the curve is preferred. A flat pressure build-up with a

higher maximum pressure will not lead to a higher load carrying capacity.

In Fig. A.6 the pressure distributions are plotted for the splined geometry with w+ =
0.5 and d+ = 0.25. Fig. A.6(a) is for a negative displacement of the low y-point with xd+ =
−0.3, Fig. A.6(b) for xd+ = 0 and Fig. A.6(c) for a positive displacement with xd+ =
+0.3. As the affected elongation is nearly the same for all sub-figures, it can be confirmed
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Figure A.6: Upper wall pressure distribution for the splined geometry used with d+ = 0.25

and w+ = 0.50. The vertical dotted lines represent the grove edges.

that it strongly depends on the value of w+. It seems that the pressure distributions in

Fig. A.6(a) provide highest load carrying capacity. When the groove is symmetric, in

Fig. A.6(b), the rising-pressure zone flattens out slightly which may lead to lower load

carrying capacity. In Fig. A.6(c) where xd+ = 0.3, the rising-pressure zone flattens out

further but a slightly increased pressure maximum is noted. If the assumptions about the

load carrying capacities are true, the magnitude of the pressure maximum in the domain

is not of primary importance in the sense of hydrodynamic performance. More important

would be to achieve a shape of the pressure distribution which is as much convex at the

affected elongation as possible.

A.3.3 Streamlines

Streamlines can give a qualitative idea about how the flow is ordered, if any vortexes or

irregularities of the flow exist and, in that case, where they develop and what influences

they have on the hydrodynamic performance. Streamlines are expressed in terms of the
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scalar stream function ψ and along a streamline ψ = constant. The velocities can be found

in terms of the derivatives of ψ as u = ∂ψ/∂y and v = −∂ψ/∂x.

In Fig. A.7, streamlines for the cylindrical geometry are plotted, all with Re = 40

(a) d+ = 0.50.

(b) d+ = 0.75.

(c) d+ = 1.00.

(d) d+ = 1.25.

Figure A.7: Streamlines in the cylindrical geometry for different values of d+ are plotted

where Re = 40 and w+ = 0.20.

and groove width w+ = 0.20 but different groove depth d+. In A.7(a) the streamlines

are completely ordered and smooth, but as d+ increases to a value between 0.5 and 0.75,

a vortex is developed in the groove (see Sahlin [9] for a comparison with isobar plots

for the same conditions). The vortex development can be related to a driven cavity flow

phenomenon extensively studied by Shankar and Deshpande [12]. The size of the vortex

is increased with increased d+ and at d+ = 1.25 the vortex is about the same size in the

y-direction as the groove depth value. This shows that the vorticity is clearly dependent on

groove depth.

Figure A.8 shows the effects of different values of Re. The cylindrical geometry is

used with w+ = 0.15 and d+ = 0.25. As the value of Re increases, the size of the vortex

increases. There is no vortex at a sufficiently low value of Re.

In Fig. A.9, streamlines are plotted for the cylindrical geometry with constant groove

depth d+ but different w+. It can be seen that the vortex decreases in size with increasing

groove width w+ and constant Re. At a sufficiently large value of w+ there is no vortex

and no back-flow exists in the groove.

The vortex development obviously depends on the value of Re and how fast the ge-

ometry is changing, i.e. the value of dy/dx. These are properties which highly affect

the advective influence whereby a connection is likely to exist between advection and the

amount of vorticity. Let us therefore compare the full Navier-Stokes equations with the

Stokes in terms of streamlines. Such a comparison is made in Fig. A.10. By comparing

A.10(a) and A.10(b) it is obvious that the inclusion of advection leads to an earlier devel-

opment of the vortex. However, when d+ is doubled in A.10(c) and A.10(d), it can be seen

that a vortex develops even without the advective influence and is entirely centered in the

x-direction. With the advective influence the vortex center is moved to the right. Hence,

the streamlines for the Stokes solution are completely symmetric in the line x+ = 0. As
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(a) Re = 40

(b) Re = 80

(c) Re = 120

(d) Re = 160

Figure A.8: Streamlines in the cylindrical geometry for different values of Re are plotted

where d+ = 0.25 and w+ = 0.15.

(a) w+ = 0.15.

(b) w+ = 0.25.

(c) w+ = 0.35.

(d) w+ = 0.45.

Figure A.9: Streamlines in cylindrical geometry for different values of w+. Re = 40 and

d+ = 0.75 in all figures.

shown in the pressure plots, Fig. A.3, the pressure distributions for the Stokes solutions

are close to antisymmetric at the same position.

A.3.4 Forces

Wall forces consist of both inertial and diffusive forces. These are attained directly from

the CFD-solver.

It was shown in Fig. A.5 and A.6 that the pressure build-up was monotonically in-

creased by increasing Reynolds number. This increase is further substantiated by Fig. A.11

where F+
y is plotted as a function of w+. It is shown that the normal force also monoton-

ically increases by increasing groove width w+. A quantitative comparison between the
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(a) w+ = 0.15, d+ = 0.5. Advection. (b) w+ = 0.15, d+ = 0.5. No advection.

(c) w+ = 0.15, d+ = 1. Advection. (d) w+ = 0.15, d+ = 1. No advection.

Figure A.10: Streamlines for Navier-Stokes solution left and Stokes solution right. The

cylindrical geometry is used and Re = 160 for all.
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(a) Cylindrical, d+ = 0.25
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(b) Splined, d+ = 0.25

Figure A.11: F+
y as a function of w+ for various values of Re for the cylindrical geometry

(top) and the splined with xd+ = 0 (bottom).

cylindrical geometry and the splined geometry with a symmetrical groove displacement

xd = 0 shows that higher normal forces are achieved with the cylindrical geometry for

d+ = 0.25.

Figure A.12(a) shows how the normal force is affected by different values of xd+ for

the splined geometry. As w+ increases, the differences of F+
y between the three values

of xd+ also increase. It is clear that a negative value of xd+ contributes positively to F+
y ,

especially when w+ is large. By comparing this curve with Fig. A.11(a) for Re = 40 it

is noted that the splined geometry with xd+ = −0.3 produces higher values of F+
y that

the cylindrical. It should also be noted that F+
y , for the special case of xd+ = 0.3 in

Fig. A.12(a), does not monotonically increase as w+ increases. This is an exceptional

behavior compared to all other geometries. If F+
y is instead plotted as a function of d+,

the differences are larger when d+ is small and decrease when d+ increases. This can be

seen in Fig. A.12(b). It can also be seen that an optimum value of d+ exists on each curve.

There is a tendency that the optimum is displaced towards greater values of d+ as xd+

increases.
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Figure A.12: F+
y for various values of xd+ for the splined geometry..

In Fig. A.13 the non-dimensional friction force is plotted against d+ for the cylindri-

cal and splined geometry respectively. The cylindrical geometry produces lower friction
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(a) Cylindrical
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(b) Splined, xd+ = 0

Figure A.13: F+
x as a function of d+ for the values of w+ = {∗0.15, ⊲0.2, +0.25, �0.3,

x0.35, ♦0.4, ▽0.45, △ 0.5}. Solid line represents Re = 40 and dashed line Re = 160.

force than the splined geometry for all cases. This is partly explained by the fact that the

cylindrical groove inherits a greater area than the splined, using the same width and depth,

which in turn gives rise to a lower friction force. It is noticed that F+
x differs between Re

and the difference is increasing as d+ increases. The difference in F+
x between Re does

not, however, change much by different values of w+. F+
x decreases with increasing val-

ues of w+ and d+. However, F+
x shows a different behavior for the cylindrical geometry

with high Re and low w+. The smooth surface case, i.e. d+ = 0, corresponds to a value of

F+
x = 3 for a value of Re = 40. This shows that the textured surface will give rise to lower

friction.
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It was shown in Fig. A.11 that the cylindrical geometry produces greater normal force

which is true for some cases. It was concluded in Fig. A.12 that the splined geometry

is most effective, in terms of normal force, with a negative value of xd+. Figure A.13

showed that the cylindrical geometry produces lower friction force compared to the splined

geometry. The differences in friction force for different values of xd+ is negligible. This

concludes that, in most cases, the most beneficial geometries in terms of hydrodynamic

lubrication are the cylindrical geometry and the splined geometry with xd+ =−0.3. These

two geometries are compared in Fig. A.14 and A.15, where the normal force is plotted as

a function of d+ for different values of w+. At the lowest Reynolds number in Fig. A.14,
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(a) Cylindrical, Re = 40
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(b) Splined, xd+ = −0.3, Re = 40

Figure A.14: F+
y as a function of d+ for Re = 40 and the values of w+ = {∗0.15, ⊲0.2,

+0.25, �0.3, x0.35, ♦0.4, ▽0.45, △ 0.5}. The cylindrical geometry (top) and the splined

(bottom).
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(a) Cylindrical, Re = 160
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(b) Splined, xd+ = −0.3, Re = 160

Figure A.15: F+
y as a function of d+ for Re = 160 and the values of w+ = {∗0.15, ⊲0.2,

+0.25, �0.3, x0.35, ♦0.4, ▽0.45, △ 0.5}. The cylindrical geometry (top) and the splined

(bottom).

the splined geometry shows a higher load carrying capacity. At Re = 160 in Fig A.15

however, the properties are reversed and the cylindrical geometry shows higher normal

forces. As stated earlier, there exists an optimal value of d+ in terms of normal force,
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which is also the case in this figure. At the lowest value of w+ the maximum is located

at d+ ≈ 0.5 in all cases represented. As w+ increases, the maximum is displaced towards

greater groove depths. This is also the case when Re is decreased. However, the optimum

could in general be fit in the range 0.5 < d+ < 0.75 for most cases. No direct relation

between the ratio d/w and forces can be found because of the strong individual effects of

d+ and w+ respectively.

The conclusion that a certain maximum groove depth exists where an increase does

not lead to further increase in load carrying capacity agrees with experiments made by

Snegovskii and Bulyuk [1].

A comparison could be made between the second curve from the bottom representing

w+ = 0.20 in Fig. A.14(a) and the streamline plots in Fig. A.7(a) and Fig. A.7(b) which

represent the same geometry and Re. It is seen that at d+ ≈ 0.5 where the maximum

load carrying capacity is located, a vortex is beginning to form. When Re is increased,

the vortex and the F+
y -maximum appears at lower values of d+ which is evident from

Fig. A.8 and A.14 respectively. Making a comparison between Fig. A.9 and Fig. A.14 and

A.15 reveals the relation between vortex formation and F+
y -maximum in terms of different

values of w+.

This discussion shows that the normal force maximum appears close to the beginning

of a vortex formation in the groove. This is true for most cases studied. Hence, the vortex

affects the normal force in a destructive manner.

A.4 Conclusions

The fluid mechanics of hydrodynamic lubrication between parallel surfaces is studied for

isothermal, incompressible and steady 2D conditions. The conclusions are summarized as

follows:

1. An introduction of a micro groove on one of the surfaces affects the flow and pres-

sure pattern. This gives a net pressure build-up and a load carrying capacity of the

film. Negligible hydrodynamic effects are achieved when the advective terms are

excluded from the Navier-Stokes equations.

2. Load carrying capacity increases with Reynolds number and groove width w+. A

general optimum is achieved when 0.5 < d+ < 0.75 for all geometries and groove

widths. The load carrying capacity can, to some extent, be related to the amount of

circulation in the groove. A vortex appears at a certain value of groove depth d+.

Near this value the maximum load carrying capacity is achieved.

3. The friction force decreases with increasing values of groove depth d+ and width

w+.

4. The best hydrodynamic performance is achieved with the cylindrical geometry and

the splined with a negative groove displacement xd+.
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Abstract

A general cavitation algorithm is presented that accommodates for an arbitrary density-

pressure relation. It is now possible to model the compressibility of the lubricant in such

a way that the density-pressure relation is realistic through out the contact. The algorithm

preserves mass continuity for cavitation caused by bearing geometry as well as surface

topography. It is a commonly accepted physical assumption that the contribution of the

pressure driven flow can be considered negligibly small in the cavitated region. This phe-

nomenon is adopted in the present algorithm, which is similar to that of Elrod, and is

modeled by a switch function that terminates the pressure gradient at the regions of cavita-

tion. Results with this algorithm for different density-pressure relations are presented and

discussed. Effects of inlet conditions, such as surface roughness and starvation, on load

carrying capacity of the contact are analyzed.
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B.1 Introduction

Cavitation usually occurs in the regions of diverging contact gap and implies sub-ambient

pressures. These low pressures lead to a transformation of the liquid into a gas-liquid mix-

ture. Different types of cavitation models have been proposed over the years to replicate

this behavior in theoretical simulations. Some of the algorithms preserve lubricant mass

continuity whilst others not. By simulating the behavior of rough surfaces, several cav-

itation regions might appear inside the contact and preserving mass continuity becomes

crucial.

Jakobsson and Floberg [13] developed a mass preserving cavitation theory. They as-

sumed that the pressure is constant in the cavitation region which means that the pressure

gradient is zero. They derived a set of conditions to locate the cavitation boundaries.

Later, Floberg extended their theory of cavitation and implemented it for a number of

bearing types [14, 15, 16, 17]. Elrod [18] and Elrod and Adams [19] developed a cavita-

tion algorithm where a single equation is used throughout the lubrication region without

the need for explicit equations to locate the cavitation boundaries. They used a switch

function to terminate the pressure gradient in the region of cavitation. Vijayaraghavan

and Keith Jr [20] developed an algorithm in a similar way as Elrod and introduced more

rigorous derivation which was further developed in [21]. This algorithm is derived under

the assumption that the bulk modulus is constant. For real lubricants the bulk modulus

varies with pressure. For a wide pressure range and under certain conditions it becomes

important to use a realistic compressibility model for the lubricant. However, treating the

bulk modulus as a constant could produce good results for a narrow pressure range.

The cavitation algorithm presented here uses Reynolds equation and is based on the

assumption that the pressure gradient is zero in the cavitation region and that only Couette

flow is present there. It inherits a similar switch function as the Elrod algorithm to modify

Reynolds equation at the locations of cavitation. With this algorithm, an arbitrary density-

pressure relation of the lubricant can be applied. Thus, measured compressibility factors

from real lubricants can be used to achieve more realistic results.

B.2 Theory

The governing equation that constitutes the basis for the current algorithm is the Reynolds

equation. A simple steady state form of this equation can be written as

u

2

∂(ρh)

∂x
−∇ ·

(
ρh3

12η
∇p

)
= 0 (B.1)

This is a mass continuity equation with the pressure p as the solution variable, describing

Couette and Poiseuille flows, the first and second term respectively. It is non-linear but

becomes linear if h, ρ and η are independent of p. The Reynolds equation is well suited

for thin film flow, where h, and rate of change in h, is small with respect to the other spatial

coordinates.

The density of all liquid lubricants depends on pressure among other variables. The

density-pressure relation changes abruptly when the lubricant undergoes cavitation, re-

sulting in a mixture of liquid and gas. At this condition the pressure remains close to

constant whilst the density decreases rapidly. In order to mimic the behavior of cavitation,

the Reynolds equation needs to be modified. It is convenient to use the density as the
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dependent variable instead of pressure. We start by defining the non-dimensional density

as

θ =
ρ

ρc
(B.2)

where ρc is the density at ambient pressure pc. Since p = p(θ) it is possible to apply the

chain rule on the pressure gradient, i.e.,

∇p =
dp

dθ
∇θ. (B.3)

Combining Eqs. (B.1), (B.2) and (B.3) we get:

u

2

∂(θh)

∂x
−∇ ·

(
θh3

12η

dp

dθ
∇θ

)
= 0 (B.4)

where the non-dimensional density θ is now the dependent variable and the only pressure

influence in the equation is through the pressure derivative dp/dθ. In the cavitation region

the pressure is assumed to be constant, p = pc, [13]. Hence, the pressure gradient is zero:

∇p = 0, (B.5)

and no Poiseuille flow contribution exists in this region. However, the mass will be pre-

served and transported only by means of Couette flow. By definition, θ = 1 at the cavitation

boundary, thus to accomplish the termination of the pressure gradient we utilize the unit

step function

g =

{
1, θ > 1; Full film region

0, θ ≤ 1; Cavitation region.
(B.6)

Applying the above step function to the expression for the pressure gradient in Eq. (B.3)

yields the Reynolds equation in the form

u

2

∂(θh)

∂x
−∇ ·

(
θh3

12η
g

dp

dθ
∇θ

)
= 0. (B.7)

Here, a single equation which preserves lubricant mass describes the flow both in the

full film and in the cavitation region respectively. This is a more general form of al-

ready existing cavitation algorithms based on the Reynolds equation in that an arbitrary

density-pressure relation could be used. Thus, more realistic density-pressure relations

that accurately reflect the behavior of real lubricants can easily be applied.

B.3 Compressibility

The compressibility of the lubricant can be treated in several ways. It can be expressed

through the bulk modulus defined as

β = θ
dp

dθ
. (B.8)

If β is considered constant, integration ones gives the the expression for pressure and

density:

p = pc + β lnθ ⇐⇒ θ = e

(
p−pc

β

)

(B.9)
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This expression for constant bulk modulus is sometimes used to model the compressibility

of lubricants. However, in real lubricants β varies with density and thus the expression is

only valid in a limited pressure range. Another is the Dowson & Higginson expression

[22]:

θ =
C1 +C2(p− pc)

C1 +(p− pc)
(B.10)

where the coefficients C1 = 0.59 ∗ 109 and C2 = 1.34 was fitted to measured compress-

ibility data of a mineral oil. Since the Reynolds equation on the form presented here can

obey an arbitrary compressibility relation for the lubricant, it would be reasonable to use

some other measured data as well as an input. Hence, as a test case for the current cavita-

tion algorithm, the compressibility for a mineral oil will be used where data is taken from

Tuomas and Isaksson [23]. They carried out measurements in a high pressure chamber

with pressures ranging from ambient up to about 3 GPa. The coefficients in the Dowson

& Higginson expression where fitted to the measured data. This fit can be seen in Fig. B.1

together with the measured data and the original Dowson & Higginson expression. The

p MPa

θ

0 200 400 600 800
1
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1.1

1.15

1.2

1.25

1.3 D & H, Orig

D & H, MNL (fitted)

Const. β, MNL

Measured mineral oil data (MNL)

Figure B.1: Compressibility models for the measured mineral oil data. The original Dowson

& Higginson expression with C1 = 0.59e9 and C2 = 1.34, a Dowson & Higginson expression

fitted to the measured data with C1 = 2.22e9 and C2 = 1.66, an exponential expression with

β = 3.3 GPa fitted at θ = 1 for the fitted D & H expression.

relation in Eq. (B.9) is also plotted, where β = 3.3 GPa which is the bulk modulus taken

for the curve fit at θ = 1. The best correlation between the expressions can be observed in

the proximity of ambient pressure but deviates exponentially with pressure rise. The same

notation for the compressibility relations in Fig. B.1 will be used in the figures ahead. The

acronym MNL is used as a label to show that the compressibility relation origins from

the measured mineral oil data. The cavitation pressure pc = 105 Pa will be used in the

numerical examples. Cavitation and ambient pressure will be treated synonymously.

B.4 Numerical Examples

The Reynolds equation is discretized by using a central differencing on the Poiseuille term

and a second order backward differencing on the Couette term. Because of the non-linear



B.4. NUMERICAL EXAMPLES 45

nature of the problem, a fixed point iteration process on the form θn = f (θn−1, ...) for

n = 0,1, ... is used to solve the discrete system. The switch function g is updated each

iteration. The iterative convergence of the solution is always ensured to be a value below

10−8 and the grid is ensured to be fine enough to produce a grid independent solution.

In order to compare solutions for different compressibility models etc., the following

integral residual of the current solution ψ to a solution ψ� is defined as:

S
�
ψ =

∣∣∣∣
Z Lx

0
ψ�dx−

Z Lx

0
ψdx

∣∣∣∣

/∣∣∣∣
Z Lx

0
ψ�dx

∣∣∣∣ , (B.11)

which is the residual in load carrying capacity if the solution is pressure. In the numeri-

cal examples, only one dimensional problems will be considered where Lx is the domain

length. This means that the geometries are treated as infinitely wide with no side leakage.

Dirichlet boundary conditions are used at the inlet (w) and the outlet (e) of the domain

by specifying a constant pressure p or non-dimensional density θ. If θ < 1 at the boundary,

the domain will be termed starved, likewise if θ = 1 the domain is flooded and if θ > 1 the

domain is pressurized. As a first comparative test case, a parabolic geometry modeled by

H = H0 + A
(x−Lx/2)2

(Lx/2)2
(B.12)

with the same physical dimensions and operating conditions as in Vijayaraghavan and

Keith Jr [20], the geometry is seen in Fig. B.2. In Fig. B.3, a pressurized inlet is used
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0
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Figure B.2: A single parabolic slider geometry with H0 = 25 µm and A = H0.

and the pressure solutions are shown from the Dowson & Higginson expression fitted to

the measured mineral oil data and from the expression for constant β = 6.9 ∗ 107 Pa, the

same as applied in [20]. The solution from the constant β expression mimics the results
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Figure B.3: Pressure solutions with boundary conditions θw = 1.0001 and θe = 1. β� =
0.069 GPa with S �p = 12 %. η = 0.039 Pas and u = 4.57 m/s.
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from [20] but differs from the Dowson & Higginson expression in load carrying capacity

with 12 %. A large difference is expected since the Dowson & Higginson expression

represents β = 3.34 GPa at p = pc which is significantly different from 0.069 GPa used

in reference [20]. In Fig. B.4 the twin parabolic geometry used in [20] is shown and the

corresponding pressure solutions are shown in Fig. B.5. The two pressure maxima are
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×10−5

Figure B.4: A twin parabolic slider with H0 = 25 µm and A = H0 m

similar but the pressurized inlet causes the pressure maximum to the left to be slightly

higher (1.6 kPa). There is a difference in load carrying capacity of 15 % between the two

compressibility relations. Continuing now with the same type of geometry as in Fig. B.2
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Figure B.5: Pressure solutions across the domain with boundary conditions θw = 1.0001

and θe = 1. β� = 0.069 GPa with S �p = 15 %. η = 0.039 Pas and u = 4.57 m/s.

but with H0 = 2 µm, A = H0 and Lx = 0.1 m. θ = 1 both at inlet and outlet and hence

flooded. The corresponding dimensionless density solution where the fitted expression is

compared with the original Dowson & Higginson expression in Fig. B.6. From left to

right, slight liquid compression occurs and full film solutions are achieved until the gap is

expanding to a level where the liquid does not occupy the complete gap and cavitates. The

pressure gradient is switched off and as a consequence, the Poiseuille flow is terminated

and the lubricant is only transported by means of Couette flow. The fractional film content

(θ) is rapidly decreasing further to the right in the domain. At the outlet boundary the

lubricant is abruptly reformed into full film again. A significant difference in compression

can be seen at the full film portion. Pressure solutions for the same conditions can be

seen in Fig. B.7. The differences in pressure between the expressions are small, only

1.7 % even though the differences in compression (the solution variable) between the to

compressibility expressions are substantial.

The dimensionless density solutions for the fitted and original Dowson & Higginson

expression for a starved inlet with a fractional film content of 55 %, θ = 0.55, can be seen

in Fig. B.8. From the left, only Couette flow is present until the gap contracts sufficiently to

compress the liquid and reformation into full film occurs abruptly. The reformation point
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Figure B.6: Density solutions across the domain for the parabolic geometry with H0 = 2 µm

and A = H0 and boundary conditions θw = 1 and θe = 1. S �θ = 0.61 %, η = 0.04 Pas and

u = 0.25 m/s.
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Figure B.7: Pressure solutions across the domain for the parabolic geometry with H0 = 2

µm and A = H0 and boundary conditions θw = 1 and θe = 1. S �p = 1.7 %, η = 0.04 Pas

and u = 0.25 m/s.

x m

θ

0 0.02 0.04 0.06 0.08 0.1
0.5

0.6

0.7

0.8

0.9

1

D & H - MNL �
D & H - Orig

Figure B.8: Density solutions across the domain for the parabolic geometry with H0 = 2 µm

and A = H0 and boundary conditions θw = 0.55 and θe = 1. S �θ = 0.64 %, η = 0.04 Pas

and u = 0.25 m/s.

is slightly shifted between the two compressibility expressions. Further to the right the so-

lutions mimics the earlier case with flooded inlet conditions. The film rupture boundaries
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appears at the same locations. In the cavitated region the equation is hyperbolic because

of the Couette term. Hence, no information is signaled from the downstream locations

and consequently, upstream differencing is applied. The lack of influence from the down-

stream locations in the cavitated zones together with the the switch function give rise to

this abrupt and somewhat unexpected reformation into full film. The corresponding pres-

sure can be seen in Fig. B.9 where greater differences arise between the two Dowson &

Higginson expressions, 7.4 %. Here, the expression for β =constant, taken for the fitted
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Figure B.9: Pressure solutions across the domain for the parabolic geometry with H0 = 2

µm and A = H0 and boundary conditions θw = 0.55 and θe = 1. �: S �p = 7.4 %, ◭:

S
�
p = 0.11 %. η = 0.04 Pas and u = 0.25 m/s.

expression at θ = 1 is added to the figure to show that the difference in solutions between

this and the fitted Dowson & Higginson expression are negligible (overlapping lines) for

these conditions. By inspecting Fig. B.1 it is evident that the fitted expression and the

constant β expression are close in a pressure range of 0-100 MPa which is reflected in

the results where the simulations are put so that the limits of hydrodynamic pressures are

not exceeded. In Fig. B.10 the same physical conditions are applied as in Fig. B.9 and

solutions are obtained for different values of β. Substantial differences in pressures are
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Figure B.10: Pressure solutions across the domain for the parabolic geometry with H0 = 2

µm and A = H0 and boundary conditions θw = 0.55 and θe = 1. β = [�3.34/2,◭ 3.34∗2]
GPa with S �p = [8.4,4.8] %. η = 0.04 Pas and u = 0.25 m/s.

seen between the solutions indicating the importance of using a relevant value of the bulk
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modulus for the lubricant to be simulated.

In Fig. B.11 a linearly converging film thickness is used with H0 = 1 µm and A = 0.25

µm where the inlet film thickness is H0 + A and the outlet film thickness is H0. To further
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Figure B.11: Pressure solutions across the domain for the converging gap geometry with

H0 = 1 µm and A = 0.25 µm and boundary conditions θw = 0.85 and θe = 1. �: S �p = 22

%, ◭: S �p = 0.54 %. η = 0.04 Pas and u = 0.25 m/s.

study the effects of starvation, θ = 0.85 is set at the inlet while ambient density is applied

at the outlet. Also for this case the constant β expression produces results close to the

mineral oil with a load difference of 0.54 %. However, the original Dowson & Higginson

expression deviates significantly from the mineral oil with a load difference of 22 %. Great

differences are also seen in Fig. B.12 for the different values of β.
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Figure B.12: Pressure solutions across the domain for the converging gap geometry

with H0 = 1 µm and A = 0.25 µm and boundary conditions θw = 0.85 and θe = 1.

β = [�3.34/2,◭ 3.34 ∗ 2] GPa with S �p = [25,19] %. η = 0.04 Pas and u = 0.25 m/s.

The conditions at the inlet are significant in many aspects. We have seen that different

compressibility models produce similar solutions in a pressure range reaching up to 50

MPa but become significantly different if the inlet is starved. Let us use the fitted Dow-

son & Higginson compressibility expression and focus on some geometrical aspects. In

Fig. B.13 two sinusoidal waves applied on the left half of the geometry are shown. The

inlet film thickness is H0 and H0 + A respectively but the same at the end of the two sinu-

soidal waves. Pressure solutions for this geometry can be seen in Fig. B.14. The geometry
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Figure B.13: Geometries with parallel gaps, two sinusoidal waves with a difference in fre-

quency both at (x < L/2) with H0 = 10 µm and A = 0.5 ∗H0.

with the smaller film thickness at the inlet produces higher pressures. The results are some-

what unexpected since the geometry with a greater film thickness at the inlet is likely to

cause a greater compression of the fluid. In this case however, the sinusoidal geometry is

x m

p
M

P
a

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

1�
2

Figure B.14: Pressure solutions across the domain for the sinusoidal geometry at (x <
L/2) with H0 = 10 µm and A = 0.4 ∗H0 m and boundary conditions pw = 1e + 05 and

pe = 1e + 05 Pa. S �p = 35 %. η = 0.04 Pas and u = 0.25 m/s.

able to pull a larger amount of fluid into the domain up to the point where the gap expands

and the fluid cavitates. The non-dimensional density at the location of the first sinusoidal

wave is shown in Fig. B.15. It can be seen that the fluid tends to get more compressed for

geometry 2 until the earlier diverging gap leads to an earlier cavitation which affect the

compression.

If the same sinusoidal waves as in Fig. B.14 are squared, we get a film thickness as in

Fig. B.16. Here the smallest film thickness is H0. The pressure results can be viewed in

Fig. B.17. If the inlet is flooded the geometry 1 cavitates throughout the domain producing

zero load carrying capacity. Since the inlet film thickness for the geometry 2 is larger

than H0 some fluid compression can occur and the pressure will rise across the domain

producing load carrying capacity. If the geometry is pressurized, it is now possible even

for the sin geometry to produce a pressure build-up.
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Figure B.15: Density solutions across the domain for the sinusoidal geometry at (x < L/2)
with H0 = 10 µm and A = 0.5∗H0 and boundary conditions pw = 1e+05 and pe = 1e+05

Pa. η = 0.04 Pas and u = 0.25 m/s.
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Figure B.16: Geometries with parallel gaps, two squared sinusoidal waves with a difference

in frequency both at (x < L/2) with H0 = 10 µm and A = 0.5 ∗H0.
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Figure B.17: Pressure solutions across the domain for the cos2 at (x < L/2) modified step

geometry with H0 = 10 µm and A = 0.5 ∗H0 and boundary conditions pw = 2 ∗ 105 and

pe = 105 Pa. η = 0.04 Pas and u = 0.25 m/s.
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B.5 Conclusions

A generalized Reynolds equation accommodating for an arbitrary compressibility relation

and cavitation has been derived. It has been shown that different compressibility mod-

els can produce significantly different results in a hydrodynamic pressure range. Load

carrying capacity is especially sensitive to the type of compressibility relation used if the

inlet is starved. This indicates the need of employing realistic density-pressure relations.

To produce better predictions of cavitation regions, fractional film content and pressure,

more physical variables that are put dependent such as viscosity might be needed. Surface

roughness close to the inlet has been shown to have important effects on load carrying

capacity.
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Abstract

This paper describes a method to compute flow factors compensating for an arbitrary

surface roughness in compressible hydrodynamic lubrication based on a homogenization

technique. Reynolds equation is used as the governing equation and the two-scale expan-

sion involved in the homogenization process enables the local roughness scale to be treated

separately from the global geometry scale. With this method it is possible to compute flow

factors for for any deterministic roughness. Measured two-dimensional surface profiles

are used as examples. By utilizing a randomization technique it is shown that profiles hav-

ing the same Abbot-Firestone bearing ratio also have the same flow factors, providing an

efficient classification of surfaces in hydrodynamic two-dimensional contacts. Flow fac-

tors are computed for the surface profiles and solutions for global problems are obtained

and compared with the corresponding smooth solutions.
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C.1 Introduction

It is known that the surface roughness affects the performance in various ways in a lu-

bricated contact. Even if the surfaces are smooth on a macroscopic level, asperities on a

microscopic level will affect the overall performance in terms of pressure build-up, film

thickness and friction. As computer performance increases the theoretical simulations of

lubricated contacts become more focused on treating the roughness. Since the width of a

typical asperity is much smaller than the total length of the contact, deterministic compu-

tations become difficult even with today’s computer power. Thus it is desirable to find a

way to reduce the number of degrees of freedom and still treat the effects from the surface

roughness.

Stochastic theories such as those reported by Tzeng and Saibel [24] for one-dimensional

transversal roughness and by Christensen [25] for longitudinal and transversal roughness

are early approaches to deal with roughness effects in hydrodynamic lubrication. Elrod

[26] performed a multiple-scale analysis for two-dimensional roughness where he assumed

that the characteristic wavelength is small enough for the approach to be permitted. Patir

and Cheng [27, 28] derived a method where the Reynolds equation is rewritten in terms

of control volume averaged flow factors, applicable to any roughness structure. The flow

factors are determined empirically by simulating model bearings with surfaces having cer-

tain roughness statistics. They showed that the ratio of x and y correlation lengths plays

an important role in characterizing the flow factors. A lot of work has been carried out

by following the footsteps of the early flow factor approach by Patir and Cheng. More re-

cently, variants of the Patir and Cheng flow factor computations include Lunde and Tønder

[29] where the use of boundary conditions can be avoided, Letalleur et al. [30] where flow

factors for sinusoidal surfaces are studied and can be retrieved analytically near contact,

Wang et al. [31] who use the Patir and Cheng approach and incorporate a contact model

and extend the problem into a mixed EHD model, Harp and Salant [32] who use the flow

factor model and formulate the flow problem to treat inter-asperity cavitation.

Recent work has paid much attention to homogenization techniques when treating the

surface roughness. The flow problem is decoupled into two problems; the homogenized

problem on the macroscopic scale describing the bearing geometry, and the local (or cell)

problem on the microscopic scale describing the roughness. Examples of such work in-

clude Kane and Bou-Said [33] who compare homogenization and direct techniques, Jai

and Bou-Said [34] who compare homogenization and averaging techniques and Bayada et

al. [35] who use a homogenization technique which also treats the concept of cavitation.

In this work we present an approach to generate flow factors compensating for the

surface roughness in the full film hydrodynamic regime using the homogenized results of

the compressible Reynolds equation presented by Almqvist and Dasht [36]. The flow fac-

tors can be computed for an arbitrary periodic two- or three-dimensional roughness which

permits the use of measured surface topographies of real surfaces. In the current work two-

dimensional surface roughness is considered and as a numerical test case, four measured

surface profiles are used. Surface profiles are also generated artificially in a randomized

way but with the the same Abbot-Firestone bearing ratio as the original measured surfaces.
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C.2 Theory

The Reynolds equation is well suited for solving fluid film flows in e.g. bearings. However,

to simulate a complete bearing including the surface roughness is not feasible because of

the amount of degrees of freedom required to resolve the roughness. In this section a way

to separate the effects of the surface roughness from the effects of the global geometry of

the bearing is described. Let us assume that a surface can be quite well represented by

using two geometry scales where one scale is much smaller than the other. With this in

mind we can express the total film thickness as

h(x) = h0(x)+ h1(x/ε), ε > 0 (C.1)

where h0 represents the global geometry scale and h1 the roughness scale which is an

arbitrary periodic function expressed in one period with a wavelength parameter ε. For this

condition, the compressible Reynolds equation is homogenized by Almqvist and Dasht in

[36]. The homogenization process involves an asymptotic two-scale expansion for the

solution variable and letting ε → 0. This permits the local and the global problems to

be treated separately. Since the global problem do not involve any rapid oscillations it

requires less numbers of degrees of freedom to be accurately resolved.

The above discussion will be revisited later but consider now a measured two-dimensional

surface profile r(x) with zero mean value. In the hydrodynamic contact the profile and re-

lated measures are shown in Fig. C.1. Now the film thickness of the lubricated contact can

CLA

−r

rmax

h h0 h̄

x

Figure C.1: Film thickness and related parameters.

be expressed as

h(x) = h̄− r. (C.2)

The film thickness is constant in time and the stationary compressible Reynolds equation

constitutes the basis in this work, viz.

d

dx

(
ρh3

12η

d p

dx

)
=

u

2

d (ρh)

dx
, (C.3)
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where p is pressure, η viscosity and ρ is the density. It is convenient to express the equation

in terms of density as dependent variable so we define the dimensionless density as

θ =
ρ

ρc
(C.4)

where ρc is the density at ambient pressure p = pc. We assume that p = p(θ) and hence it

is possible to apply the chain rule on the pressure gradient, i.e.,

d p

dx
=

d p

dθ

dθ

dx
. (C.5)

Substituting the expression for the pressure gradient and θ into the Reynolds equation

yields:
d

dx

(
θh3

12η

d p

dθ

dθ

dx

)
=

u

2

d (θh)

dx
. (C.6)

Assuming further that the bulk modulus, defined as

β = θ
d p

dθ
, (C.7)

can be treated as a constant yields the following expressions relating pressure to density:

p = pc + β ln(θ) (C.8)

and the equivalent expression relating density to pressure:

θ = exp

(
p− pc

β

)
. (C.9)

Note that the constant bulk modulus gives rise to an exponential expression for θ(p) which

is an acceptable compressibility relation for a limited pressure range, see [37] for a more

comprehensive discussion regarding this matter. Under this condition Eq. (C.6) can be

written:
d

dx

(
h3 dθ

dx

)
= Λ

d(θh)

dx
(C.10)

where Λ = 6ηu/β. To obtain a homogenized equation in a more general form independent

of Λ we define the following dimensionless parameters:

H =
h

h̄
; G =

−r

rmax
; α =

rmax

h̄
; x̄ =

6ηux

β(rmax)2
; p̄ =

p

pc
. (C.11)

Also let r = r(ξ) which now corresponds to h1 in Eq. (C.1) where ξ = x/ε. Dividing

Eq. (C.2) by h̄ and using the above expressions the dimensionless film thickness equation

can be written as

Hα(ξ) = 1 + α(G(ξ)−1) , 0 ≤ α < 1, (C.12)

where the subscript indicates that α is a parameter. As α goes from zero to one, the

clearance h goes from zero to infinity. It should be noted that the mean value of H always

equals unity and as the α decreases, H becomes smoother and equals to unity for α = 0.

Substituting Hα, p̄ and x̄ into Eq. (C.10) the dimensionless form of the equation becomes:

d

dx̄

(
H3

α
dθ

dx̄

)
=

d (θHα)

dx̄
. (C.13)
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The corresponding homogenized equation (see Almqvist and Dasht [36]) yields:

d

dx̄

(
φxα

dθ

dx̄

)
=

d

dx̄
(φsαθ) , (C.14)

where

φxα =

Z 1

0
H3

α (ξ)

(
1 +

∂ψα

∂ξ

)
dξ and

φsα =
Z 1

0

(
Hα (ξ)−Hα (ξ)3 ∂χα

∂ξ

)
dξ.

(C.15)

ψ and χ are solutions to the local problems, i.e. the local roughness scales which are given

by

∂

∂ξ

(
H3

α
∂ψα

∂ξ

)
= −

∂
(
H3

α

)

∂ξ
and

∂

∂ξ

(
H3

α
∂χα

∂ξ

)
=

∂Hα

∂ξ
.

(C.16)

The dimensionless Reynolds equation has lead to the local problems being independent

of Λ. Since the local problems are solved at a unit cell domain, physical spatial properties

of the roughness are diminished which explains the choice of non-dimensionalization of x

in Eq. (C.11). Simply speaking, the influence of x̄ disappears in the solutions of the local

problems.

The dimensionless film thickness Eq. (C.12) has led to the homogenized equation be-

ing independent of x but dependent on the parameter α. This permits the local problems to

be solved for 0 < α ≤ 1 producing flow factors φx and φs as functions of α which add the

contribution from different roughness G(ξ) to a global coarse homogenized problem. With

a database of previously computed flow factor the non-dimensional homogenized equation

can be directly solved on the non-dimensional coordinate x̄ to achieve the solution θ. In-

stead of using the somewhat inconvenient definition of x̄ the dimensionless homogenized

equation can be directly scaled into dimensional form

d

dx

(
φx(x)h̄(x)3 dθ

dx

)
=

d

dx

(
φs(x)h̄(x)Λθ

)
, (C.17)

where φx and φs are retrieved from the parametrized φxα and φsα by e.g. table look-up to

become functions of x. This equation could be compared with the one derived by Patir and

Cheng [28] but with the use of different flow factors φx and φs.

C.3 Results

C.3.1 The Effect of ε

In the two-scale approach involved in the homogenization process the wavelength measure

ε of the local roughness scale is set to approach zero. This would correspond to a deter-

ministic solution for a geometry with a periodic roughness wavelength approaching zero.

The thin film approximation involved when solving the Reynolds equation only permits
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solving a problem with a large width to height roughness ratio. However, to verify the ho-

mogenized solution, a corresponding deterministic solution could be obtained where the

roughness wavelength decreases to a finite level. The deterministic solution should then

approach the homogenized. Consider the film thickness equation

h = h0 + Asin

(
2π

εLx

)
(C.18)

where h0 is a convergent gap and A = min(h0)/10. This film thickness is shown in Fig. C.2

with sinusoidal waves of different wavelengths. Deterministic and homogenized pressure

Outlet, p = 0Inlet, p = 0

u0 0.1
0

4

h
m

x m

5
×10−6

Figure C.2: A convergent gap geometry model with sinusoidal roughness with ε = 2−5

and 2−3.

solutions for this geometry are shown in Fig. C.3. It can be seen that the deterministic
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Figure C.3: Pressure distribution along a converging gap with sinusoidal roughness for the

homogenized and deterministic solutions.

solutions approach the homogenized as the wavelength decreases. Good correspondence

between the deterministic and the homogenized solutions is achieved for a finite value of

the wavelength. This motivates the treatment of the limit ε → 0 in the homogenization

process.

C.3.2 Flow Factors

In this section four measured two-dimensional surface topographies are used in the numer-

ical examples. The machining process applied to the surfaces and some of their surface

parameters are given in Table C.1. It can be seen that surface A differs a lot from the

other surfaces in Ra value. Surfaces B and D are quite similar but differ significantly in

skewness. The Abbot-Firestone bearing ratio for the four profiles can be seen to the left in
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Table C.1: Data for the four original surface profiles.

# Machining Ra Rq SK K

A Unidirectional ground 0.93 5.0 -0.99 4.3

+ Phosphated and dephosphated

B Unidirectional ground 0.29 1.2 -0.49 3.3

C Unidirectional ground 0.13 0.58 -0.010 3.6

+ 3 x chemically deburred

D Unidirectional ground 0.37 1.6 0.032 3.0

+ shot-peened
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Figure C.4: Abbot-Firestone bearing ratio for the surfaces in dimension (left) and dimen-

sionless (right).

Fig. C.4. This cumulative height distribution contains all height information about a sur-

face such as for example Ra, Rq, skewness and kurtosis but no spatial information. Since

the simulations will consider the dimensionless surface roughness we show the cumula-

tive height distribution in terms of G, for clarity, to the right in Fig. C.4 where the mean

value of G equals unity. With this dimensionless representation the absolute height values

are insignificant and only the shape of the Abbot-Firestone bearing ratio is relevant. The

results to be discussed are based on these dimensionless height distributions.

The surface measurements consist of 512 points equally spaced and distributed on

a length of 4.2× 10−4 m. To compute the flow factors, see Eq. (C.15), the number of

degrees of freedom of the measurement has to be increased. The computational grid has

to be sufficiently dense in order to resolve the roughness on a cell.

For this reason extra grid nodes are linearly interpolated between the points of the sur-

face measurements, Fig. C.5. Because of the linear interpolation no information is added

or removed and the surface representation will become identical to that of the the mea-

surements, only more degrees of freedom are added to the solution process. The demand

for more degrees of freedom is illustrated in Fig. C.6(a) where the flow factors φs are

shown for surface A as functions of the parameter α for increasing number of grid nodes

N. Solutions from 50 values of α, equally spaced between α = 10−9 and α = 1−10−9 are

used1. The dashed line represents the original profile and it is seen that the flow factors

1Mechanical contact occurs for α = 1
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Figure C.5: A small part of the original surface and linear interpolation with one point.

α

φ
s

N

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Surface A

α

φ
s

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) Surface B

Figure C.6: Flow factor with increasing number of interpolation points where dashed line

represents the original surface with 29 points and highest resolution is N = 216. A total of 8

curves are shown in each plot

become more and more sensitive to grid resolution as α approaches unity. Because of the

way that H is non-dimensionalized, the mean value of H is always unity and the shape of

H becomes smoother as α approach zero which means that the demand on resolution de-

creases. Particularly, at the extreme of α = 0 the local problem can be solved analytically.

The same conditions are applied for surface B in Fig. C.6(b). It is clear that this profile is

less sensitive to grid resolution than surface A. To display the change of the flow factors as

the grid spacing is reduced, we define the difference in solutions between two consecutive

grid spacings δ and and its double spacing 2δ respectively as

φ̂δ =
∣∣∣φ2δ −φδ

∣∣∣ (C.19)

where φ̂ is taken at some value of α. A visualization for convergence measure is seen in

Fig. C.7. The linear behavior for the convergence in flow factor for α = 0.49 at higher

resolutions indicates that the error reduction is in agreement with the effective order of the

discretization scheme which is not that obvious for α close to unity. However, the flow

factors for a film thickness approaching zero are somewhat uncertain regardless resolution

since the hydrodynamic regime is to some extent violated. It can also be seen that the



C.3. RESULTS 63

N

φ̂
x

A
B
C
D

210 212 214 216
10−5

10−4

10−3

10−2

(a) α ≃ 0.49

N

φ̂
s

A
B
C
D

210 212 214 216
10−5

10−4

10−3

10−2

(b) α ≃ 0.49

N

φ̂
x

A
B
C
D

210 212 214 216
10−10

10−5

100

(c) α ≃ 1

N

φ̂
s

A
B
C
D

210 212 214 216
10−4

10−2

100

(d) α ≃ 1

Figure C.7: Flow factor convergence as a function of spatial resolution.

convergence rate for surface A is generally smaller than for the other surfaces.

C.3.3 Surface Classification

It is desirable to find classes of surface roughness that affect the pressure in a hydrody-

namic contact similarly, i.e. having the same flow factors. In the Abbot-Firestone bearing

ratio all surface height parameters are known but no information about spatial parameters

is revealed. In this work the Abbot-Firestone bearing ratio is Considered as a suitable tool

for surface classification. To do this the Abbot-Firestone bearing ratios from the origi-

nal surface profiles are used and the points at discrete levels of the curves are spatially

distributed in a random way to produce surfaces having the same Abbot-Firestone bear-

ing ratio. In order not to violate the thin film approximation, the distribution of points is

controlled in certain ways. A fully randomized surface could have the have highest and

lowest points as neighbors. This is accomplished by introducing some rules so that points

are allowed to be positioned spatially close to existent points at a higher height level. If

that is not possible, new peaks are formed from where points can be positioned at a lower

height level. Hence, the points are not fully randomly distributed. This is because the pro-

files would violate the thin film approximation, with the possibility of highest and lowest

points being neighbors. Flow factors for the original and five random surfaces are shown

in Fig. C.8. At the top two figures the original measured profiles with N = 29 are used. The
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Figure C.8: Flow factors against α for all surfaces. The resolution is N = 29 top and

N = 216 bottom. For each original surface (dashed), five randomizations of that surface are

also plotted.

randomized profiles are fairly well clustered together but the original profiles differ signif-

icantly. As discussed before, more degrees of freedom than those of the original profiles

need to be introduced, especially for α close to unity. At the bottom two figures interpo-

lation is applied where N = 216. All surfaces having the same Abbot-Firestone bearing

ratio coincide and it is clear that for a sufficiently resolved profile, the Abbot-Firestone

bearing ratio is by itself determining the result. Hence the Abbot-Firestone bearing ratio

holds the information necessary to predict the influence of surface roughness on the flow

factors introduced by the homogenization process.

To get a better idea of the deviation between the 6 profiles, i.e., the five randomized

profiles and the original profile, the standard deviation of φx is computed for each value

of α, Fig. C.9. The standard deviation for each surface reaches a maximum at α close

to one. The same applies for standard deviations of φs but with a maximum of less than

1.2× 10−6. The maximum standard deviation decreases as N increases which is obvious

from Fig. C.10. This confirms that the Abbot-Firestone bearing ratio acts as a good clas-

sification. To confirm that the maximum standard deviation is small enough, the homog-

enized equation is solved for a dimensional converging gap geometry where the smallest

film thickness is represented by α = 0.99 and the largest film thickness by α = 0.6 for

all four surfaces. This is in order to cover a range where the standard deviations of flow

factors are the largest for all four surfaces, see Fig. C.9. The load carrying capacity is then

used to monitor the total error. Each surface (A,B,C,D) is interpolated to N = 216 grid

nodes and the standard deviation for load carrying capacity was computed. For all sur-
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Figure C.10: Maximum standard deviations of φx in the α–range.

faces, the value of this measure was found to be less than 0.1 % of the mean load carrying

capacity.

C.3.4 Application Examples

Some dimensional bearing examples will be shown where the computed flow factors are

used to solve the homogenized problem. The non-dimensional flow factors for the original

profiles are used and scaled into dimensional ones (see Section C.2) allowing the homog-

enized equation to be solved for the dimensional spatial domain. The flow factors needed

for the corresponding film thickness are discretely retrieved by cubic spline interpolation

from the computed flow factors. The film thickness notations are in terms of the mean

nominal separation h̄. In all simulations, the domain length in the x-direction L x = 0.1 m,

η = 0.14 Pas, β = 109 GPa, u = 1 m/s, pc = 105 Pa which also are the inlet and outlet

Dirichlet boundary conditions. It should be noted that side leakage is not considered since

the one-dimensional Reynolds equation is used and therefor, the load carrying capacity

becomes greater than for two-dimensional problems.

To verify if the local problems are sufficiently resolved in terms of N to produce suf-

ficiently accurate solutions to the dimensional homogenized problems we compute the

convergence in the load carrying capacity between two consecutive grid spacings δ and its
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double spacing 2δ respectively as

Ŵ δ =

∣∣W δ −W 2δ
∣∣

W δ
(C.20)

where the load carrying capacity is computed as

W =

Z

L x

0
p dx. (C.21)

The load convergence for the converging cap with min(h̄) = 5 µm and max(h̄) = 6 µm is

shown in Fig. C.11 from where it can be seen that the critical limit is N = 211 and the

N

Ŵ

A
B
C
D

210 212 214 216
10−8

10−6

10−4

10−2

100

Figure C.11: Load convergence as a function of grid resolution for a converging gap. Ŵ <
1.8×10−5 for all surfaces at highest resolution with N = 216.

change at the highest resolution is considered as sufficiently small. Thus, N = 216 is the

resolution used when displaying all dimensional results.

The minimum global film thickness min(h0(x)) is used as a solution variable, deter-

mined in order to achieve force balance for a given load.

Consider a converging gap geometry with max(h0(x))= min(h0(x))+1 µm. In Fig. C.12

the minimum value of h0 is plotted as a function of load carrying capacity for the rough

profiles and a smooth, denoted S. The ordering of the minimum film thickness follows the

ordering of Ra values for the roughness profiles, with surface A standing for the smallest

film thicknesses and the smooth S for the largest, respectively. It is also clear from the

figure that as the film thickness increases the influence of roughness decreases.

Now consider a parabolic geometry shown in Fig. C.13. Since atmospheric pressure is

applied at the boundaries, cavitation is likely to occur at some point in the diverging part.

For this case we use the approach of treating cavitation by Vijayaraghavan and Keith [20].

They use a Reynolds equation in a different form than presented here. This means that

the homogenization process does not apply for that equation. However, since the equation

only differs in a switch function applied to the Couette term the equation is identical to

the one which is homogenized in the flooded region where the switch function equals one.

If Eq. (C.17) is modified by the switch function to treat cavitation, the global problem

will treat cavitation but not the local problem. This leads to vanishing of φx at cavitation

but the influence from φs will remain. pressure distribution obtained from the modified

homogenized equation for surface A is given in Fig. C.14. Pressure is rising when the
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Figure C.14: Pressure across the domain for the parabolic geometry when surface A is

used. W = 100 kN/m.

gap is converging and in the diverging part where x ≈ 0.07 m cavitation occurs. The

effect of surface roughness on film thickness h0 as a function of load carrying capacity is

shown in Fig. C.15. As for the converging gap geometry the rough surfaces give smaller

film thickness h0 compared to the smooth geometry. And the same order in which rough

surfaces affect h0 applies here too.

C.4 Conclusions

In this paper we consider a homogenization technique for the compressible Reynolds equa-

tion. The approach involves an asymptotic two-scale expansion of the film thickness. For
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parabolic geometry.

a lubrication problem involving rough surfaces, this method provides a mathematical ap-

proach that separates the hydrodynamic effects at the local scale, representing the surface

roughness, from the hydrodynamic effects at the global scale, representing the bearing

geometry. The conclusions are as follows:

• A novel method of computing dimensionless flow factors for arbitrary surface rough-

ness using a homogenization technique has been developed.

• The method provides flow factors for arbitrary global geometries within the full film

regime.

• It has been shown that different profiles having the same Abbot-Firestone bearing

ratio give the same flow factors, thus providing an efficient classification system for

surfaces intended to operate in full film lubrication.
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