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ABSTRACT 

 

Two hydrodynamic features of phonon transport, phonon drift and second sound, in a (20,20) 

single wall carbon nanotube (SWCNT) are discussed using lattice dynamics calculations 

employing an optimized Tersoff potential for atomic interactions. We formally derive a formula 

for the contribution of drift motion of phonons to total heat flux at steady state. It is found that 

the drift motion of phonons carry more than 70% and 90% of heat at 300 K and 100 K, 

respectively, indicating that phonon flow can be reasonably approximated as hydrodynamic if 

the SWCNT is long enough to avoid ballistic phonon transport. The dispersion relation of second 

sound is derived from the Peierls-Boltzmann transport equation with Callaway’s scattering 

model and quantifies the speed of second sound and its relaxation. The speed of second sound is 

around 4000 m/s in a (20,20) SWCNT and the second sound can propagate more than 10 µm in 

an isotopically pure (20,20) SWCNT for frequency around 1 GHz at 100 K.  

 

  



I. INTRODUCTION 

 Single wall carbon nanotubes (SWCNTs) have received significant attention due to their 

unique electrical, mechanical and thermal properties1,2. In particular, thermal conductivities of 

SWCNTs are remarkably high3–5, making them well suited for thermal management applications 

including electronics packaging and thermal interface materials. Like other carbon-based 

materials, the high thermal conductivity of SWCNTs can be attributed to the small mass of 

carbon and stiff covalent bonding, resulting in high Debye temperatures. High Debye 

temperature accompanies large group velocities of heat-carrying acoustic phonons and generally 

weak Umklapp three-phonon scattering (hereafter U-scattering) at room temperature, both of 

which contribute to high thermal conductivity. Another characteristic of materials with a high 

Debye temperature is long mean free path of phonons due to weak U-scattering. As the typical 

length of SWCNTs (few micrometers) from experiment5,6 is comparable to the U-scattering 

limited mean free paths, phonon-boundary scattering is important and thermal transport has been 

often discussed as being between ballistic and diffusive regimes for typical SWCNTs7–9.  

Like these transport regimes, hydrodynamic transport has also been extensively studied 

as another regime of phonon transport in various systems10–13. These three regimes (ballistic, 

diffusive, and hydrodynamic) arise from the dominance of different types of phonon scattering 

mechanisms. The ballistic regime has very little internal phonon scattering and diffuse phonon-

boundary scattering is the dominant resistance. The diffusive regime, on the other hand, has 

strong U-scattering which destroys overall crystal momentum and boundary scattering is 

typically weak compared to it. The hydrodynamic regime occurs when normal three-phonon 

scattering (hereafter N-scattering) is much stronger than U-scattering and boundary scattering. 

Unlike U-scattering and diffuse boundary scattering, N-scattering always conserves the overall 

phonon crystal momentum14, similar to intermolecular scattering in fluid flow. Phonons in this 

hydrodynamic regime exchange momentum through N-scattering until all phonon modes have 

the same drift velocity, just like molecules in a small fluid element flow together.  

Among many hydrodynamic transport phenomena, phonon Poiseuille flow and second 

sound have been observed in three-dimensional bulk materials but at very low temperature and 

only for a narrow temperature range: 0.5 K in solid He for Poiseuille flow and  15 K in NaF for 

second sound11,12. More recently, however, two theoretical studies based on first principles 

calculations have shown that hydrodynamic phonon transport may be observed in graphene at 



significantly higher temperature and over a broader range of temperature15,16. According to these  

studies15,16, the hydrodynamic phenomena may be clearly observed in graphene even at 100 K. 

This significant hydrodynamic phonon transport is associated with flexural acoustic phonon 

modes of graphene. As graphene and SWCNTs are similar in terms of lattice dynamics, 

hydrodynamic phonon transport may also be significant in SWCNTs, which exhibit two flexural 

phonon branches and very strong N-scattering17.  

In this paper, we discuss the drift motion of phonons and second sound in a (20,20) 

SWCNT. Phonon Poiseuille flow is excluded from our discussion as it requires at least a two-

dimensional space; transport in SWCNTs is limited to one dimension. We quantitatively 

demonstrate how much of the actual phonon flow resembles hydrodynamic drift motion. We also 

show the dispersion relation of second sound and discuss the propagation and relaxation of 

second sound in (20,20) SWCNTs. Second sound in SWCNTs was previously studied using 

classical molecular dynamics calculations; however, simulations were limited to very small time 

and space scales, few picoseconds and around ten nanometers18,19.  

  



II. PHONON DRIFT MOTION AND THERMAL TRANSPORT 

When a temperature gradient exists in solid materials, phonons exhibit an asymmetric 

distribution in reciprocal space, causing a net flux of phonon flow. The asymmetric non-

equilibrium distribution ( nonEQ
sfq ) can be expressed with a small deviation ( u ) from the stationary 

Bose-Einstein distribution: 
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where α is the temperature gradient direction, T0 is the equilibrium temperature and sωq  is 

phonon frequency for wavevector q and polarization s. Assuming the deviation term ( q uα α ) 

where qα  is a wavevector along the direction α is much smaller than the phonon energy ( sωqh ), 

the asymmetric distribution can be linearized as: 
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where 0
sfq  is the stationary Bose-Einstein distribution. The second term in the right-hand side 

represents the asymmetric behavior of the distribution and results in a net phonon flux. In general, 

the deviation ( u ) depends on wavevector and polarization of a phonon mode. In the 

hydrodynamic phonon transport regime, however, this deviation is constant regardless of 

wavevector and polarization indicating that phonons exhibit a collective motion with the same 

drift velocity represented by uα . The Bose-Einstein distribution with a constant displacement is 

called the displaced (or drifted) Bose-Einstein distribution. In the ideal hydrodynamic regime 

where N-scattering is the only mechanism for phonon scattering, phonons exchange momentum 

until all phonon modes exhibit the same drift velocity, while preserving the overall crystal 

momentum. Thus, the displaced Bose-Einstein distribution is an equilibrium state when N-

scattering is the only available phonon scattering mechanism.  

Although SWCNTs exhibit strong N-scattering, the actual phonon transport cannot 

exhibit the ideal hydrodynamic regime due to non-negligible U-scattering and defect scattering 

(hereafter R-scattering refers to combined U-scattering and defect scattering) which do not 

conserve overall crystal momentum. Thus, the actual phonon distribution in SWCNTs is deviated 

from the displaced Bose-Einstein distribution. Therefore, it is necessary to quantify how much of 



the actual phonon flow is close to the ideal hydrodynamic regime. A recent study by Cepelloti et 

al.16 assesses the similarity between the actual phonon distribution and the displaced Bose-

Einstein distribution by calculating the drift component in the actual phonon distribution. Here, 

we quantify the similarity between actual phonon flow in a (20,20) SWCNT and the ideal 

hydrodynamic drift flow of phonons. We formally derive the contribution of this displaced 

distribution component to the total heat flux based on previous work by Krumhansl20 as 

summarized below. 

The steady-state Peierls-Boltzmann transport equation (PBE) is: 
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where ( )Csf t∂ ∂q  is the rate of change of the phonon distribution due to scattering and sqv  is the 

phonon velocity. The distribution, sfq , in Eq. (3) and hereafter refers to the non-equilibrium 

distribution, nonEQ
sfq .  Assuming only a small deviation from the stationary Bose-Einstein 

distribution, the scattering term can be linearized as: 
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where d
sfq  is the deviation from equilibrium, defined as d 0

s s sf f f= −q q q . The , ' 's sGq q  is a scattering 

matrix element. It would be useful if the eigenstates of Eq. (3) are orthogonal. Then, the total 

distribution function can be projected onto the specific eigenstate that represents hydrodynamic 

drift motion of phonons in order to quantify the significance of the hydrodynamic regime. For 

this purpose, we multiply a factor, 2sinh( / 2)sXq , on the both sides of Eq. (3). Here, sXq  is 

0s Bk Tωqh . Then, the PBE becomes 
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Note that the scattering matrix, G*, is symmetric.  

Since the scattering matrix, G*, is symmetric, the solution of PBE ( d*f ) can be expressed 

as a linear combination of orthogonal eigenvectors of G*. Assuming that N-scattering is much 

stronger than R-scattering, the scattering matrix, G*, can be approximated to an N-scattering 

matrix, N*. There are two already known eigenvectors of N*, 0  and 1α , representing 

stationary and displaced Bose-Einstein distributions, respectively. The eigenvalues of these two 

eigenvectors are zero, indicating that these eigenvectors describe equilibrium states under N-

scattering. These eigenvectors are: 
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The solution of this PBE can be expressed as a linear combination of orthogonal eigenvectors:  

 d*
20 21f T u aα α+ +′= +…  (8) 

where T ′  is a local temperature deviation from a global equilibrium temperature ( 0T ), defined as 

( ) ( )( )0 0, , /T t T t T T= −′ x x . The eigenvector, 2 , and its coefficient, 2a , are not known here. 

The displacement, uα , can be calculated using the orthogonality of the eigenvectors: 
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The total heat flux can be expressed with contribution from each eigenstate:  
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component to the total heat flux as: 
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If the contribution, 1α
γ , is close to unity, the total heat flux is mostly due to the displaced 

eigenstate and heat flow is hydrodynamic. Thus, calculation of this contribution, 1α
γ , can 

quantitatively demonstrate how much of the actual phonon flow resembles an ideal 

hydrodynamic flow. 

 The contribution of the displaced distribution component to the total heat flux in a (20,20) 

SWCNT was calculated using Eq. (11) and shown in Fig. 1. To this end, the non-equilibrium 

mode distributions, d
sfq ,  were calculated by solving the PBE described by Eqns. 6-9 in Ref. 7 

and using an iterative method21. The three-phonon scattering matrix elements (Eq. 2 of Ref. 7) 

and phonon dispersion required for building these distributions were determined from harmonic 

and third-order anharmonic force constants derived from numerical differentiation of the 

optimized Tersoff potential22.  The (20,20) SWCNT was allowed to fully relax, giving a nearest 

neighbor C-C distance of 1.440 Å around the circumference of the SWCNT with a slight 

contraction of 0.05% for bonds along the axis.  We note that sum rules dictated by translational 

and rotational invariance conditions are fully satisfied by this potential7,23–26, giving two linear 

(longitudinal and torsional) and two degenerate quadratic (flexural) acoustic branches 

characteristic of SWCNTs.  We note that the optimized Tersoff potential gives a reasonably 

accurate description of the phonon dispersion22 and thermal conductivity of graphene27, and was 

applied to examine thermal transport of a wide range of SWCNTs previously17.  We include 

phonon scattering by mass variation from 13C isotopes with the naturally occurring isotope 

content (1.1%)28. A homogenous phonon-boundary scattering rate defined as ,2 | | /sv Lαq  is also 

included assuming a sample size ( L ) of 10 µm. 

An issue with calculating the heat flux contribution from the drift component, 1α
γ , is the 

inner product, 1 1α α , in Eq. (9) diverges if an acoustic branch has quadratic dispersion in the 

long-wavelength limit in one-dimensional reciprocal space, as occurs for purely harmonic 

SWCNTs.  This is because the integrand of 1 1α α , 
2

2 12sinh
2 qq X

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

, diverges.  However, this 

problem is avoided as the long wavelength dispersion of flexural acoustic phonon branches are 

renormalized by anharmonic interactions.  For graphene, similar to large diameter SWCNTs in 

terms of lattice dynamics, it was reported that the phonon renormalization effect is strong for 



wavevectors smaller than the cut-off wavevector, qc=0.14 Å-1 at 100 K29. To the best of our 

knowledge a cut-off wavevector of SWCNTs has not been reported yet. Instead, we calculated 

the displacement defined in Eq. (9) using various values for cut-off wavevector ranging from 

0.01 Å-1 to 0.1 Å-1. The difference in the displacement values is not larger than 5 %. 

 Fig. 1 shows that the majority of heat in a (20,20) SWCNT from 50 to 300 K is carried by 

the hydrodynamic drift motion of phonons. Below 100 K, more than 90% of the total heat flux is 

due to this drift and the phonon flow can be approximated as nearly ideal hydrodynamic flow. As 

temperature is decreased to 50 K, the contribution of the displaced component to the total heat 

flux saturates around 95%. This can be associated with the phonon scattering by isotope and 

boundary. As temperature increases, the drift component contribution decreases due to 

increasing U-scattering. However, more than 70% of heat is still carried by hydrodynamic 

phonon drift at 300 K. This indicates that the actual phonon flow in a (20,20) SWCNT can be 

approximated as hydrodynamic for temperatures below 300 K.  Even at very high temperatures 

hydrodynamic flow provides ~50% to the total heat flux. 

 

 
 

Fig. 1. Contribution of displaced distribution component to the total heat flux in a 10 µm long 
(20,20) SWCNT with naturally occurring 13C isotope content (1.1 %). 

 

 

 

III. DISPERSION RELATION OF SECOND SOUND 
A. Second Sound for Ideal Hydrodynamic Regime (1 / 0→Rτ  and 1 / → ∞Nτ ) 
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 The ideal hydrodynamic regime is assumed when R-scattering is weak (1 / 0Rτ → ) and 

N-scattering is extremely strong (1 / Nτ → ∞ ). The momentum and energy balance equations 

from the PBE are: 
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h  are momentum and energy fluxes. The right-hand 

side of the momentum balance equation is zero because the total crystal momentum is always 

conserved in the ideal case where N-scattering is the only scattering mechanism. The right-hand 

side of the energy balance equation is also zero because the total energy is always conserved 

upon scattering. 

 For the ideal case where R1 / 0τ →  and N1 /τ → ∞ , the solution of the PBE is:  
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Substituting this into Eq. (12) gives:  
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Combined, these equations give an expression for the speed of second sound: 
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We note that a slightly different expression for the speed of second sound was derived 

using the heat flux and energy balance equations16,30, while Eq. (15) is from the momentum and 

energy balance equations. The heat flux balance equation can be derived from the PBE by 

multiplying energy and group velocity and integrating the equation over the first Brillouin zone 



and summing over phonon branches. The heat flux balance equation with the solution of the PBE 

in Eq. (13) is: 

 20 1 0 00u Tv v
t x
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The right-hand side is zero, because it was assumed that heat flux is conserved upon scattering 

when N-scattering is the only scattering mechanism16. The resulting expression for the speed of 

second sound from Eq. (16) and (14b) is: 
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 In Fig. 2, we compare the speed of second sound of (20,20) SWCNTs from the two 

different expressions in Eq. (15) and (17). These expressions give remarkably different values 

for the speed of second sound:  ~4000 m/s from Eq. (15) and ~6000-8000 m/s from Eq. (17) 

depending on temperature. We attribute this difference to the assumption that heat flux is 

conserved upon scattering. The heat flux balance equation (Eq. 16) assumes that total heat flux is 

always conserved when N-scattering is the only scattering mechanism. However, this assumption 

is valid only when phonon group velocities are constant and the dispersion is isotropic as in the 

Debye model. Under these conditions N-scattering leads to the conservation of heat flux 

( 1 2 3ω ω ω+ =v v v ). However, when the phonon dispersion is non-linear and many phonon 

branches have different group velocities as in SWCNTs and other systems, the conservation of 

energy and momentum does not necessarily lead to the conservation of heat flux, namely 

1 1 2 2 3 3ω ω ω+ ≠v v v  where 1 2 3≠ ≠v v v . Therefore, the total heat flux is not conserved upon N-

scattering in SWCNTs even if N-scattering is the only scattering mechanism. For this reason, we 

believe that the speed of second sound should be derived from the momentum balance equation 

rather than the heat flux balance equation, when phonon group velocities are not constant. It is 

noteworthy that Eq. (15) and (17) are identical if the Debye model is assumed. Another type of 

second sound, called driftless second sound, was also mathematically derived from a heat flux 

balance equation with a damping term for the heat flux30. We exclude this driftless second sound 

in our discussion as it has not been experimentally confirmed to the best of our knowledge and 

does not require hydrodynamic drift motion of phonons. The driftless second sound is an 

extraordinary case of the diffusive regime (Fourier’s law) when all eigenstates of the distribution 

function exponentially decay with the same relaxation time30.  



 The fact that N-scattering does not conserve heat flux may seem to conflict with the 

famous Peierl’s thought experiment that shows the conservation of heat flux upon N-scattering14. 

However, second sound and Peierl’s thought experiment assume different conditions. Second 

sound involves spatial and temporal variance of the phonon distribution due to a fluctuating 

temperature field, whereas Peierl’s thought experiment assumes the phonon distribution does not 

vary in time and space14. In the Peierl’s thought experiment, if N-scattering is the only scattering 

mechanism, the phonon flow that already has the displaced Bose-Einstein distribution can persist 

without relaxation even when there is no driving force, i.e., a temperature gradient. In this case, 

the drift velocity or displacement of the phonon distribution is a constant in space and time. This 

distribution is unaltered by N-scattering, thus the total heat flux is not changed. However, in the 

case of second sound, we have a spatially and temporally varying temperature field. Due to this 

varying temperature field, the distribution of phonons advected from nearby locations differ from 

the phonon distribution at the current location. This difference in distribution is relaxed by many 

N-scattering events, establishing local equilibrium. If phonons have different group velocities, N-

scattering does not necessarily conserve heat flux during this relaxation process.  

 

 
Fig. 2. Comparison of speeds of second sound in a (20,20) SWCNT from momentum/energy 

balance equations and heat flux/energy balance equations. 
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The speed of second sound has often been compared to the group velocity of acoustic 

phonons (speed of first sound), and this comparison has played an important role for the 

observation of second sound in past experimental studies11,31. Here, we compare the propagation 

speeds of ballistic phonon transport and second sound in a (20,20) SWCNT. We assume that a 

heat pulse is generated at one end of the SWCNT sample at t=0. For ballistic phonon transport, 

the temperature increase at the opposite end of the sample can be calculated as15: 

 ( ) ( )
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~ s
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ω δ −∑ q
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where L  is the sample length. The calculated arrival times per sample length for ballistic phonon 

transport and second sound are shown in Fig. 3. The ballistic phonon transport cases exhibit a 

very broad curve because the phonon group velocities in SWCNTs vary significantly depending 

on wavevector and polarization. From Fig. 3, the propagation speed of second sound is slower 

than that of the ballistic phonon transport peak by a factor of 1.5, similar to the 3D Debye model 

where the speed of second sound is slower than the speed of acoustic sound by 3 . 

 

 
Fig. 3. Comparison of propagation speeds of ballistic phonon transport and second sound at 100 

K and 200 K. The temperature change in y-axis is in linear scale. For comparison, the arrival 

times per sample length of longitudinal and torsional acoustic phonons that propagate 

ballistically are 4.6× 10-5 s/m and 6.7× 10-5 s/m, respectively.  
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 In the previous case where R-scattering was not considered and N-scattering is very 

strong, second sound can propagate without relaxation. However, in the actual case where R1 /τ  

and N1 /τ  are both finite, these can result in the relaxation of second sound as R-scattering does 

not conserve the total crystal momentum and N-scattering gives viscous dissipation. A dispersion 

relation of second sound including these relaxation mechanisms can be derived based on 

Callaway’s scattering model32. A similar derivation was reported elsewhere assuming linear 

phonon dispersion13. Here we assume a general case where phonon dispersion is non-linear and 

many phonon branches are involved in thermal transport. 

 The PBE with Callaway’s scattering model is: 
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where 0
sfq  is the stationary Bose-Einstein distribution with a local equilibrium temperature, 
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disp
sfq  represents the displaced Bose-Einstein distribution. Eq. (19) can be simplified by replacing 

sfq  on the left-hand side by disp
sfq : 
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This simplification corresponds to the Chapman-Enskog expansion to the first order in Knudsen 

number, which has been used for molecular flow33. The Knudsen number in phonon 

hydrodynamics can be defined as N /sv Lτq  where L  is a characteristic length of a system. For 

second sound, L  is the wavelength of second sound and making the substitution is well justified 

when Nvτ  is much smaller than this. 

 It is straightforward to solve Eq. (21) with the solution being: 
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where C N R1 / 1 / 1 /τ τ τ= + . Note that the solution in this case differs from the ideal case. First, 

the displaced component, 1uα α , has an additional coefficient, C N/τ τ , which approaches unity 

when Rτ  goes to infinity, thus recovering the solution of the ideal case. On the other hand, when 

Rτ  approaches zero, the coefficient, C N/τ τ , becomes zero, making the displaced component 

disappear. Second, we have additional third and fourth terms indicating that the phonon 

distribution at one location is affected by the phonon distribution in its vicinity as represented by 

the temporal and spatial gradient of displacement and temperature. These terms contribute to a 

viscous damping effect. 

 The momentum and energy balance equations can be derived from the PBE. A difference 

from the ideal case is that we have a momentum destroying term on the right hand-side of the 

momentum balance equation due to R-scattering: 
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We substitute the solution of the PBE (Eq. (22)) into the above equations and assume that the 

displacement and temperature fields fluctuate in the form of a plane wave with frequency, Ω , 

and wavevector, k : 
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The resulting momentum and energy balance equations are: 
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 ( ) ( )2 2 2
12 C C C N R RC N1 1 Ω 1 1 1 1 1 11 1  A v k iα α α α α α α α α ατ τ τ τ τ τ τ τ= + + + Ω−  (26b) 

 2 2 2
21 C C0 0 Ω 0 0 0 0  A v k iα ατ τ= + + Ω  (26c) 

 22 C C N2 0 1 0 1  A v k i v kα α α α α ατ τ τ= − Ω −  (26d) 



For the second sound wave to exist, the determinant of A should be zero, giving the dispersion 

relation of second sound. 

 We calculated the dispersion relation of second sound (frequency vs. wavevector) 

satisfying this condition as shown in Fig. 4 for various temperatures. For small wavevector the 

imaginary component is comparable or larger than the real component giving relaxation of 

second sound. This is dominated by crystal momentum destroying U-scattering. In this case, the 

temperature field slowly varies in time and space and the viscous damping by N-scattering is not 

effective. As the U-scattering does not depend on the wavevector of second sound, the imaginary 

frequency component does not vary with the wavevector, imposing a lower limit of the 

wavevector and frequency of second sound. As the second sound wavevector increases, the 

temperature field varies rapidly in space and the viscous damping by N-scattering becomes 

stronger. This viscous damping mechanism imposes the upper limit of the wavevector and 

frequency of second sound. Between these limits, second sound can propagate without 

significant relaxation. The dispersion relation in Fig. 4 provides the range of second sound 

frequency that may be observed in (20,20) SWCNTs. The second sound frequency has a wide 

range from 1 MHz to 100 MHz at 50 K. As temperature increases, the range of second sound 

frequency increases and becomes narrower since U-scattering rates increase.  



(a) 

 
(b) 
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Fig. 4 Dispersion relation of second sound in an isotopically pure (20,20) SWCNT 

at (a) 50 K, (b) 100 K, and (c) 200 K 
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 In addition to the second sound frequency range, the length of SWCNT samples also 

should be considered when observing second sound. The sample length should be larger than the 

wavelength but smaller than the relaxation length of second sound. Here, we define the 

relaxation length of second sound as ( )IIIm Ωv . The wavelength and relaxation length of second 

sound impose the lower and upper limits, respectively, of the sample length for which this 

phenomena may be observed. Similar to the second sound frequency, the required length of the 

sample decreases as temperature increases because U-scattering rates increase. From Fig. 5, a 10 

µm long sample would be adequate to observe second sound when the temperature is 100 K.  

 It would be also interesting to compare SWCNTs with different diameters regarding 

second sound, though computationally costly. Preliminary calculations for smaller diameter 

tubes demonstrate that observation of hydrodynamic transport is not as favorable. Further, given 

the previous results for graphene15,16 we would expect larger diameter tubes to be more 

promising to experimentally observe second sound. 
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Fig. 5 Relaxation length of second sound in isotopically pure (20,20) SWCNT  

at (a) 50 K, (b) 100 K, and (c) 200 K 
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IV. CONCLUSIONS 

 We investigated hydrodynamic phonon drift and second sound in a (20,20) SWCNT 

using lattice dynamics calculations and the Peierls-Boltzmann transport equation (PBE). For 

hydrodynamic drift motion, the contribution of the drift distribution component to the total heat 

flux was formally derived and shown to carry 70% of the total heat in a (20,20) SWCNT with 

naturally occurring isotope content at 300 K. Below 100 K, more than 90% of the total heat is 

carried by the drift motion of phonons. Propagation and relaxation of second sound was also 

quantitatively studied. The dispersion relation of second sound was derived from the PBE using 

the Chapman-Enskog expansion to first order in the phonon Knudsen number. The second sound 

in a (20,20) SWCNT propagates at a speed of ~ 4000 m/s, slower than the ballistic transport of 

longitudinal and torsional acoustic phonon modes of which group velocities are 22000 m/s and 

15000 m/s, respectively. The second sound dispersion relation shows the relaxation of second 

sound due to viscous damping from N-scattering as well as direct momentum destroying from R-

scattering, providing conditions to observe second sound in (20,20) SWCNTs. It was found that 

the relaxation of second sound can be minimized when the frequency of second sound is around 

1 GHz at 100 K and the second sound can propagate more than 10 µm for these conditions. 
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