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1 Introduction

The stability of many time evolving processes relies on dissipation precluding a run-away
behavior. In particular, momentum dissipation plays a key role in systems such as disor-
dered materials or phases with pseudo-spontaneous spatial ordering. The analysis of the
transport properties in systems at non-zero charge densities where translations are broken
either spontaneously or pseudo-spontaneously, commonly referred as charge density wave
systems, can be traced back to [1–3]. Particularly relevant in order to make contact with
experimental setups is the study of such systems in the presence of an external magnetic
field [4, 5]. In recent times, the discovery of this type of ordering in strongly coupled
materials such as high temperature superconductors (see e.g. [6, 7]) has caused a revival
of the experimental and theoretical approaches to the topic of pseudo-spontaneous spatial
ordering. In particular, hydrodynamic descriptions of these systems both at zero [8, 9] and
non-zero [10, 11] external magnetic field have been developed in the last years, together
with several holographic models [12–26].

In this work we study (2 + 1)-dimensional systems at non-zero temperature (T ) and
chemical potential (µ) in the presence of an external magnetic field (B), where a set of scalar
operators OI , with I = 1, 2, account for the breaking of (spatial) translation invariance via
a spatially modulated source ΦI(xi). This implies that the system will satisfy the following
one-point function Ward identities

∂µ〈Tµν〉 = F νµ〈Jµ〉 −
(
∂νΦI(xi)

)
〈OI〉 , ∂µ〈Jµ〉 = 0 , (1.1)
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where Tµν is the stress tensor, Fµν an external electromagentic field strength, and Jµ a
U(1) charge current. More specifically, in what follows we will restrict our attention to
systems where the vev of the scalar operators is proportional to the corresponding spatial
coordinates 〈OI〉 = δiIxi and the derivative of the source ΦI is a constant, ∂iΦI = ϕδIi .
This corresponds to a system which breaks translations but preserves the homogeneity of
the Ward identities (1.1). The symmetry pattern we have in mind is the one described for
example in [27, 28], where translational symmetry and shifts of the scalar operators OI by
a constant are both broken but the diagonal group (shift+translation) remains unbroken,
ensuring the homogeneity of the equations of motion. Systems with this symmetry breaking
pattern have been intensively studied in the past few years and applied to the constructions
of effective field theories for lattice phonons [29, 30], classifications of solid state phases [28]
and hydrodynamic [8, 9] and holographic [12–26] construction of charge density wave state
effective field theories. Due to the discussion above, and to simplify notation, in what
follows we will suppress the difference between indices labeling the scalar operators I and
the spatial indices i and treat them as equivalent.

Different regimes for these systems can be defined by the relative values of source
and vev. Whenever the source ϕ is vanishing, but the vev 〈Oi〉 is non-zero in the ground
state, we say that translations are broken spontaneously. This should be compared against
the explicit situation where the Oi acquire a non-zero vev only because ϕ is non-zero.
Within the explicit regime we can further distinguish the pseudo-spontaneous and truly
explicit cases. In the former ϕ� |∂i〈Oi〉|. In this case, the low energy degrees of freedom
are pseudo-Goldstone bosons which have a small, non-zero mass which is related to the
“pinning frequency” [8] (denoted ω2

0). On the other hand, a truly explicit case occurs when
ϕ & |∂i〈Oi〉|. This happens for example in the models of [31], where only the source is
non-zero and the vev is vanishing.

In both the spontaneous and explicit regimes the conservation laws (1.1) imply Ward
identities involving the two point functions of the system. It has been known for a long
time [32] that for charged fluids in an external magnetic field, the thermo-electric conduc-
tivities are inter-related in such a way that knowing the electric conductivity at non-zero
frequency is sufficient to determine the thermo-electric and thermal conductivities. We
shall demonstrate that this structure generalises to the systems described above and, as a
consequence, we find non-trivial constraints on the low frequency AC conductivities.

The results from the Ward identities provide important constraints when we subse-
quently construct a complete description of the hydrodynamics of this class of models in
the diffusive sector to first order in fluctuations and derivatives. We use the approach
of [33] to determine analytically, to all orders in the magnetic field, the hydrodynamic
transport coefficients which appear in the constitutive relations relevant for the diffusive
sector (i.e. the regime where perturbations decay without propagating in any particular
spatial direction). This method [33] ensures that hydrodynamics always reproduces the DC
conductivities of the system (including the thermal conductivities). The resulting analytic
expressions are one of our key results and allow us to perform an analysis of the behaviour
of these systems in various regimes without resorting to numerics.
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One of the most important consequences of the Ward identities for hydrodynamics
concerns the types of dissipation that can appear in the hydrodynamic equations of mo-
tion. Generically, when translation invariance is broken, one allows for explicit dissipation
terms, i.e.

∂tP
i ∼ −ΓijPj + F ijJj −

(
∂iΦj

)
Oj , ∂tO

i ∼ −ΩijOj , (1.2)

where Pi is the spatial momentum. The first equation contains the momentum dissipation
tensor Γij , whose precise hydrodynamic definition we shall give later. The second expres-
sion contains a phase relaxation tensor Ωij which accounts for the spreading out that occurs
for a massive scalar field as it evolves (it is not protected by a conservation law). As a
precise consequence of the Ward identities coming from (1.1) we find that Γij = 0. We
shall demonstrate however the emergence of an effective Γij , given in terms of the phase
relaxation Ωij and the pinning frequency ω0, in regimes where the scalar field is effectively
kinetic — by which we mean that the scalar does not evolve in time. This approximate
independence from time evolution defines the strongly explicit regime.

With this result to hand, we are also in a position to clarify and extend a key obser-
vation of [17], further discussed in [24, 34, 35], namely that in the limit of small pinning
frequencies the phase relaxation coefficients (longitudinal and Hall) are proportional to
the square of the pinning frequency. We also suggest a way to identify the constant of
proportionality to be the Goldstone susceptibilities [17, 24, 35] at low pinning frequency,
independently of the value of the magnetic field.

The outline of the paper is as follows: in section 2 we discuss the consequences of the
Ward identities for the correlators of the system we have outlined above (without restricting
ourselves to any particular regime). In section 3 we introduce the hydrodynamic description
and compute the AC correlators. At the end of this section we derive novel and important
results for the transport properties of the system that constitute the main outcome of this
paper. Finally, in section 4 we draw some conclusions and discuss future directions.

2 Ward identities from field theory

In the subsequent sections we will discuss the consequences of the Ward identities for AC
transport in the diffusion sector. Hence, as our concern will primarily be in the regime
described by diffusive hydrodynamics, we will deal with heat rather than spatial momentum
(P i) conservation. Therefore we define the spatial canonical heat current (Qi) by

〈Qi〉 = 〈P i〉 − µ〈J i〉 , (2.1)

where i indexes spatial directions. It is important to note that in the non-linear hydrody-
namic theory the canonical heat current is generally not the one that enters into the entropy
conservation equation; this will be relevant when we discuss the constitutive relations as
the leading term in the spatial heat current will differ from sT .

2.1 Spontaneous case

We wish to obtain the Ward identities that follow from (1.1) when considering the conse-
quences of broken translational symmetry (with zero scalar source ϕ = 0) and unbroken
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U(1) gauge invariance. As we stated above, we are restricting to cases in which the Ward
identities are homogeneous. This will allow us to Fourier transform them, following the
convention where for a function f(t, ~x),

f(t, ~x) =
∫
d2kdω

(2π)3 f(ω,~k)e−i(ωt−i~k·~x) . (2.2)

Consequently, at arbitrary frequency and zero wavevector, the desired Ward identities are

iω〈QiQj〉 = −
(
iωµδik − F ik

)
〈QkJ j〉 − iω (χππ − µn) δij , (2.3a)

iω〈QiJ j〉 = −
(
iωµδik − F ik

)
〈JkJ j〉 − iωnδij , (2.3b)

Fij = Bεij , ε12 = 1 ,

where n is the electric charge density and χππ is the momentum susceptibility which the
reader can either define through the contact term in the Ward identity (2.3a) or through
the thermodynamic susceptibility we discuss in section 3. There is a third Ward identity
involving the scalar which requires a little care, as the stress energy tensor in the presence
of external sources must be carefully identified before varying it with respect to the scalar
source. Following the procedure described in [22, 36, 37], and remembering that since
〈Oi〉 = xi then ∂i〈Oj〉 = δij , we obtain:

iω〈QiOj〉 = −
(
iωµδik − F ik

)
〈JkOj〉+ δij . (2.3c)

From these three Ward identities, one can see that knowing the correlators 〈J iJ j〉 and
〈J iOj〉 to arbitrary frequency is equivalent to knowing all of the correlators in (2.3). This
follows from the ladder structure, e.g. knowing 〈J iOj〉 we can solve (2.3c) for 〈QiOj〉.
Similarly, 〈J iJ j〉 gives 〈QiJ j〉 through (2.3b), and subsequently 〈QiQj〉 through (2.3a).

We define the following AC transport quantities

(σ, α, κ)ij(ω) = 1
iω

(
〈J iJ j〉, 〈QiJ j〉, 〈QiQj〉

)
,

(γ, θ)ij(ω) = (〈J iOj〉, 〈QiOj〉) , ξij(ω) = iω〈OiOj〉 , (2.4)

with the first three being the standard thermo-electric conductivities. There is an unfor-
tunate but deliberate overlap between the typical notation for the transport coefficients
that will appear in the hydrodynamic constitutive relations and the corresponding AC
conductivities. We shall indicate the latter, and also their DC limits, with an explicit ar-
gument. The former will always appear without an argument. Using our assumption that
translation invariance is broken homogeneously, the AC transport tensors of (2.4) can be
decomposed with respect to SO(2) rotation invariance into longitudinal and Hall parts,

(σ, α, κ, γ, θ, ξ)ij(ω) = (σ, α, κ, γ, θ, ξ)(L)(ω)δij − (σ, α, κ, γ, θ, ξ)(H)(ω)(F−1)ij , (2.5)

where we have employed the inverse of the field strength in our decomposition as this in-
troduces an overall 1/B factor. We use the field strength Fij to decompose our tensors
rather than the more typical two-dimensional Levi-Civita tensor εij because we wish to
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emphasise that we are considering a theory that preserves spatial parity invariance micro-
scopically. Any parity breaking is due to the presence of a fixed magnetic field B. The Hall
conductivities σ(H) et cetera will be smooth in the vanishing magnetic field limit with our
choice of decomposition (2.5). This should be compared to the explicit case (2.10) where
the limit as B → 0 of the Hall conductivities vanishes and we decompose the “Hall sector”
with respect to Fij instead.

Using (2.5) and substituting into (2.3) gives relations between the AC transport coeffi-
cients for arbitrary frequency. We can thus take σij(ω) and γij(ω) to be the “independent”
transport terms; all others, with the special exception of ξij(ω) which does not appear in
the Ward identities, can be derived from them using (2.3). Of particular interest are the
low frequency expansions of these independent terms (σij(ω) and γij(ω)):

σ(L)(ω) = − i

B2

(
µn− α(H)(0)

)
ω +

κ(L)(0)
B2 ω2 +O(ω3) , (2.6a)

σ(H)(ω) = σ(H)(0) + κH(0)− µ (2χππ − µn)
B2 ω2 +O(ω3) , (2.6b)

γ(L)(ω) =
i
(
µ+ θ(H)(0)

)
B2 ω +O(ω2) , (2.6c)

γ(H)(ω) = γ(H)(0)− iθ(L)(0)ω +O(ω2) , (2.6d)

where

σ(L)(0) = α(L)(0) = γ(L)(0) = 0 , σ(H)(0) = −n ,
α(H)(0) = µn− χππ , γ(H)(0) = 1 . (2.7)

The values obtained in (2.7) are a pure consequence of symmetry and the definition of the
canonical heat; for any system regardless of its microscopic formulation that satisfies (2.3),
the displayed DC conductivities will take this form. Further, as these expansions are
purely consequences of the Ward identities, they must hold for arbitrary magnetic fields
and temperatures.

It was noted in [33] that the thermo-electric and thermal conductivities are responsible
for the O(ω) and O(ω2) terms in the AC electric conductivity. As we have shown, this
remains true even when spatial translation invariance is spontaneously broken by scalar
operators e.g. if one knows for example σ′′(L)(0), then one can determine κ(L)(0) from (2.6a).
Moreover, the DC electric and thermo-electric conductivities are still constrained by sym-
metry, such that κ(L)(0) and κ(H)(0) are the system dependent DC conductivities in the
suite of thermo-electric conductivities. The expressions for the AC longitudinal and Hall
electric conductivities at low frequency (2.6) are also the same as those in the absence
of the spontaneously broken translation invariance (modulo replacement of the thermal
conductivities by their system dependent values).

Additional correlators involving the scalar are also relevant to the low frequency be-
haviour of the system. As we can see from (2.6) these correlators form a distinct set at
low frequency. Symmetry dictates the value of the γ(L)(0) = 0 and γ(H)(0) = 1, see (2.7),
which are the zero frequency limits of the scalar-electric current correlators. This leaves
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θ(L)(0) and θ(H)(0) to carry the system dependent information which appears at O(ω) in
the low frequency expansions of γ(L)(ω) and γ(H)(ω). Completely in opposition to what we
will find in the explicit case, the scalar-scalar correlator (ξij(ω)) plays no role in (2.6).

2.2 Explicit case

In the explicit case, the translation breaking scalars have a non-zero source in the back-
ground ϕ 6= 0. The 2-pt Ward identities at arbitrary frequency and zero wavevector can
be derived from (1.1) in the same way as in the spontaneous case [37]:

iω〈QiQj〉 = −
(
iωµδik − F ik

)
〈QkJ j〉+ ϕ〈QiOj〉 − iω (χππ − µn) δij , (2.8a)

iω〈QiJ j〉 = −
(
iωµδik − F ik

)
〈JkJ j〉+ ϕ〈J iOj〉 − iωnδij , (2.8b)

iω〈QiOj〉 = −
(
iωµδik − F ik

)
〈JkOj〉 − ϕ〈OiOj〉+ δij , (2.8c)

Unlike the spontaneous case, we can see that three correlators, 〈J iJ j〉, 〈J iOj〉 and 〈OiOj〉
are required to specify the arbitrary frequency behaviour of the system; compared to just
the first two for the spontaneous case as all other correlators can be derived from them
through (2.8). Clearly the scalar-scalar correlator will now play an integral role in DC
transport.

We define the following new AC quantities

($,ϑ)ij(ω) = 1
iω

(〈J iOj〉, 〈QiOj〉〉) , ζij(ω) = 1
iω

(
〈OiOj〉 − 1

ϕ
δij
)
, (2.9)

which replace γij , θij and ξij in (2.4). Notice the introduction of an iω factor into the
definitions of $ and ϑ in the explicit case in comparison to the spontaneous case. The
definition of the standard thermo-electric conductivities are the same as in the spontaneous
case. Moreover, we now decompose the tensor transport quantities with respect to SO(2)
rotational invariance according to

(σ, α, κ,$, ϑ, ζ)ij(ω) = (σ, α, κ,$, ϑ, ζ)(L)(ω)δij + (σ, α, κ,$, ϑ, ζ)(H)(ω)Fij . (2.10)

This decomposition introduces an additional factor of B2 into the Hall conductivities com-
pared to (2.5). This has been done because in the explicit case the Hall conductivities are
smooth in the B → 0 limit.

Once again we may employ the Ward identities to determine the low frequency ex-
pansions of the independent AC transport terms. From (2.8b) we see that knowing σij(ω)
and $ij(ω) at arbitrary frequency, allows us to solve for αij(ω). Similarly, from (2.8c),
given $ij(ω) and ζij(ω), we can obtain ϑij(ω). Finally, using these previously determined
quantities we can solve for κij(ω) through (2.8a). Therefore, σij(ω), $ij(ω) and ζij(ω) are
the independent AC transport quantities, as everything else can be determined in terms of
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them, and they have the following form at low frequency

σ(L)(ω) =
ϕ2ζ(L)(0)

B2 +O(ω) , (2.11a)

σ(H)(ω) = −
n− ϕ2ζ(H)(0)

B2 +O(ω) , (2.11b)

$(L)(ω) = ϕζ(H)(0) +O(ω) , (2.11c)

$(H)(ω) = −
ϕζ(L)(0)
B2 +O(ω) , (2.11d)

with the low frequency expansion of ζij(ω) unconstrained. Corrections up to and including
O(ω2) of (2.11a) and (2.11b) involve at most the first and second derivatives of ζij(ω)
evaluated at zero frequency, the DC thermal conductivities and $(L)(ω) and $(H)(ω) plus
their first derivatives evaluated at zero frequency.

One can see from (2.11) the crucial role played by the scalar operator in low frequency
transport. It is entirely responsible for the now (cf. the spontaneous case) non-zero longitu-
dinal terms σ(L)(0) and $(L)(0). Moreover it shifts the DC Hall terms from their symmetry
dictated values.

With these facts taken care of we are now in a position to make our first important
observation. In much of the holographic literature (see e.g. [17] and references therein),
when considering the hydrodynamics of systems where translation invariance is broken
solely by scalar operators of the kind discussed above, the effective momentum conservation
equation entering the hydrodynamic description was assumed to have the form

∂tP
i + ∂jT

ij = −ΓijPj + F iµJµ − ϕOj , (2.12)

where Γij is some putative momentum dissipation tensor. Notice however that if we take
this equation as a starting point, we can then demonstrate that the correlation functions
for a system with a constant Γij satisfy Ward identities of the form(

iωδik − Γik
)
〈QkQj〉 = −

(
µ
(
iωδik − Γik

)
− F ik

)
〈QkJ j〉+ ϕ〈QiOj〉

− iω (χππ − µn) δij , (2.13a)(
iωδik − Γik

)
〈QkJ j〉 = −

(
µ
(
iωδik − Γik

)
− F ik

)
〈JkJ j〉+ ϕ〈J iOj〉

− iωnδij , (2.13b)(
iωδik − Γik

)
〈QkOj〉 = −

(
µ
(
iωδik − Γik

)
− F ik

)
〈JkOj〉 − ϕ〈OiOj〉

+ δij . (2.13c)

These should be compared to (2.8). As a direct consequence, for any system coming
from (1.1), we have

Γij = 0 . (2.14)

In summary, even if the effective hydrodynamic description of the momentum conservation
equation (2.12) could somehow have differed from the one-point function Ward identi-
ties (1.1), for the resultant hydrodynamic correlation functions to satisfy (2.8) it must be
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the case that (2.14) holds. A nonzero Γ features in the hydrodynamic description of several
holographic models in the literature where the breaking of translations is mostly explicit
(e.g. [31, 38–42]). In the next section we will show within a concrete hydrodynamic setup
how an effective Γij emerges when one enters the explicit regime where the dynamics of
the pseudo-Goldstone bosons freeze out.

3 Simple hydrodynamics of a CDW in a magnetic field

Hydrodynamics is an effective approach to the description of interacting systems valid at
large distances and late times. It consists of conservation equations and accompanying
constitutive relations which express charge currents in terms of the differences in thermo-
dynamic parameters from global equilibrium. Quasihydrodynamics is the partner theory
where some of these initially conserved charges are not conserved, but decay. Recent
work has shown that the quasihydrodynamic description of certain systems can be valid
in regimes where the non-conservation of a hydrodynamic charge is relatively strong [33]
i.e. one where the parameter responsible for breaking the conservation, in our case the
magnetic field, does not vanish in the ground state and in fact contributes to the definition
of global thermodynamic equilibrium. In what follows we shall apply quasihydrodynamics
to the systems discussed above.

Our model will consist of the typical ingredients for describing the hydrodynamics of
a charged fluid in an external magnetic field (see e.g. [10]). In the pseudo-spontaneous
case we must include two pseudo-Goldstone bosons arising from the breaking of a transla-
tional+shift symmetry down to its diagonal subgroup. To start this procedure requires us
to supply the form of the currents and the associated conservation equations in global ther-
modynamic equilibrium. In particular we need to understand how the translation breaking
modes contribute to the thermodynamics.

The free energy (F ) of our (pseudo-)Goldstone bosons (δOi=1,2), including linear and
quadratic orders in the field, must take the form [43, 44]

F =
∫
d2x

[
P 0
l

(
∂iδO

i + ∂iδOj∂
iδOj

)
+ K

2 (∂iδOi)2 + G

2
(
∂iδOj∂

iOj + k2
0δOiδO

i
)

+ (δPl − δstr) ∂iδOi − δscurlε
ij∂iδOj

]
, (3.1)

where P 0
l is the background lattice pressure [21, 43, 44], δPl its fluctuation with respect to

chemical potential and temperature, K is the bulk modulus, G the shear modulus and k0
a small mass term (or equivalently a large inverse correlation length) for the boson. We
define the “pinning” frequency in terms of k0 to be

ω2
0 = Gk2

0
χππ

. (3.2)

In writing (3.1) we have made use of spatial rotational invariance, and spatial isotropy
for the underlying lattice [8, 10]. We have included δstr and δscurl as the sources for
the (pseudo-)Goldstone bosons, corresponding to the operators λtr = ∂iδO

i and λcurl =

– 8 –
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εij∂iδOj , that will enter our hydrodynamic description. We choose these operators as they
respect rotational symmetry and become invariant under the emergent shift symmetry,
δOi → δOi + ai, as k0 → 0, in analogy with the mechanism described in section 1 [27, 28].

From the expression for the (pseudo-)Goldstone boson free energy (3.1) we make two
crucial observations. Firstly, we notice that when k0 = 0 the action (3.1) enjoys both a shift
and a spatial translation symmetry. Similarly to what has been done in [8–10], we assume
that our scalar effectively describes the situation where this joint symmetry is broken to a
diagonal subgroup, in such a way that the Goldstone bosons δOi can be considered as the
conjugate variables of momentum, satisfying the following Poisson bracket:{

δOi(t, ~x), P j(t, ~y)
}

=
(
δ ji + ∂jδOi(t, ~x)

)
δ2(~x− ~y) , (3.3)

where P i is the generator of spatial translations. Of the two terms on the right hand
side the latter is the usual one for translating a vector field by a constant shift. The
former however indicates that the bosons have a non-zero “charge” under translations.
This is important as it subsequently implies non-conservation of the spatial momentum
for our model. We can see this in the following manner: assume we have access to the
full Hamiltonian of the theory and consider the Hamiltonian time evolution equation for
the spatial momentum P i. Part of this Hamiltonian is given by the contribution to the
free energy of the pseudo-Goldstone bosons (3.1). Employing (3.3) the Hamiltonian time
evolution equation yields

∂tP
i =

{
P i, H

}
= −ω2

0χππδO
i + higher derivatives . (3.4)

As the right hand side is non-zero, the spatial momentum is not a conserved quantity unless
the boson becomes massless (k0 = 0).

Secondly, another consequence of the commutation relations (3.3) is the “Josephson
relation”. This gives the time evolution of the scalar in the Hamiltonian formalism [8, 45].
In particular, in the presence of a source velocity the Hamiltonian density, to first order in
fluctuations, can be taken to have the form H = P ivi + . . .. Therefore

∂tδO
i =

{
δOi,H

} (3.3)= vi + higher derivatives. (3.5)

This expression will enter our hydrodynamic description as the lowest order in derivatives
effective equation for the evolution of the scalar operators δOi. In the effective approach
we will have to supplement the right hand side with additional higher derivative terms
as one increases the derivative order of hydrodynamics. In the explicit case we must also
take account of the fact that the phonons can relax [8, 14]. This is done through the
introduction of a phase relaxation term ΩijδOj on the right hand side of (3.5) i.e.

∂tδO
i = −Ωi

jδO
j + vi + higher derivative terms. (3.6)

On the assumptions we have made in detailing the thermodynamics of our translation
breaking scalars, we should ask ourselves what happens as the pinning frequency becomes
large. As the pinning frequency increases it will become harder and harder to excite
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the translation breaking scalars. Of course, there is still a Josephson relation, and the
Ward identities will continue to hold as their applicability does not depend on the value
of k0. Nevertheless, in the range of parameters where the phonon mode is extremely
heavy, it becomes non-dynamical. In this case one can neglect the time derivative in the
Josephson relation (3.6) which subsequently constraints δOi in terms of the fluid velocity vi.
Substituting the solution to this constraint into the equation of motion for the momentum
density (3.4) one finds:

∂tP
i = − ω2

0
χππ

(
Ω−1

)i
j
P j + . . . , (3.7)

where the ellipsis represents terms not relevant for this discussion. Equation (3.7) is exactly
the equation of motion one should expect for the momentum density in a system which
exhibits explicit momentum relaxation if one identifies Γij ≡ ω2

0
(
Ω−1)i

j . This shows that in
the purely explicit limit (meaning when k0 is large), one recovers (as expected) an effective
description in terms of a standard momentum dissipation rate Γ, with the latter being
expressed in terms of the “old” phonon variables ω0 and Ωi

j . The correlator will look
like the standard correlator of charged hydrodynamics with an external magnetic field and
momentum dissipation [46].

The observations above, (2.13) and (3.7), apply regardless of the specifics of the hy-
drodynamic system. From this point onward we shall make a simplifying assumption —
namely, we will neglect the lattice pressure P 0

l and its thermodynamic derivatives δPl
in (3.1). In fact P 0

l can be set to zero if one restricts the analysis to thermodynamically
stable vacua [21, 44]. Thermodynamic derivatives of the lattice pressure, δPl, might be
non-zero even in these configurations but they do not appear in the set of correlators that
we consider in this work [44]. We shall then show how one can apply the Ward identities
to the hydrodynamic correlators to evaluate the hydrodynamic transport coefficients that
appear in the constitutive relations.

With these assumptions at hand, we find that the contribution of δOi to the spatial
stress tensor, obtained by applying the Noether procedure on the symmetry δOi → δOi+ai,
has the form

TOij = −
(
K∂kδO

kδij +G∂iδOj
)
, (3.8)

when the source terms vanish. This expression can be made symmetric while preserving the
translational Ward identity, as expected for a theory which has spatial rotation invariance,
by subtracting the term ∆TOij = G

(
∂jδOi − δij∂kδOk

)
which is divergence free in the “i”

index. The spatial part of the stress tensor can also be re-expressed in terms of λtr =
∂iδO

i and λcurl = εij∂iδOj at the cost of leaving an explicitly anti-symmetric term in the
expression. This is achieved by adding ∆TOij to (3.8),

TOij = − ((K +G)λtrδij +Gλcurlεij) . (3.9)

The latter expression (3.9) will appear at leading order in our constitutive relation for the
spatial stress tensor of the full theory (T ij).
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We can also derive the static susceptibility for our theory. It has the form

χ =



∂T s ∂µs 0 0 0 0
∂Tn ∂µn 0 0 0 0

0 0 χππ 0 0 0
0 0 0 χππ 0 0
0 0 0 0 χtr = ~k2

Gk2
0+(K+G)~k2 0

0 0 0 0 0 χcurl = ~k2

G(k2
0+~k2)


, (3.10)

where s is the entropy density and we work in the basis of sources sA = (T, µ,~v, sa)
with ~v the spatial velocity of the fluid. To derive the susceptibilities for the Goldstone
bosons ∂sbλa one needs simply rewrite the static equations of motion following from (3.1)
including the displayed non-zero source terms. We recall that if one considers the lattice
pressure to be non-zero (non-thermodynamically stable vacua), additional terms would
appear in (3.10) [21, 43, 44]. These terms do not influence the results obtained in this paper.

3.1 Spontaneous case

With the susceptibilities (3.10) to hand we are in a position to begin building the hydro-
dynamic constitutive relations. We start in the spontaneous case, where there is no source
term for the scalars in the background. The constitutive relations we derive are to first
order in derivatives and fluctuations of temperature T + δT , chemical potential µ+ δµ and
scalar sources δstr and δscurl assuming that the spatial velocity vi vanishes in equilibrium.

3.1.1 Constitutive relations

To lay out our notation for the transport coefficients it is easiest to first consider the
constitutive relations for the fluctuations of the vector currents corresponding to heat and
electric charge flow which take the form

δQi = (χππ − µn) vi + αij
(
δEj + Fjkv

k − ∂jδµ
)
− κij ∂jδT

T

− θij∂jδstr − ιijε kj ∂kδscurl , (3.11)

δJ i = nvi + σij
(
δEj + Fjkv

k − ∂jδµ
)
− αij ∂jδT

T

− γij∂jδstr + γijε kj ∂kδscurl , (3.12)
F ij = Bεij , ε12 = 1 ,

to order one in derivatives and fluctuations where δEi is an electric field fluctuation and
εij is the two dimensional Levi-Civita tensor. The tensor transport coefficients can be
decomposed with respect to SO(2) rotational and microscopic spatial parity invariance e.g.

(σ, α, κ, γ, θ, ι, . . .)ij = (σ, α, κ, γ, θ, ι, . . .)(L)δ
ij + (σ, α, κ, γ, θ, ι, . . .)(H)F

ij . (3.13)

The above decomposition of the transport coefficients appearing in the hydrodynamic con-
stitutive relations is with respect to Fij and not its inverse; unlike the AC transport coef-
ficients (2.5). This reflects the fact that these terms should be smooth as we take B → 0.
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We also note that while permitted by the gradient expansion, ι(L) and ι(H) shall not appear
in the diffusive sector of the spontaneous case (this will be different in the explicit case
where their value will be fixed).

With these definitions to hand we can also write down the Josephson condition to first
order in derivatives and fluctuations (starting from (3.5)). Upon also imposing the Onsager
conditions we find

∂tδO
i + J iO = 0 ,

J iO = −vi + γij
(
δEj + Fjkv

k − ∂jδµ
)

−
(
θ(L)δ

ij − ι(H)F
ij
) ∂jδT

T
− χtr

(
ξtr,(L)δ

ij + ξtr,(H)F
ij
)
∂jδstr

− χcurl
(
ξcurl,(L)δ

ij + ξcurl,(H)F
ij
)
ε kj ∂kδscurl , (3.14)

where we have employed spatial rotation invariance to decompose the terms proportional
to derivatives of the scalar sources into longitudinal and Hall parts. This has been done
to make clear constraints imposed by the Onsager relations. In (3.14) we have, a little
erroneously, treated ξtr,(H) and ξcurl,(H) as distinct variables. From the Onsager relations
however one finds

X(H) ≡
ξtr,(H)
G+K

= −
ξcurl,(H)
G

. (3.15)

Similarly, in [20] spatial rotation invariance implies

X(L) ≡
ξtr,(L)
G+K

= −
ξcurl,(L)
G

. (3.16)

We shall henceforth collect these transport coefficients into a new tensor structure Xij .
Last, but not least, we must supply the constitutive relation for the fluctuation of the

spatial stress tensor. This has the form

δTij =
(
nδµ+ (χππ − µn) δT

T
− (G+K)χtrδstr

)
δij −Gχcurlδscurlεij

− 2ησij − ζ∂kvkδij , (3.17)

σij = 1
2 (∂ivj + ∂jvi)− ∂kvkδij . (3.18)

The first two terms in (3.17) are the standard thermodynamic contributions to the stress
tensor from charge and heat. The second two terms are contributions from the Goldstone
boson (3.9). The second line of terms in (3.17) are all first order in derivatives and standard
for a relativistic fluid.

3.1.2 The AC correlators

With the constitutive relations to hand we can employ the Martin-Kadanoff procedure
to determine the finite frequency response of the system. Of particular interest are the
relations that result when we substitute these expressions into the Ward identities. The
hydrodynamic correlators must satisfy the Ward identities at arbitrary frequency. From
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this substitution we immediately learn, by expanding the resultant expressions at large
frequency and zero wavevector, that

αij = −µσij , κij = µ2σij , θij = −µγij . (3.19)

These constraints are the usual relations one finds for a system which has Lorentz covariance
(even if the ground state of the theory breaks Lorentz invariance) given our choice of heat
current and normalisations of the transport coefficients. The coefficients ι(L) and ι(H)
remain unconstrained. Fortunately neither of these coefficients enter into the diffusive
sector for spontaneous breaking. In the explicit case, where they do enter, we will fix them
using the Ward identities.

The relativistic constraints on the hydrodynamic transport coefficients (3.19) can read-
ily be seen from the Ward identities at large frequency. At low frequency we can use the
Ward identities of (2.6) and the AC hydrodynamic correlators to determine the hydro-
dynamic transport coefficients in terms of the DC values of those same correlators. Of
particular interest are the incoherent electric charge conductivities (or the transport co-
efficients σ(L) and σ(H)). In the absence of a magnetic field these parameterise the flow
of charge orthogonal to the transport of spatial momentum and are independent of the
momentum loss rate. In the presence of a magnetic field this clean definition does not hold
because the flow of spatial momentum is constantly twisting direction due to its coupling
to B. Instead, following [33], we take a naive definition as the constant term in the Laurent
expansion of the electric conductivities about the diffusive pole at zero wavevector. This
definition is invariant under the replacement ω → ω− iΓ, with Γ the momentum loss rate,
mirroring a key property of the zero magnetic field incoherent conductivities (independence
of momentum loss).

We find for the incoherent electric charge conductivities

Ξσ(L) = χ2
ππκ(L)(0) , (3.20a)

Ξσ(H) = n

B2

(
B2κ(L)(0)2 +

(
κ(H)(0) + µ2n

)2
)
− 2µχ3

ππ

B2

+ χ2
ππ

B2

(
κ(H)(0) + 5µ2n

)
− 4µnχππ

B2

(
κ(H)(0) + µ2n

)
, (3.20b)

Ξ ≡ B2κ(L)(0)2 +
(
κ(H)(0) + µ2n− 2µχππ

)
2 , (3.20c)

where the lack of argument on σ(L) and σ(H) indicates that these are transport coefficients
of the constitutive relations (e.g. (3.11)), while κ(L)(0) and κ(H)(0) are DC values for the
thermal conductivities. Additionally we have expressions for the hydrodynamic transport
coefficients γ(L), γ(H), X(L) and X(H) which we shall present in a compactified form shortly
(see (3.28)). As per magneto-transport without broken translation invariance we see that
in the spontaneous case, generically, there is a non-zero incoherent Hall conductivity.

Having imposed all the constraints implied by the Ward identities we can now un-
derstand the response of our system to time varying fields. For example, the electric
conductivities at non-zero frequency in the spontaneous case have almost exactly the same
form as those for the dyonic black hole [32, 33, 46] in terms of the momentum susceptibility
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χππ and the DC thermal conductivities. In particular

σ(L)(ω) = iωχππ
(
γ2

c − iγc ω + ω2
c
)

B2 ((ω + iγc)2 − ω2
c ) , (3.21)

σ(H)(ω) = −
(
n+ χππω

2ωc
B ((ω + iγc)2 − ω2

c )

)
, (3.22)

where the cyclotron frequency and decay rate are

ωc =
Bχππ

(
µ2n− 2µχππ + κ(H)(0)

)
Ξ , γc =

B2χππκ(L)(0)
Ξ , (3.23)

respectively. The longitudinal conductivity expressed in terms of the cyclotron frequency
and decay rate has the same form as found in [32], the key difference between [33] and [32]
being a different identification of the cyclotron frequency and cyclotron decay rate. The
Hall conductivity differs between the two because in [33] there is no simple expression for
n in terms of ωc.

As was noted previously, it is only necessary to know 〈J iJ j〉 and 〈J iOj〉 at arbitrary
frequency to determine all other correlators that appear in the Ward identities. For this
latter correlator, its value at non-zero frequency is

γ(L)(ω) =
ω
(
Bωωcθ(L)(0)−

(
γc(ω+iγc)+iω2

c
)(
θ(H)(0)+µ

))
B2 ((ω+iγc)2−ω2

c ) , (3.24)

γ(H)(ω) =
ω2ωc

(
θ(H)(0)+µ

)
+B

(
iω
(
γ2

c−iγcω+ω2
c
)
θ(L)(0)+(ω+iγc)2−ω2

c

)
B ((ω+iγc)2−ω2

c ) , (3.25)

where θ(L)(0) and θ(H)(0) are the longitudinal and Hall components of the zero frequency
limit of 〈QiOj〉. We remind the reader that this is the system dependent information
necessary to specify the zero frequency behaviour of any system satisfying our assumptions.

The AC correlator involving two Goldstone bosons is separated from the other correla-
tors as it does not enter into the Ward identities (unlike in the explicit case). Consequently,
its values are not generally constrained by the Ward identities and DC data. Instead, we
can only learn information about this correlator by specifying that we are in the hydrody-
namic regime. The expression is somewhat complex so it is worthwhile to introduce some
new notation. Let

σ̂ = σ(L)12 − σ(H)F , γ̂ = γ(L)12 − γ(H)F , Γ̂ = F · n̂ , Î = 12 + F · γ̂ ,

n̂ = 1
χππ

(n12 − F · σ̂) , (κ̂, θ̂)(0) = (κ, θ)(L)(0)12 − (κ, θ)(H)(0)F−1 , (3.26)

then the Goldstone-Goldstone correlator takes the form

X̂(ω) = X̂ − iω

χππ
Î · Î · Λ̂−1(ω) , Λ̂(ω) = −iω12 ·

(
−iω12 + Γ̂

)
. (3.27)
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Simultaneously, we can rewrite our other correlators in this unified notation (which will be
particularly useful for the explicit case). As such, the independent transport coefficients
appearing in the hydrodynamic constitutive relations are

σ̂ = Φ̂−1
(
nκ̂(0)− (µn− χππ)2 F−1

)
, (3.28a)

γ̂ = Φ̂−1
(
µ (µn− χππ)F−1 − χππ θ̂(0)− κ̂(0)

)
, (3.28b)

X̂ = Φ̂−1
(
µ (µn− 2χππ) X̂(0)− µ2F−1 − X̂(0) · F · κ̂(0)

+ 2µθ̂(0)− θ̂(0) · F · θ̂(0)
)
, (3.28c)

Φ̂ = F · κ̂(0)−
(
µ2n− 2µχππ

)
12 , (3.28d)

which allows us to rewrite (3.21) and (3.24) as

σ̂(ω) = σ̂ − iωχππn̂ · n̂ · Λ̂−1(ω) , (3.29a)

γ̂(ω) = γ̂ + iωn̂ · Î · Λ̂−1(ω) , (3.29b)

with Λ̂(ω) given in (3.27).

3.2 Explicit case

Distinctly from the spontaneous case, and recalling that due to (2.14) there is no momentum
relaxation rate (Γij = 0), in the explicit case there is the potential for a non-zero phase
relaxation term Ωij in the Josephson relation, namely1

∂tO
i + J iO = −Ωi

jO
j , (3.30)

∂tP
i + ∂jT

ij = −nEi + F ijJj − ω2
0χππO

i . (3.31)

We can employ SO(2) spatial rotation invariance and microscopic spatial parity invariance
to decompose the phase relaxation tensor into

Ωij = Ω(L)δ
ij + Ω(H)F

ij , (3.32)

where the coefficients must be determined from data.
Modulo these modifications to the (non-)conservation equations, the situation is not so

different from the spontaneous case. In particular the constitutive relations are unmodified.
However, to employ our formalism we shall have to assume that the pinning frequency, and
consequently k0, is sufficiently small such that the dynamics of the scalar modes are of the
pseudo-Goldstone type and hence they are long-lived enough to enter our effective hydro-
dynamic description. This can be seen post-hoc by comparing AC correlators to real data.

1One can instead assume the most general thing possible (i.e. Γij 6= 0) for the equations of motion, so
that

∂tP
i + ∂jT

ij = −ΓijPj − nEi + F ijJj − ω2
0χππO

i .

However, the comparison of the previous equations against the Ward identities (2.8) at large frequency
implies Γij = 0, in accordance with (2.14).
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3.2.1 The AC correlators

We can once again employ the Martin-Kadanoff procedure and determine the constraints
that result when we substitute the correlators into the Ward identities. First, by comparing
the 1-pt Ward identity (1.1) with (3.31) we find

ϕ = ω2
0χππ , (3.33)

which fixes the source of the scalar ϕ in terms of the pinning frequency, or using (3.2) in
terms of the mass of the phonon k2

0. Additionally, from expanding the Ward identities at
large frequencies we learn that

ιij = µγij , (3.34)

which constrain transport coefficients that were unconstrained in the spontaneous case.
Given these new identifications we find that the independent AC correlators, from

which all others can be derived using (2.8), are

σ̂(ω) = σ̂ +
(
χππn̂ · n̂ ·

(
−iω12 + Ω̂

)
+ χππω

2
0 (n̂ · γ̂ · (212 + F · γ̂) + iωγ̂ · γ̂)

)
Ξ̂−1(ω) , (3.35a)

$̂(ω) =
(
n̂ · Î +

(
iω12 − Γ̂

)
· γ̂
)

Ξ̂−1(ω) , (3.35b)

ζ̂(ω) = 1
ω2

0χππ

(
iω12 − Γ̂

)
Ξ̂−1(ω) , (3.35c)

Ξ̂(ω) =
(
−iω12 + Γ̂

) (
−iω12 + Ω̂

)
+ ω2

0 Î · Î , (3.35d)

where
Ω̂ = Ω(L)12 − Ω(H)F . (3.36)

To arrive at (3.35) we have imposed the constraints (3.19), (3.34) and (2.14).
Again, we can extract the incoherent conductivities (and other hydrodynamic transport

coefficients) in terms of the DC conductivities of our system using the low frequency Ward
identities. One point of note is that, in opposition to what is found for the spontaneous case,
the electric and thermo-electric DC conductivities contain information about the system
beyond what is dictated by symmetry. We can therefore use them to constrain the hydrody-
namic transport coefficients entering the constitutive relations entirely in terms of the DC
electric, thermo-electric and thermal conductivities. For example, the independent trans-
port coefficients appearing in the hydrodynamic constitutive relations for the currents are

σ(L) = −1
2Tr

[
Ψ̂−1

(
n (κ̂(0) · F · σ̂(0)− α̂(0) · F · α̂(0))− n2κ̂(0)

+ 2n (χππ − µn) α̂(0)− (χππ − µn)2 σ̂(0)
)]

, (3.37a)

σ(H) = 1
2Tr

[
F−1Ψ̂−1

(
n (κ̂(0) · F · σ̂(0)− α̂(0) · F · α̂(0))− n2κ̂(0)

+ 2n (χππ − µn) α̂(0)− (χππ − µn)2 σ̂(0)
)]

, (3.37b)

γ(L) = −1
2Tr

[
Ψ̂−1 (nκ̂(0) + µ (µn− χππ) σ̂(0) + (2µn− χππ) α̂(0)

− κ̂(0) · F · σ̂(0) + α̂(0) · F · α̂(0))
]
, (3.37c)
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γ(H) = 1
2Tr

[
F−1Ψ̂−1 (nκ̂(0) + µ (µn− χππ) σ̂(0) + (2µn− χππ) α̂(0)

− κ̂(0) · F · σ̂(0) + α̂(0) · F · α̂(0))
]
, (3.37d)

Ψ̂ = χ2
ππ12 + µ (µn− 2χππ)F · σ̂(0) + 2 (µn− χππ)F · α̂(0)

+ nF · κ̂(0) + (F · α̂(0))2 − F · κ̂(0) · F · σ̂(0) , (3.37e)
(σ̂, α̂, κ̂)(0) = (σ, α, κ)(L)(0)12 + (σ, α, κ)(H)(0)F . (3.37f)

Notice the redefinition of κ̂ compared to the spontaneous case. These expressions in terms
of the thermo-electric conductivities are the most convenient for comparison against any
putative experiment, as they do not require any specification of the DC values of correlators
involving the scalar. However, the interested reader can use the Ward identities (2.11) to
switch out dependence on σ(L),(H) and α(L),(H) for $(L),(H) and ζ(L),(H) if they so choose.

Finally, to completely specify the correlators in the explicit case we need expressions
for the phase relaxation rates. When performing the above identification procedure for the
hydrodynamic transport coefficients one additionally finds

Ω(L) = ω2
0χππ
2 Tr

[
Ψ̂−1

(
κ̂(0) + 2µα̂(0) + µ2σ̂(0)

)]
, (3.38a)

Ω(H) = −ω
2
0χππ
2 Tr

[
F−1Ψ̂−1

(
κ̂(0) + 2µα̂(0) + µ2σ̂(0)

)]
. (3.38b)

These expressions are valid at arbitrary magnetic fields and pinning frequencies, including
the B → 0 limit with ω0 > 0, so long as we remain within the hydrodynamic regime.
Importantly, the limits of the trace terms in (3.38) as ω0 → 0 are smooth and non-zero
for any B > 0, and thus the leading dependence on ω0 of the phase relaxation coefficients
at small pinning frequency is ω2

0. This becomes important when comparing the explicit
scalar-scalar correlator as ω0 → 0 to the spontaneous correlator. The exact value of the
proportionality coefficient can be computed by examining the scalar-scalar correlator of the
explicit case in such a limit and requesting that it match the spontaneous correlator [17,
24, 35]. Consequently we obtain

Ω(L) = χππω
2
0X(L) +O(ω4

0) , Ω(H) = χππω
2
0X(H) +O(ω4

0) , (3.39)

for arbitrary values of the magnetic field. The first identification was already discussed
in [17, 24, 34, 35]. Here we have generalized this relation to include Ω(H) (which is present
only at non-zero magnetic field) and most importantly we have avoided any ordering ambi-
guities compared to the B = 0 case as in that situation ω0 → 0 and k → 0 do not commute
as limits.

4 Summary and future work

In this paper we have developed a formalism for computing the diffusion characteristics
of (2 + 1)-dimensional charged fluids in an external magnetic field with broken translation
invariance. We have worked at order one in derivatives and fluctuations and considered
a breaking mechanism where a scalar operator acquires a spatially modulated vev. We
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observed that the system does not include any fundamental momentum dissipation effects
except as an effective description when the dynamics of the translation breaking scalars
are frozen out. We have supplied analytic expressions for the hydrodynamic transport
coefficients appearing in the constitutive relations in terms of experimentally measurable
quantities: the DC thermo-electric transport coefficients.

It would be interesting to use our formalism to more precisely understand the be-
haviour of certain holographic models with (pseudo-)spontaneous breaking of translation
invariance [12–25]. This necessarily will require us to consider non-zero lattice pressures
(as these systems are unstable) [21, 43, 44]. The resultant hydrodynamics is more compli-
cated but we do not expect any significant divergences from what we have found here and
are currently pursuing this study. In this context, it would also be worthwhile to perform
a more systematic scan of the parameter space of these holographic models in an effort
to elucidate the bounds on our hydrodynamic approach, particularly in light of current
programmes examining the convergence radius of hydrodynamics [47–49].

We might also consider modifying our action to include terms that can generate the
effective actions described in [10] i.e. time dependencies for the scalar of the form εijOi∂tOj .
Indeed, as discussed in [10], there should be a limit of our analytic expressions where the
magnetoplasmon is pushed out of the hydrodynamic regime. What is not clear to us is
whether, when we take this limit, the effective action describing the scalar fluctuations in
our system includes the desired kinetic term. We are also exploring this issue.

The applications of the approach of [33] are only in the initial phases of exploration.
A fundamental question to address in this direction is to apply the method to models
which realise translation symmetry breaking in a different way from the class analysed
here, e.g. via a spatially modulated charge density profile, and study if in this case the
correct hydrodynamic theory is still the one described in this work.

An additional potential extension is to consider generalising our formalism to (3 + 1)-
dimensions and tackling anomalous transport. A comprehensive approach to such systems
without momentum dissipation and assuming a vanishing spatial velocity in the ground
state is discussed in recent work [50]. However it is expected that these anomalous fluids
will generally have a non-zero velocity in the “laboratory frame”. This has presented sev-
eral problems in the literature as without momentum dissipation this system is inherently
unstable. Additionally, in formulations that incorporate a non-zero velocity in the ground
state, there are known problems in satisfying the Onsager relations [51].
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