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Abstract. We study the onset of thermal instability with the heat flux prescribed
on the fluid boundaries. Assuming Boussinesq fluid, the Landau equation, which
describes the evolution of the amplitude of the convection cells, is derived using the
small amplitude expansion technique. For the case of a three-dimensional rectangular
box with aspect ratio (8,4, 1), the incipient convection cell is a two-dimensional one
at Pr = 0.72, which is confirmed by the numerical solution of the three-dimensional
Boussinesq equation with a Chebyshev-Fourier pseudospectral code. The secondary
bifurcation gives rise to an oscillatory two-dimensional roll for the same Prandtl
number at R = 2.0Rc and the motion becomes three dimensional at R = 2.8Rc.

I. Introduction. The convective instability of a layer of Boussinesq fluids heated
uniformly from below is one of the simplest examples of hydrodynamic instability.
This phenomenon, known as Rayleigh-Benard (R-B) convection, shows a clear transi-
tion from the uniform conduction solution, to a steady motion varying periodically in
space. It has been studied extensively due to its appearance in many fields of science
and engineering. A full account of the linearized theory is given in Chandrasekhar
[2] (see also Drazin and Reid [3]). Later, investigations consider nonlinear aspects of
the instability, especially as a route to understanding thermal chaos and turbulence.
The first work in this direction was done by Malkus and Veronis [7] and generalized
by Schliiter, Lortz, and Busse [10], and many others. These analytic works on nonlin-
ear effects were based on a perturbation expansion (basically the Poincare-Lindstedt
method) and therefore their validity is usually confined to a weak nonlinear (small
amplitude) range. For the analysis of higher Rayleigh number flow, the only feasi-
ble approach appears to be numerical methods (Sirovich, Tarman, and Maxey [11],
Sirovich and Park [12]).

Of prime importance in the analysis of Rayleigh-Benard convection are the bound-
ary conditions in the vertical direction. (Periodic boundary conditions in the hori-
zontal direction are often assumed in theoretical and computational considerations.)
The usual boundary conditions adopted are stress free momentum boundary condi-
tions (called free) or nonslip momentum boundary conditions (called rigid), and
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Dirichlet energy boundary conditions (conducting). The effects of different mo-
mentum boundary conditions have been studied rather extensively and it is gen-
erally known that differences in momentum boundary conditions do not yield drastic
changes in convection pattern, but mainly change the critical Rayleigh number. The
higher critical Rayleigh number for the case of rigid boundary conditions (Chan-
drasekhar [2]) can be understood from the fact that rigid boundary conditions are
more restrictive than free boundary conditions, i.e., a smaller class of motions can
be activated in the case of rigid boundary conditions under the same physical con-
ditions. Interesting differences, quantitative as well as qualitative, appear through
the change of thermal boundary conditions. The usual conducting thermal boundary
condition, where we impose zero fluctuating temperature at the bounding walls, is
a good approximation when the thermal conductivity of the container (kc) is far
larger then that of the fluid (kf). In the other limit, kf » kc, the appropriate
thermal boundary condition is the insulating condition; that is, the normal gradient
of fluctuating temperature at the boundaries is zero. This case has been considered
by Jakeman [4], Riahi and Busse [9], and Sparrow, Goldstein, and Jonsson [13] who
also consider more general cases. Based on experience with momentum boundary
conditions one expects that the critical Rayleigh number be lower for the case of in-
sulating thermal boundary conditions. The physical explanation is that in the case of
conducting boundary conditions, a fluctuation of temperature carried to the bound-
ary soon relaxes through the container wall, whereas at an insulating boundary it is
rejected back into the fluid, and a quiescent initial linear temperature profile is more
easily distorted (Normand et al., [8]). On the other hand, a lowering of the critical
gradient yields a smaller energy input to the fluid, and to accommodate this decrease
in energy input, the fluid develops convective cells of larger wavelength. In fact, Jef-
freys [5], and later Jakeman [4], confirmed that the critical wavelength of instability
becomes infinite for the insulating boundary condition.

In the present work, we reconsider the stability theory of the free-insulating bound-
ary condition following the method used in [2]. Then the Landau equation governing
the amplitude of the convection cell just above the critical Rayleigh number is derived
using the small amplitude expansion technique (Schliiter, Lortz, and Busse, [10]) to
determine the magnitude of the amplitude of the convection cell. Special consider-
ation is given to the case of large aspect ratio. These results are compared with the
numerical results obtained from the Chebyshev-Fourier pseudospectral method. With
the additional choice of free momentum boundary conditions we obtain chaotic fluid
flow at significantly lower Rayleigh numbers (therefore, requiring fewer grid points
in a numerical computation). The analysis of chaotic flow for this system will be
presented in a subsequent paper.

II. Stability analysis: linear theory. The system under consideration is the usual
Boussinesq fluid (Drazin and Reid [3]). If we consider perturbations from the basic
conduction solution, then these satisfy

V • u = 0, (2.1)

|y + u- Vu = -VP + RPrdk +Pr Au, (2.2)
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|^ + U- V6 = W+Ad, (2.3)
at

u = (u,v,w), (2.4)
with the following boundary conditions:

n 1 du dv 86z = 0, i; — = — =w = — = 0. (2.5
az az dz

Here we adopted the standard normalization
* * 2x = x /d, t = kt /d , u = du/k,

(2.6)
0 = 0 /pd, p = d~p Ip0k ,

where dimensional variables are denoted by an asterisk. We let fid = 60 - 0,
(temperature difference between two bounding walls), the Rayleigh number R =
gafid4/kv , and the Prandtl number Pr = v/k

Following [2], we assume

w = W(z)f(x,y)est, (2.7)

d = T(z)f(x,y)est, (2.8)
2 2where the planform function f{x,y) satisfies V±f=-a /, and neglecting nonlin-

ear terms we find
{D2 -a)(D2 -a -s/Pr)W = aRT, (2.9)

(D2 - a2 - s)T = -W. (2.10)
Since the exchange of stability is valid for R-B with symmetric boundary conditions
[2, 3], we may put s = 0 a priori and get a single equation for T,

{D2 -a2)3T = -a2RT, (2.11)

with boundary conditions

z = 0,1; DT =
A solution of (2.11) has the form

z = 0, 1; DT = 0, (D2 - a2)T = 0, D2(D2~a2)T = 0. (2.12)

T = eqz. (2.13)

The roots of Eq. (2.12) are found to be

q = ±iq0, ±{qx+iq2), ±{ql-iq2), (2.14)
where

q0 = a(T - 1)'/2,

2 = « (i\/T+7+T^+i(! ± It)} , (2.15)

t = (R/a4)'/3.
From symmetry of the problem the proper solution of Eq. (2.11) is either even or
odd in z . From general considerations, the lowest state will be even with no nodes
[2], Therefore we consider the even solution.

T{z) = AQcosqQz + ^cosh^z + A* cosh<?*z, (2.16)
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Fig. 2.1. Critical Rayleigh number Rc as a function of wave number
2 2squared a ;— exact result; - - - asymptotic result (a —» 0).

where q* = qx + iq2. After imposing boundary conditions we obtain the following
characteristic equations to determine the critical Rayleigh number:

q0 2q{ sinh qx - 2q2 sin q2
q0 tan  5 r—^   = 0. (2.17)
u 2 cosh qx + cos q2

The solution of this algebraic equation yields the minimum critical Rayleigh number
at a = 0 (cf. Fig. 2.1)

£.= 120. (2.18)

The low value of Rc and the vanishing value of ac are caused by the fact that
many modes can be activated with this least restrictive boundary condition and a
convective cell of large wavelength is developed to accommodate a smaller energy
input.

III. Nonlinear theory. Linear theory determines the critical Rayleigh number but
does not say anything about the magnitude of amplitude finally obtained. Generally,
it is known that the amplitude of the convection velocity increases, near the onset of
convection, according to the power law

(u,0) = 0(v^), (3.1)
where

e = (R-Rc)/Rc. (3.2)
This follows from the small amplitude perturbation technique (Malkus and Veronis
[7], Schluter, Lortz, and Busse [10]).

For the analysis of the weakly nonlinear problem, we expand in powers of e,
2 3u = eu, + e u2 + e u3 + ■ • • , (3.3)
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6 = £0j + £ d2 + £ $3 + • • • , (3.4)1 2 3

— Rq + £ "t" ' ' ' > (3-5)

and scale the time t as dt = e2dr. (The linear term in (3.5) vanishes by symme-
try.) After substituting these expansions into (2.2) and (2.3), we find the following
sequence of linear inhomogeneous equations (see [10]).

Order e :
(D2 - a2)2h - R g = 0, (3.6)

where

and

{D2 -a)g + ah = 0, (3.7)

u= ( -ezV2^J f(x,y)h(z), (3.8)

8 = f(x,y)g(z), (3.9)

V2f=-a2f. (3.10)
Rc is the critical Rayleigh number. This analysis of linear stability implies that we
consider the stability of the cos ax mode,

f - A cos ax. (3.11)

Since the critical wavenumber ac vanishes, in the numerical investigation that fol-
lows we consider a rectangular region and thus anticipate that the convection pattern
just above the critical Rayleigh number will be two-dimensional roll parallel to the
shorter horizontal direction. The numerical solution which is fully three dimensional
does confirm this.

The appropriate boundary conditions are

z = 0,1; h = D2h = Dg = 0. (3.12)

Order e2

V4 RcV2
1 V2

w2
6 2 j

- -p^2a4(cos 2ax){h'h" - hh'")
A2a2{hs +2hs ) + A2a2(coslax)(hs's)_ (3.13)

Here W2 is the z-component velocity of u,.
To solve (3.13) we write

2 - " 2

Equation (3.13) can then be rewritten as

D d2 = a

W2 = A2(cos2ax)W2"(z), (3.14)

d2 = A2d\{z) + A2 {cos 2 ax)0l}{z). (3.15)

h'g + hg
(3.16)
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[D1 - (2a)2] V" + Rc[-(2a)2]d" = j^a\hh'" - h'h"], (3.17)

[.D2 - (2a)2]6° + W-f = a2
/tg' £ (3.18)

The corresponding boundary conditions are

2 = 0,1; PF2n = D2w\l = = £>6»" = 0. (3.19)

An arbitrary constant arising from the solution of Eq. (3.16) due to the Neumann
boundary condition is fixed by the following normalization condition which is set up
for later convenience:

<0,02) = O. (3.20)

Here (•) means the volume average.
Order e3:

, „2 2,2^ n 2 1 8A 2 • ii 4,. 2 D ,(D - a ) 0>3 - Rca v>3 = h ~ a h) + a R2Ag

1 -L^3
2 Pr - ah\D2wll) + a2h'"Wj + 3a4/* V"

- ^-{Dwf)h" + \a h(DW2")

. 2 2, _ 3/1 /I(D -a )y/3 + 03 = — g + -
3 r ,

2,'^11 1 . 2, , 'ir,II2a h d2 + ^gDW2 + a hD02 + g fV2

(3.21)

(3.22)
+ A\2h(D8\),

where 03(z) and y/3(z) arise from

= 03 cos ax, (3.23)

6} = y/3 cos ax, (3.24)

and u3 = (u3 , v3, W3).
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If we apply solvability conditions to Eq. (2.35) and (2.36) we obtain the following
amplitude equation (the Landau equation):

dA
~dt J -j^{-a2h" + ah)ahdz + J (Rca2)g2 dz

[ (ag){ah)d
Jo

= r2a

+ A3 j0 (~5^) { -alh^D2W2) + a2h"'W2 +^h'Wl

- yh(D*W.f) + £-(jDW^h" + |ah(DW2 j (ah)

+ i(-Rca2) ̂ 2ah'0" + ^gDwf + ahDd" + g'n?J g

+ -Rca){ah(D6\)}gd (3.25)

Therefore the magnitude of the amplitude of the convection cell is given by

A2 = -R2o/y, (3.26)
where a is the coefficient of the linear term and y is the coefficient of the cubic
term of the Landau equation (3.25). To give the amplitude, A, physical meaning

we relate it to \J(62). The mean square fluctuating temperature, \J(62), can be
obtained in the following way. Since we defined

e = edl +E282 + ••• , (3.27)

R = R0 + e2R2 h , (3.28)
we have

<i92) = e2{d\) + e\dxe2) + 0(E.A), (3.29)
where

6x=Agcosax. (3.30)
But (dld2) is zero due to the normalization condition (3.20), which was introduced
to fix arbitrary constants in the eigenvalue problem. Substitution of (3.4) and (3.29)
into (3.28) yields the final expression

-l
(d2)=(-P-yR-Rc)l-J^ g2dz — cA2. (3.31)

In principle we can use the analytic solution for h(z) and g(z) obtained in Sec.
II (e.g., Eq. (2.16)) to get the numerical values of the coefficients a and y of
the Landau equation (3.25). But to avoid massive algebraic manipulation, we have
integrated all the above sets of linear equations numerically. In the case of small
a , the analytic integration can be done more easily and explicit forms for g and h
appear. (See below and the Appendix.)
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Asymptotic derivation of the Landau equation. The critical wavenumber a for a
finite box is given by

a = .2Tn (3.32)
max{Lx, Ly)

for the case of heat flux boundary conditions. For a shallow box, where the horizontal
length is far larger than the vertical length, a is a small value and we derive the
Landau equation relatively easily. The details of derivation are presented in the
Appendix. Here we show only the summary of the results.

Solving 0(e) equations (linear stability problem) by a regular perturbation meth-
od, using a as a small parameter, we get the critical Rayleigh number in terms of
a2

Rc = 120 + 23.6147a2. (3.33)
We plot Eq. (3.33) in comparison with the exact value of Rc in Fig. 2.1. After
solving 0(e2) and 0(e3) equations in a similar fashion, we find finally the Landau
equation and root mean square of the temperature fluctuation:

S<C^ = 2TT^5(C^-rT'9T^r2<CX <»4>
and

s/id2) = y^Ai?(0.0045161)/a2 , (3.35)
where we may take Cg — 1 without loss of generality and AR = R - Rc. The

expressions (3.34) and (3.35) are valid up to a2 and are expected to give accurate
results when a2 is small.

IV. Numerical solution of the Boussinesq equation. Next we numerically solve the
full three-dimensional Boussinesq equation with boundary condition (2.5) in order
to confirm the analytic results and to examine the transition from steady convection
to time dependent convection (oscillatory instability). For this purpose governing
equations are rewritten in rotational form,

V • u = 0, (4.1)

t~~u = -V f - + |u ■ u ) + u A (V A u) + PrV2u + RPrde„, (4.2)
at \p 2 /

^ = -V-(u0) + V2d + w, (4.3)
at

with the boundary conditions

, du dv 80
z = ± l; 7r = 7r = w = ir = 0- 4-4az oz az

Here we changed the domain from [0, 1] to [-1, 1] for convenience of numerical
solution.

These equations with the corresponding boundary conditions are solved by a pseu-
dospectral method with the influence matrix technique (Canuto, Hussaini, Quateroni,
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and Zang [1], Kleiser and Schumann [6]). The numerical method is based on Fourier
expansion in the horizontal directions,

»(*.<) = ££ u(^j, k2,x3, t)exp(iklxl)exp(ik2x2), (4.5)
k\ k2

(9(x, t) = EE 9(kl, k2, x3, t) exp(//c1^c:1) exp(ik2x2), (4.6)
k\

and Chebyshev expansion of the Fourier coefficients u and 0 for each value of kx
and k2 ,

*3

u(/C[, k2,x3, t) = ^u(fc1, k2,k3, t)Tk3{x3), (4.7)

9{kx, k2, x3, t) = d(kl, k2, k}, t)Tki(x3). (4.8)
^3=0

Because of our special boundary conditions (Eq. (2.5)), 0 and w (z-component
velocity) have different parities in the vertical direction and Fourier expansion cannot
be used without inducing the Gibbs phenomenon. Multiplications in the nonlinear
terms are performed in the physical space, while derivatives are computed in the
spectral space. Transformations between physical and spectral space are done using
fast Fourier transform algorithms. Time marching is carried out in the spectral space.
We use a second-order Adams-Bashforth scheme for nonlinear and source terms and
a Crank-Nicolson scheme for diffusion and pressure terms.

As an initial condition for the numerical integration, we impose a small random
perturbation on the temperature field, viz.

G(xi,yj,zk)= iO~5riijk, (4.9)

where the tjijk are random numbers in the interval [0, 1 ], and the residual net mo-
mentum in the horizontal direction was subtracted from the flow field after several
time steps. The resulting flow field was adopted as an initial condition for the subse-
quent numerical integration. One must be careful at this step to eliminate an artificial
translation of the convection cell since it is easily shown that the initial horizontal
momentum is an invariant of the system.

V. Results and discussions. Our aim in this study is to investigate the flow field
above the critical Rayleigh number for free-insulating boundary conditions. The
Prandtl number of the fluid is taken to be 0.72 . Figure 2.1 shows the critical Rayleigh
number as a function of the aspect ratio of the system (or, equivalently, wavenumber).
The critical Rayleigh number with this boundary condition is lower than those with
other boundary conditions because this boundary condition, free-insulating, is the
least restrictive in the sense that the most modes can be activated under the same
physical conditions. On the other hand, a lowering of critical gradient yields a smaller
energy input to the fluid, and to accommodate this decrease in energy input, the fluid
develops a convective cell of larger wavelength.
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Figures 5.1-5.4 show a summary of the numerical solution of a three-dimensional
Boussinesq equation at Pr = 0.72 for the box aspect ratio of (8,4,1) with the
pseudospectral code. In Fig. 5.1 the streamlines of the calculated flow field at the
Rayleigh number of 1.005i?c are plotted. The structure of the convection cell is
a pair of two-dimensional rolls parallel to the shorter horizontal direction. This is
consistent with the linear stability analysis, since linear theory (cf. Fig. 2.1) says that
the most dangerous mode is that with the minimum wavenumber when the boundary
condition is insulating. The convection cells exhibit slightly vertical asymmetry. This
is worth pointing out inasmuch as the cells are often drawn as vertically symmetric,
but, as the equations reveal, such a symmetry is incompatible with physics (symmetric
convection cells are correct only in linear theory). The profiles of the fluctuating
temperature 6 at various horizontal locations are displayed in Fig 5.2a. At a very
small value of the Rayleigh number (1.005i?c), the temperature profiles are almost
constants, which explains why we obtained the lowest order perturbation solution of
temperature g(0)(z) = Cg in the Appendix. The horizontal variation of 6(z) from
the numerical solution can be explained as the effect of the horizontal mode cos ax
in the analytic (perturbation) solution. As the Rayleigh number is increased to 2.0Rc
(Fig. 5.2b), the curvature of the d(z) profiles increases under the constraint of zero
normal flux at the walls.

Figure 5.3 reveals the time variation of (d2) and (w2) at 1.002i?c at a station-
ary state. The constant values of amplitude mean that the bifurcation from the
conduction solution is a supercritical one. The secondary bifurcation occurs near
2.0Rc, where the amplitude of a two-dimensional roll becomes oscillatory. Figure
5.4 presents the streamlines and temporal variation of amplitudes at 2.0Rc, which
shows a weak oscillation of a two-dimensional convection roll. The motion becomes
three dimensional at R = 2.8Rc.

Now we compare the magnitude of the steady convection cell from numerical
code with that from perturbation solutions. In Fig. 5.5 we plot the mean square

average of the fluctuating temperature field \f{62) from numerical results, from the
exact Landau equation (solid line, cf. Eq. (3.31)), and from the asymptotic Landau
equation (broken line, cf. Eq. (A.50)). For the range of R < 1.2Rc, values from
numerical results show a very good agreement with those of the exact and asymptotic
Landau equations. There is a small deviation between the exact Landau equation
and the asymptotic Landau equation because the critical Rayleigh numbers from
these two equations are slightly different.

When we rewrite the Landau equation as

a~~jj = gA — yA3, (5.1)

the exact solution can be obtained as

w!=4/ {^o+O-^oK2""*}. <")
where A0 is the initial value of A . Since a is proportional to AR (= R - Rc),
the growth (or the decay) rate of amplitude becomes very slow as AR becomes
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I

(b)

(c)

Fig. 5.1. Streamlines at R= 1.005/?f for (a) x — y cross section;
(b) x - z cross section; (c) y — z cross section. For convenience of
presentation, the scale of the x-direction is contracted to one half.

very small. Figure 5.6 shows the temporal variation of y (6 ) at R = 1.01i?c when

the initial value of \J(62) is 0.069 . The solid line is the numerical solution of the
Boussinesq equation and the dotted line is the result from the exact Landau equation.
Both lines approach their steady state values which reveal slight differences in each
other. The growth rates or time constants show negligible difference.
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Fig. 5.2. The profiles of the fluctuating temperature 9 at various
horizontal locations for (a) R = 1.0057? ; (b) R = 2.0R .
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(a) 0.05

(b)

<ez>
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TIME (SEC)

600 800 1000 1200
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Fig. 5.3. The time variation of (82) and <w2) at 1.002/?^ .
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17.932

•.077£*«B

400 600 800 1000 1200
TIME (SEC)

Fig. 5.4. The streamlines and the temporal variation of amplitudes
at R = 2.0Rc : (a) streamline at x - z cross section; (b) streamline

2at y — z cross section; (c) time senses of (9 ) .
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0.5

Fig. 5.5. The mean square average of the fluctuating temperature

field \/W)\ —exact Landau equation, (3.31); asymptotic Lan-
dau equation, (A.50); O'O' numerical solution of Boussinesq equa-
tion.

0.09 -

Ve^~0.08

0.07

0.06
0 100 200 300 400 500 600

TIME (SEC)

Fig. 5.6. The time dependence of \J(62) .

VI. Conclusion. We have derived the Landau equation from the Boussinesq equa-
tion using a small amplitude expansion technique for the case of free-insulating
boundary conditions. Exploiting the fact that the critical wavenumber a is a small
value, we have also derived an asymptotic Landau equation which is valid up to
0(a ). The results from these equations are compared with the results from the
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numerical solution of a three-dimensional Boussinesq equation using a Chebyshev-
Fourier pseudospectral method. Generally these results agree with each other very
well. Using the pseudospectral code, we have examined the transition from a sta-
tionary two-dimensional roll to an oscillatory two-dimensional roll (secondary bifur-
cation) and this phenomenon will be investigated further in a subsequent paper.

Appendix. In this appendix, we present a derivation of the Landau equation which
is valid for small values of the wave number a .

[0(e)]: The 0(e) equations were given as (3.6) and (3.7). Noting that a2 is a
small parameter, we assume

g = g0) + a g(X) + a g(2) + ■■■ , (A.l)

h = h{0) + a2hw + a4hw + - , (A.2)

Rc = R{°] + a2R{cl) + a R{2) + ■ ■ ■ . (A.3)

Equations (A.l), (A.2), and (A.3) are substitued into Eqs. (3.6) and (3.7) to yield
the following sequences of perturbation equations. In all subsequent equations, the
appropriate boundary conditions are:

z = 0, 1; W = D2W = D6 = 0.

(0(a°)}:

Then

<0(a2)):

D2gi0) = 0, (A.4)

D*hm = {A5)

g(0) _ ^ (constant) , (A.6)

n(0) f
hW^~^(z'-2z' + z). (A.7)

D2g(l) - g(0) + h{0) = 0, (A.8)

D4h(l) - 2D2h{0) - R(°]g{l) - R{cl)g{0) = 0. (A.9)

As before, we have to impose solvability conditions for the perturbation solution to
exist. Here the homogeneous equations are

D2g = 0, (A. 10)

D4h = 0. (A.l 1)

The homogeneous solutions are g = c (a constant) and h = 0. The structure of
perturbation equations in the subsequent analysis takes the form

D2gc — g,, (A. 12)

D4h' = hi, (A. 13)
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where the right-hand sides are known functions. Therefore the solvability condition
applied to Eq. (A. 12) yields

■ l
gjdz = 0 (A. 12a)fJo

and the solvability condition for Eq. (A. 13) is trivial. When we apply the solvability
condition to (A.8), we find

i?«0) = 5! = 120. (A. 14)
The solutions of (A.8) and (A.9) are given by:

hW = 2 C
d(0) d(0)
Kc -6 _ _z5

2-3-4-5-6 2•2•3•4•5'

+ Rc]Cg
6 10 9

Z Z Z
+2-3-4-5-6 6 • 7 - 8 - 9 - 10 2-6-7-8-9

7 4
Z Z

+ ^"C«2^4+C«

6-4-6-7 2•4■7■2•3•4

r(°) rW~\ -3
3~4 2~

(A. 15)

2-3

+ C„
R(i)

C

2-3-4 -0.0081184/? (0)
C z,

z6 Z5 5 3 Z2 1
"~7—h  7"Z + -r 6 2 6 2 2-4-7 (A. 16)

A constant of integration which appears in g(I) is fixed by using the normalization
condition f gW)g({) dz = 0, which follows from (3.20).

{0(a4)>:
D2g{2) = gw-hw.

The solvability condition gives

_(i) 6060 • 2 • 3 • 4 ■ 5 30-5 ...
c ~6-7-8-9-10-ll+ ~T~ ~ 23-6147" (A-17)

Thus the critical Rayleigh number Rc is determined up to 0(a2) in the following
form:

Rc = R{c0)+ a2R(ci] = 120 + 23.6147a2. (A.18)
[0(e2)]: The governing equations at 0(e2) are given by (3.16), (3.17), and (3.18).

As before, we expand variables in the power series of a .

*; = C+«2*r+«X2)+-". (a. 19)
e? = e™ + a2e?1) + a4d?2) + - . (A.20)

fr" = fr2O(0) + aV"(1) + aV"(2) + ■ • • . (A.21)
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('0(a°)>:
D2dl2{0) = 0, (A.22)

£>V2II(0) = 0, (A.23)

£>2tf"(0) + W*m = 0. (A.24)

The solutions are

<?J0) = C (constant), = 0, and 6"(0) = 0.
The constant of integration C is set to zero due to the normalization condition.

(0(a2)):
D2d2l) = {h'mg{0), (A.25)

£>V2II(1) = 0, (A.26)

D2dfX) + wlm = -\hm8{*\ (A.27)
and

W2(l) = 0, (A.28)

5 r2~ 2 g

gll(l) _ _5 2
12 - 2 S

5 4 2
Z Z Z

T ~ T + T
5 4 2

Z Z Z

T ~ T + T

+ Cj(l), (A.29)

+ Cj1(l). (A.30)

The constants of integration in Eqs. (A.29) and (A.30) are determined by the solv-
ability condition of the next order energy equation. The normalization condition
does not yield useful information in this case because we are considering different
modes from cos ax at this order.

(0(a4)>:
D26f] = U'(l)g(0) + U/(0)^(l) + W0)g'(1), (A.31)2 — 2" 5 t 5 r 2'

.4u/»(2) _ W) , _Lti,(0)i,"'(0) uWuWiD W2 = 4RC + ±-[hwh"m - hw'hw"], (A.32)

D2ef2) = 4^1(1) - <2) - l2hil)'g{0) - \h'{0)g{{) + I/*(0y(1). (A.33)
If we included the /?, term in the e expansion of (Eq. (3.5)), that term would
appear in the right-hand side of Eq. (A.31). But since

1 i//(1V0) + {h0)'gW + ±/!(V(1) dz = 0, (A.34)
/./0

i?! would be set to zero after applying the solvability condition. The solvability
condition for Eq. (A.33) determines the value of C'I(I). We omit the detailed

'2)
, .r,,,,, .. 1 npr^Qilor
2 ' 2 ' 2expressions of $'<2), W7,1"2', and d\l<2) because they are not needed in the derivation

2of the Landau equation that is valid up to 0(a ).
3 3[0(e )]: The governing equations at 0(e ) are Eqs. (3.21) and (3.22). We assume

the following series expansions in a :

<D3 = O(30) + a2cD(3" + a%(2) + ■■■ , (A.35)
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V3 = ^3°' + + a + • • • , (A.36)

(dA/dx) - aA (dA/dx)1"2"1 -f , (A.37)

R2 = a2R(2l) + aRf + • • • . (A.38)

The flow variables (u, 6) become those of linear equations as a approaches zero
(u —> £M|0), 9 -+ £#[0) as a2 -* 0). Therefore, in the expansion of R2 (Eq. (A.38)),
we have to take R[0) to be zero.

(0(a°)):

and

(0(a2)):

and

(0(a4)):

Z)V(0) + ̂  = 0, (A.39)

£>40><0) = 0, (A.40)

Of = ^0) = 0. (A.41)

Z)2^1) + 0^1) = 0, (A.42)

D%[1) = 0, (A.43)

<D^" = y™ = 0. (A.44)

D%f =AR[2l)g{0), (A.45)

D2¥? + 0<2) = g{0) (dA/dx) + Ah'{0)dfl) + IZ)<(2)g(0)
+ hmD8™ + lhmDd*1)]

Solving (A.45) with the boundary conditions, we find

(A.46)

(t>f=ARfCg\
4 3

Z Z

3-4 3-2 + AR2,Ct4^22- <A'47>

The solvability condition for (A.46) gives the following Landau equation governing
the evolution of amplitude of the convection cell just above the critical Rayleigh
number:

dA *<" 3 25 31 33
* dx 2-3-4-5 * 2 2 9-7-5-2 ( }

The amplitude of the steady two-dimensional convection roll is given by

.2 D(.) 2-4-5-7-9
2 • 3 • 4 • 5 • 3 • 25 • 31(AC/ = R[\ , , c ^ (A.49)

and  
?2) = >/A/?(0.0045161)/a2, (A.50)

where AR = R - R. and a = n/4 .
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