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Abstract Oceanic dispersal and connectivity have been identified as crucial factors for structuring

marine populations and designing marine protected areas (MPAs). Focusing on larval dispersal by ocean

currents, we propose an approach coupling Lagrangian transport and new tools from Network Theory

to characterize marine connectivity in the Mediterranean basin. Larvae of different pelagic durations and

seasons are modeled as passive tracers advected in a simulated oceanic surface flow from which a network

of connected areas is constructed. Hydrodynamical provinces extracted from this network are delimited by

frontiers which match multiscale oceanographic features. By examining the repeated occurrence of such

boundaries, we identify the spatial scales and geographic structures that would control larval dispersal

across the entire seascape. Based on these hydrodynamical units, we study novel connectivity metrics for

existing reserves. Our results are discussed in the context of ocean biogeography and MPAs design, having

ecological and managerial implications.

1. Introduction

Oceanic ecosystems are impacted by multiple human-induced stressors, including habitat destruction,

pollution, overfishing, and global climate change. Marine protected areas (MPAs), used for the management

and conservation of marine ecosystems, are considered effective to mitigate some of these impacts [Lester et

al., 2009]. Successful MPA design is, however, complicated primarily due to the difficulties in quantifying the

movements of organisms, especially at larval stage [Shanks, 2009], in resolving the multiscale variability of

ocean currents [Siegel et al., 2008] and in apprehending the spatial scales and biogeography of the seascape

[Hamilton et al., 2010].

Marine population connectivity, i.e., the exchange of individuals among geographically separated subpop-

ulations, depends on numerous factors including spawning outputs, larval dispersal, habitat availability,

trophic interactions and adult movements [Cowen and Sponaugle, 2009; Game et al., 2009]. Among them,

larval dispersal has been identified as a crucial factor for structuring oceanic populations [Cowen et al., 2006]

and for determining broad-scale ecological connectivity [Treml et al., 2012]. It also plays a major role in

assuring population persistence in a MPA network [Moffitt et al., 2011], especially when target species show

long-distance dispersal [Shanks, 2009]. As such, patterns and magnitude of larval connectivity have been

used to design MPAs [Lester et al., 2009] and assess their efficiency [Pelc et al., 2010]. This paper focuses on

the dispersion of larvae by ocean currents at basin scale, assuming they are passively transported by the

flow (i.e. neglecting larval behavior), to inform the design of marine reserves.

Many biophysical modeling studies [e.g. Cowen et al., 2006; Siegel et al., 2008], including Lagrangian

approaches, examined marine connectivity from the so-called “connectivity matrix” which represents the

probability of larval exchange between distant sites. Previous analyses were mainly limited to the strengths

of pairwise connections, i.e., the links from one coastal site, or MPA, to another distant one [e.g. Corell et

al., 2012; Vaz et al., 2013]. Another perspective to investigate connectivity is the analysis of dispersal net-

work topologies [Treml et al., 2012; Kool et al., 2013]. Recent studies applied tools derived from Graph Theory

to document regional connectivity of near-shore MPAs in the Baltic Sea [Nilsson-Jacobi et al., 2012], the

Mediterranean Sea [Andrello et al., 2013], and in the Great Barrier Reef region [Thomas et al., 2014]. While our

understanding of connectivity at small and regional scales has improved, previous efforts focused mainly on

coastal/insular areas and did not provide a characterization of the seascape connectivity.

The significance of this shortcoming is emphasized by the growing interests for the implementation of

MPAs in the pelagic ocean [Pala, 2013; Guidetti et al., 2013] which also shelters biodiversity and important
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ecological processes [Game et al., 2009; Kaplan et al., 2010]. Designing open ocean MPAs is challeng-

ing partly because larval connectivity and pelagic habitats are difficult to assess in such vast and

dynamic environment.

Here we use an approach coupling Lagrangian modeling and new tools from Network Theory [Newman,

2010] to characterize marine connectivity at basin scale in the Mediterranean Sea. Larvae of different pelagic

larval durations (PLDs) are modeled as passive Lagrangian particles advected in a simulated oceanic surface

flow from which a network of connected areas can be constructed. Hydrodynamical provinces extracted

from this transport network are delimited by frontiers which match mesoscale and regional oceanographic

features. We then identify the spatial scales and structures of larval dispersal across the entire seascape and

analyze connectivity metrics for the existing Mediterranean MPAs. We finally discussed the usefulness of our

results for the design of marine reserves and the characterization of oceanic biomes.

2. Materials andMethods
2.1. Oceanic Transport and Connectivity From a Network Theory Approach

The basic ingredients are (i) the tracking of passive Lagrangian particles (a model for larval transport) and (ii)

the construction and analysis of a network of flow-mass transport. We study dispersal processes in the ocean

based on a transport network in which a node corresponds to a geographical subarea of the oceanic surface,

and a link (or edge) symbolizes an effective mass transport driven by ocean currents between two subareas

during a given time interval.

The transport network is thus composed of an ensemble of nodes (subareas), covering the entire oceanic

domain of interest, which are interconnected by a number of links (transport pathways). Each link is directed

in accord with the effective direction of the flow and weighted proportionally to the amount of water flow-

ing from one node to another. Many tools of Network Theory were designed to examine both local and

global properties of such network [e.g., Newman, 2010], allowing us to explore geophysical flows and

connectivity in a new fashion.

The Mediterranean Sea, a quasi-closed basin with its own physical circulation and ecological functioning

under important human pressure [de Madron et al., 2011], constitutes a natural laboratory for this study.

In addition, it shelters already a hundred MPAs (whose locations were downloaded from the MedPan

database) implemented for protection and conservation purposes. In this context, we aim at partition-

ing the surface Mediterranean seascape in hydrodynamical provinces, i.e., a set of oceanic subregions in

which larvae/particles are much more likely to disperse efficiently within each other than among them at

a given time scale. This spatial subdivision in provinces is tantamount to detecting communities within the

hydrodynamical network [Newman, 2010].

2.2. Lagrangian Biophysical Modeling

The Lagrangian approach is a natural perspective to characterize transport phenomena affecting

free-swimming larvae [Corell et al., 2012; Vaz et al., 2013]. Particles are advected in an eddy-resolving velocity

field generated by the Nucleus for European Modeling of the Ocean hydrodynamical model implemented

in the Mediterranean at a 1∕16◦ horizontal resolution [Oddo et al., 2009] (see also Text S1 in the supporting

information). We focus on the upper ocean dynamics over years 2002–2011 with the use of daily horizontal

flow fields at 8m depth (Figure S1), representing the surface mixed layer in which larvae are assumed to be

homogeneously distributed.

Horizontal trajectories are simulated by integrating the velocity field, bilinearly interpolated at any sea

point, using a Runge-Kutta 4 algorithm with a time step of 1 day, matching the resolution of the simulated

currents. As assumed by Corell et al. [2012] and Andrello et al. [2013], Lagrangian particles are dispersed

as two-dimensional passive drifters. Note that due to the non–fully incompressible horizontal flow field,

vertical velocities may become significant in regions of strong divergence (e.g., coastal upwelling) and con-

vergence (e.g., deep water formation). Neglecting vertical movements is, however, a reasonable assumption

here because most particles remain in the selected layer over short time scales (≤ 2 months) since horizontal

velocities are several orders of magnitude higher than vertical ones [d’Ovidio et al., 2004]. Another simpli-

fication is the passive character of the particles, the implementation of more complex larval behavior (e.g.,

vertical migration, mortality, and settlement) being envisaged for future work. Under these assumptions,

larval dispersal is modulated by the PLD, the period of spawning and the time-varying oceanic circulation.
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Initial (t0) and integration (� ∼ PLD) times are chosen according to the typical biological traits of marine

organisms. Given the limited knowledge of their life cycles [Shanks, 2009], we investigate basin-scale lar-

val connectivity from an ecosystem-based approach [e.g., Coll et al., 2012; Guidetti et al., 2013], rather than

focusing on a particular target species. To do so, we retain two different PLDs (� = 30, 60 days) and con-

sider winter (t0 = 1 January) and summer (t0 = 1 July) spawning [Macpherson and Raventos, 2006; Shanks,

2009; Andrello et al., 2013] over the years 2002–2011. These modeling choices are ecologically meaningful

for a number of Mediterranean organisms, especially those with wide geographical range and potential for

large-distance dispersal (see also Text S2). Sensitivity of our results to the parameter � was tested by per-

forming additional simulations for � = 45 days. A total of 60 factorial experiments (with starting times

covering two seasons over 10 years, for each of the three PLDs) allow the construction of 60 connectivity

matrices from which hydrodynamical provinces are extracted (section 3.1). They are then temporally aver-

aged to describe robust spatial patterns of larval connectivity in the entire Mediterranean basin (section 3.2)

finally interpreted in the context of MPA design (section 3.3).

2.3. Construction and Analysis of a Transport Network
2.3.1. Connectivity Matrix

The nodes of the transport network are defined by discretizing the surface ocean into 3270 quasi-square

boxes of 1∕4◦ horizontal resolution (Figure S2), allowing the consideration of important mesoscale fea-

tures of the Mediterranean circulation [de Madron et al., 2011]. This procedure and the numerical diffusion it

introduces [Froyland and Dellnitz, 2003] are detailed in Text S1.

Five hundred Lagrangian particles evenly distributed in each oceanic box are advected, corresponding to a

total of ∼ 1.6 million trajectories in the Mediterranean basin for each experiment. The connectivity matrix is

built using the initial and final positions of these particles. Each matricial element �
t0 ,�

ij
, i.e., the link between

nodes i and j, is proportional to the fraction of particles leaving box i at time t0 and arriving in box j at time

t0 + � . �
t0 ,�

ij
= #particles frombox i to box j∕Ni ∈ [0, 1] is interpreted as the probability for a particle selected

randomly in box i at the initial time ending up in box j at the final time. Ni is a local normalization coefficient

equal to the number of particles still within the oceanic domain after integration. Due to numerical limi-

tations, some trajectories may indeed abort prematurely with the “beaching” of particles onto land areas.

With this normalization, which concerns less than 5% of all particles for � = 60 days, the stochasticity of the

matrix (i.e. its rows sum to 1) is ensured and the constraint of mass conservation fulfilled.

2.3.2. Community Detection

To locate coherent regions in time-varying flows, the transport matrix approach has been proposed by

Froyland and Dellnitz [2003]. Such objects are extracted by examining eigenvalues [Nilsson-Jacobi et al.,

2012] or singular vectors [Froyland et al., 2012] of the transport (connectivity) matrix which approximates the

continuous advection operator. These concepts, along with other community detection algorithms, were

recently used to study ecological connectivity [Nilsson-Jacobi et al., 2012; Thomas et al., 2014].

Here we analyze the topology of the transport network to subdivide the surface ocean in hydrodynamical

provinces. Based on the connectivity matrix �t0 ,� , an equivalent of the network adjacency matrix, we detect

communities using the Infomap algorithm [Rosvall and Bergstrom, 2008]. Random walkers are considered to

move in the network according to the statistical description of the surface flow contained in the connectivity

matrix. From these synthetic trajectories and using information theory concepts, Infomap decomposes the

network into a number of communities that define oceanic provinces well connected internally but with

minimal exchanges of particle between them. The method is described and compared with its alternatives

in Text S3.

To evaluate the significance of the spatial partitioning, we define a coherence ratio [Froyland et al., 2012]

associated with each province k by the following: �k =
∑

i,j∈k
Ni�

t0 ,�

ij
∕
∑

i∈k
Ni where k is the set of indices

that identify all boxes constituting province k. Physically, �k ∈ [0, 1] is interpreted as the fraction of parti-

cles initially released within a given province which remained in it after integration. Its complement 1 − �k

measures the proportion of particle leaking across the boundaries of each province.

3. Results andDiscussion
3.1. Time-Dependent Hydrodynamical Provinces

The provinces and their boundaries are dynamical objects that evolve in space and time with different

dimensions, shapes and locations (e.g., Figure 1), due to the important variability of the ocean circulation
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Figure 1. Hydrodynamical provinces extracted from the connectivity matrices of (a) winter 2011 (t0 = 1 January) using

� ≃ PLD = 30 days and (b) summer 2011 (t0 = 1 July) using � ≃ PLD = 60 days. Each province is colored according to its

� value (ranging from 0.5 to 0.9). White streamlines represent the simulated flow averaged over the period of integration

(i.e., Figure 1a for 1–30 January 2011 and Figure 1b for 1 July to 29 August 2011).

[Millot and Taupier-Letage, 2005]. The method captures an elevated number of communities in the network,

with 65 provinces using a PLD = 30 days and only 32 for PLD = 60 days on the exemplary calculations dis-

played in Figure 1. Intuitively, the longer the tracking time, the lower the number of provinces detected and

the larger their mean area. On average over the ensemble of experiments, community detection results in

61, 46, and 36 provinces characterized by a mean area of 4.12 × 104, 5.5 × 104, and 6.8 × 104 (in km2) for

� = 30, 45, 60 days, respectively. Because of the time-varying flow [Siegel et al., 2008], both release time and

tracking duration (simulating respectively the initiation and duration of the pelagic larval phase) affect the

spatial partitioning.

Most province boundaries match very well the mean flow streamlines (Figure 1), suggesting high-

oceanographic relevance. While isolated streamlines are found in the cores of provinces, dense ones usu-

ally coincide with the detected boundaries. Hydrodynamical provinces are delimited by intense oceanic

mesoscale structures such as jets, meanders, fronts and eddies. These features, which influence the topol-

ogy of the transport network and thus the community detection, were recently reported to strongly impact

connectivity [Vaz et al., 2013]. For instance, some mesoscale eddies are extracted as quasi-circular sin-

gle provinces (e.g., in the Alboran Sea and in the southern Levantine basin), in good agreement with the

flow streamlines (Figure 1a). Other mesoscale structures are contained in larger provinces. The method

allows the optimal detection of coherent oceanic subregions originating from the ocean circulation and its

multiscale variability.

The coherence ratios are generally elevated (� ∈ [0.5, 1]) and variable (Figure 1). Although it depends

on both the local leaking processes and the area of a given province, there is no apparent relationship

between the size of the subregion and its coherence ratio. Overall, � ≥ 0.8 are often seen in the Aegean and
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Figure 2. Frequency of occurrence of province boundaries at each ocean node across the ensemble of 20 experiments

(all winters/summers of 2002–2011) for each PLD: (a) � ≃ PLD = 30 days and (b) � ≃ PLD = 60 days. Black ellipses in

Figure 2b highlight the frontiers which show a significant seasonality: plain ellipses indicate a preferential occurrence in

winter and dotted ellipses in summer. Black contour represents the 200 m isobath.

Adriatic Seas. The Alboran, Balearic, Tyrrhenian, and Adriatic Seas are characterized by relatively large

provinces, whereas the Levantine, Aegean, south Ionian and Libyan Seas are subdivided in rather small

ones. Note also that some provinces are composed of noncontiguous boxes. This occurs especially within

the pathways of fast-flowing currents as the Algerian Current, the Atlantic-Ionian stream (south Ionian,

Libyan and southeast Levantine Seas), and the Liguro-Provencal Current (Ligurian sector).

3.2. Spatial Scales and Geographic Structure of Larval Dispersal

The frequency of occurrence of province boundaries is now examined across the ensemble of experiments

to identify recurrent frontal systems and relatively stable hydrodynamical units which would organize lar-

val dispersal. Over most coastal/shallow regions, boundaries occur in various locations and orientations,

resulting in no apparent structure (dark red patches). These disorganized patterns characterize oceanic

environments with complex circulation in which spatial scales of connectivity are highly variable [Siegel et

al., 2008]. They are observed in most insular regions (Balearic, Tuscan, and Aegean archipelagos, Corsica,

Sardinia, Crete, and Cyprus), in the Tunisian-Sicilian strait (also punctuated by small islands) and over narrow

continental shelves (Italian, French, Catalan, Libyan-Egyptian, and Israelian-Lebanon shelves) (Figure 2a). In

contrast, wide continental shelves are organized as coherent hydrodynamical units whose offshore limits

match the 200 m isobath. The Gulf of Lion is delimited by a frontier coinciding with the Catalan front and

associated Northern Current (an extension of the Liguro-Provencal Current) [Bouffard et al., 2010]. For long

PLDs only, the Tunisian-Libyan shelf appears as two units in summer (Figure 2b), merging into a single one

in winter. The oceanic frontiers constituted by such currents/fronts are likely to prevent coastal larvae from

escaping wide continental shelves.
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In the open ocean, clear hydrodynamical units emerge (Figure 2), organized as large “gyre” systems with

rare occurrence of boundaries (white/yellow colors) in their center and semipersistent frontiers (light/dark

red colors) aligned along their perimeters. Elevated connectivity within each subdivision, but little exchange

between them, is expected, thus providing basin-scale patterns of larval dispersal. Large hydrodynamical

units are found in the western Mediterranean basin, the Adriatic Sea, the Tyrrhenian Sea (Figures 2a and

2b), and only at longer time scales in the north Ionian and Levantine Seas (Figure 2b). Most of these open

ocean frontiers are located along well-known oceanographic features [Millot and Taupier-Letage, 2005],

some of them recognized as partial transport barriers. For instance, the so-called Oran-Almeria front sepa-

rates the Alboran Sea from the rest of the Mediterranean Sea. It appears here rather extending from Oran to

Cartagena, some 200 km away than previously documented [de Madron et al., 2011, and references therein].

The Balearic front is another semipermament transport barrier [Mancho et al., 2008] passing north of the

Balearic archipelago in the Balearic Current [Bouffard et al., 2010] and elongating eastward in winter. North

of this quasi-zonal boundary, a large hydrodynamical unit composed of the Lion gyre and Ligurian Sea

is separated from the Balearic Sea at short time scale. The Tyrrhenian Sea is consistently organized as a

two-gyre system using both PLDs. For the 30 day integration the Adriatic Sea is subdivided by bathymet-

ric gradients (∼ 100 and 200 m isobaths, i.e., off the Gargano promontory) into a northern, central, and

southern Adriatic gyres, the two latter units merging for PLDs of 60 days.

Surprisingly, some open ocean areas, such as the Ionian, Levantine and Aegean basins (Figure 2a), are

characterized by disorganized dispersal patterns and stochastic larval connectivity [Siegel et al., 2008].

They become more structured at longer time scales with the emergence of the western Ionian gyre, the

Shikmona gyre, and a large system encompassing the Rhodes, Ierapetra, and Mersa-Matruh gyres [Millot and

Taupier-Letage, 2005]. The eastern Aegean Sea has disorganized dispersal patterns whereas small hydrody-

namical units appear in its northern and western parts, in good agreement with its thermal structure [Poulos

et al., 1997].

More generally, regions with no apparent spatial patterns at short PLDs see the emergence of spatial struc-

tures for longer integration time. Oceanic areas already identified as gyral systems for short time scales have

their diameter increasing with the integration time, ultimately merging with their neighbors.

Note that most of these hydrodynamical units are quite consistent with the trophic clusters obtained

from satellite chlorophyll data [d’Ortenzio and d’Alcalá, 2009], suggesting they also delimit specific biogeo-

chemical provinces [Longhurst, 2006]. Indeed, although this study focuses on passive larvae, the unveiling

of well-known oceanic fronts and gyres hints that the spatial distribution of other tracers (e.g., salinity,

temperature, chlorophyll-a, and dissolved nutrients) is also influenced by similar transport patterns.

3.3. Implications for the Design of Marine Reserves

The geographical structure of larval dispersal in the seascape influences largely the connectivity of marine

reserves. The MPAs located within large and stable hydrodynamical units (Figure 2) are interconnected, in

good agreement with Andrello et al. [2013] who identified similar MPA clusters in the Algerian, Balearic,

Adriatic, and Tyrrhenian Seas, respectively. Further information is obtained with the analysis of three

complementary proxies of connectivity defined as follows. We analyze the mean spatial scales of larval

dispersal (Figure 3a) and the mean local coherence (inversely related to leaking, Figure 3b) by averag-

ing over the ensemble of experiments the area and the coherence �, respectively, of the time-dependent

province encompassing each MPA. While these two metrics are solely influenced by the flow, the mean

number of interconnected MPAs (i.e., temporally averaged number of MPAs encountered within the same

time-dependent province, Figure 3c) depends also on the density of existing reserves.

Larval connectivity and dispersal potentials are highly variable among the Mediterranean MPAs (Figure 3).

Reserves in the Adriatic and Aegean Seas are characterized by small dispersal surface (≤ 5×104 km2) and

among the highest coherence (� ≥ 0.8). This suggests a low connectivity which is also reflected in the

few interconnected MPAs (≤ 8) despite their relatively high density. MPAs located around isolated islands

are associated with modest dispersal surface (∼ 4 − 8× 104 km2) and low coherence (� ≤ 0.7). Typical

of these insular environments [Vaz et al., 2013], complex circulation patterns (islands’ wake, eddies,

retention, etc.) result in a moderate connectivity and high temporal variability (not shown). MPAs imple-

mented within narrow continental shelves bounded by energetic currents are characterized by rather large

provinces (≥ 7 × 104 km2) and moderate coherence (0.65 ≤ � ≤ 0.8). These reserves are situated along

the French Côte d’Azur with the Liguro-Provencal Current, the Catalan coast with the Northern Current,
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Figure 3. Spatial variability of MPAs connectivity derived from three complementary metrics averaged across all win-

ter/summer experiments over 2002–2011 using � ≃ PLD = 30 days. (a) Mean area (in km2) and (b) mean � of the

province sheltering the reserve of interest. (c) Mean number of interconnected MPAs (i.e. number of reserves situated

within the same hydrodynamical province). Light grey contours represent the 200 m isobath. Results using a PLD of 45

and 60 days are qualitatively similar with a slight increase of the mean area and the number of interconnected reserves.

Note that noncontiguous areas belonging administratively to a given reserve were treated here as a single MPA.

the Moroccan/Algerian coastlines impacted by the Algerian Current, and in the eastern Levantine basin

with the jet-like intensifications of its gyre circulation [Millot and Taupier-Letage, 2005]. This elevated con-

nectivity is driven by the adjacent currents that regularly intrude onto the shelf, enhancing larval dispersal

along the current axis, as suggested by the numerous interconnected MPAs (≥15) along the French, Catalan,

and Israelian coastlines. In contrast, MPAs situated within extended continental shelves, such as the Gulf of

Lion and the Tunisian/Libyan shelf, are characterized by rather small dispersal area (≤ 5× 104 km2) and large

coherence (� ≥0.75). Unless exceptional intrusion events (not shown), the inner shelf remains isolated by

the shallow bathymetry holding the current off the shelf break, resulting in a limited connectivity. Note that

most MPAs associated with narrow shelves and sluggish circulation (such as the Tyrrhenian, Corsican, and

Sardinian coastlines) behave quite similarly to the latter group with small dispersal surfaces.
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Despite the stochastic nature of larval dispersal [Siegel et al., 2008], local oceanographic characteristics result

in the emergence of connectivity regimes. They should be in accord with the main conservation objectives

to ensure successful implementations of coastal and offshore marine reserves. For instance, the allocation

of MPAs within narrow shelves bounded by currents would favor larval export over large distances [Pelc et

al., 2010] whereas reserves created within internal seas or large continental shelves would rather promote

the restoration of local populations [Pineda et al., 2007]. Overall, the Mediterranean MPAs are not evenly

distributed across the spatial partitioning of the seascape revealed by our analysis (section 3.2) [De-Juan

et al., 2012]. Moreover, the “size and spacing” guidelines, studied theoretically by Moffitt et al. [2011], may

differ depending on the local dispersal behavior. Our results suggest the use of few large MPAs located

in each stable hydrodynamical unit of the western Mediterranean basin and of the Adriatic Sea whereas

numerous small MPAs evenly distributed across the fluctuating units of the Ionian and Aegean Seas might

be preferable.

4. General Conclusions and Perspectives

Using a method coupling Lagrangian trajectories and new tools from Network Theory, we study larval

dispersal by surface currents in the Mediterranean Sea. Under our assumptions, a transport network is con-

structed from the horizontal advection of passive particles in a modeled oceanic flow, simulating larvae

of different planktonic seasons and durations. The systematic detection of communities in the network

extracts a set of hydrodynamical provinces which organize the surface dispersion of larvae in the entire

Mediterranean basin. Their boundaries coincide with both mesoscale and regional-scale oceanographic

features, comprehending the multiscale processes of ocean circulation. The repeated occurrence of these

frontiers allows separating the seascape in different hydrodynamical units which provide the “backbone”

of oceanic transport impacting larval dispersal and connectivity among existing MPAs. While the role of

such large-scale dispersal patterns on the genetic structure of marine population remain to be determined,

the hydrodynamical units evidenced may be used to optimize the sampling strategy of genetic studies.

The similarity between our flow-driven boundaries and major environmental gradients commonly used to

regionalize the Mediterranean seascape finally suggests they might also define oceanic biomes or even fau-

nistic units. Future developments of the methodology would have to consider more realistic larval behavior

for a given target species as well as full tridimensionality of the flow. These extensions may help incorporat-

ing large-scale biogeography and dispersal patterns to improve MPAs design toward efficient management

and conservation of marine ecosystems.
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