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Hydrodynamic nucleation of quantized vortex

pairs in a polariton quantum fluid

Gaël Nardin*, Gabriele Grosso, Yoan Léger, Barbara Piȩtka†, François Morier-Genoud

and Benoît Deveaud-Plédran

Quantized vortices appear in quantum gases at the breakdown of superfluidity. In liquid helium and cold atomic gases, they
have been indentified as the quantum counterpart of turbulence in classical fluids. In the solid state, composite light–matter
bosons known as exciton polaritons have enabled studies of non-equilibrium quantum gases and superfluidity. However, there
has been no experimental evidence of hydrodynamic nucleation of polariton vortices so far. Here we report the experimental
study of a polariton fluid flowing past an obstacle and the observation of nucleation of quantized vortex pairs in the wake of the
obstacle. We image the nucleation mechanism and track the motion of the vortices along the flow. The nucleation conditions
are established in terms of local fluid density and velocity measured on the obstacle perimeter. The experimental results are
successfully reproduced by numerical simulations based on the resolution of the Gross–Pitaevskii equation.

H
ydrodynamic instabilities in classical fluids were studied
in the pioneering experiments of Bénard in the 1910’s.
Convective Bénard–Rayleigh flows and Bénard–Von Kár-

mán streets are now well known examples in nonlinear and chaos
sciences1. In conventional fluids, the flow around an obstacle is
characterized by the dimensionless Reynolds number Re = vR/ν,
with v and ν the fluid velocity and dynamical viscosity, respectively,
and R the diameter of the obstacle. When increasing the Reynolds
number, laminar flow, stationary vortices, Bénard–Von Kármán
streets of moving vortices and fully turbulent regimes are succes-
sively observed in the wake of the obstacle1.

In quantum fluids, such as liquid helium or atomic Bose–
Einstein condensates, quantum turbulence has long been predicted
to appear at the breakdown of superfluidity2–8. In superfluid
systems, the Reynolds number cannot be defined owing to the
absence of viscosity. However, quantum turbulence, in the form
of quantized vortices, appears simultaneously with dissipation and
drag on the obstacle once a critical velocity is exceeded. This critical
velocity is predicted to be lower than the Landau criterion for
superfluidity far from the obstacle, because of a local increase of the
fluid velocity in the vicinity of the impenetrable obstacle2,4,5.

Experimental evidence has been given for the appearance of
a drag force or heat above some critical velocity in superfluid
helium5 and atomic Bose–Einstein condensates9,10. In stirred
atomic gases, vortex lattices appear above a critical stirring
frequency11–13, analogously to the rotating bucket experiments
originally performed with superfluid helium14. Irregular vortex
tangle patterns were also observed under an external oscillating
perturbation, indicating the presence of turbulence in the atomic
cloud15. Finally, vortex nucleation has been reported in the
wake of a blue-detuned laser moving above a critical velocity
through the condensate16,17. However, no experiment has yet
allowed the imaging of the hydrodynamic nucleation mechanism
with phase resolution.

The recent demonstration of superfluidity in an exciton
polariton gas in a semiconductor microcavity18 offers a very
advantageous tool to explore quantum turbulence. Exciton
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polaritons are composite bosons resulting from the strong coupling
between the excitonic resonance of a semiconductor quantum
well and the microcavity electromagnetic field19. Their dual
light–matter nature gives them many advantages. Thanks to a
one-to-one coupling to the extra-cavity field, with conservation
of in-plane momentum and energy, exciton polaritons can
be easily optically injected, manipulated20,21, and detected.
Thanks to their excitonic part, polaritons can interact with
each other, leading to spectacular nonlinear behaviours22. Since
the demonstration of polariton Bose–Einstein condensation23,
numerous experimental and theoretical works have explored the
rich physics underlying the driven-dissipative character of these
non-equilibrium condensates24–27.

In particular, observation of quantized vortices has been
reported in polariton degenerate gases in several configurations.
In a condensed phase, they are the result of the interplay
between the non-equilibrium nature of the condensate and
natural disorder present in the cavity28–30. Quantized vortices
have also been optically imprinted in optical parametric oscillator
(OPO) configurations31,32. On the other hand, frictionless
flow of a polariton wave packet has been reported in a
triggered OPO scheme33, and the superfluid regime has been
demonstrated in a resonantly injected polariton fluid18,34. In
these last papers, depending on the fluid velocity, superfluid or
Čerenkov regimes were observed as the steady polariton flow
scatters on a defect. However, the experimental observation
of the hydrodynamic nucleation of polariton vortices has not
been reported so far.

In this Article, we make use of a polariton fluid to demonstrate
the nucleation of quantized vortex pairs in the wake of an
obstacle. High-resolution experimental snapshots of the polariton
fluid density and phase allow the imaging of the nucleation
mechanism and the migration of the vortices in the microcavity
plane. The nucleation conditions are analysed in terms of the local
fluid velocity and sound velocity on the obstacle perimeter, and
qualitatively reproduced using numerical simulations based on the
resolution of the generalizedGross–Pitaevskii equation.
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Superfluidity and turbulence inmicrocavities
Similarly to conventional superfluids, quantum turbulence
is expected to appear in microcavities at the breakdown of
superfluidity35,36. As the sound velocity in the system is decreased,
hydrodynamic nucleation of quantized vortices occurs when the
local fluid velocity in the vicinity of the obstacle becomes larger than
the sound velocity. A Čerenkov regime, accompanied by soliton
lines, follows when the velocity of the fluid far from the obstacle
becomes greater than the speed of sound36. A crucial point is that the
excitation laser imprints its phase on the polariton fluid, preventing
the formation of non-trivial phase structures such as vortices. To
overcome this issue, an abrupt switch-off of the excitation laser35 or
a non-uniform spatial pump profile36 have been proposed.

In our experiment, we use a 3 ps-long pulse to create a polariton
wave packet, which can then evolve freely in the microcavity plane
during the polariton lifetime (measured characteristic decay time:
τ ∼ 15 ps), providing a sufficiently long time window during which
quantum turbulence can form. We resonantly inject polaritons in
the lower polariton branch with an initial in-plane momentum
imposed by the pump of k‖ = 1.2 µm−1 (in Fig. 1b the yellow
circle indicates the pump extension in energy andmomentum).We
allow the wave packet to scatter on a structural defect of ∼5 µm
transverse size (Fig. 1a). We have developed a time- and phase-
resolved imaging set-up, based on a Mach–Zehnder interferometer
(see Methods), to observe the dynamics of the scattering on a
picosecond timescale and track the formation and migration of
vortices in the turbulent flow. Quantized vortices are characterized
by a density minimum at the core and a 2π-phase rotation
around the singularity, which results in a fork-like dislocation when
interference takes place with a plane reference wave16,28.

As a result of polariton–polariton interactions, resonantly
pumping the polariton branch strongly modifies the excitation
spectrum34. These interactions result in a blue-shift of the disper-
sion curve (interaction energy) and a linearization of the dispersion
(Bogoliubov spectrum) in the vicinity of the polariton gas. This
allows one to define a sound velocity cs for the polariton fluid that
is dependent on the polariton density n, as cs =

√
ng/mLP (where g

is the polariton–polariton interaction constant and mLP the lower
polariton effective mass), and can therefore be controlled by tuning
the excitation power. Figure 1c shows the different shapes of the
lower polariton dispersion (in a parabolic approximation) for a po-
lariton population at k‖ = 1.2 µm−1 (corresponding to a flow speed
of v= h̄k‖/mLP =1.13 µmps−1). The dispersion curve changes from
a fully parabolic dispersion in the low-density regime (black curve)
to a superfluid dispersion (blue curve). On these curves, the injected
polariton population is indicated by a black dot. In the low-density
regime (black curve), the possibilities of elastic scattering due to
disorder (the intersection with the dashed line) form the so-called
Rayleigh ring in the two-dimensional momentum space. Under
high excitation density (blue curve), superfluidity arises because the
dispersion no longer offers the possibility of Rayleigh scattering.
This prevents any interaction of the polariton fluid with disorder.
This collapse of the Rayleigh ring has been experimentally demon-
strated by Amo et al.33. In this case, the Landau criterion is fulfilled,
as the fluid velocity is lower than the sound velocity. It corresponds
to a Mach number (defined as the ratio of the fluid velocity v
over the sound speed cs) smaller than one (v/cs < 1). The red
dispersion curve depicts a Čerenkov regime, where the fluid velocity
is greater than the sound speed (v/cs > 1). The green dispersion
curve shows an intermediate regime, corresponding to a Mach
number of v/cs = 1. In such a case, the dispersion curve is flat on a
finite distribution of wave vectors, offering a contiguous reciprocal
space region in which Rayleigh scattering can occur. Using a
pulsed excitation, we expect to pass through all these regimes (as
schematically indicated by the black time arrow in Fig. 1c) after the
polariton injection, leading to an extremely rich dynamics.
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Figure 1 | Experimental scheme. a, Scheme of the experiment. A polariton
wave packet is resonantly injected with an in-plane wave vector k‖ in front
of a structural defect on which it scatters. b, Experimental polaritonic
dispersion curve, under non-resonant pumping. The solid line indicates the
theoretical lower polariton (LP) dispersion, and the dashed line the
standard small momentum parabolic approximation of the LP branch.
During the experiment, polaritons are resonantly injected in the lower
polariton branch: the yellow circle indicates the energy and momentum
extension of the pulsed pump. c, Theoretical dispersion curves. Under low
excitation density, the system is in the linear regime and the dispersion is
parabolic in the small momentum approximation (black curve). The
polariton population is given by the black dot, and the intersection of the
dashed line with the dispersion gives the possibility of scattering, which
conserves energy. When increasing the pump power, the excitation
spectrum is modified, going from a Čerenkov regime (red curve) to a
superfluid regime (blue curve). The green curve shows an intermediate
regime, for which the dispersion curve is flat on a finite distribution of wave
vectors. The black arrow schematically shows the time evolution of the
dispersion curve during the decay of the polariton population.

Interferometric measurements taken for different delays
between the two Mach–Zehnder interferometer arms allow us to
retrieve the dynamics of the polariton fluid (each measurement
is therefore an integration over multiple experiments at a fixed
delay—seeMethods). In Fig. 2awe display the normalized polariton
density integrated in the vicinity of the defect (red curve), and
compare it to the normalized autocorrelation measurement of
the laser (black curve). It shows that a significant fraction of the
polariton population is still passing in the vicinity of the obstacle
even when the excitation pulse has gone.
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Figure 2 | Population dynamics. a, Red curve: measured polariton density, integrated in a small region in the vicinity of the obstacle, with respect to the
interferometer delay. Black curve: autocorrelation of the pulsed excitation. The comparison of the red and black curves shows the time window on which
the created polariton wave packet is allowed to evolve. b, Momentum space image of the emission under low excitation power. In this low excitation
density regime, a Rayleigh ring is visible, as a result of the scattering of the polariton wave packet on the defect. The intensity of the Rayleigh ring is
maximal 5.7 ps after the excitation pulse. Dashed line indicates the expected position of the Rayleigh ring in the low-density regime. c, Momentum space
dynamics of the emission under high excitation power. The time-dependent modification of the excitation spectrum leads to a spreading of the polariton
population inside the Rayleigh ring, and a general slowing down of the polariton propagation.

Momentum space dynamics
We first discuss the dynamics in momentum space. At low
excitation pump power, the system is in the linear regime (black
curve in Fig. 1c). In this case, a Rayleigh ring (Fig. 2b) appears as
the result of elastic scattering of polaritons on surrounding disorder,
and disappears with the polariton decay time. At high pump power,
the time-dependent polariton density will make the dispersion
curve vary with time, passing through the different cases depicted
in Fig. 1c. The four panels of Fig. 2c show different snapshots of this
evolution. At first the excitation laser creates a wave packet with an
in-plane momentum of k‖ = 1.2 µm−1 (Fig. 2cI). Then, as the local
polariton density decays, we observe the filling of the interior of the
Rayleigh ring (Fig. 2cII–IV), resulting in an average slowing down
of the wave packet. This behaviour can be qualitatively reproduced
using the generalized Gross–Pitaevskii model (see Methods and
Supplementary Information) and understood as follows: the decay
of the polariton density is accompanied by a decrease of the sound
velocity. When v ∼ cs (green dispersion curve in Fig. 1c), elastic
scattering of the polariton wave packet on the environment fills
a contiguous region inside the Rayleigh ring, relaxing the wave
vector conservation rule. This is of crucial importance for the
vortex nucleation mechanism, as vortices can appear only when
a significant quantity of fluid has been slowed down behind the
obstacle and a contiguous and sufficiently broad region of the
reciprocal space provides the necessary wave vectors to form the
rotating flow around the phase singularity.

Vortex dynamics

We now discuss the dynamics of the vortex nucleation and
migration. Figure 3 displays experimental images of (1) the
normalized polariton density, (2) the fringes of the interferogram
(in a saturated colour scale, to track the fork-like dislocations),
and (3) the phase of the polariton gas, for different times
after the excitation pulse. The obstacle position is indicated by
a green circle and the polariton flow is to the left. In the
first column (−0.7 ps), the phase structure is imposed by the
excitation laser. The phase gradient allows one to extract the
flow velocity, which is fairly homogeneous on the wave packet,
and measured to be 1.1 ± 0.2 µmps−1, in agreement with the
injected velocity of 1.13 µmps−1. In the following, the fluid velocity

will be specifically measured on two points of interest: behind
the obstacle and on the equator of the obstacle perimeter. The
corresponding measurement areas are indicated in Fig. 3a by a
dashed white square and a plain white square, respectively. In
the second column (1.3 ps), a low-density region appears in the
wake of the defect, along with a curvature of the wavefront.
The measurement of the phase gradient shows that the polariton
flow slows down in the wake of the obstacle. The flow velocity
behind the obstacle is shown in Fig. 4a (cyan curve). In the
third column of Fig. 3 (3.7 ps), the flow velocity is measured
to be 0.9 ± 0.2 µmps−1, dropping to 0.3 ± 0.2 µmps−1 in the
fifth column (9.3 ps), whereas the flow velocity measured on
the obstacle perimeter, shown in Fig. 4a (black curve), remains
above 0.95 ± 0.35 µmps−1 on this time range. As expected in
a quantum fluid, where the circulation is quantized, the phase
accumulation between the almost stationary wave behind the
obstacle and the main flow is accompanied by the nucleation of
quantized vortices3.

The nucleation of vortices can be observed in the third column
(3.7 ps) of Fig. 3, where a tearing of the phase front is visible.
Vortices are unambiguously identified by a minimum of density
and a fork-like dislocation in the interferogram, accompanied by
a phase singularity in the phase structure. They are indicated by
white markers (× for vortex and + for anti-vortex) on the density
map and red circles on the interferogram and phase maps. At the
onset of the vortex nucleation, four of them are nucleated in the
wake of the defect, but two of them (circled with dotted lines)
merge together in less than 2 ps. It indicates that the size of the
obstacle is probably large enough to nucleate a vortex pair, the
core diameters of which are measured to be in the range 2 µm to
3.3 µm (depending on the vortex under scrutiny and the line profile
axis), but too small to allow the nucleation of four vortices. The
merging of the two central vortices may also be due to the local
disorder landscape. The remaining vortex pair flows downstream,
and we track its motion (white dots on the density map) for 10 µm,
until the decay of the polariton population. Whereas in atomic
condensates the vortex trajectories are closed loops because of the
trapping potential17, the polariton vortices are free to propagate
in the microcavity plane. The snake-like nature of their tracks
is due to the local disorder landscape, and the slight right turn
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Figure 3 |Vortex dynamics. Experimental images of the scattering of the polariton wave packet on the structural defect (the position of which is indicated
by a green circle). The wave packet propagates towards the left with an initial momentum of 1.2 µm−1. The three rows show a, the polariton density, b, the
fringes of the measured interferogram, in a saturated colour scale to facilitate the observation of the vortices, and c, the polariton phase. First column
(−0.7 ps): the phase structure is fully imposed by the excitation pulse, preventing the formation of vortices. Second column (1.3 ps): the polariton wave
packet starts to feel the effect of the obstacle, resulting in a zone of minimal polariton density in the wake of the obstacle and a bending of the polariton
wavefront. Third column (3.7 ps): nucleation of vortices in the wake of the obstacle. Vortices are indicated by white markers (× for vortex, + for
anti-vortex) on the density plot and are circled in red on the fringes and phase plots. Dotted circles indicate short-lived vortices. Fourth, fifth and sixth
columns (from 4.7 to 13.3 ps): motion of the long-lived vortex pair. Previous vortex positions are indicated by white dots on the density plots, allowing one
to follow the vortex motion. Dashed circles in the fifth column (9.3 ps) indicate the position of a new vortex pair which moves only a few micrometres
before disappearing because of the decay of the polariton population. For the sake of visibility, density values are multiplied by a factor three in the last
density plot. The average excitation power is 4 µW µm−2. This figure corresponds to Supplementary Movies SM1 (fluid density) and SM2 (fluid phase).

is attributed to the microcavity wedge, which provides a global
potential gradient towards this direction. It is also interesting to
note the additional vortex pair created at a delay of 9 ps (visible
in the fifth column, dashed circles). This pair propagates only a
few micrometres and then disappears in the noise due to signal
decay. It does not allow one to define a shedding frequency, as this
latter is expected to depend on the fluid density2,3, which varies with
time in our experiment.

Determining experimental conditions for vortex nucleation

To determine the nucleation conditions in terms of polariton den-
sity and fluid velocity, we performed the same experiment with dif-
ferent excitation angles and powers. In theoretical predictions2,4,36

different flow regimes are observed, depending on the Mach num-
ber. Turbulence is expected in the wake of the obstacle when the
local velocity on the perimeter of the impenetrable obstacle becomes
supersonic. The original work of Frisch et al.2 also predicts that
this critical velocity is attained on the obstacle perimeter when
v/cs ∼ 0.4 far from the defect, in a homogeneous and steady flow.
In our case, it is not possible to use such a criterion, as we have a
finite-size, time-dependent population, andmost likely a penetrable
obstacle. The onlyway to determine the experimental conditions for
vortex nucleation is therefore to look at the local fluid velocity and
sound velocity on the obstacle perimeter.Whereas the fluid velocity
vector field can be directly extracted from the polariton field phase
gradient, the local speed of sound can be obtained from the density
map (seeMethods for details). It is therefore possible to estimate the
value of the localMach number v/cs on the obstacle perimeter along

the dynamics. These values, computed in the area delimited by the
plain white square in Fig. 3a, are displayed in Fig. 4b (red curve). It
shows that a value of v/cs ∼ 1 is obtained on the obstacle perimeter
at the onset of the vortex nucleationmechanism.

Reducing the excitation angle, we have probed different wave-
packet momenta, and observed the nucleation of vortices in the
wake of the obstacle down to a critical initial fluid momentum
of 0.6 µm−1. Below this characteristic momentum, the wave
packet passes the obstacle without any visible perturbation (see
Supplementary Fig. S1). The values of the Mach number on the
obstacle perimeter for this regime are plotted in blue in Fig. 4b,
for comparison with the vortex nucleation regime. They show
that the flow remains mostly subsonic during the major part of
its dynamics. Finally, we have also varied the average excitation
power and observed a threshold (at 0.04 µW µm−2) under which no
vortices are nucleated in the wake of the obstacle. Instead, parabolic
backscattering standing waves are visible on the polariton density
maps (see Supplementary Fig. S2), and a Rayleigh ring is visible
in the Fourier plane, as shown in Fig. 2b. This corresponds to a
standard elastic scattering process, where the flow is supersonic,
as the polariton density—and consequently the sound velocity—is
very low. In this low-density limit (also called the linear regime), the
interaction energy is negligible with respect to the kinetic energy.

Insights from numerical simulations

These three behaviours—vortex pair nucleation for a 1.2 µm−1

momentum wave packet, almost unperturbed flow in a 0.6 µm−1

momentum wave packet and standard Rayleigh scattering in the
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Figure 4 |Nucleation conditions in experiments. a, Experimentally
measured fluid velocity v for the vortex nucleation regime. Cyan curve:
velocity measured behind the obstacle (in the area delimited by the dashed
white square in Fig. 3a). Black curve: velocity measured on the obstacle
perimeter (in the area delimited by the plain white square in Fig. 3a). These
values are extracted from the polariton field phase gradient (see Methods
for details). b, Mach number v/cs (red curve) for the vortex nucleation
regime (as in Fig. 3); (blue curve) for the low-velocity regime (as in
Supplementary Fig. S1). The local value of the sound velocity cs is extracted
from the polariton field density (see Methods for details). The green line on
v/cs = 1 indicates the limit between subsonic flow (below the line) and
supersonic flow (above the line).

low-density flow—are extremely well reproduced by the numerical
simulations (see Supplementary Figs S3, S4, S5), which take
into account the pulsed excitation, the finite spot size and the
exponential decay of the polariton population (see Methods). A
snapshot of the computed phase profile is displayed in Fig. 5a,
for the vortex nucleation regime, at the onset of the first vortex
pair nucleation. Local values of the Mach number are represented
by coloured lines, with a thick green line for v/cs = 1. To
compare the experimental findings of Fig. 4b, we plot in Fig. 5b
the time evolution of the Mach number in a small region close
to the equator of the obstacle (small black and white circle in
Fig. 5a), using simulation parameters corresponding to the three
flow regimes described previously (vortex nucleation regime, low-
velocity regime and low-density regime). Whereas the low-density
experiment always lies in the supersonic region (black curve), the
high-density experiments (blue and red curves) remain subsonic for
a significant part of their dynamics. Similarly to the experimental
findings, the low-velocity regime (blue curve) remains subsonic
for a longer time than the vortex nucleation regime (red curve).
Moreover, consistently with the argument originally developed by
Frisch et al.2 for the transition to turbulence in a superfluid, we
find in the simulation that the phase accumulation resulting in
vortex nucleation starts at the precise time when the fluid velocity
becomes equal to the sound speed (when v/cs = 1) on the obstacle
equator. The nucleation of the vortex pair is just after this event;
the higher the initial velocity, the closer the vortex nucleation
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Figure 5 |Nucleation criterion: numerical evidence. a, Numerical
simulation (see Methods for details) of the phase profile, with simulation
parameters corresponding to the vortex nucleation regime at the onset of
vortex nucleation. The obstacle is indicated by a black circle and the flow is
directed to the left. The thick red circles show the vortex positions.
Coloured lines indicate lines of equal Mach number. The thick green line
indicates a local Mach number of 1, blue lines indicate a local subsonic flow
(v/cs< 1), yellow to red lines indicate a local supersonic flow (v/cs> 1).
b, Evolution of the Mach number at the equator of the obstacle (small black
and white circle of Fig. 5a), using simulation parameters corresponding to
the vortex nucleation regime (red curve), to the low-velocity—mainly
subsonic—regime (blue curve) and to the low-density—linear—regime
(black curve). The phase accumulation starts when the fluid velocity
crosses the sound velocity (v/cs = 1) on the obstacle equator (dashed
lines) resulting in the systematic nucleation of vortices.

to the initial phase accumulation. The vortices are dragged away
from the obstacle at later times, in a time range corresponding
to the experimental findings. Finally, the numerical simulations
allow one to see the role of the polaritonic nonlinearities in the
nucleation process. Indeed, there are no vortices nucleated in the
wake of the obstacle if the interaction constant is set to 0. The
hydrodynamic nucleation process can therefore be differentiated
from linear optical processes, such as the generation of vortex
lattices, whenever three ormore plane waves interfere.

Conclusion

Our experiment demonstrates the great potential of semiconductor
microcavities for the study of turbulence in quantum gases. The key
advantages are the direct optical access to the polariton field (in both
real and momentum spaces), the absence of a trapping potential
and operation at cryogenic temperature (and possibly even at room
temperature in state-of-the-art nitride-based microcavities37). The
ability to control polariton properties opens the way to subsequent
breakthrough experiments, such as the scattering of a wave packet
on engineered obstacles of different sizes and shapes38,39, which
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would provide the possibility to address the quantum counterpart
of Bénard–VonKármán vortex streets and fully turbulent regimes7.

Methods
Sample. The sample is a GaAs λmicrocavity sandwiched between two distributed
Bragg reflectors (DBR) with 22 (21) AlAs/GaAs pairs for the bottom (top) DBR,
and one 8 nm thick InGaAs QW placed at the anti-node of the cavity field. It is
held in a cold finger cryostat at liquid helium temperature. We measured a Rabi
splitting of 3.5meV and a cavity mode quality factor of Q= 7×103. The obstacle
consists of a structural defect in the microcavity plane. It is most likely penetrable.
Its characteristic size can be estimated from Supplementary Fig. S1 to be 2 µm in the
direction of the flow and 5 µm in the direction transverse to the flow.

Experimental set-up. The polariton population is created using a pulsed
Ti:sapphire laser. The circularly polarized laser pulse is spectrally filtered to form
a 1meV broad, 3 ps long pulse, which is then split into one excitation pulse
and one reference pulse. The reference pulse is directed through a telescope
for spatial filtering and wavefront tuning, and incident at a slight angle on the
CCD, to serve as a phase reference40. The excitation pulse is passed through
a delay line and focused on the back of the sample using a 25 cm focal length
camera objective, providing a Fourier limited 25 µm diameter excitation spot. An
oblique excitation angle is used to create a propagating polariton wave packet.
The coherent emission is collected by means of a 0.5 NA microscope objective in
a transmission configuration. Real space or Fourier space images of the coherent
emission are allowed to interfere, in a Mach–Zehnder configuration, with the
reference pulse on the CCD. From the interferogram we numerically extract the
amplitude and phase of the coherent emission at a time given by the delay between
the excitation and reference pulses. Varying this delay allows us to probe the
dynamics of the coherent polariton population in both real and momentum spaces.
By acquiring data over 0.2 s, every measurement is an integration over 1.6×107

experimental realizations.

Numerical extraction of polariton amplitude and phase. To extract the polariton
amplitude and phase from the recorded interferogram, we use a technique known
as digital off-axis holography41. It consists of performing a two-dimensional fast
Fourier transform (FFT) of the interferogram. The fringes of the interferogram
provide off-axis contributions in the Fourier plane, which can be differentiated
from the cw contributions. Removing the cw contributions and performing an
inverse FFT allows one to isolate the fringes, from which the amplitude and
phase are extracted, providing the full information (amplitude and phase) on the
coherent polariton field.

Extraction of local fluid velocity and speed of sound from experimental data.
The fluid velocity vector field is extracted from the phase gradient of the polariton
field. The values of Fig. 4a are obtained by fitting the slope of the phase profile in
the region of interest. The error bars take into account the standard deviation of the
linear fit, as well as a systematic error coming from the determination of the phase
gradient induced by the set-up alignment (see ref. 40 for how this reference phase
gradient can be determined). The value of the local sound velocity is determined
from the density map, originally in arbitrary units, which needs to be scaled to
the blue-shift ng . We have access only to the spatially and temporally averaged
blue-shift in the polariton dispersion, which is measured to be 0.8meV. Assuming
that the major contribution to this blue-shift comes from the beginning of the
dynamics, when the maximal population density is reached, we scale the density
maps to the blue-shift. This allows us to extract a rough estimation for the local
speed of sound along the dynamics (it more probably gives a lower bound to its
value, as the averaging of the blue-shift yields an underestimation of its value). We
consider an error in the local sound velocity which takes into account the standard
deviation on the averaging in the region of interest, as well as a systematic error on
the scaling method, estimated to 25%.

Gross–Pitaevskii equation. We theoretically investigate the quantum turbulence
regime of exciton-polaritons in the mean field approximation. We solve
iteratively the generalized Gross–Pitaevskii equation for the lower polariton mode
ψ , previously introduced byCiuti andCarusotto for exciton polaritons34

ih̄
d
dt
ψ(r,t ) =

(

−i
γ

2
+
∑

k

h̄ωk |k〉〈k|+g |ψ(r,t )|2
)

ψ(r,t )

+Vψ(r,t )+Fk(r,t )

The potential V is constructed as a 3 µm sized and 1meV high obstacle. Our
model accounts for the dissipation of polaritons, at rate γ , and a 1 ps-long initial
excitation of the system Fk(r,t ). The polariton–polariton interaction is assumed to
depend linearly on the polariton density |ψ(r,t )|2 with a coefficient g . The lower
polariton dispersion is approximated to a quadratic dispersion with effective mass
mLP. The parameters used in the simulations are: γ = h̄/15 ps, g = 0.01meV µm2,

h̄ωk = h̄2k2‖/2mLP with mLP = 0.7meVps2 µm−2. The excitation intensity for
the high excitation experiment corresponds to a maximal polariton density of
120 µm−2 on a 20 µm large spot.
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