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School of Aeronautics, Universidad Politécnica de Madrid, 28040 Madrid, Spain
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The interaction of the overlying turbulent flow with a riblet surface and its impact on
drag reduction are analysed. The ‘viscous regime’ of vanishing riblet spacing, in which
the drag reduction produced by the riblets is proportional to their size, is reasonably
well understood, but this paper focuses on the behaviour for spacings s+ ≃ 10–20,
expressed in wall units, where the viscous regime breaks down and the reduction
eventually becomes an increase. Experimental evidence suggests that the two regimes
are largely independent, and, based on a re-evaluation of existing data, it is shown that
the optimal rib size is collapsed best by the square root of the groove cross-section,

ℓ+
g = A+

g

1/2
. The mechanism of the breakdown is investigated by systematic DNSs

with increasing riblet sizes. It is found that the breakdown is caused by the appearance
of long spanwise rollers below y+ ≈ 20, with typical streamwise wavelengths λ+

x ≈ 150,
that develop from a two-dimensional Kelvin–Helmholtz-like instability of the mean
streamwise flow, similar to those over plant canopies and porous surfaces. They
account for the drag breakdown, both qualitatively and quantitatively. It is shown
that a simplified linear instability model explains the scaling of the breakdown spacing
with ℓ+

g .
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1. Introduction

The reduction of skin friction in turbulent flows has been an active area of research
for several decades, and surface riblets have been one of the few drag-reduction
techniques successfully demonstrated not only in theory, but in practice as well. They
are small protrusions aligned with the direction of the flow that confer an anisotropic
roughness to the surface. The most comprehensive compilations of riblet experiments
are those of Walsh & Lindemann (1984), Walsh (1990b), Bruse et al. (1993) and
Bechert et al. (1997), in which the maximum drag reductions are of the order of 10 %,
and are achieved for riblets with peak-to-peak spacings of approximately 15 wall units.

The dependence of the performance of riblets with a particular geometry in terms
of the rib spacing is sketched in figure 1. In the limit of very small riblets, which we
will call the ‘viscous’ regime, the reduction in drag is proportional to the riblet size,
and its mechanism is fairly well understood and quantified (Bechert & Bartenwerfer
1989; Luchini, Manzo & Pozzi 1991). However, as the riblets get larger and their effect
saturates, a minimum drag is reached when the viscous regime ‘breaks down’. We will
see below that the two regimes are only weakly related, and that the breakdown is
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Figure 1. Effect of the peak-to-peak distance, s+, on the skin friction of a triangular riblet
with 60◦ peak sharpness, from Bechert et al. (1997).

worse understood than the viscous limit, in spite of having been the subject of several
studies (Choi, Moin & Kim 1993; Goldstein & Tuan 1998). The main focus of our
paper is to determine the parameters that best describe the extent of the linear regime
and the mechanism that controls the breakdown. Apart from the theoretical interest,
a practical reason is that the breakdown spacing limits the optimum performance of
a given riblet geometry, which can roughly be estimated as the product of the viscous
slope and the breakdown size. In particular, if it could be clarified how the latter is
related to the geometry of the riblets, it might be possible to design surfaces with
larger critical sizes than the ones available at present, and consequently with better
peak performances.

The paper is organized in two parts. The first one summarizes the available
experiments and theoretical understanding. Within this part, § 2 reviews the different
drag-reduction regimes and discusses the physical mechanisms proposed in the
literature both for the viscous regime and for its breakdown, and § 3 discusses the
suitability of the parameters traditionally used to characterize the latter and proposes
an empirical alternative. The second part of the paper addresses the mechanism of
the breakdown, using direct numerical simulations (DNSs). Section 4 outlines the
numerical method and the parameters of the simulations. The results are presented in
§ 5, which also discusses the relationship between the breakdown, the riblet size and
the overlying turbulent flow, and § 6 proposes a linear stability model that captures the
essential attributes of the breakdown, including an approximate justification of the
scaling parameter proposed in § 3. The conclusions are summarized in the final section.

2. Drag-reduction regimes for riblets

2.1. The viscous regime

Early in the investigation of riblets, Walsh & Lindemann (1984) showed that the
Reynolds number dependence of the effect of a given riblet geometry on the skin
friction could be approximately expressed in terms of the riblet spacing measured in
wall units, s+ = suτ/ν, where ν is the kinematic viscosity, and uτ =

√
τw is the friction

velocity defined in terms of the kinematic skin friction τw . Throughout this paper the
fluid density will be taken as constant and equal to unity. Figure 1 shows a typical
curve of drag reduction as a function of the riblet spacing. In the viscous regime, for
small s+, the contribution of the nonlinear terms to the interaction of the flow with
the riblets is negligible and, if τw0 is the skin friction for a smooth wall, the drag
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Figure 2. Drag reduction curves of various riblets, adapted from Bechert et al. (1997).
(a) Blades with fixed height-to-spacing ratio, h/s = 0.5, and different tip width, t/s. Solid
symbols, t/s = 0.04; open symbols, t/s = 0.01; grey, t/s = 0.02 with improved blade
alignment and groove impermeability. (b) Riblets with approximately equal viscous slope ms .
�, blades with h/s = 0.4 and t/s = 0.01; �, blades with h/s = 0.5 and t/s = 0.04; �, scalloped
groves with h/s = 0.7 and t/s = 0.015; �, scalloped groves with h/s = 1.0 and t/s = 0.018;
�, trapezoidal riblets with tip angle 30◦; �, trapezoidal riblets, 45◦.

reduction DR = −�τw/τw0 depends linearly on s+. That regime eventually breaks
down, and the drag reduction is typically maximum for spacings s+

opt ≈ 10−20. For
even larger riblets, the reduction ultimately becomes a drag increase and follows a
typical k -roughness behaviour (Jiménez 2004). The parameters that determine the
optimum performance of a given riblet are s+

opt and the slope of the drag curve in the
viscous regime:

ms = − ∂(�τw/τw0)

∂s+

∣∣∣∣
s=0

= − �τw/τw0

s+

∣∣∣∣
s+≪1

. (2.1)

Both depend on the geometry, but the qualitative behaviour is always as just described.
The analysis of the available experimental evidence suggests that the viscous and

breakdown regimes are essentially unrelated phenomena. For example, blade thickness
has a strong effect on the viscous performance of thin-blade riblets without appreciably
changing their groove geometry, and figure 2(a) shows an example of progressively
thicker blades (1–4 %), with fairly different viscous slopes and very similar breakdown
spacings. Conversely, figure 2(b) is a compilation of drag curves for riblets with similar
ms but different geometries, whose optimum spacings vary widely. To separate the
two effects as much as possible, and to focus on the breakdown mechanism, most
of our discussion from now on will use drag curves normalized so that their initial
viscous slopes are unity.

It is widely believed that the drag-reduction properties of riblets in the viscous
regime are well described by the concept of ‘protrusion height’, which was initially
introduced by Bechert & Bartenwerfer (1989) as an offset between the virtual origin
seen by the mean streamwise flow and some notional mean surface location. The
correct form was given by Luchini et al. (1991), who defined it as the offset between
the virtual origins of the streamwise and spanwise flows. From here on, we will
denote the streamwise, wall-normal and spanwise coordinates by x, y and z,
respectively, and the corresponding velocity components by u, v and w. The origin
for y will be taken at the top of the riblet tips.

There is a thin near-wall region in turbulent flows over smooth walls where viscous
effects are dominant, nonlinear inertial effects can be neglected and the mean velocity
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profile is linear. Its thickness is 5–10 wall units (Tennekes & Lumley 1972). From the
point of view of a small protrusion in this layer, the outer flow can be represented as
a time-dependent but otherwise uniform shear. Riblets destroy that uniformity near
the wall but, if s+ ≪ 1, the flow still behaves as a uniform shear for y ≫ s. A further
simplification is that the problem decouples into two two-dimensional sub-problems
in the z–y cross-plane, because the equations of motion are locally linear, the riblets
are uniform in the streamwise direction and the shear varies only slowly with x when
compared to its variations in the cross-plane. The first sub-problem is the longitudinal
flow of u, driven by a streamwise shear that takes the form

u ≈ Sx(x, t) (y − ∆u) (2.2)

at y+ ≫ 1, and the other is the transverse flow of v and w, driven by

w ≈ Sz(x, t) (y − ∆w) and v ≈ 0. (2.3)

Far from the wall, the effect of the riblets reduces to the virtual origins ∆u and
∆w (Luchini 1995), which are different for the two flow directions. What Luchini
et al. (1991) suggested was that the ‘protrusion height’ between the two virtual
origins, �h = ∆w − ∆u, was the controlling parameter for the viscous drag reduction.
Intuitively, if the virtual origin for the crossflow is farther into the flow than the
one for the longitudinal one (�h > 0), the spanwise flow induced by the overlying
streamwise vortices is impeded more severely than over a smooth wall. The vortices
are displaced away from the wall, and the turbulent mixing of streamwise momentum
is reduced. Since this mixing is responsible for the high local wall shear (Orlandi &
Jiménez 1994), the result is a lower skin friction. This was verified by Jiménez (1994)
by DNSs in which �h was introduced independently of the presence of riblets.

The numerical calculation of �h only requires the solution of the two stationary
two-dimensional Stokes problems for ∆u and ∆w , which are computationally much
less intensive than the three-dimensional, time-dependent, turbulent flow over ribbed
walls. Note that the linearity of the Stokes problems implies that ∆u, ∆w and �h are
all proportional to the riblet size in the viscous regime, as observed in experiments.

2.2. The breakdown of the viscous regime

As s+ increases, the predictions of the viscous theory break down, particularly the
linear dependence on s of the drag. The theories proposed in the literature for this
deterioration of performance fall in two broad groups, both of which focus on the
behaviour of the crossflow.

The first one is that the riblets lose effectiveness once s+, which is used as a measure
of the Reynolds number of the crossflow, increases beyond the Stokes regime. For
example, Goldstein & Tuan (1998) suggested that the deterioration is due to the
generation of secondary streamwise vorticity over the riblets, as the unsteady crossflow
separates and sheds small-scale vortices that create extra dissipation. However, it
is known that spanwise oscillations of the wall, which also presumably introduce
unsteady streamwise vorticity, can decrease drag (Jung, Mangiavacchi & Akhavan
1992), and that modifying the spanwise boundary condition to inhibit the creation of
secondary wall vorticity increases drag (Jiménez 1992; Jiménez & Pinelli 1999). Both
observations suggest that introducing small-scale streamwise vorticity near the wall
decreases drag by damping the larger streamwise vortices of the buffer layer, and that
inertial crossflow effects need not be detrimental to drag reduction.

A related possibility that was considered during the course of the present study was
that the concept of protrusion height could be extended beyond the strictly viscous
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regime, and that the observed deviations from linearity would be due to the increased
importance of advection in the vicinity of the riblets. In that model, the flow far from
the riblets would still be a uniform shear but within the riblets, it would begin to feel
the effects of the finite Reynolds number. If that were the case, the breakdown could
still be estimated from simple two-dimensional calculations analogous to the viscous
ones. Unfortunately, simulations based on that model (Garcı́a-Mayoral & Jiménez
2007) resulted only in small departures from the viscous values, of variable sign
depending on the riblet geometry and size. Changes of the order required to explain
the experiments were not reached until s+ ≈ 20–40, which is too large compared to
s+ ≈ 10–20 found experimentally.

The second group of theories assumes that the observed optimum spacing is related
to the scale of the turbulent structures in the unperturbed turbulent wall region. In
that group we could mention the observations by Choi et al. (1993), Suzuki & Kasagi
(1994) and Lee & Lee (2001), that the streamwise turbulent vortices lodge within the
riblet grooves for riblets in the early drag-degradation regime.

All those models result in optimum spacings of roughly the right order of magnitude,
but they can be characterized as ‘circumstantial’ in the sense that they are based on
observations at spacings for which the viscous regime has already broken down,
rather than at those preceding the deterioration. Moreover, although they suggest
plausible reasons for why the Stokes regime fails beyond a certain riblet size, none
of them provides convincing physical arguments for why that failure should lead to
a drag increase. As a consequence, it is difficult to establish with certainty whether
the observed phenomena are consequences or causes of the breakdown, and the
ultimate reason for the observed degradation of the effectiveness of riblets can still
be considered as open.

3. Scaling of the riblet dimension at breakdown

As already mentioned, one of the earliest observations concerning riblets was that
the drag-reduction curves for a given riblet geometry could be described in terms of
the riblet size expressed in wall units. Size has often been taken to mean the spacing
s+, although occasionally the depth h+ has also been used. For a particular geometry,
both quantities are proportional to each other, and the choice is immaterial, but the
same is not true when comparing riblets of different shapes, and we saw in figure 2
that s+ is not, in that sense, a particularly good characterization of the position of
the viscous breakdown.

In this section, we attempt to determine empirically which geometrical
characterization of the riblet best collapses the critical breakdown size across different
riblet shapes. Figure 3(a) illustrates the variation of s+

opt from one geometry to another.
The figure portrays the optimum spacing for several experimental riblets against the
ratio of the groove cross-section to the square of the spacing, Ag/s

2, which is a measure
of their depth-to-width ratio. Although s+

opt is always in the range 10–20 mentioned
above, it is clear that deeper grooves break down earlier and achieve their optimum
performance for narrower spacings. Note that this effect cannot be explained by any
of the breakdown models discussed in § 2.2. For example, the lodging of buffer layer
vortices within the riblet grooves might qualitatively explain why the drag reduction
breaks down for riblet spacings of the order of the vortex diameters, about 20 wall
units according to Kim, Moin & Moser (1987), but it does not explain why the groove
depth affects s+

opt .
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Figure 3. (a) Riblet spacing for maximum drag reduction, as a function of the relative groove
cross-section Ag/s

2. �, triangular riblets; �, notched-top and flat-valley riblets; �, scalloped
semicircular grooves; �, blades. The solid symbols are from Walsh & Lindemann (1984)
and Walsh (1990b), and the open symbols are from Bechert et al. (1997). Error bars have
been estimated from the drag measurement errors given in the references. (b–d) Histograms
of the optimum performance point, expressed in terms of the peak-to-peak spacing s, the
groove depth h and the square root of the groove cross-section, ℓg =

√
Ag , for several riblet

geometries.

A non-exhaustive search among possible definitions of riblet size gave as a result
that the best collapse of breakdown dimensions was achieved in terms of the groove
cross-section, ℓ+

g = (A+
g )1/2. We portray in figures 3(b)–3(d ) the histograms of the

breakdown dimensions of several riblets, expressed as s+, h+ and ℓ+
g . We have omitted

experiments for which the optimum performance could not be clearly defined, such as
the measurements for fibres of Bruse et al. (1993), or those for seal fur of Itoh et al.
(2006). Disregarding them, the histograms show that the optimum values of s+ and
h+ have scatters of the order of 40 %, while the scatter for ℓ+

g is only about 10 %.
The implied optimum is ℓ+

g,opt ≃ 10.7 ± 1.
Scaling the whole drag-reduction curves requires both normalizing the riblet size

with ℓ+
g and scaling the drag reduction with the new viscous slope mℓ,

mℓ = − �τw/τw0

ℓ+
g

∣∣∣∣
ℓ+
g ≪1

=
s

ℓg

ms, (3.1)

so that DR = mℓℓ
+
g in the viscous regime, with the implication that DR/mℓ should

be a ‘universal’ function of ℓ+
g .

The slope mℓ is a viscous quantity that can be obtained from Stokes two-
dimensional calculations. According to the classical theory of wall turbulence, surface
manipulations only modify the intercept of the logarithmic velocity profile by an
amount �B (Clauser 1956), which in turn changes the free-stream velocity, U+

δ ,

and the friction coefficient cf = 2τw/U 2
δ = 2/U+

δ

2
. The drag reduction can then be

expressed as (Jiménez 2004; Garcı́a-Mayoral & Jiménez 2011)

�cf

cf 0

≈ �τw

τw0

≈ −�B

(2cf 0)−1/2 + (2κ)−1
, (3.2)

where κ ≈ 0.4 is the von Kármán constant. If �B is positive, the logarithmic profile
is shifted ‘upwards’ and friction is reduced, and vice versa. For riblets in the viscous
regime, the shift is proportional to the protrusion height, �B = µ0�h+, with a
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Figure 4. Drag-reduction curves from Bechert et al. (1997), reduced to a common viscous
slope, as functions of (a) s+, (b) h+ and (c) ℓ+

g . (d) Maximum drag reduction compared with

the prediction obtained by estimating ℓ+
g,opt = 10.7. The symbols are the same as in figure 3;

, linear extrapolation from the viscous regime; , linear fit with slope 0.83.

proportionality constant that has been estimated as µ0 ≈ 0.66 (Jiménez 1994) or
µ0 ≈ 0.785 (Bechert et al. 1997), although the two values are too similar to be
distinguished experimentally. The above considerations can be combined in an
expression for the viscous slope that only depends on the Stokes calculation of
the protrusion height,

mℓ =
µ0

(2cf 0)−1/2 + (2κ)−1

�h

ℓg

. (3.3)

In practice, mℓ is often estimated directly from the experimental results for the smallest
riblets, because of the uncertainty about the real geometry details like tip-rounding,
which greatly affects the viscous performance. Analogous slopes can be defined for s+

and h+, and the influence of the viscous regime on the drag-reduction curve should,
in principle, be limited to their values. In particular, since our interest is mostly on the
riblet size at breakdown, we will always use drag curves normalized with the viscous
slopes, computed either directly from Stokes calculations or from the experiments.
Note that this normalization does not modify the location of the optimum drag
reduction, but that it simplifies its identification by removing the influence of all
the other scaling parameters. This is done in figures 4(a)–4(c) for a variety of riblet
geometries and for three different size measures, and it is clear that ℓ+

g provides the
best collapse for the breakdown dimensions at small sizes. As a practical aside, figure
4(c), together with a computational Stokes’ estimate of the viscous mℓ, can be used
as a tool for engineering predictions of drag reduction in a wide range of ℓ+

g . For the
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geometries included in the figure,

DRmax ≈ 0.83 mℓ ℓ+
g,opt , (3.4)

where the optimum riblet spacing can be approximated by its mean value ℓ+
g,opt = 10.7,

as in figure 4(d). This is particularly useful for conditions such as the aforementioned
tip rounding, which has a strong influence on the viscous slope but modifies the
groove cross-section relatively little (Walsh 1990a; Garcı́a-Mayoral & Jiménez 2011).

In spite of the good collapse of figure 4(c), it should be stressed that ℓ+
g may not be

an adequate parameter to characterize the performance of unconventional geometries,
such as the fibres and seal fur mentioned above, for which Ag is difficult to define,
or the T-shaped riblets cited by Walsh (1990b). Taking the latter as an example, it is
clear that, as the wall-parallel segments of the T-fences widen and the space between
their tips is reduced, the grooves become increasingly isolated from the overlying flow,
while still maintaining the same ℓ+

g . In the limit of fully sealed grooves, the geometry
would behave as a flat surface, and modifying ℓ+

g would have no performance
impact. The present rule can only be considered an empirical approximation valid
for geometries that are not too different from the experimental ‘conventional’ riblets,
such as the triangular, trapezoidal, blade, and scalloped riblets frequently proposed in
the literature, in which a groove fully exposed to the outer flow can clearly be defined.

It is therefore important to understand the nature of the viscous breakdown, to
clarify the reason for the present collapse, and to find whether it can be extended to
other geometries, either using ℓ+

g or other related parameter. For that purpose, we
have conducted the numerical experiments described next.

4. The numerical method

In this section we outline the method used to solve the incompressible Navier–
Stokes equations in a parallelepiped that includes the walls of a ribbed channel,
periodic in the two wall-parallel directions and of half-width δ, at a Reynolds number
δ+ ≈ 180. The wall geometry chosen for our experiments consists of rectangular riblets
with depth-to-spacing ratio h/s = 0.5, blade thickness t/s = 0.25 and ℓg/s ≈ 0.61, for
which Stokes calculations give a protrusion height �h/ℓg = 0.095, and an offset for the
streamwise velocity ∆u/ℓg = −0.16. From a drag-reduction perspective, this geometry
is far from optimal, with a maximum expected reduction of about 6 %, but it requires
a lower numerical resolution than sharper configurations, reducing the computational
costs and improving the accuracy of the results. Previous DNSs of riblets (Choi
et al. 1993; Chu & Karniadakis 1993; Stalio & Nobile 2003; Orlandi, Leonardi &
Antonia 2006; El-Samni, Chun & Yoon 2007) were usually conducted in channels
with riblets in only one wall, with the opposite wall used as the reference to measure
friction. However, although that arrangement may be useful in comparing channel
simulations among themselves, it is inconvenient when trying to relate computations
to experiments on boundary layers. If only one wall is ribbed, the flow is asymmetric,
and the friction velocities are different for both walls. This leads to different friction
Reynolds numbers and wall units at either side of the channel, which, if not taken
into account, would lead to errors in the calculation of the riblet sizes s+ or ℓ+

g . It is
also unclear which value should be used for the free-stream velocity in the friction
coefficient, to make it comparable with boundary layers. These effects are negligible
for moderate or high Reynolds numbers, but they can be substantial at the relatively
low Reynolds numbers of most DNSs, especially when dealing with the relatively
weak effects of most riblets. To avoid those potential errors, our simulations include
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riblets in both walls and use as reference a smooth-wall channel with the same mass
flux between the two planes defined by the riblet tips. We also take as reference
velocity the one at the centreline.

When the spacing between riblets is in the drag-reducing range, the accurate
representation of the flow near the ribbed walls requires a finer grid than the one
required for the body of the channel. To alleviate the computational cost, our grid is
divided into three blocks, one near each wall in which the resolution is fine enough to
represent the riblets, and a coarser central one in which the resolution is only enough
to simulate the turbulence. The walls are modelled with the immersed-boundary
technique detailed below.

The velocities and pressure are collocated and expanded in Fourier series along
the two wall-parallel directions x and z. The differential operators are approximated
spectrally along those directions, and the nonlinear terms are de-aliased using the 2/3
rule. The spatial differential operators in y are discretized using second-order, centred
finite-differences on a non-uniform grid. The grid spacing in y is coarsest at the centre
of the channel, �y+

max ≈ 3, and finest near the walls, �y+
min ≈ 0.3, remaining nearly

constant within the riblet grooves. The number of x modes is set so that �x+ ≈ 6 in
the three blocks, expressed in terms of collocation points. In the central block of the
grid, the resolution along z is just enough to capture the smallest turbulent scales,
�z+ ≈ 2, while the number of z modes in the blocks containing the riblets is always
set to 24 physical collocation points per riblet. This resolution is similar to those of
Goldstein, Handler & Sirovich (1995) and Goldstein & Tuan (1998), who also used
a combination of spectral methods and immersed boundaries for their riblet DNSs.
In our simulations, the riblet surfaces are chosen to coincide with collocation points.
Depending on the case, the spanwise grid is between 1.5 and 6 times finer in the wall
blocks than in the central one. The additional Fourier modes of the wall blocks require
boundary conditions at the interface with the central block, where they disappear. We
impose at those points that the three velocities and ∂p/∂y vanish, and require that
the wall blocks extend far enough into the channel for those four quantities to have
decayed to negligible levels at the interface. This condition is checked a posteriori and
found to be satisfied beyond one or two riblet heights above the plane of the riblet tips.

Incompressibility is enforced weakly (Nördstrom, Mattsson & Swanson 2007). If
we denote the velocity divergence by D = ∇ · u, the equations of motion are

∂u

∂t
+ u · ∇u = −∇p +

1

Re
∇2

u, (4.1)

∂D

∂t
= −λDD +

1

ReD

∇2D, (4.2)

where λD and ReD are positive coefficients, so that D is driven continuously and
exponentially towards zero, instead of being required to vanish strictly. This weak
form of the incompressibility condition allows us to use a collocated grid, while
eliminating the usual ‘chequerboard’ problem (Ferziger & Perić 1996).

The temporal integrator is a fractional-step, pressure-correction, three-substep
Runge–Kutta, which only corrects the pressure in the final step (Le & Moin 1991):

[
1 − �t

βk

Re
L

]
u

n
k = u

n
k−1 + �t

[
αk

Re
L

(
u

n
k−1

)
− γkN

(
u

n
k−1

)

−ζkN
(
u

n
k−2

)
− (αk + βk)G(pn)

]
, k = 1, 2, 3 (4.3)
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D̂n+1 = D
(
u

n
3

)
, (4.4)

Dn+1 = Dn + �t F

(
Dn +

�t

2
F (Dn)

)
, (4.5)

L(φn+1) = − 1

�t

(
Dn+1 − D̂n+1

)
, (4.6)

pn+1 = pn + φn+1, (4.7)

u
n+1 = u

n
3 − �tGφn+1, (4.8)

where k is the Runge–Kutta substep, u
n
0 = u

n, N is the de-aliased convective term
operator, D, G and L are the discretized divergence, gradient and Laplacian operators,
and F (D) = −λDD + L(D)/ReD . The coefficients αk , βk , γk and ζk are those in Le &
Moin (1991).

To model the no-slip condition at the riblet walls, we use the direct-forcing
immersed-boundary technique of Iaccarino & Verzicco (2003). Numerically, the
immersed-boundary condition

u
n+1 − u

n

�t
=

V − u
n

�t
, (4.9)

where V is the desired velocity at the forcing points, is approximated by
[
1 − �t

βk

Re
L

]
u

n
k =

(
V

n
k−1 − u

n
k−1

)
+

[
1 − �t

βk

Re
L

]
u

n
k−1, (4.10)

which, in practice, is a modification of (4.3) at the forcing points. In principle, the
term V

n
k−1 could be explicitly calculated from u

n
k−1 by linear interpolation (Garcı́a-

Mayoral & Jiménez 2007), but in our rectangular riblets, whose surface is formed
by grid points, it is always zero. In addition, (4.10) is used to force the velocities to
vanish at all the points within the solid part of the riblets, and there is a notional flat
boundary at the level of the groove floors, where the velocities and ∂p/∂y are also
required to vanish. The resulting velocities at the riblet surface are not exactly zero,
but they are at worst of order 0.1uτ for u, and 0.01uτ for v and w, which is in both
cases roughly one order of magnitude smaller than the corresponding values in the
first grid point away from the surface. They are mostly due to the imposition of the
immersed-boundary method before the pressure correction step, a feature common
to other fractional-step implementations (Fadlun et al. 2000).

The variable time step is adjusted to maintain fixed convective and viscous Courant–
Friedrichs–Lewy numbers, CFLC = 0.5 and CFLV = 2.5 respectively, so that

�t = min

{
CFLC

[
�x

π|u| ,
�z

π|w| ,
�y

|v|

]
, Re CFLV

[
�x2

π
2

,
�z2

c

π
2

,
�z2

r

π
2

,
�y2

min

4

]}
, (4.11)

where the subscripts ‘c’ and ‘r ’ refer to the central and riblet blocks. The parameters
λD and ReD are chosen at each time step so that (4.5) is stable for �t given by
(4.11). The resulting divergence in the flow is never higher than D+ ≈ 2 × 10−4, which
should be compared with the magnitude of other velocity gradients. For example, the
magnitude of the vorticity is |ω+| ≈ 0.05–0.2.

The channel half-height is δ = 1 in all cases, including in the smooth reference one,
and is defined as the distance from the centre of the channel to the riblet tips, while
the domain half-height is slightly larger, extending to the groove floors. The viscosity
is always ν = 1/3250, chosen so that δ+ ≈ 180 in the smooth case. The time-dependent
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mean streamwise pressure gradient Px is adjusted to ensure a constant flow rate Q

in y ∈ (0, 2δ). This is done at each substep by a correction �U n
k to the instantaneous

plane-averaged streamwise-velocity profile U n
k ,

[
1 − �t

βk

Re

∂2

∂y2

]
Û n

k = −�t (αk + βk), (4.12)

�Px =
Q − Qn

k

Q̂n
k

, (4.13)

�U n
k = �PxÛ

n
k , (4.14)

where Q̂n
k is the flow rate associated with the auxiliary Û n

k , and Qn
k is the flow rate

of the uncorrected U n
k . For simplicity, Û n

k is only defined for y ∈ (0, 2δ), and its

boundary conditions are Û n
k = 0 at the riblet tip planes, so there is no correction

within the grooves owing to the constant Q constrain. This entails a very small error
because the corrections on Px and U n

k are several orders of magnitude smaller than
their uncorrected values. Except for that small error, the procedure is equivalent to
imposing on the discretized Navier–Stokes problem (4.3)–(4.8) the time-dependent
pressure gradient required to obtain a constant flow rate, which is the procedure used
in most channel DNSs, both smooth and rough.

Besides the turbulent smooth channel computed as a reference, in which the walls
were also implemented using immersed boundaries, the code was validated on a
two-dimensional Taylor–Green vortex and on the transition of the wake of a laminar
cylinder. The Taylor–Green vortex was used to test the time accuracy of the integrator,
which was found to be second order for the velocity and first order for the pressure,
with the second-order velocity errors mostly associated with viscous terms, as in
most incompressible fractional-step Runge–Kutta schemes (Simens et al. 2009). The
cylinder flow is a stringent test for immersed-boundary methods, since the detachment
and transition to an unsteady wake are very sensitive to the geometry of the obstacle
(Linnick & Fasel 2005). In our tests, the flow transitioned at Re ≈ 42, defined with the
cylinder diameter, which is in good agreement with the experimental range Re = 40–
49 (Roshko 1953; Williamson 1989). The code was further tested by reproducing one
of the simulations with triangular riblets in Choi et al. (1993).

The parameters of our main set of simulations are given in table 1. The number of
riblets in the box is varied to span the full drag-reducing range. To our knowledge,
this is the first time that such a systematic parameter sweep has been undertaken for
numerical riblets, except perhaps that by El-Samni et al. (2007), who included five
different riblet sizes. Notice that Lz is increased slightly in case 17S, to obtain the
desired ℓ+

g while keeping the fixed geometric resolution of the riblets. In addition, cases
10S and 17S were repeated while independently doubling Nx , Nzr

, and the length and
width of the channel, to check whether the simulations could be considered converged
with respect to the grid and box sizes. The results agreed well with the ones used in
the paper. One of those cases, 17D, has been included in table 1 because it will be
used in figure 14. The simulations in our main set were run for roughly 150 eddy
turn-over times, δ/uτ , of which the first few were discarded to avoid the effects of the
initial transients on the statistics. They had to be run for such long times to reduce
the effect of the wall-friction oscillations, which, for our relatively small simulation
boxes, are of the order of 10 %.
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Case No. of ribs ℓ+
g s+ δ+ Lx Lz Nx Nzc

Nzr

0S 0 0 0 189.31 2π 2π/3 192 192 192
5S 48 4.95 8.09 185.37 2π 2π/3 192 192 1152
7S 32 7.38 12.05 184.11 2π 2π/3 192 192 768
10S 24 9.80 16.01 183.47 2π 2π/3 192 192 576
13S 18 13.04 21.29 182.99 2π 2π/3 192 192 432
15S 16 14.74 24.07 183.91 2π 2π/3 192 192 384
17S 15 17.40 28.41 186.03 2π 2π/2.74 192 192 360
20S 12 20.46 33.41 191.42 2π 2π/3 192 192 288

17D 30 17.55 28.67 187.71 2π 4π/2.74 192 384 720

Table 1. DNS parameters. ℓ+
g is the square root of the groove cross-section, s+ is the riblet

spacing and δ+ is the friction Reynolds number, Lx and Lz are the channel length and width,
and Nx , Nzc

and Nzr
are the number of collocation points in the streamwise and spanwise

directions, for the central and wall blocks respectively.
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Figure 5. Drag-reduction results from DNSs of channels with rectangular riblets. �, results
normalized using (3.3), with protrusion heights obtained from a second-order finite-difference
Stokes simulation with the same effective resolution as the DNSs, and the value for µ0 from
Jiménez (1994). The error bars have been estimated from the time history of DR, following
Hoyas & Jiménez (2008). The shaded area is the envelope of the experimental data in
figure 4(c).

5. DNS results and discussion

Figure 5 compares the drag reduction obtained for the numerical cases 0S to 20S
with the experimental data discussed in § 3, with reasonably good agreement.

The definition of the friction coefficient deserves some comment. It was noted by
Luchini (1995) that the friction coefficient of internal flows is harder to define than
that of external boundary layers. In the latter, a reasonable procedure is to normalize
the wall friction with the free-stream velocity, which is also the quantity of interest in
vehicular applications. In internal flows, the practical quantity is the mass-flow rate,
but, if it is used to normalize cf , there is an ambiguity as to which hydraulic radius
should be used to convert the flow rate into a bulk velocity. Luchini (1995) remarked
that different ‘reasonable’ choices could result in changes of the friction coefficient
comparable to those expected from the riblets themselves, with the neutral choice
being measuring the hydraulic radius from the virtual origin �u.
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On the other hand, it follows from the discussion in § 3 that the physically relevant
definition of drag change should be based on the offset �B of the logarithmic velocity
profile, which, if we assume that surface manipulations only modify the near-wall
region, is equivalent to the change in the maximum mean velocity U+

δ . The only
corrections are those associated with the denominator of (3.2), which depends weakly
on the Reynolds number. That is why in this paper we use the centreline velocity
to normalize the friction coefficient, rather than the mass flux. The friction Reynolds
number is kept approximately constant by the procedure of fixing the flux among the
different cases, and the effect of any small change should only manifests itself in the
change of cf 0 in the denominator of (3.2), which would yield at most a 1% change
in drag.

The friction itself is defined in terms of the mean pressure gradient Px . In the case
of smooth walls, the skin friction can be obtained by extrapolating to the wall the
total stress, τ (y) = −〈uv〉 + ν∂y〈u〉, which is linear in y with slope Px . The brackets 〈〉
stand for averaging over wall-parallel planes and time. Equivalently, it follows from
the integrated streamwise momentum equation that

2Lzτw = −AcPx, (5.1)

because the friction in both walls has to compensate the effect of Px over the
cross-sectional area Ac = 2δLz. The result

τw = −δ Px (5.2)

can be derived either from the extrapolation of τ (y) or from (5.1).
In cases with riblets, the wall friction is not exerted at a constant y-plane to which

τ (y) can be extrapolated, but we can use (5.1) as long as Ac is the real channel
cross-section, including the open section of the grooves. Equivalently, since the total
stress is still linear above the riblet tips, τw can be computed by extrapolating τ (y) to
the level y = δ − δ′, where Ac = 2δ′Lz, which is the y-plane at which a smooth wall
would have to be located for a channel of area Ac. The resulting τw is the total friction
exerted per unit streamwise length and channel span, and is thus the correct quantity
to compare with the friction on a smooth wall when estimating drag reduction. For
our test geometry, δ′ = δ + 3h/4. Note that, if those corrections are not taken into
account and τw is estimated by extrapolating the total stress to y = 0, the relative
error in cf would be of order (δ − δ′)/δ ∼ h/δ. For typical values of �cf /cf ≈ 0.1, that
error would only be negligible if h/δ ≪ 0.1, which is not our case.

5.1. The conditional flow

To elucidate the structure of the flow near the ribbed surface, we have compiled
flow statistics conditioned on the spanwise position across the riblet. Figure 6(a, b)
portrays the conditionally averaged crossflow inside and immediately above a riblet
groove, for several riblet sizes. The panel for ℓ+

g = 0 is the two-dimensional Stokes
crossflow used for the computation of the protrusion height. For non-zero values
of ℓ+

g , the crossflow is averaged over identical spanwise locations with respect to
each riblet, as well as over time and x, but, since that procedure only recovers a
weak secondary flow, the statistics are also conditioned on the mean direction of the
crossflow in the plane immediately above the riblet tips. The flow over individual
grooves is characterized as either ‘rightward’ or ‘leftward’, and the statistics for the
two directions are combined by adding the specular image of the mean leftward
flow to the rightward one. Note that this procedure generates statistics that are not
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Figure 6. (a, b) Streamfunction of the conditionally averaged crossflow above and within the
riblet grooves, conditioned to a mean rightward flow in the plane immediately above the riblet
tips. From left to right and top to bottom, ℓ+

g = 0 and cases 5S to 20S. The case ℓ+
g = 0 is a

two-dimensional Stokes simulation. To facilitate the comparison between different cases, the
streamfunction has been scaled with uτ and with the riblet height h. , rightward flow with
streamfunction values 0.05 × [0(0.2)1]2 and 0.10(0.05)0.60. , clockwise recirculation flow,
with streamfunction values −2 × [0.2(0.2)1] × 10−3. (c) Fluctuation of the streamwise vorticity
as a function of the distance to the riblet peak plane, for cases 0S to 20S. (d ) Maximum
conditioned streamwise vorticity, as a function of the z-position across the riblet span, for
cases 10S to 20S. The arrows in (c) and (d ) indicate increasing ℓ+

g .

periodic with the riblet spacing, because the flow over each riblet is conditioned to a
particular orientation, while those over the neighbouring ones are not.

Figure 6(a,b) shows that there is a weak recirculation bubble in the riblet groove,
which is especially clear in the Stokes case (first panel in figure 6a), but which persists
up to the viscous breakdown, becoming increasingly asymmetric for the larger riblets.

At the same time, other changes occur in the outer flow. The increasing curvature of
the conditional streamlines suggests that a mean vortex settles above the groove and
drifts towards the wall as the riblet size increases. It turns out that the drift is mostly
due to the change in the scale of the figures, which are normalized with the riblet
height. The vertical position of the vortices is better measured by the unconditioned
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root-mean-squared intensity of the vorticity ωx , which is shown in figure 6(c). The
quasi-streamwise vortices correspond to the maximum away from the wall and slowly
approach the wall as the riblets get larger, but they never get closer than y+ ≈ 10–15.
The simplest interpretation of the velocity fields in figure 6(a,b) is that the vortices
tend to linger on top of the grooves. This tendency can be measured by the modulation
in z of the conditionally averaged maximum streamwise vorticity, maxy〈ωx〉c, where
the brackets now refer to the conditional mean. This quantity is shown in figure 6(d ).
It is maximum above the grooves and minimum above the riblet tips. Its modulation
is negligible for the smallest riblets and increases with the riblet size, showing that
the vortices get increasingly localized above the grooves for the larger riblets.

Goldstein et al. (1995) and Goldstein & Tuan (1998) suggested that one of the effects
of the riblets was to order the turbulent flow near the wall by preventing the spanwise
motion of the streamwise vortices, inhibiting the instability of the streamwise-velocity
streaks, and eventually the bursting. They conjectured that this effect would be part
of the drag-reduction mechanism. The vortex localization observed in figure 6(d )
supports the flow-ordering idea, but it is interesting that the localization is weak for
the riblets that actually reduce drag and strongest for those that increase it, suggesting
that other phenomena may be more important for the drag evolution.

The actual lodging of the vortices inside the grooves, which was documented by
Choi et al. (1993) and Lee & Lee (2001) for grooves with ℓ+

g � 25, and proposed as
a mechanism for the drag deterioration, is not observed in the present simulations.
Figures 5 and 6(a,b) suggest that, if it happens at all, it probably only does for very
large riblets in the drag-increasing regime, rather than in those in the neighbourhood
of the performance optimum. In that sense, it should probably be considered a
consequence, rather than the cause, of the penetration of the outer flow into very
large grooves.

On the other hand, although it could have been expected that the recirculation
bubbles would isolate the valley floor from the overlying flow, keeping the high-
momentum fluid away from the groove walls, it is somewhat surprising that all the
changes in the crossflow have a relatively small effect on the streamwise velocity,
which is the component responsible for the friction. That is seen in figure 7(d), which
portrays the mean slip velocity U0 at y = 0, as a function of the riblet size, and shows
that the linear Stokes approximation holds for the longitudinal flow throughout the
whole range of our simulations, at least in the mean. Averaging the Stokes assumption
(2.2) over the streamwise direction and time implies that the mean velocity of the
boundary layer approaches the wall with an effective slip velocity

U+
0 ≡ U+(y = 0) = −∆+

u , (5.3)

which is represented by the solid line in figure 7(d).
The reason is probably that the recirculation bubbles in figure 6(a,b) are relatively

weak. The magnitude of the conditioned spanwise velocity at the horizontal mid-plane
of the riblet grooves in figure 6(a,b), y = −h/2, never exceeds 0.04 uτ , and the mean
streamwise velocity within the grooves follows the same universal curve U (y/h)/U0

within a few per cent for all the riblets in our simulations. Similarly, the mean velocity
gradient at the bottom of the groove is always (∂yU )+ ≈ 0.15.

That low shear at the bottom of the grooves is not enough to guarantee drag
reduction, as seen in the case ℓ+

g = 0, where the drag reduction is zero because
the low shear within the groove is compensated by the higher one at the peaks.
In fact, the approximately universal scaling of the streamwise velocity inside the
grooves suggests that the reason of the drag reduction is not so much that the friction
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Figure 7. Conditionally averaged viscous (a), Reynolds (b) and total (c) shear stresses at
the x–z plane just above the riblet tips, as a function of the spanwise position with respect
to the riblets. The arrows indicate increasing ℓ+

g . The dashed line corresponds to the Stokes

two-dimensional simulations for ℓ+
g = 0. The rectangles at the bottom of the figures mark

the z-location of the riblet tips. Each flow is normalized in its own wall units. (d) Mean slip
velocity at the riblet-tip plane, compared with the Stokes result (5.3), represented by the solid
line. (e) Integrated average stresses at the same x–z plane, as a function of ℓ+

g ; –�–, viscous
stress; –�–, Reynolds stress; –�–, total stress. The difference between the total stress portrayed
here and the results in figure 5 is due to the pressure drop within the grooves, which is not
accounted for here, and whose contribution increases with groove size.

decreases, but that the slip augments the velocity of the free stream, thus decreasing
the friction coefficient 2τw/U 2

δ . Of course, both interpretations are essentially the
same, depending on the units used to express the result, and the question will be
examined quantitatively in § 5.2.

Before doing that, we can gain some insight on how the riblets affect the distribution
of the friction by examining the conditional statistics of the viscous, Reynolds, and
total streamwise stresses on the x–z plane just above the riblet tips. Figures 7(a)–7(c)
portray the conditionally averaged stresses normalized with the friction velocity of
each ribbed surface. The figures show that the dominant stress on that plane is always
the viscous one, τvisc = ν∂y〈u〉c, which partially compensates its high value over the
tips with a lower one above the grooves. We have already mentioned that the net
effect vanishes in the case ℓg = 0, and figures 7(a)–7(c) show that, although the viscous
contribution decreases over the groove as the riblet size increases, the effect is partly
compensated by the Reynolds stress, τuv = −〈uv〉c, which becomes significant for the
larger riblets. The ratio between the contributions to the total skin friction of the tips
and of the grooves remains relatively unchanged over the range of our simulations,
in agreement with the previous observation that the streamwise flow in the groove
remains dominated by viscosity. The partial transfer of viscous to Reynolds stress
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Figure 8. Premultiplied two-dimensional spectra of v2 at y+ ≈ 5. From (a) to (d), cases 13S,
15S, 17S and 20S. The contour increments are 0.003 u2

τ . The superimposed solid contours
correspond to the smooth-wall case and the level 0.003 u2

τ . The thick horizontal line to the left
of the plots marks the riblet spacing. The rectangular area indicates the region of the spectrum
considered in figure 12.

reflects the modification of the distribution of streamwise and wall-normal velocities
near the plane of the riblet tips, but it does not reach deep into the grooves.

This does not mean that the drag remains constant, since our simulations cover
the whole range from drag reduction to drag increase. The net contributions of the two
stress components, now expressed in terms of the constant friction velocity
of the smooth channel, can most clearly be appreciated in figure 7(e). The figure shows
that the net viscous stress decreases almost linearly with ℓ+

g , while the Reynolds stress
increases slowly at first and faster for the larger ℓ+

g . In the cases near the maximum
drag reduction, the Reynolds stress compensates the decrease of the viscous one and
the drag reduction saturates. For riblets larger than the optimum, the drag reduction
begins to degrade because the mean Reynolds stress increases further, and, for case
20S, the contribution of the Reynolds stress is so large that the drag reduction
becomes a drag increase. The breakdown is therefore associated with the appearance
of inertial effects, but the discussion in the previous paragraph suggests that they are
concentrated near or above the plane of the tips, rather than within the grooves. They
are discussed in the next section.

5.2. Spectral analysis

The main difference between flows in smooth and ribbed channels is the higher
fluctuation intensities of the latter immediately above y = 0 (not shown, but see
figures 9 and 12). In the same way, the transverse Reynolds stress −〈uv〉 increases over
riblets, especially over the larger ones (see figure 7b). Both things are to be expected
from the relaxation of the wall boundary conditions above the riblet grooves, and are
consistent with the discussion in the previous section. More interesting is the spectral
distribution of those higher intensities.

Figures 8–10 contain examples of two-dimensional spectral energy densities over
wall-parallel planes for cases 13S to 20S, representing how the energy of the different
velocity components is distributed in the λ+

x –λ+
z wavelength plane. Those are the

riblets beyond the viscous breakdown, and the ones whose spectra differ most from
those of the smooth channel, which are superimposed for comparison as solid lines.

Figure 8 shows the spectral density of v2 at y+ ≈ 5. As the riblet size increases
beyond the optimum spacing, energy accumulates in a spectral region near λ+

x ≈ 150
that extends over all the spanwise wavelengths longer than λ+

z ≈ 50, and which
therefore represents very wide structures. The same can be seen in the spectra of the
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Figure 9. From (a) to (d), premultiplied two-dimensional spectra of u2, w2, uv and p2, at
y+ ≈ 5, for case 17S. The corresponding v2 spectrum is plotted in figure 8. The contour
increments are, in wall units, 0.09, 0.026, 0.005 and 0.2 respectively. The superimposed solid
contour lines correspond to the smooth-wall case, with the dashed contour line corresponding
to uv = 0. The thick horizontal line to the left of the plots marks the riblet spacing.
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Figure 10. Premultiplied two-dimensional spectrum of v2 for case 17S. From (a) to (d), at
heights y+ ≈ 10, 15, 19 and 25. The same spectrum is plotted for y+ ≈ 5 in figure 8. The
superimposed solid contour lines correspond to the smooth-wall case. The contour increments
are 0.010, 0.015, 0.020 and 0.025 u2

τ for increasing y+. The thick horizontal line to the left of
the plots marks the riblet spacing.

other flow variables, which are given in figure 9 for case 17S. The new spectral region
exists only for heights below y+ ≈ 15–20, depending on the variable considered. The
widest vertical range corresponds to v2, whose spectrum for case 17S is portrayed at
different heights in figure 10.

We next focus our analysis on those new structures, which we will treat as being
approximately confined to a spectral window delimited by 65< λ+

x < 290 and λ+
z > 130.

That window is included in figure 8 for reference. Note that the relatively high lower
limit for λ+

z implies that we will essentially be studying the effect of riblets on the
spanwise-averaged flow, as opposed to the conventional approach used in § 5.1 and
elsewhere, which stresses streamwise averages.

Figure 11 portrays the streamwise one-dimensional cospectral density of the uv

stress, integrated for λ+
z > 130, and shows that the shear stress carried by the new

structures concentrates around λ+
x ≈ 150 and y+ ≈ 4, and that their contribution grows

with the riblet size. The Reynolds stress of the smooth channel is weak and positive
(counter-gradient) in that spectral region, but becomes negative and stronger for
riblets larger than the optimum.

Although not shown here, the spectra of the extra energy of the velocity components
for increasing ℓ+

g also scale much better in wall units than when normalized with the
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Figure 11. Premultiplied streamwise cospectra of the Reynolds stress, kxE
+
uv , from (a) to (d)

for cases 0S, 13S, 17S and 20S. The spectra have been integrated in z only for λ+
z � 130.

The solid isolines are spaced by 4 × 10−3, with the shaded area corresponding to positive
values. The dashed isolines correspond to 4 × [0.2(0.2)0.8] × 10−3. Notice that the stresses in
the region portrayed are counter-gradient for the smooth-wall case, as can be observed in the
uv spectrum in figure 9.

riblet size. The spanwise structures centre around λ+
x ≈ 150 and y+ ≈ 5 in most cases,

although the streamwise velocity is slightly longer, λ+
x ≈ 200, and v2 peaks around

y+ ≈ 10. Since all our simulations have approximately the same Reynolds number, it
is impossible to determine from them whether the spectra collapse in wall or in outer
units, although the former seems more plausible given the location of the structures
very near the wall, as well as the experimental scaling of the viscous breakdown
in wall units. Further support for the wall scaling will be provided in the following
section, where we propose a simplified linearized model for the structures.

The energy integrated over the spectral window defined above is given in figure 12
for the three velocity components and for the shear stress. For riblets smaller than
10S, which are not shown in the figure, the results are virtually indistinguishable from
the smooth case, but all the fluctuations become stronger beyond the optimum riblet
size and keep increasing thereafter.

The additional uv stresses can be directly related to the drag increase beyond the
breakdown. Using the subscript ‘S’ to refer to the reference smooth channel, the
momentum balances for the smooth and ribbed channel are, respectively,

τuvS + ν
∂US

∂y
= u2

τS

δ − y

δ
, (5.4)

τuv + ν
∂U

∂y
= u2

τ

δ − y

δ′ . (5.5)

If we define u∗ = uτ (δ/δ
′)1/2 and integrate these equations over y ∈ (0, δ), they can be

combined into
∫ δ

0

τ ∗
uv dy +

ν

u2
∗
(Uδ − U0) =

∫ δ

0

τ+
uvS dy +

ν

u2
τS

UδS, (5.6)

where τ ∗
uv = τuv/u∗2. Further manipulation results in

�cf

cf 0

≈ −�U+
δ

2

U+
δ

2
= T1 + T2 + T3, (5.7)
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where

T1 =

[
1 − δUδ

δ′UδS

] (
U+

δS

U+
δ

)2

, (5.8)

T2 = −U+
0

U+
δ

, (5.9)

T3 =
δδ+

δ′U+
δ

∫ 1

0

(
τ ∗
uv − τ+

uvS

)
d(y/δ). (5.10)

These three terms are shown in figure 13. The first one is a geometric factor that
accounts for the differences in the definition of the two channels, both in height and
in mass flux. It should remain small for the decomposition (5.7) to be useful, since
otherwise the influence of the Reynolds number mentioned in § 3 should be taken into
account. Figure 13 shows that T1 is always less than a few per cent in our simulations.

The term T2 represents the slip velocity at the riblet tips, which we have already
discussed in § 5.1. It is directly related to the drag-reduction mechanism of the
protrusion height and remains proportional to the riblet size over our simulation
range. It always reduces skin friction.

The term T3 represents the effect of the extra Reynolds stresses in the flow above the
riblet tips and, owing to the scaling with u∗, its integrand differs from zero only near
the wall. Figure 13 confirms that T3 is the term responsible for the drag degradation.
The figure also includes the part of the extra Reynolds stress that is contained in the
spectral region that we have associated with the new spanwise structures. It shows
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Figure 13. Contributions T1, T2 and T3 to the drag-reduction curve, as defined by (5.8)–(5.10).
–�–, T1; –�–, T2; –�–, T3 calculated from the full uv stress. –�–, T3 calculated considering uv
only within 65 � λ+
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Figure 14. (a) Instantaneous streamlines of the spanwise-averaged perturbation u–v flow, for
case 17D. The solid lines correspond to clockwise-rotating rollers. (b) For the same instant,
wall-normal velocity at y+ ≈ 3. The clear regions represent negative velocities, or flow towards
the wall, and the dark regions positive ones. The position of riblet tips and grooves is sketched
to the right of the figure.

that this region contains most of the extra stress, strongly suggesting that the new
structures are the root cause of the degradation of the drag.

Note that all those structures extend over several inter-riblet spacings. In fact,
because they are much wider than their streamwise wavelengths, they can be
characterized as spanwise rollers, which are shown in figure 14 for an instantaneous
realization of case 17D. Figure 14(a) portrays streamlines of the flow averaged over
the full span of the simulation box, which is in this case L+

z ≈ 850. The averaged rollers
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Figure 15. (a) to (d) Convection velocity U+
C of v-structures at y+ ≈ 5 for cases 0S, 13S, 15S

and 17S. Values are significant only within the shaded region and are portrayed elsewhere by
dashed contours. The encircling solid line represents the threshold kxkzEvv = 0.001 u2

τ . Outside
of it the v-structures carry very little energy, and the low values of v2 lead to large uncertainty
errors in the calculation of UC . The thick horizontal line to the left of the plots marks the
riblet spacing.

are centred at y+ ≈ 10–15, and extend to the wall, even penetrating the riblet grooves.
Their streamwise extent is about 50–70 wall units, and the separation between rollers
of the same sign is λ+

x ≈ 150, consistent with the spectral analysis. That implies aspect
ratios for the spanwise-averaged structures in figure 14(a) of the order of 10–20,
and characterizes them as quasi-two-dimensional in the x–y plane. The structures
themselves can be seen in the wall-parallel section in figure 14(b), which confirms
their spanwise coherence across several riblet grooves. That coherence manifests
itself in spite of the presence of the riblet blades, which disrupts the structures with
riblet-spacing periodicity. It must however be stressed that figure 14 is merely an
instantaneous realization of the flow, and is only included here to help the reader
visualize the roller structures. The evidence for those rollers is not this figure, but
the discussion on spectra at the beginning of this section, and the corresponding
figures 8–12.

To our knowledge, those structures had not been reported before over riblets, but
they can probably be found, in retrospect, in some of the visualizations published by
previous authors. See, for example, the visualization of v at y+ = 8 above the tips of
triangular riblets in figure 20(b) of Goldstein et al. (1995), or the spanwise lines of
velocity reversal within the grooves of similar riblets in figure 30 of Chu & Karniadakis
(1993). Even if their conditions are very different from ours, it is interesting that the
streamwise wavelengths of the observed structures are in both cases in the range
λ+

x = 100–200. It should be noted, however, that we do not observe flow reversal
within our grooves.

Although the formation of these structures, perpendicular rather than parallel to
the riblets, may seem surprising, it is not completely unexpected. Similar spanwise
rollers have been reported over vegetable canopies (Raupach, Finnigan & Brunet
1996; Finnigan 2000), and over permeable (Jiménez et al. 2001) and porous walls
(Breugem, Boersma & Uittenbogaard 2006). They are typically attributed to Kelvin–
Helmholtz-like instabilities due to the relaxation of the impermeability condition at
the wall, although quantitative analyses supporting that claim are scarce (Jiménez
et al. 2001; Py, de Langre & Moulia 2006).

The hypothesis of an instability is reinforced by the advection velocities in figure 15,
which were computed as functions of y and of the two wall-parallel wavelengths using

the scheme in del Álamo & Jiménez (2009). The advection velocities are noticeably
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lower for the spanwise structures than for the spectral region of the regular flow. Near
the wall, for y+ � 15, the latter are of order 10 uτ , while the former are 6–8 uτ . The
effect becomes more noticeable for the larger riblets and suggests that the structures
are not advected by the local flow but correspond to unstable eigenstructures with an
extended y-support. The linearized stability of this part of the flow is analysed in the
next section.

6. A linear stability model

In this section we propose a model for the aforementioned Kelvin–Helmholtz-like
instability, which captures the essential physics involved, including its relation with
the riblet geometry.

Since the spanwise rollers are quasi-two-dimensional in x–y, we restrict ourselves
to two-dimensional solutions of the linearized Navier–Stokes equations. Denoting by
prime superscripts the derivatives with respect to y of the base flow U , we have

∂u

∂t
+ U

∂u

∂x
+ v U ′ = −∂p

∂x
, (6.1)

∂v

∂t
+ U

∂v

∂x
= −∂p

∂y
, (6.2)

where the lowercase symbols are perturbations. The viscous terms are omitted
for simplicity, since we are looking for essentially inviscid Kelvin–Helmholtz-
like instabilities, on which viscosity would only have a damping effect. Imposing
incompressibility, the Rayleigh equation for v is

(
∂

∂t
+ U

∂

∂x

)
∇2v = U ′′ ∂v

∂x
, (6.3)

for which we seek solutions of the form v = v̂(y) exp[iα(x − ct)].
The problem is solved in a notional domain between the two planes at the riblet

tips, y ∈ (0, 2δ), and the two dimensionality is preserved by using z-independent
boundary conditions that account for the presence of riblets in a spanwise-averaged
sense.

Consider the lower wall. The first step is to describe the flow along the grooves,
where variables will be denoted by the subscript ‘g’. This part of the problem takes
place in the real groove geometry in y ∈ (−h, 0). Since we are interested in the
onset of the instability, we will assume that the effective Reynolds number is low
and that the longitudinal flow along the grooves satisfies approximately the viscous
Stokes equations. Note that this approximation is consistent with the behaviour of
the conditioned average streamwise velocity in the direct simulations. We also assume
that the longitudinal velocity gradients within the grooves are small with respect
to the transverse ones and that the dynamical effect of the transverse velocities
can be neglected. In particular, we neglect the variation across the groove of the
streamwise pressure gradient and the streamwise contributions of the viscous term.
The streamwise momentum equation within the groove is then

∂2ug

∂y2
+

∂2ug

∂z2
≡ ∇2

yzug =
1

ν

dpg

dx
. (6.4)

The velocity satisfies ug = 0 at the groove walls, and we will assume that ∂ug/∂y = 0
at the plane of the riblet tips. Note that the last boundary condition refers to the
perturbations and is not equivalent to assuming that the mean velocity gradient
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vanishes at y = 0. The assumption is that the streamwise pressure gradient is
predominantly balanced by the viscous stresses at the groove walls, rather than by
those at the interface with the outer flow. That assumption is especially adequate for
small riblets but has to be justified a posteriori. For example, consider the solutions
in figure 19, which are obtained by coupling the outer flow perturbations to grooves
with the no-slip condition at their top interface.The length scales of the perturbations
at y = 0 scale in wall units, essentially because the true outer boundary condition
for the flow within the grooves, ∂ug/∂y = 0, should have been applied at y → ∞
and involves the overlying velocity profile. In the particular case of the figure,
(∂u/∂y)+ ≈ 0.10u+|y=0. On the other hand, the gradients over the walls of the grooves,
not shown in the figure, are inversely proportional to the groove diameter. For a
typical groove, (∂ug/∂n)+ ≈ 4u+|y=0/ℓ

+
g . The assumption that the shear at the groove

top can be neglected with respect to that at the walls is valid as long as ℓ+
g ≪ 40,

which is enough to explore the onset of the instability. The same assumption also
allows us to use an inviscid approximation for the outside flow, even while using a
Stokes model for the flow in the groove.

The coupling of the grooves and the body of the channel is made by assuming
that the outside pressure drives the flow along the grooves and that the transpiration
velocity at y = 0 is due to the longitudinal variations of the volumetric flux of ug .

Since the right-hand side of (6.4) is only a function of x and t , we can write

ug = −
(

1

ν

dpg

dx

)
f (y, z), (6.5)

where f (y, z) verifies

∇2
yzf = −1, (6.6)

with boundary conditions identical to those for ug , so that f depends only on
the groove geometry. The streamwise variation of ug is related to the z-averaged
transpiration velocity v at y = 0 by integrating the continuity equation over the
groove cross-section:

∂

∂x

∫ ∫

Ag

ug dy dz +

∫

s

vg|y=0 dz = 0, (6.7)

v|y=0 = −s−1 ∂

∂x

∫ ∫

Ag

ug dy dz. (6.8)

Note that s in (6.8) is the distance between neighbouring riblets, not the width of
the groove, because v needs to be averaged over the whole y = 0 plane to be used
as a boundary condition for (6.3). Introducing (6.5) into (6.8), and assuming that
p|y=0 =pg , we obtain

∂2p

∂x2

∣∣∣∣
y=0

=
ν

L3
w

v|y=0 , (6.9)

where

L3
w = s−1

∫ ∫

Ag

f dy dz. (6.10)

Using (6.9) to eliminate the pressure from the longitudinal momentum equation (6.1)
yields the boundary condition

(
∂

∂t
+ U

∂

∂x

)
∂v

∂y
= U ′ ∂v

∂x
∓ ν

L3
w

v, (6.11)
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Figure 16. Value of the parameter Lw in (6.10), compared with ℓg , for: �, triangular; �,
scalloped; �, blade riblets. The solid lines connect riblets of the same type with equal tip width
and variable depth-to-width ratio, ranging from h/s = 0.2 to 1.0, while the arrow indicates
decreasing tip width, from t/s = 0.5 to 0.02.

where the two signs of the last term apply respectively to the upper and lower walls.
If we denote the values of the mean profile at y = 0 by U0 and U ′

0, (6.11) can be
rewritten as

(U0 − c)
∂v̂

∂y
=

(
U ′

0 ± i
ν

αL3
w

)
v̂, (6.12)

which shows that U0 changes only the real part of the advection velocity by a fixed
amount. From the point of view of the stability characteristics of the flow, it can be
assumed to be zero. The solutions of the system (6.3)–(6.12) depend only on the base
flow profile U (y) and on the characteristic penetration length Lw , which is linked to
the groove cross-section through the integral in (6.10). The viscosity can be eliminated
by expressing everything in wall units. It turns out that, for conventional geometries,
Lw is closely linked to our empirical parameter ℓg =

√
Ag . For example, figure 16

compiles values of Lw computed for triangular, rectangular and scalloped riblets, with
depth-to-width ratios between 0.2 and 1.0, and tip widths between 2 % and 50 % of
their spacing. It shows that, at least within that range of geometries, ℓg and Lw are
essentially proportional to each other. The approximation

ℓg ≈ 2.8 Lw (6.13)

has less than 10 % error for conventional sharp riblets with h/s � 0.4, providing
some theoretical justification for the empirical scaling of the breakdown size discussed
in § 3.

6.1. The piecewise-linear profile

Before turning our attention to the quantitative analysis of the instability induced by
the riblets on a turbulent velocity profile, it is useful to apply the previous formulation
to a piecewise-linear base flow

U (y) = U∞ y/H, y < H,

= U∞, y � H,

}
(6.14)

where the basic mechanisms are more easily understood. The solutions of (6.3) can
then be expressed as combinations of exponentials, exp(±αy), which are continuous
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Figure 17. (a) Growth rate σI = Im(σ ) of the unstable modes given by (6.15), as a function
of λx/H = 2π/α̃. (b) Corresponding phase velocities, cR/U∞ = Re(σ )/α̃. Curves are shown for
values of Λ = (L3

w/ν)(U∞α̃/H 2) = 10[−2(.2)3] and 106, with the arrows indicating increasing Λ.

everywhere, vanish at infinity and satisfy a jump condition for their derivatives at
the singularity of U ′′ at y = H . The wall boundary condition (6.11) becomes a
second-order equation for the temporal eigenvalue,

−2Λσ 2 +
[

− 2i + Λ(1 + 2α̃ − e−2α̃)
]
σ + (Λ − i)(1 − 2α̃ − e−2α̃) = 0, (6.15)

where α̃ = αH , σ = (c/U∞) α̃ and Λ = (Lw/H )3(U∞H/ν) α̃. Instability requires that
the imaginary part, σI , of the eigenvalue be positive.

The smooth wall is recovered for Λ = 0 and has no unstable modes. For 0 <Λ ≪ 1,
all the wavenumbers are weakly unstable, with a maximum growth rate, σI ≈ 0.081Λ,
at α̃ = 0.80. In the opposite limit, Λ ≫ 1, the eigenvalues become independent of Λ,
and the unstable modes are restricted to the band 0< α̃ � 1.83. The maximum growth
rate is σI ≈ 0.25 at α̃ ≈ 1.23. The growth rates and phase velocities of the unstable
modes for intermediate values of Λ are given in figure 17.

The limit Lw ≫ H provides a physical interpretation of the nature of the instability.
In this limit, which is essentially ν/L3

wα ≪ U ′
0, the boundary condition (6.9) loses

the term coming from the wall, and the mean velocity profile can be extended anti-
symmetrically to y < 0, to become a piecewise-linear free shear layer. The problem
then has symmetric and antisymmetric eigenfunctions with respect to y = 0, of which
the symmetric one, v̂ = cosh(αy), is the well-known unstable Kelvin–Helmholtz
sinuous deformation of the free shear layer (Drazin & Reid 1981). The intermediate
values of Lw connect these Kelvin–Helmholtz solutions with the stable ones of the
impermeable case.

6.2. The turbulent channel profile

Although the analysis of the piecewise-linear profile provides qualitative information
on the nature of the instability, quantitative comparison with the direct simulations
requires more realistic velocity profiles. Following Reynolds & Hussain (1972), we
have used Cess (1958) approximate profiles for turbulent channels at δ+ = 185, 550,
950 and 2000. The resulting growth rates and phase velocities are portrayed in figures
18(a) and 18(b) for different values of Lw . The results for the different Reynolds
numbers are virtually indistinguishable when expressed in wall units, except perhaps
for the δ+ = 185 case, for which the Cess approximation is less accurate. This is
consistent with the hypothesis in § 5.2 that the wavelength of the spanwise rollers
scales in wall units. Figure 18(c) shows a sharp transition in the flow stability for
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Figure 18. (a) Growth rate σ+
I = α+Im(c+) of the unstable modes of turbulent profiles with

the boundary condition of (6.11). (b) Corresponding phase velocity, Re(c+) = c+
R . �, δ+ = 185;

——, 550; �, 2000. Curves are shown for L+
w = 2(2)12, with arrows indicating increasing L+

w .
(c) Maximum growth rate as a function of L+

w: , δ+ = 185; ——, 550; �, 950; �, 2000.

L+
w ≈ 4, below which the eigenmodes are quasi-neutral, and above which the maximum

growth rate is nearly constant. Using the approximate relation (6.13), this transition
roughly corresponds to ℓ+

g ≈ 11, which is close to the limit found in § 3 for the
breakdown of the viscous regime in the riblet experiments. The empirical collapse
for ℓ+

g can thus be explained by the theoretical model for the instability, with the
breakdown actually corresponding to the onset of the instability at L+

w ≈ 4.
The growth rate and phase velocity curves of figure 18 are qualitatively similar to

those for the piecewise-linear profile in figure 17, except for the shortest streamwise
wavelengths at the largest L+

w , which are stable in the piecewise-linear case and weakly
unstable in the channels. The reason is probably that those wavelengths are too short
in the piecewise-linear case to interact with the singularity at y = H of the profile
of U ′′, which is the key energy-producing term in the Rayleigh equation (6.3). In the
turbulent channels, U ′′ is non-zero everywhere.

On the other hand, the similarity of the eigenvalues for longer wavelengths suggests
that the channels behave approximately as a piecewise-linear profile in which H+ ≈ 10.
That is interesting because it is slightly surprising that an instability derived from
the inviscid Rayleigh equation should scale in viscous wall units. In fact, wall units
are not only a measure of the Reynolds number of the perturbations, but they also
encode the shape of the mean profile. Specifically, the energy-producing term, U ′′, has
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Figure 19. (a) |û| and (b) |v̂| profiles of the most amplified modes for a turbulent channel
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a fairly sharp maximum between y+ = 5 and 20 in channels, peaking near y+ = 7,
which plays the same role as the singularity at y = H of the piecewise-linear profile.
That peak scales in wall units and, in all probability, is responsible for the wall scaling
of the observed instability.

The most amplified modes for L+
w in the range of the onset of strong instability

are portrayed in figure 19 for δ+ = 550 and are practically identical for the other
Reynolds numbers. The rollers have heights of y+ ≈ 15, which agree well with the
observations from our DNSs, and convection velocities Re(c+) ≈ 6, which are also
in reasonable agreement with the observed U+

C ≈ 6–8. Figure 19(c) shows how the
perturbations penetrate below y = 0, as some of the DNS rollers of figure 14 do.
On the other hand, the predicted streamwise wavelengths are twice shorter than the
observed λ+

x ≈ 150, probably because viscosity, which is absent in the model, damps
the shorter wavelengths in the channel, shifting the maximum amplification towards
longer waves.

7. Conclusions

We have reviewed the regimes for drag reduction in ribbed surfaces, centring on the
nature of the viscous breakdown in which the linear behaviour of the drag reduction
with the riblet size ceases to apply. This is the limit that determines the optimal
performance of a given riblet geometry. We have shown that the effect of the riblet
size is better characterized by the square root of the groove cross-section, ℓ+

g = (A+
g )1/2,

than by other geometric parameters. In the experiments reviewed, spanning the full
range of ‘classical’ riblets, the optimum is achieved for ℓ+

g ≈ 10.7 , with a scatter of
about 10 %. That value can be used to predict the maximum drag reduction as
DRmax ≈ 0.83 × 10.7 × mℓ with an error below 20 %, requiring only the value of the
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slope of the drag curve in the viscous regime, obtainable from two-dimensional Stokes
computations.

We have analysed the relationship between performance and riblet size from direct
numerical simulations spanning the whole range of riblet behaviours, from drag
reduction to drag increase. We have shown that the overlying quasi-streamwise
vortices of the turbulent buffer layer tend to get localized above the riblet grooves,
but that the vortices do not appear to lodge within the groove over the whole range of
our simulations. Contrary to some previous conjectures, this vortex localization does
not appear to be involved in the drag-reduction mechanism because it is relatively
weak for the riblets that reduce drag and only becomes strong beyond the viscous
breakdown. We have found that the breakdown coincides with the disappearance of
a transverse recirculating region in the riblet grooves, which weakens and becomes
increasingly asymmetric beyond the observed breakdown of the viscous regime. That
coincides with the increase of the Reynolds stresses measured at the plane of the
riblet tips, that eventually leads to the degradation of the drag.

On the other hand, the changes of the crossflow do not modify the streamwise flow
within the grooves substantially, and the slip velocity measured at the riblet tips follows
the prediction of the viscous Stokes regime for the whole range of our simulations.
The main change at the time of the breakdown is the appearance of essentially
two-dimensional spanwise rollers just above the wall, y+ � 20, with characteristic
streamwise wavelengths λ+

x ≈ 150. They are similar to those found over permeable
and porous surfaces and canopies, and can be traced to a Kelvin–Helmholtz-like
instability associated with the relaxation of the impermeability condition for the wall-
normal velocity. The extra Reynolds stresses associated with those rollers account for
most of the drag degradation observed past the breakdown of the viscous regime.

We have presented a simplified inviscid model for that instability which confirms
its Kelvin–Helmholtz nature, and which agrees reasonably well with the observed
wavelengths and shapes of the perturbation. The parameter that determines the onset
of the instability is a penetration length L+

w that, for conventional riblet geometries, is
essentially proportional to the empirical parameter ℓ+

g found above to characterize the
breakdown. The instability turns on for L+

w � 4, which corresponds to the empirical
viscous breakdown point ℓ+

g ≈ 11. Although it might be surprising that an inviscid
instability scales in viscous wall units, this is due to the scaling in wall units of the
mean velocity profile near the wall.
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