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The influence of hydrodynamic screening near a surface on the dynamics of a single semiflexible

polymer is studied by means of Brownian dynamics simulations and hydrodynamic mean field the-

ory. The polymer motion is characterized in terms of the mean squared displacements of the end-

monomers, the end-to-end vector, and the scalar end-to-end distance. In order to control hydrody-

namic screening effects, the polymer is confined to a plane at a fixed separation from the wall. When

gradually decreasing this separation, a crossover from Zimm-type towards Rouse (free-draining)

polymer dynamics is induced. However, this crossover is rather slow and the free-draining limit is

not completely reached—substantial deviations from Rouse-like dynamics are registered in both sim-

ulations and theory—even at distances of the polymer from the wall on the order of the monomer

size. Remarkably, the effect of surface-induced screening of hydrodynamic interactions sensitively

depends on the type of dynamic observable considered. For vectorial quantities such as the end-

to-end vector, hydrodynamic interactions are important and therefore surface screening effects are

sizeable. For a scalar quantity such as the end-to-end distance, on the other hand, hydrodynamic

interactions are less important, but a pronounced dependence of dynamic scaling exponents on the

persistence length to contour length ratio becomes noticeable. Our findings are discussed against the

background of single-molecule experiments on f-actin [L. Le Goff et al., Phys. Rev. Lett. 89, 258101

(2002)]. © 2011 American Institute of Physics. [doi:10.1063/1.3593458]

I. INTRODUCTION

Semiflexible polymers are of interest in various fields of

science and technology due to their abundance in biologi-

cal and synthetic systems. Examples of wide biological rel-

evance include double-stranded DNA and cytoskeletal fila-

ments, such as actin and microtubules. The theoretical interest

in semiflexible polymer dynamics1–7 has been spurred since

the manipulation and observation of single polymer filaments

has become feasible experimentally. Nowadays, a variety of

refined experimental techniques allow to follow precisely and

analyze conformation and dynamics of single polymers un-

der all kinds of different environments, including confine-

ment in nanotubes and nanoslits.8, 9 To give explicit exam-

ples, internal relaxation dynamics of f-actin were resolved by

fluorescence videomicroscopy,10 and end-monomer dynam-

ics of dsDNA were investigated by fluorescence correlation

spectroscopy.11, 12 Although polymers are often confined due

to practical reasons in such experiments, hydrodynamic in-

teractions (HI) are—if considered at all—generally included

in existing theories13 assuming a boundless fluid. Though the

importance of HI was demonstrated in a range of simulation

studies on force- and/or shear-driven filaments,1–3, 7, 14, 15 the

question how the internal equilibrium dynamics of a poly-

mer change, when nearby surfaces alter the HI between differ-

ent parts of the polymer, has received little attention and the

a)Present address: Institute for Physical Science and Technology, University
of Maryland, College Park, Maryland 20742, USA.

b)Electronic mail: netz@ph.tum.de.

influence of surface-induced hydrodynamic screening on

semiflexible polymer dynamics has thus remained elusive.

Within the present paper we focus on one single semi-

flexible polymer, which is confined to a layer at fixed sepa-

ration from a planar hydrodynamic boundary at which a no-

slip boundary condition is enforced; the strength of HI thus

varies depending on the distance to the wall. Polymer dynam-

ics are studied by means of Brownian hydrodynamics simu-

lations and compared with a hydrodynamic mean field theory

(MFT). Our study demonstrates the complexity of semiflex-

ible polymer dynamics resulting from a subtle interplay of

chain connectivity, internal bending and stretching stiffness

as well as (screened) HI. We find the importance of HI to vary

among the different dynamic observables considered: while

the mean squared displacement (MSD) of vectorial quanti-

ties such as the end-monomer position or the end-to-end vec-

tor sensitively depends on the HI strength, this dependence

is much less pronounced for the MSD of a scalar quantity,

such as the end-to-end distance. In the scalar case, on the

other hand, a pronounced dependence of dynamic scaling ex-

ponents on the ratio of the bending and stretching stiffnesses

and on the ratio of contour and persistence lengths appears

in the data, in qualitative agreement with our reanalysis of

experimental data for the internal relaxation dynamics of f-

actin.10 Interestingly, for the MSDs of vectorial quantities the

crossover from Zimm-type behavior in bulk to Rouse-type be-

havior at the hydrodynamic boundary is rather slow and the

free-draining limit is not completely reached even when the

polymer distance from the wall is on the order of the monomer

0021-9606/2011/134(23)/235102/15/$30.00 © 2011 American Institute of Physics134, 235102-1
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size. An interesting question in the future thus concerns the

relevance of hydrodynamics for the dynamics of biopolymers

in vivo with omnipresent confining surfaces and the crowded

environment of cellular systems.16

The paper is organized as follows: The essentials of

low Reynolds-number hydrodynamics near a planar surface,

which are used in both simulations and theory, are shortly

revisited in Sec. II. The Brownian hydrodynamics scheme

is described in Sec. III A; for the theoretical description of

semiflexible polymer dynamics a hydrodynamic mean field

approach4 is adapted to the present context, details of which

are found in Sec. III B. The results of hydrodynamic simula-

tions and of the theory are presented and discussed in Sec. IV;

the main implications of our findings are exposed in Sec. V.

Explicit expressions for the hydrodynamic interaction tensor

used for simulation purposes and within the analytic theory

are found in the Appendix.

II. HYDRODYNAMICS NEAR A PLANAR
NO-SLIP BOUNDARY

We assume the planar hydrodynamic boundary being

placed in the xy-plane at z = 0 of the coordinate system. The

no-slip boundary condition at the wall implies that all com-

ponents of the solvent flow field vanish at the boundary. The

incompressible Stokes equation,

∇ p(r) − η∇2v(r) = f (r), ∇ · v(r) = 0, (1)

relating pressure p, fluid velocity v , and an external force

field f , can be solved using a standard Green’s function tech-

nique. The solution satisfying the no-slip condition at z = 0,

named the Blake tensor
←→
μ B, is derived using the method of

images,17

←→
μ B(r, r ′) = ←→

μ O(r rel) − ←→
μ O(R) + ←→

μ D(R) − ←→
μ SD(R),

(2)

where r ′ = (x ′, y′, z′)T is the position of the Stokeslet, the im-

age Stokeslet has coordinates r̄ ′ = (x ′, y′,−z′)T, and the vec-

tors r rel ≡ r − r ′, and R ≡ r − r̄ ′ were defined. The Oseen

tensor
←→
μ O, the Stokes doublet

←→
μ D, and the source doublet

←→
μ SD are 3 × 3-tensors with entries

←→
μ O(r)αβ =

1

8πηr

(

δαβ +
rαrβ

r2

)

, α, β ∈ {x, y, z}, (3)

←→
μ D(R)αβ =

2z′2(1 − 2δβz)

8πη

(

δαβ

R3
−

3Rα Rβ

R5

)

, (4)

←→
μ SD(R)αβ =

2z′(1 − 2δβz)

8πη

×
(

δαβ Rz

R3
−

δαz Rβ

R3
+

δβz Rα

R3
−

3Rα Rβ Rz

R5

)

,

(5)

where r ≡ |r| and R ≡ |R|. The hydrodynamic entrainment

effect of the motion of a finite sized sphere of radius a located

at r ′ on another equal-sized sphere at r is approximated by a
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FIG. 1. Parallel (‖) and perpendicular (⊥) self-mobilities of a sphere of ra-

dius a located at a vertical distance z from a no-slip wall (z = 0). The ap-

proximations of Eqs. (8) and (9) (dashed lines) are compared to the result for

the parallel mobility of Eq. (10) (solid blue line), and to the exact expression

for the perpendicular mobility of Eq. (11) (solid red line). Self-mobilities are

given in units of the bare self-mobility μ0 = 1/(6πηa) in a fluid of viscosity

η; the region z < a is inaccessible due to excluded-volume effects.

multipole expansion18, 19 to second order in the bead radius a,

←→
μ RPB(r,r ′) ≡

(

1+
a2

6
∇2

r +
a2

6
∇2

r ′

)

←→
μ B(r, r ′), (6)

which in analogy to the procedure in an unbounded fluid is

called the Rotne-Prager level20 of the Blake tensor. The ap-

proximate expression for the HI between finite sized spheres

in Eq. (6) is used in both simulations and theory as detailed

in Sec. III; the explicit entries of the tensor are found in the

Appendix.

A. Self-mobilities

The no-slip boundary at the wall not only alters HI be-

tween different particles, but also affects the particles’ self-

mobilities. Approximate expressions18, 19 for the dependence

of the self-mobility of a sphere on the separation z to the wall

are obtained by considering the limit,

←→
μ RPB

self (z) ≡ lim
r→r ′

←̃→
μ

RPB

(r, r ′)

=

⎛

⎝

μRPB
‖ (z) 0 0

0 μRPB
‖ (z) 0

0 0 μRPB
⊥ (z)

⎞

⎠, (7)

where
←̃→
μ

RPB

is the Rotne-Prager level of the tensor
←̃→
μ

B

,

in which—compared to the Blake tensor
←→
μ B in Eq. (2)—

the first Oseen contribution
←→
μ O(r, r ′), which has a singu-

larity at r = r ′, is replaced by the diagonal 3 × 3 matrix

μ0

←→
1 , μ0 ≡ 1/ (6πηa) being the bare Stokes self-mobility

of a sphere of radius a in a solvent of viscosity η. One ob-

tains renormalized self-mobilities parallel (‖) and perpendic-

ular (⊥) to the boundary, which depend on the distance z from

the wall,

μRPB
‖ (z) = μ0

(

1 −
9a

16z
+

1

8

(

a

z

)3
)

+ O(a4), (8)
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μRPB
⊥ (z) = μ0

(

1 −
9a

8z
+

1

2

(

a

z

)3
)

+ O(a4). (9)

In Fig. 1 the expressions in Eqs. (8) and (9), shown as broken

lines, which only approximately fulfill the no-slip boundary

condition on the bead’s surface, are compared to more elabo-

rate and experimentally tested results,21 shown as solid lines,

which correctly reproduce the short-range lubrication effects.

The expression for the self-mobility parallel to the wall ob-

tained by Perkins and Jones (PJ) (Ref. 22) and Stimson’s and

Jeffery’s (SJ) exact result for the self-mobility perpendicular

to the surface23, 24 read

μPJ
‖ (z) = μ0

(

1 −
8

15
log (1 − β) + 0.029β

+ 0.04973β2 − 0.1249β3 + . . .

)−1

, β ≡ a/z,

(10)

μSJ
⊥ (z) = μ0

(

4

3
sinh α

∞
∑

n=1

n(n + 1)

(2n − 1)(2n + 3)

×
[

2 sinh ((2n+1)α)+(2n+1) sinh (2α)

4 sinh2 ((n+1/2)α)−(2n+1)2 sinh2 (α)
−1

])−1

,

α ≡ cosh−1 (z/a) . (11)

In Fig. 1, differences between the exact and the approxi-

mate self-mobilities are only noticeable for distances z � 2a.

For the sake of consistency of self-mobilities and inter-bead

HI described by the Rotne-Prager level of the Blake tensor

[Eq. (6)], we resort to the approximate expressions in Eqs. (8)

and (9) even for z < 2a. Since the continuum description of

hydrodynamics is expected to break down in any case in the

limit z → a — since single molecules have a non-vanishing

mobility even when they are in direct contact with a surface—

we do not attribute any experimental significance to the devi-

ations between our approximate and the exact expressions in

Fig. 1.

B. Hydrodynamic screening

HI are long-ranged, decaying as 1/r in an unbounded

fluid; the term hydrodynamic screening is employed to de-

scribe the weakening of these HI, for example, in the pres-

ence of nearby surfaces. Within the following discussion, we

restrict ourselves to the scenario schematically depicted in

Fig. 2, two equal-sized spheres of radius a at a distance z

from the no-slip interface and at a separation r from each

other along the x axis of the coordinate frame. As illus-

trated in Fig. 2, the hydrodynamic flow-field created by a

force f acting on one of the spheres also causes a motion

with velocity v = ←→
μ RPB · f of the other one. In the pan-

els (a)–(c) of Fig. 3, the strengths of HI at different dis-

tances from the wall are compared: the diagonal entries of

the Rotne-Prager level of the Blake tensor
←→
μ RPB, specified

in detail in the Appendix, are shown as a function of the inter-

particle distance r . While HI remain long-ranged decaying

as 1/r for r ≪ z, a crossover to a 1/r3-scaling is observed

FIG. 2. Schematic illustration of the bead configuration for which the diag-

onal elements of the hydrodynamic interaction tensor relating the force f

acting on one of the beads and the velocity v of the other one are plotted

in Fig. 3: both spheres are located at the same height z above the no-slip

wall, the vector of length r connecting the sphere centers pointing along the

x-direction.

for r ≫ z for HI along the connection vector in Fig. 3(a);

the strength of HI perpendicular to this axis decays faster

(∝ 1/r5), see Figs. 3(b) and 3(c). Note also the sign change

in μRPB
zz in Fig. 3(c) which turns from positive to negative for

r ≈ 0.9z for distances z ≫ a.

To characterize the strength of HI for a certain relative

configuration of two spheres, we define the following scalar

quantity:

H (r, z) ≡

√

√

√

√

1

3

3
∑

α,β=1

μRPB
αβ

2
,

〈v2〉 = 〈 f T · ←→
μ RPBT · ←→

μ RPB · f 〉 ≡ H 2(r, z) | f |2 ,

(12)

which relates the average mean-squared velocity of one

sphere,
√

〈v2〉, to the magnitude | f | of the force acting on

the other one, and where 〈. . . 〉 denotes an average over all

possible directions of the force. Dynamic scaling regimes in

the motion of semiflexible polymers result from a subtle in-

terplay of HI and monomer mobility, which both decrease

when approaching the no-slip boundary: as is visible from the

Langevin Eq. (14) underlying the Brownian dynamics (BD)

simulation method (cf. Sec. III A) as well as from the theo-

retical dynamic description in Sec. III B, a simultaneous drop

of HI and self-mobilities by the same factor is equivalent to

a rescaling of time and thus does not affect dynamic scaling

exponents; in turn, in order to see non-trivial dynamic effects

embodied in changes of dynamic scaling exponents, the ratio

between self- and cross-mobility must change. The unitless

ratio,

h(r, z) ≡
H (r, z)

√

1
3

(

2(μRPB
‖ (z))2 + (μRPB

⊥ (z))2
)

·
μ0

limz→∞ H (r, z)
,

(13)

thus quantifies the relative importance of hydrodynamics at

a finite distance z from a no-slip boundary compared to an

unbounded fluid. For the configuration shown in Fig. 2, the

function h in Eq. (13) is plotted for different values of the

separation z in Fig. 3(d). In the limit of large separations

from the wall, z → ∞, full HI described by the Rotne-Prager

tensor20 ←→
μ RP [cf. Eq. (A2) in the Appendix] are recovered
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FIG. 3. Screened hydrodynamic interactions (HI) between spherical parti-

cles of radius a situated at a relative distance r from each other in the x-

direction and at equal height z above a no-slip interface (see Fig. 2). Panels

(a)–(c): The diagonal entries of the Rotne-Prager level of the Blake tensor

specified in the Appendix [Eqs. (A1)–(A5)] are shown for different distances

z from the wall (color lines); in the limit z → ∞ the usual Rotne-Prager ten-

sor (see Ref. 20), detailed in the Appendix in Eq. (A2), is recovered (solid

black line). A crossover from a scaling ∝ 1/r to ∝ 1/r3 and ∝ 1/r5 for

cross-mobilities parallel and perpendicular to the connection vector is in-

duced by the no-slip boundary condition at the wall. Panel (d): For the same

values of z as above the relative importance of HI compared to an unbounded

fluid is quantified in terms of the unitless function h defined in Eq. (13).

(h = 1), while the free-draining limit corresponds to h = 0.

As is clearly seen in Fig. 3(d), the influence of HI is contin-

uously reduced with increasing inter-bead separation r and

decreasing distance to the wall z compared to the case of an

unbounded fluid, though for small inter-bead separations it

remains sizeable even for z/a = 2. The consequences arising

from this complex behavior of HI and self-mobilities for the

dynamics of semiflexible polymers in the vicinity of a no-slip

boundary are presented and discussed in Sec. IV.

III. METHODS

A. Hydrodynamic simulations

The dynamics of a semiflexible polymer in solution is

simulated adopting a standard hydrodynamic BD scheme,25

in which the polymer is modeled as a chain of M beads of

radius a. For the low Reynolds number regime, the Langevin

equation governing the time evolution of the position r i =
(xi , yi , zi )

T of bead i is given by

d r i (t)

dt
=

M
∑

j=1

←→
μ i j · (−∇r j

U (r1, . . . , r M ))

+ kBT

[

dμRPB
⊥ (z)

dz

]

z=zi

ẑ + ξ i (t), (14)

where ẑ denotes the unit vector in the z-direction. The mobil-

ity matrix
←→
μ composed of the 3 × 3-submatrices

←→
μ i j = ←→

μ RPB
self (zi )δi j + (1 − δi j )

←→
μ RPB(r i , r j ), (15)

accounts for two effects: (i) the dependence of the self-

mobility on the distance zi of bead i from the wall [cf.

Eqs. (7)–(9)], and (ii) the fact that a force f j ≡ −∇r j
U act-

ing on bead j creates a hydrodynamic flow-field in the fluid

thereby entraining bead i [cf. Eq. (6)]. The second term in

Eq. (14) is due to the spatial variation of the beads’ self-

mobilities; it is introduced to compensate the flux caused

by the position dependent random velocity contributions

ξ i ,
25, 26 which are assumed to be Gaussian random vectors

with hydrodynamic correlations according to the fluctuation-

dissipation theorem,

〈ξ i (t) ⊗ ξ j (t
′)〉 = 2kBT

←→
μ i j δ(t − t ′). (16)

The potential U = UWLC + ULJ + Uconf determining the

configuration-dependent forces felt by the beads consists of

three terms

UWLC =
γ

4a

M−1
∑

i=1

(ri+1,i − 2a)2 +
κ

2a

M−1
∑

i=2

(1 − cos θi ),

ULJ = w
∑

i< j


(2a−ri j )

[

(

2a

ri j

)12

−2

(

2a

ri j

)6

+1

]

,

Uconf =
g

2

M
∑

i=1

(zi − z0)2 , (17)

where ri j = |r i − r j | denotes the separation between the cen-

ters of beads i and j , and θi is the angle between the bond

vectors connecting beads i − 1 and i , and beads i and i + 1,

respectively. The shifted harmonic potential between adjacent

beads of strength γ = 200kBT/a keeps the contour length

L = (M − 1)2a approximately fixed, a bending potential of

strength κ between adjacent bonds takes care of the bend-

ing stiffness of the chain, and the pairwise truncated repulsive
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FIG. 4. Schematic illustration of the simulation setup: A polymer chain con-

sisting of M monomers of radius a is confined by the harmonic potential

Uconf [Eq. (17)] centered around z0 acting in the z-direction; the strength of

HI varies depending on the separation z from the wall.

Lennard-Jones potential ULJ of strength w = 3kBT prevents

significant bead overlap, which otherwise would be a source

of numerical instabilities. The harmonic potential Uconf of

strength g = 1kBT/a2 centered around z0 keeps the average

distance of the polymer beads from the wall fixed; the sim-

ulation setup is schematically illustrated in Fig. 4. By grad-

ually varying the value of z0, the influence of the hydrody-

namic boundary condition at the wall on the motion of the

polymer is sensitively resolved. In the limit of infinite separa-

tion from the wall, the usual Rotne-Prager tensor,20 specified

in Eq. (A2) in the Appendix, is recovered as hydrodynamic

interaction tensor.

Eq. (14) is discretized and integrated numerically using

a simple Euler algorithm; the time discretized form of the

Langevin equation for bead i reads

r i (t + �t) = r i (t) +
( M

∑

j=1

←→
μ i j · f j

+ kBT

[

dμRPB
⊥ (z)

dz

]

z=zi

ẑ

)

�t + �r ran
i (t), (18)

where the time step is denoted by �t , and the stochas-

tic contributions �r ran
i are Gaussian distributed random

vectors with vanishing mean and correlations 〈�r ran
i (t) ⊗

�r ran
j (t)〉 = 2 kBT

←→
μ i j�t . In the case of collisions with

the wall, the z-component is reflected about z = a, while

the updating scheme for the other components remains un-

changed. The correlated stochastic contributions of Eq. (16)

are obtained from uncorrelated Gaussian noise by means of a

Cholesky decomposition of the hydrodynamic matrix
←→
μ . In

all the results below, lengths are measured in units of the bead

radius a, energies in units of thermal energy kBT and time in

units of τ ≡ a2/(kBT μ0).

B. Hydrodynamic mean field theory

For the theoretical description of the polymer motion, we

apply a dynamic mean field approach which has proven use-

ful for the description of semiflexible polymer dynamics in

three dimensions in various contexts ranging from DNA end-

monomer diffusion4, 5 to DNA-protein binding dynamics.27

The simplest description of a semiflexible polymer is the

wormlike chain (WLC) model: the polymer is represented

by a continuous, differentiable space curve r(s) of contour

length L . The associated elastic energy UWLC, the continuum

analogue of Eq. (17), is given by28

UWLC[r(s)] =
κ

2

∫ L/2

−L/2

ds

(

∂u(s)

∂s

)2

. (19)

Here, the arc-length variable ranging from −L/2 to L/2

is denoted by s, and the tangent vector u ≡ ∂ r/∂s is con-

strained by local inextensibility to unit length, u2(s) = 1 ∀ s.

The bending rigidity κ is related to the persistence length ldD
p ,

the typical length scale on which tangent-tangent correlations

decay

〈u(s) · u(s ′)〉 = exp

(

−
|s − s ′|

ldD
p

)

, ldD
p ≡

2κ

(d − 1)kBT
,

(20)

where d is the dimension. In this paper we consider the case

of two-dimensional confinement (d = 2); the configurational

space being reduced compared to three dimensions, a poly-

mer with given bending rigidity κ therefore appears stiffer in

confinement: lp ≡ l3D
p = l2D

p /2.

The constraint in the tangent vector length leading to

nonlinear equations of motion, an alternative, approximate

model is required. Within a mean field approach29, 30 the lo-

cal constraint is relaxed and replaced by the global and end-

point conditions 〈
∫

ds u2(s)〉 = L and 〈u2(±L/2)〉 = 1. The

resulting Gaussian mean field Hamiltonian incorporates a fi-

nite extensibility in addition to the bending term,

UMF[r(s)] =
ǫ

2

∫ L/2

−L/2

ds

(

∂u(s)

∂s

)2

+ ν

∫ L/2

−L/2

ds u2(s)

+ν0(u2(L/2) + u2(−L/2)), (21)

where the MFT parameters

ǫ = l2D
p kBT, ν =

kBT

2l2D
p

, and ν0 =
kBT

2
, (22)

are chosen such that the most important static equilibrium

quantities of the WLC, the tangent-tangent correlation func-

tion in Eq. (20) and other derived quantities, such as the mean

squared end-to-end distance, are correctly reproduced.31

The dynamic theory for the Gaussian semiflexible poly-

mer is based on the hydrodynamic preaveraging approach,32

analogous to that used for the Zimm model33 in the case of

flexible chains. Within that approximation, the time evolution

of the position-vector of point s on the polymer contour within

the x-y-plane is governed by the Langevin equation,

∂

∂s
r(s, t) = −

∫ L/2

−L/2

ds ′ ←→
μ avg(s, s ′; z)

δUMF

δr(s ′, t)
+ ξ (s, t),

(23)

〈ξ (s, t) ⊗ ξ (s ′, t ′)〉 = 2kBT
←→
μ avg(s, s ′; z) δ(t − t ′).

Here the preaveraged mobility tensor
←→
μ avg is used, which is

a function of the contour points s and s ′ only and does not

depend on the actual spatial positions r(s, t) and r(s ′, t). The

preaveraged tensor is given by

←→
μ avg(s, s ′; z) =

[

2aμRPB
‖ (z)δ(s − s ′) + 
(|s − s ′| − 2a)

×μRPB
avg (s, s ′; z)

]←→
1 , (24)
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thus incorporating the self-mobility μRPB
‖ parallel to the

boundary [Eq. (8)], and the preaveraged HI between different

parts of the polymer contour μRPB
avg , which are cut off for dis-

tances |s − s ′| < 2a by the unit step function 
; in Eq. (24),

the 2 × 2 identity matrix is denoted by
←→
1 . The preaver-

aged HI are obtained by averaging the 2 × 2 sub-block of the

Rotne-Prager level of the Blake tensor [Eq. (6)] correspond-

ing to the x- and y-components over all equilibrium configu-

rations of the polymer,

←→
μ RPB

avg (s, s ′; z) =
∫

d2r
←→
μ RPB(r; z)Peq(r; s, s ′)

= μRPB
avg (s, s ′; z)

←→
1 , (25)

where a Gaussian equilibrium distribution of (two-

dimensional) distances r between s and s ′ is used,

Peq(r; s, s ′) =
1

πσ (s − s ′)
exp

(

−
r2

σ (s − s ′)

)

,

σ (�s) ≡ 2l2D
p (�s − l2D

p (1 − e−�s/ l2D
p )). (26)

Note that the steric effect of the wall need not be accounted

for, since the polymer distribution is restricted to a two-

dimensional layer. The explicit functional form of μRPB
avg ap-

pearing in Eqs. (24) and (25) is given in Eq. (A9) in the

Appendix.

The preaveraged Langevin Eq. (23) can be solved

through a normal mode decomposition, with the eigenmodes

fulfilling free-end boundary conditions at s = ±L/2. Since

the MFT parameters (Eq. (22)) are all just multiplied by the

constant factor 2/3 compared to three dimensions, the free-

end boundary conditions and the form of the normal modes

described in detail elsewhere4 remain unchanged. The eigen-

mode expansion yields a set of ordinary differential equa-

tions coupled by a hydrodynamic interaction matrix; once this

matrix is diagonalized,4, 33 the problem is reduced to simple

Langevin equations for the decoupled normal mode ampli-

tudes Pn(t) with stochastic contributions Qn(t),

∂

∂t
P0(t) = Q0(t),

∂

∂t
Pn(t) = −�n Pn(t) + Qn(t), n = 1, . . . , N , (27)

〈Qn(t) ⊗ Qm(t ′)〉 = 2kBT δnmδ(t − t ′)
n

←→
1 .

The vectors Pn(t) and Qn(t) are related to the polymer

conformation r(s, t) and to the stochastic velocities ξ (s, t)

through the expansions

r(s, t) =
N

∑

n=0

Pn(t)�n(s), ξ (s, t) =
N

∑

n=0

Qn(t)�n(s),

(28)

where the scalar functions �n(s) are the decoupled normal

modes. The modes are ordered in such a way that the eigen-

values �n (inverse relaxation times) increase with n. We set

the high-frequency cutoff N for the mode number to N =
⌈L/8a⌉, which was previously shown to give good agreement

at small scales with BD simulations in three dimensions.4, 27

The precise choice of the mode number cutoff does not in-

fluence the polymer motion on length scales much larger

than the monomer radius a and is therefore only relevant on

time scales t � τ . The inverse relaxation times �n and the

fluctuation-dissipation parameters 
n can directly be derived

from the tensor
←→
μ RPB

avg evaluated numerically in the normal

mode basis. Full details of this procedure together with the

explicit form of the normal modes �n(s) were given before.4

Using the Langevin equations in Eq. (27) and the normal

mode decomposition in Eq. (28), the MSD of the polymer’s

ends �2
e and the MSD of the end-to-end vector �2

ee are readily

calculated, yielding

�2
e(t) ≡ 〈(r(±L/2, t) − r(±L/2, 0))2〉

= 4D2D
polt+4kBT

N
∑

n=1


n

�n

�2
n (±L/2)(1−e−�n t ), (29)

�2
ee(t) ≡ 〈((r(L/2, t) − r(−L/2, t))

−(r(L/2, 0) − r(−L/2, 0)))2〉

= 4kBT

N
∑

n=1, odd


n

�n

(�n(L/2)

−�n(−L/2))2(1 − e−�n t ), (30)

where the center-of-mass diffusion constant of the polymer is

D2D
pol ≡ kBT 
0�

2
0 (±L/2). (31)

The temporal dependence of the dynamic quantities in

Eqs. (29) and (30) for different distances z from the no-slip

wall are compared to BD results in Sec. IV.

IV. RESULTS AND DISCUSSION

Extensive hydrodynamic BD simulations of polymers of

contour length L = 100 a (corresponding to M = 51 beads)

and (three-dimensional) persistence lengths lp ranging from

40 to 320 a were performed at various average distances z0

from the wall; a simulation snapshot showing polymer con-

formations at different distances from the wall is found in

Fig. 5.

The simulation time step was set to �t = 0.06 a/(μ0γ ),

corresponding to �t = 3 × 10−4 τ for the stretching parame-

ter γ = 200kBT/a, which was used in all hydrodynamic and

most of the free-draining simulations. Each trajectory lasted

3 × 105 τ , after an initial thermalization period of 3 × 103 τ .

For each parameter set, the observables of interest were av-

eraged along each trajectory and over up to 16 independent

simulation runs. For comparison, we also performed free-

draining BD simulations, using a diagonal hydrodynamic ma-

trix
←→
μ i j = μ0δi j

←→
1 in Eqs. (15) and (16), and also set up a

free-draining version of the MFT by replacing Eq. (24) by
←→
μ avg(s, s ′) = 2aμ0δ(s − s ′)

←→
1 , where μ0 is the bare mo-

bility of a sphere of radius a (at infinite distance from the

confining plane).

We first discuss the time dependence of the end-monomer

and the end-to-end vector MSDs [Eqs. (29) and (30)] and their

sensitivity to bending stiffness and hydrodynamic screening:

as is illustrated in the graph in Fig. 5, the end-monomer
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FIG. 5. BD simulation snapshot showing conformations of a polymer con-

sisting of 51 beads (contour length L = 100 a) and persistence length lp =
40 a subject to a harmonic confining potential centered around z0 = 10 a

(blue) and z0 = 2a (orange). The graph displays MFT results for the end-

monomer MSD �2
e (Eq. (29), solid lines), which for long times reduces to the

center of mass MSD 4D2D
polt [cf. Eq. (31)], and the end-to-end vector MSD

(Eq. (30), broken lines), which in the long time limit levels off at twice the

mean squared end-to-end distance σ (L) [cf. Eq. (26)].

MSD �2
e reduces to the center-of-mass MSD, 4D2D

polt , once

the largest relaxation time �−1
1 is reached, while the end-to-

end vector MSD �2
ee levels off at twice the equilibrium mean

squared end-to-end distance σ (L) [cf. Eq. (26)] for times

t � �−1
1 .

The end-monomer MSD �2
e in the x-y-plane for

polymers of contour length L = 100 a and four different

persistence lengths lp are shown in the upper panels of Fig. 6:

symbols denote hydrodynamic and free-draining simulation

results, the lines correspond to the MFT expression given

in Eq. (29). The overall agreement between simulations and

MFT is good, in agreement with our previous results for

the bulk case.4–6 Note that no fitting parameter is used in

the MFT. Two distinct effects are clearly identified in both

simulation and theory: (i) when decreasing the distance to

the wall, the curves are shifted to larger times, i.e., the overall

dynamics are slowed down and (ii) the slope of the curves on

the double-logarithmic scale corresponding to the exponent

of the underlying power law decreases. These are non-trivial

effects, since they depend on the subtle interplay between

wall-induced self-mobility and HI, which both decrease when

approaching the wall as shown in Figs. 1 and 3. Since the

curves in the double-logarithmic representation show devia-

tions from perfect straight lines, we adopt the concept of a lo-

cal exponent,4 which for a general function f (t) is defined as

α(t) ≡
d log f (t)

d log t
. (32)

The time dependent local exponent α(t) is estimated at each

time t by fitting straight lines to the double logarithmic plot

of MSD data points at times ti within a small range around t ,

defined by the condition | log10 (ti/t)| < 0.15; the local expo-

nents of the end-point MSDs are shown in the lower panels

of Fig. 6. For short times, they exhibit extended plateaus

over several decades, while a crossover to the center-of-mass

exponent 1 takes place at times beyond the largest relaxation

time �−1
1 of the polymer. The largest relaxation times, which

are designated by vertical arrows in Figs. 6 and 7, increase

by approximately a factor 5 when HIs are turned off. Note

that even for times shorter than �−1
1 the exponents start to

oscillate, these extended crossover regions reflect rotations of

the entire polymer which for stiff filaments is captured by the

first eigenmode.5, 31 Insufficient sampling leads to statistical

noise in the simulated local exponents for times t � 103 τ ,

such that the crossovers are only partially seen in the sim-

ulation data. When decreasing the distance to the wall, the

values of the exponent are continuously reduced, approaching

the scaling behavior of the free-draining limit, where for

very stiff polymers without HI a typical scaling exponent of

3/4 is expected.4, 32 We briefly recall our previous results for

the scale-dependent dynamics of semiflexible polymers in

bulk.4–6 In the weak stiffness range a < lp < L , the exponent

α for the end-point MSD was shown to change continuously

as a function of time and to show a pronounced minimum

roughly at the largest internal polymer time scale. Only in

the limit a ≪ L ≪ lp asymptotic scaling is observed and

in the absence of HI, the classical wormlike-chain exponent

α ≈ 3/4 is realized for times t < �−1
1 . In the presence of HI,

all exponents are increased by a constant shift of roughly 0.1

and thus the asymptotic wormlike-chain exponent is more

of the order α ≈ 0.85. Those results from hydrodynamic

simulations and hydrodynamic MFT could be rationalized

by scaling theory and eigenmode analysis4 and quantitatively

compared with experimental time-resolved data for DNA.5, 6

Remarkably, the dynamic crossover from hydrodynamic

to free-draining behavior in Fig. 6 sets in at relatively small

distances z0 from the wall; in fact, the dynamics for z0 = 2a,

i.e., at a monomeric separation of the polymer from the wall,

are characterized by a considerably higher slope than the free-

draining one, meaning that HI—though screened—still con-

tribute substantially to the relaxation dynamics. Note that this

is not an artifact due to the use of approximate self-mobilities

and HI of finite sized beads in hydrodynamic simulations and

the MFT, since even at separations of two monomer radii from

the wall these approximations compare well to the exact ex-

pressions (cf. Fig. 1). Similar trends are seen in the MSD of

the end-to-end vector �2
ee in Fig. 7, which saturates at twice

the average squared end-to-end distance of the polymer for

t ≫ �−1
1 ; again a slowdown of the dynamics and a decrease

of the local exponent are observed when HI are reduced due

to the nearby wall; local slopes are reversely ordered due to

this slowdown for t � �−1
1 .

The quantitative agreement of the MSDs in BD simula-

tions and in the MFT [Eqs. (29) and (30)] is less impressive

in the confined geometry than in the three-dimensional case,5

the MSDs generally being overestimated by the theory. The

reasons for the reduced accuracy of the theory in the present

case are manifold: (i) Within the MFT the polymer is treated

as completely confined to two dimensions, while small out of

plane fluctuations are possible in the simulations, (ii) as was

argued in Ref. 5, long ranged HI are one factor for the success

of the MFT in three dimensions; conversely, a worsening of

the theory is thus expected in the present case, when the wall

is approached and in consequence HI are gradually weakened

(cf. Fig. 3), and (iii) in analogy with the critical behavior of

lattice spin systems,34 mean field theory and similarly also

the preaveraging approximation of the hydrodynamic tensor

are expected to perform better in higher dimension; the re-

duced accuracy of the two-dimensional theory can therefore
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FIG. 6. In-plane dynamics of a polymer of length L = 100 a and (three-dimensional) persistence length lp ranging from 40 to 320 a held at an average distance

z0 from a no-slip wall: end-monomer MSD (upper panels) and the corresponding local exponent α (lower panels) are shown. The symbols denote results from

hydrodynamic and free-draining BD simulations, while the lines are results of the two dimensional MFT [Eq. (29)] for polymers at a distance z from the wall.

Vertical arrows designate the largest MFT-relaxation times �−1
1 .

be, at least in part, attributed to the lower dimension. How-

ever, the general trends induced by the interaction with the

no-slip boundary, which are seen best in the local exponents

(lower panels of Figs. 6 and 7), are reliably reproduced by the

MFT.

Considerably stiffer and longer chains, where the differ-

ent dynamic regimes are clearly separated in time, are not

accessible yet by means of simulations because of the over-

whelming computational costs. In contrast, the mean field ap-

proach is equally applicable here. MFT results for a chain of

length L = 500 a and lp = 500 a shown in Fig. 8 confirm the

previous observations: when approaching the wall, hydrody-

namic screening shifts the crossovers to larger times and si-

multaneously decreases the (local) exponent, though not quite

reaching the free-draining limit with exponent 3/4 even at

wall separations on the order of the monomer size.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

87.77.118.212 On: Thu, 15 Oct 2015 07:56:23



235102-9 Hydrodynamically screened polymer dynamics J. Chem. Phys. 134, 235102 (2011)

101

102

103

104

∆
2 e
e

[a
2
]

z/a = ∞

z/a = 10

z/a = 2

free-dr.

z0/a = ∞

z0/a = 10

z0/a = 2

free-dr.

101 102 103 104 105

t [a2/kBTμ0]

0.7

3/4

0.8

0.9

α

lp = 160 a
101

102

103

104

∆
2 e
e

[a
2
]

z/a = ∞

z/a = 10

z/a = 2

free-dr.

z0/a = ∞

z0/a = 10

z0/a = 2

free-dr.

101 102 103 104 105

t [a2/kBTμ0]

0.7

3/4

0.8

0.9

α

lp = 320 a

101

102

103

104

∆
2 e
e

[a
2
]

z/a = ∞

z/a = 10

z/a = 2

free-dr.

z0/a = ∞

z0/a = 10

z0/a = 2

free-dr.

101 102 103 104 105

t [a2/kBTμ0]

0.7

3/4

0.8

0.9

α

lp = 40 a
101

102

103

104

∆
2 e
e

[a
2
]

z/a = ∞

z/a = 10

z/a = 2

free-dr.

z0/a = ∞

z0/a = 10

z0/a = 2

free-dr.

101 102 103 104 105

t [a2/kBTμ0]

0.7

3/4

0.8

0.9

α

lp = 80 a

FIG. 7. Same as Fig. 6, but showing the end-to-end vector MSD [Eq. (30)] (upper panels) and the corresponding local exponent α (lower panels).

Clearly, the strength of HI is the most relevant parameter

for determining the dynamic scaling exponents in Figs. 6–8,

while the ratio lp/L , ranging from 0.4 to 3.2, is of compara-

tively minor importance for the MSDs of the vectorial quan-

tities considered so far.

Experimentally, end-to-end relaxation dynamics were

studied using end-labeled f-actin filaments,10 which were

enclosed in a 1μm thick chamber to keep the fluorescent

markers in the focal plane of the microscope. The dynam-

ics of filaments of contour lengths L ranging from 5.9 to

25.6μm and persistence length lp ≈ 15.7μm (Ref. 10) was

quantified in terms of the MSD of the (scalar) end-to-end

distance,

�2
see ≡〈(R(t) − R(0))2〉, R(t)≡|r(L/2, t) − r(−L/2, t)|,

(33)

which obviously differs from the end-to-end vector MSD in

Eq. (30); in their work Le Goff et al. suggested a linear rescal-

ing of the time and MSD variables in order to collapse the
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FIG. 8. MFT results for in-plane dynamics of a polymer of length L = 500 a and persistence length lp = 500 a: the upper panels show the end-monomer MSD

[left, Eq. (29)] and the end-to-end vector MSD [right, Eq. (30)]; the lower panels show the corresponding local exponents α for various distances z from the

wall as well as in the free-draining limit. Vertical arrows designate the largest MFT-relaxation times �−1
1 .

MSD dataset onto a single master curve, which at short times

reduces to a power law scaling with exponent α = 3/4. In-

terestingly, our reanalysis of the experimental data in terms

of local slopes reveals smooth crossovers from values be-

tween 0.8 and 1.0 at short times to values around 0.7 be-

fore the slopes quickly drop towards 0. The original data as

well as the corresponding local slopes, both affected by sig-

nificant statistical noise, are shown in Fig. 9: plateau regions

with an approximately constant exponent (cf. Figs. 6–8) are

not observed. Note that when linearly rescaling time t̃ ≡ βt

and the dynamic observable of interest f̃ (t̃) ≡ ζ f (βt), the lo-

cal exponent defined in Eq. (32) is unchanged, α̃(t̃) = α(βt),

so the rescaling cannot be the reason for the apparent expo-

nent plateau seen in the original data analysis. Rather, the

graphical averaging over the various filament lengths seems

to wash out the variations of the exponent as a function of

time and when comparing different filament lengths with each

other.

Unfortunately, the isotropic mean field theory in the for-

mulation in Sec. III B does not allow the evaluation of the

scalar end-to-end distance MSD measured in the experiments.

Also, a direct comparison of experiments and hydrodynamic

simulations is unfeasible because of the immense computa-

tional costs associated with contour lengths L/a ∼ O(103).

The MSD of the scalar end-to-end distance from BD simula-

tions of chain length L = 100 a are shown in Fig. 10. As in

the case of the end-to-end vector MSD in Fig. 7, the weak-

ening of HI leads to a slowdown of the overall relaxation dy-

namics, the saturation crossover being shifted to larger times;

the scalar end-to-end distance, however, saturates at consider-

ably smaller times since the slow rotational mode of the entire

10−1

100
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∆
2 se

e
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m
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lp/L ≈ 2.66
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α

FIG. 9. (Upper panel) Experimental MSD of the scalar end-

to-end distance of f-actin filaments of contour length L =
5.9, 10.4, 10.7, 11.8, 11.8, 11.9, 12.9, and 25.6 μm (from bottom to

top, data digitized from the inset of Fig. 3 in Ref. 10; since all data points

were plotted using the same dot size in the original publication, only those

parts of the dataset were used, which could unambigously be assigned to

a certain contour length L). Assuming a (three-dimensional) persistence

length lp ≈ 15.7 μm, (see Ref. 10) the ratio lp/L thus varies between 0.61

and 2.66 (from top to bottom). (Lower panel) Corresponding local slope α.
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FIG. 10. Scalar end-to-end distance MSD extracted from hydrodynamic BD simulations of a polymer of length L = 100 a and varying stiffness lp/L for

several average distances z0 from the confining wall (upper panels) as well as corresponding the local exponents α (lower panels). For comparison results from

free-draining BD simulations are shown using red triangles.

filament is factored out in this observable. In accordance with

the experimental data in Fig. 9, the local exponents are rather

characterized by smooth crossovers than by constant values;

most strikingly, the comparison of the simulation results in

Fig. 10 reveals a strong dependence of the local exponents

on the ratio lp/L . Typical values of α � 0.8 for lp/L = 0.4,

α ≈ 0.7 − 0.75 for lp/L = 0.8, α ≈ 0.65 for lp/L = 1.6, and

α ≈ 0.5 for lp/L = 3.2 are identified, in agreement with re-

sults previously obtained for the fluctuations of unconstrained

filaments.5 For a fixed ratio lp/L , the strength of HI varying

with the distance z0 from the boundary only slightly affects

the local exponents, hydrodynamics thus seems to be of mi-

nor importance for the dynamic scaling of the scalar end-to-

end distance MSD, in contrast to the vectorial MSDs in Figs. 6

and 7. This is not surprising, as hydrodynamics most strongly

affect center-of-mass translation and rotation, both of which

are factored out in the scalar end-to-end distance. This finding

suggests to use free-draining simulations for a more detailed
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FIG. 11. Influence of stiffness lp/L and stretching force constant γ on the

end-to-end distance MSD [Eq. (33), upper panel] and corresponding local

exponents (lower panel) in free-draining BD simulations of a polymer of

length L = 100 a. Results obtained with the standard stretching force con-

stant γ = 200 kBT/a (filled symbols) are compared to the same observables

when employing γ = 1000 kBT/a (open symbols).

analysis of the dynamic scaling behavior of the scalar end-to-

end distance.

The fact that the local slopes in Fig. 10 tend towards 1/2

instead of 3/4 with increasing ratio lp/L is easily understood

by realizing that we keep the harmonic bond-stretching pa-

rameter [cf. Eq. (17)] constant at a value γ = 200 kBT/a in

our simulations, while varying the bending stiffness κ; as a

consequence, the free-draining scalar end-to-end relaxation

becomes dominated by stretching relaxation35 with charac-

teristic exponent 1/2 in the limit κ → ∞, where we note that

the weakly bending wormlike chain exponent 3/4 is expected

only in the idealized limit of a perfectly inextensible semi-

flexible chain. To substantiate this suggestion, we compare

the scalar end-to-end MSDs of free-draining simulations with

γ = 200kBT/a and γ = 1000 kBT/a in Fig. 11. Indeed, one

finds higher slopes in the less extensible case, when employ-

ing a higher value of γ . In turn, variations of the chain extensi-

bility only marginally affect end-to-end relaxation dynamics

in the flexible regime lp/L � 1, since here the relaxation is

dominated by bending fluctuations. In fact, for experimental

biopolymers, the stretching and bending stiffness constants

are not independent quantities. Rather, the ratio of the stretch-

ing and bending energy parameters,

χ ≡
γ a2

4κ
, (34)

presumably is rather constant and on the order of unity for

real polymers, as in the case of an isotropic elastic cylinder.36

Since higher values of the stretching parameter γ require
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FIG. 12. (Upper panel) Influence of simultaneous variation of bending and

stretching stiffness on the scalar end-to-end distance MSD [Eq. (33)] in free-

draining BD simulations of a polymer of length L = 100 a. Results are shown

for polymers of different stiffness lp/L , but constant χ defined in Eq. (34),

corresponding to isotropic elastic cylinders. (Lower panel) Corresponding

local exponents.

a reduced simulation time step �t (cf. beginning of this

section), this is currently unfeasible for simulations includ-

ing HI (the simulation time for a single hydrodynamic tra-

jectories with 109 time steps lasting ∼40 days on a stan-

dard single-core computer), we therefore continue our dis-

cussion with free-draining simulations. This restriction seems

not to be serious, though, as the results in Fig. 10 showed

that hydrodynamics are rather unimportant for the MSD of

the scalar end-to-end distance anyways. In Fig. 12, we show

the scalar end-to-end distance MSD from free-draining sim-

ulations, in which γ and κ where simultaneously modified

keeping χ = 1.25 constant. As is clearly seen, the trends ob-

served in Fig. 10 remain unchanged: when increasing the ra-

tio lp/L , the local exponents gradually decrease (below 3/4),

in qualitative agreement with the experimental data shown in

Fig. 9.

We cautiously remark that experimentally, the ratio lp/L

is varied by choosing filaments of different contour lengths

L while keeping the persistence length lp fixed, while in our

simulations the persistence length lp is varied while keeping

L fixed. These two scenarios are not strictly equivalent since

an additional length scale, the monomer radius a, is present

in the problem, giving a second dimensionless length-scale

ratio L/a. In order to look into this, we in Fig. 13 show MFT

results of the end-monomer and end-to-end vector MSDs for

filaments of varying length to monomer radius ratio L/a, but

constant ratio lp/L = 1.

Note that the dependence on the monomer radius a

can be scaled out in the free-draining limit; in other words,
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FIG. 13. (Upper left) MFT results for the end-monomer position vector MSD with hydrodynamic interactions (solid lines) and in the free-draining limit (FD,

dashed lines) for filaments of varying contour length L and persistence length lp, but constant ratio lp/L = 1. (Lower left) A rescaling of time and MSD by the

polymer length L yields a collapse of the free-draining MSDs on a master curve, deviations at small times resulting from differences in the mode-number cutoff

N (cf. Sec. III B). Note that in the presence of HI no collapse is obtained. (Upper and lower right) Same plots for the end-to-end vector MSD.

free-draining relaxation dynamics are characterized by the ra-

tio lp/L only, as is clearly seen in the lower panels of Fig. 13,

where we show the data rescaled by the polymer length L .

On the other hand, HI give rise to a genuine logarithmic de-

pendence of the dynamics on the ratio L/a. The dilemma is

that our simulations do not span a large enough range of ra-

tios lp/L and L/a in order to extract the full scaling behavior,

while the MFT cannot be used to calculate the experimentally

measured scalar end-to-end distance MSD. Nevertheless, it is

conceivable that the scaling in terms of one parameter only,

namely, the ratio lp/L , observed in the MFT for the MSDs

of the vectorial observables without HI (Fig. 13), also holds

for the scalar end-to-end distance MSD, for which the hy-

drodynamic effects have been shown to be rather unimpor-

tant in simulations (Fig. 10). This suggestion is enforced by

the observation that experiments and simulation results for

the scalar end-to-end distance MSD in Figs. 9 and 12 show

similar behavior for matching values of lp/L , although the

values of L/a are very different. Based on the similar qual-

itative trends seen in the restricted experimental and simu-

lation data sets displayed in Figs. 9 and 12, we are led to

the following tentative conclusions: (i) local exponents for

the scalar end-to-end distance MSD do not show character-

istic plateau values but rather continuously decrease with in-

creasing time and (ii) the dynamic scaling varies with polymer

stiffness lp/L , where values of α � 3/4 are observed for more

flexible chains (lp/L < 1), while exponents α � 3/4 are char-

acteristic for stiffer filaments (lp/L > 1). These observations

crucially depend on the presence of stretching fluctuations,

as indeed experimentally present for elastic biopolymers. The

strength of HI, which has sizeable effects on the MSDs of vec-

torial observables, mainly reduces to a temporal rescaling for

the case of the scalar end-to-end distance MSD. Given these

results, the collapse of experimental scalar end-to-end MSDs

for different lp/L on a single master-curve,10 calls for further

experimental investigations in light of the presence of stretch-

ing fluctuations as described by an extensible WLC model

with finite χ .

V. CONCLUSIONS

In this paper we have presented results from hydrody-

namic and free-draining BD simulations of a single semiflex-

ible filament in the vicinity of a hydrodynamic no-slip wall:

by varying the distance to the boundary, we could accurately

resolve the influence of hydrodynamic screening on typical

dynamic quantities, such as the end-monomer and end-to-

end vector MSD of the polymer filament; the weakening of

HI when approaching the wall is clearly reflected in these

observables. Though being less accurate than in the three-

dimensional case, the adaptation of a hydrodynamic mean

field theory nicely captures the trends seen in the simulations:

the slowing down of the overall dynamics and the crossover

towards free-draining dynamic scaling when approaching the

wall; in addition the theoretical approach allows to consider

polymer lengths inaccessible in simulations due to the in-

creased computational costs.

Our analysis reveals that (screened) hydrodynamics con-

tribute differently to different dynamic variables: MSDs of

vectorial quantities such as the end-monomer position and
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the end-to-end vector show distinct plateaus in their local

slopes, which are similar over a broad range of stiffnesses

and gradually decrease when approaching the surface. Never-

theless, hydrodynamics continue to be important at polymer-

wall separations on the order of the monomer-size; the free-

draining limit therefore remains an inaccurate approxima-

tion to the actual dynamics, even very close to planar sur-

faces. To what extent similar reservations hold in other ge-

ometries or in non-dilute polymer solutions remains for future

investigations.

On the other hand, rotations of the entire filament are

factored out in the scalar end-to-end distance MSD, and the

dynamic scaling exponent rather results from an interplay of

stretching and bending stiffness; here, the role of hydrody-

namic screening is mainly reduced to a temporal rescaling.

The non-universal dependence of the scaling exponent on the

persistence length to contour length ratio lp/L seen in the

free-draining simulations qualitatively agrees with a similar

dependence seen in our reanalysis of experimental data for f-

actin filaments10 and crucially depends on the fact that one

includes chain stretching fluctuations in the theoretical mod-

eling as appropriate for elastic biopolymers.

On the basis of our findings, the characterization of pre-

vious experimental data in terms of a single dynamic scal-

ing exponent appears oversimplified; experiments resolving

more dynamic observables than the usual scalar end-to-end

MSD, extending the analysis to a larger range of stiffnesses

lp/L , and rigorously identifying the hydrodynamic influence

of nearby boundaries would certainly be helpful in shining

more light on the rich and complex relaxation dynamics of

single semiflexible polymers as well as of polymer networks.
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APPENDIX: ROTNE-PRAGER LEVEL OF THE BLAKE
TENSOR

1. Explicit entries of the tensor

As outlined in Sec. II, the Rotne-Prager level of the Blake

tensor describing the approximate HI of finite sized particles

near a no-slip wall at z = 0 is obtained from the Blake tensor
←→
μ B by the operation,

←→
μ RPB(r i ,r j ) =

[(

1+
a2

6
∇2

r +
a2

6
∇2

r ′

)

←→
μ B(r, r ′)

]

r=r i ,r ′=r j

= ←→
μ RP(r i −r j )−←→

μ RP(r i − r̄ j )+
←→
�μ(r i ,r j ),

(A1)

where r̄ j = (x j , y j ,−z j )
T is the image position of particle j .

In Eq. (A1), the definition of the Blake tensor (Eq. (2)) as well

as of the RP tensor20

←→
μ RP(r) =

1

8πηr

[

←→
1 +

r ⊗ r

r2

]

+
a2

4πηr3

[←→
1

3
−

r ⊗ r

r2

]

,

(A2)

were used. Compared to the case of an unbounded fluid,

the hydrodynamic drag on bead i resulting from an exter-

nal force acting on bead j is thus modified by two terms:

the RP-interaction with the image of bead j [second term in

Eq. (A1)] and the RP-level of the Stokes and source doublets

[cf. Eqs. (4) and (5)] at the position of the image

←→
�μ(r i , r j ) ≡

[

(

1 +
a2

6
∇2

r +
a2

6
∇2

r ′

)

(←→
μ D(r − r̄ ′)

−←→
μ SD(r − r̄ ′)

)

]

r=r i ,r ′=r j

, (A3)

for which we report the explicit entries. Note that our expres-

sions differ from a previously reported version of the tensor.37

The indices α �= β ∈ {x, y} and z specify the entries of the

matrix
←→
�μ, and the elements of the vectors r i = (xi , yi , zi )

T ,

r j = (x j , y j , z j )
T , and R = (Rx , Ry, Rz)T . The diagonal ma-

trix entries are given by

�μαα = 1
4πη

(

−zi z j

R3

(

1 − 3
R2

α

R2

)

+ a2 R2
z

R5

(

1 − 5
R2

α

R2

))

,

(A4)

�μzz = 1
4πη

(

zi z j

R3

(

1 − 3
R2

z

R2

)

− a2 R2
z

R5

(

3 − 5
R2

z

R2

))

,

(A5)

the off-diagonal ones read

�μαβ =
1

4πη

(

3zi z j Rα Rβ

R5
− 5a2

Rα Rβ R2
z

R7

)

, (A6)

�μαz =
1

4πη

(

z j Rα

R3

(

1−3
zi Rz

R2

)

−
a2 Rα Rz

R5

(

2−5
R2

z

R2

))

,

(A7)

�μzα =
1

4πη

(

z j Rα

R3

(

1 + 3
zi Rz

R2

)

− 5
a2 Rα R3

z

R7

)

. (A8)

Altogether, HI described by Eqs. (A1)–(A8) are equivalent

to the expressions in Ref. 19. Note the following typo in a

previous publication by Kim and Netz:18 in Eq. (2.14), the

plus sign in front of the last line should be replaced by a minus

sign in order to obtain the above expressions.

2. Preaveraged form of the hydrodynamic tensor

For the two-dimensional version of the MFT in Sec. III B,

the 2 × 2-submatrix of
←→
μ RPB corresponding to the x- and y-

coordinates is preaveraged by the help of the two-dimensional

Gaussian probability distribution given in Eq. (26). The
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right-hand side of Eq. (25) yields

μRPB
avg /μ0 =

√
π (9σ +4)erfc

(

2√
σ

)

8σ 3/2
−

e−4/σ

4σ
+

e−4/σ

4σ 3
(

z2+1
)5/2

×(σ 2 + σ (7σ + 32)z2 + (15σ 2 + 80σ + 64)z4

+2(3σ 2 + 36σ + 64)z6 + 8(3σ + 8)z8) −
√

π

8σ 7/2

×e
4z2

σ (32(3σ + 8)z4 + 4σ (9σ + 32)z2

+σ 2(9σ + 4))erfc

(

2

√

z2 + 1

σ

)

, (A9)

where the mean squared distance between s and s ′ [Eq. (26)]

is denoted by σ ≡ σ (|s − s ′|), and where for convenience

we have set a = 1. Note, that the positive exponential in the

penultimate line of Eq. (A9) is a source of numerical error for

values z � 25 a when using double precision numbers; in this

case an asymptotic expansion of the above expression for the

limit z → ∞ can be used instead.
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