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Abstract

A quantum hydrodynamic (QHD) theory for high-frequency electron-hole Langmuir and

acoustic-like oscillations as well as static charge shielding effects in arbitrarily doped semicon-

ductors is presented. The model includes kinetic corrections to the quantum statistical pressure

and to the quantum Bohm potential for partially degenerate electrons and holes at finite tempera-

tures. The holes contribute to the oscillations and screening effects in semiconductors in a similar

manner as real particles. The dielectric functions are derived in the high-frequency limit for wave

excitations and in the low-frequency limit for the study of static screening. The dispersion relation

for the Langmuir and acoustic-like oscillations is examined for different parameters of doped silicon

(Si). Some interesting properties and differences of electron hole dynamical behavior in N- and

P-type Si are pointed out. Holes are also observed to enhance an attractive charge shielding effect

when the semiconductor is highly acceptor-doped.

PACS numbers: 52.30.-q,71.10.Ca, 05.30.-d
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I. INTRODUCTION

The electron-hole dynamics governs the essential features of modern semiconductor de-

vices and integrated circuits [1, 2]. Electron-hole plasmas play a fundamental role in the oper-

ation of high-speed and high-power semiconductor switches and oscillators such as high-gain

resonant tunneling diodes (RTD), photoconductive semiconductor switches (PCSS), Read

diodes, impact ionization avalanche transit time devices, Gunn oscillators and radiation de-

tectors (RD) [4]. Modern technologies such as optoelectronics, spintronics, nanoelectronics,

plasmonics, etc. [5, 6] can be modeled by hydrodynamic equations for charged carriers to

study collective quantum transport phenomena in miniaturized devices. While the free elec-

tron and nearly free electron theories [7, 8] may be useful in describing physical properties

of degenerate electron fluids in metals and semiconductors, the kinetic and hydrodynamic

models are more appropriate for investigations of the collective dynamics including the elec-

trostatic and electromagnetic interactions in quantum plasmas. Electronic polarizability,

transport, transit time effects and resonances are collective phenomena that require frame-

works beyond the single particle picture. Bohm, Pines and Levine [11–14] and Klimontovich

and Silin [18] pioneered the theory of electron oscillations for degenerate electron systems.

On the other hand, because of less complexity compared to density matrix, Wigner function,

and density functional theories [15–17], quantum hydrodynamic models [9, 10] have been

shown to be useful in describing the most essential quantum features of the system at the

lowest complexity. Quantum hydrodynamic models derived from the Wigner-Poisson kinetic

formulation and the Madelung quantum many-body representation [19, 20] have been ex-

tensively used to investigate the linear and nonlinear features of quantum plasmas [21, 22].

One of the interesting findings of the quantum hydrodynamic theory was the prediction of

attractive forces between similar charges by degenerate electrons in quantum plasmas [23].

However, this feature of quantum plasmas has been the subject of an intense recent de-

bate [24–31]. The study of quantum plasmas using the hydrodynamic model [32] is relevant

to the partially or completely degenerate electron fluids in which the electron de Broglie

thermal wavelength is of the same order or larger than the mean inter-electron distance

leading to a Fermi-Dirac instead of a Maxwell-Boltzmann distribution of electrons, or when

the size of the system under study (e.g. the wavelength of a wave) is comparable with the

de Broglie wavelength. The zero-temperature limit used in earlier quantum hydrodynamic

2



theory has been extended to include finite temperatures in the recent kinetically modified

quantum hydrodynamic theory for arbitrary electron degeneracy [33–35]. The application

of the generalized model for static charge screening has been shown to be consistent with

the gradient-corrected Thomas-Fermi model [36, 39].

The aim of this paper is to use a finite temperature quantum fluid model to study

electrostatic waves and static screening in semiconductor electron-hole plasmas. The paper

is organized in the following fashion. In Sec. II, we develop the hydrodynamic model of an

arbitrarily degenerate electron-hole quantum plasma including the most important kinetic

corrections. The linearized dielectric function for waves in a finite temperature plasmas is

obtained in Sec III by including the kinetic correction prefactor of the quantum statistical

pressure, and the high-frequency Langmuir excitations and acoustic-like waves in an electron-

hole fluid in semiconductors are studied. The static charge shielding is investigated in Sec.

IV. Finally, a summary is presented in Sec. V.

II. GENERALIZED QUANTUM HYDRODYNAMICS MODEL

Let us consider an electron fluid in a collisionless neutralizing background of doped semi-

conducting ions. At equilibrium, the electrons and hole densities are in balance between

generation rate νg and recombination rate νr. These rates will be neglected in the dy-

namical model below with the assumptions that the recombination/generation frequencies

(typically 106s−1 for silicon at room temperature) are much smaller than the typical oscil-

lation frequency (cf. Sect. III) and that the mean free path (typically 22nm for silicon at

room temperature) is much longer than typical shielding lengths (cf. Sect. IV). The dy-

namics of the electron-hole fluid perturbations can then be modeled through the quantum

hydrodynamic model incorporating the continuity and the generalized momentum equations

for particle species s with s = e for electrons and s = h for holes, coupled with Poisson’s

equation for the potential, as

∂ns

∂t
+∇ · (nsus) = 0, (1a)

∂us

∂t
+ (us · ∇)us + νisus =

qs
m∗

s

∇ϕ− ∇Ps

nsm∗
s

+
ξsh̄

2

6m∗
s
2∇

(
∆
√
ns√
ns

)
, (1b)

∆ϕ = 4πe (ne − nh +N) , (1c)
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where qs is the magnitude of the charge with qe = −e and qh = +e and e being the

magnitude of the electron charge, m∗
s is the effective particle mass, h̄ is Planck’s constant

divided by 2π, ns is the number density of each species, Ps is the statistical pressure, and

N = Na − Nd with Na and Nd being the number densities of the acceptor and donor ions,

respectively. The last term in the left-hand side of the carrier momentum balance equation

accounts for the carrier-phonon collision phenomenon (νis being the carrier-phonon collision

frequency) which will be ignored in this analysis for simplicity. However, the generalized

hydrodynamic model including the carrier-phonon collisions can be easily treated in the

presence of a detailed knowledge on the temperature and doping concentration dependence

of carrier mobilities [1]. It is also realistic to consider the ballistic transport in recent devices

with sizes less than carrier mean-free paths. Other derivation of the quantum hydrodynamics

model of semiconductors accounting for the carrier-phonon collisions can be found in Ref.

[37]. Also a generalized hydrodynamics model for semiconductors based on the maximum

entropy principle which includes the quantum corrections appears in [38]. Also, the last

term on the right-hand side of Eq. (1b) is due to quantum tunneling of the electrons and

holes (sometimes called the Bohm potential), where ξs is a kinetic correction [33]. The

equation of state (EoS) of the electrons and holes to be used in the hydrodynamic model

needs particular attention due to the fact that the compression of the quantum gas can

either be low or high frequency, and we will denote the pressure Ps = P
(is)
s and Ps = P

(ad)
s

for isothermal and adiabatic fluid compression, respectively.

Figure 1 shows the energy band diagram for a typical semiconductor, where EF is the

equilibrium Fermi energy of the system and Ec and Ev are respectively the conduction

and valence energies of the semiconductor, µe and µh are the electron and hole chemical

potentials, and Eg is the gap energy. The Fermi energy indicates the energy required to

add an electron (µe = EF − Ec < 0) or hole (µh = EF − Ev > 0) to the system, where

µh0 − µe0 = Ec − Ev = Eg > 0 with µh0 and µe0 being the equilibrium values of hole and

electron chemical potentials. The number density of species s is obtained by integrating the

product of the density of states (DoS) and the Fermi-Dirac probability function over energy
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FIG. 1: The energy-band diagram of a semiconductor showing the valence and conduction bands

Ev and Ec, the Fermi energy EF , the chemical potentials µe and µh of the electrons and holes,

respectively, and the gap-energy Eg of the semiconductor.

as [1–3]

ne =
21/2m∗

e
3/2

π2h̄3

∫ +∞

Ec

√
E − EcdE

eβ(E−EF ) + 1
=

21/2m∗
e
3/2

π2h̄3

∫ +∞

0

√
EdE

eβ(E+Ec−EF ) + 1
, (2a)

nh =
21/2m∗

h
3/2

π2h̄3

∫ Ev

−∞

√
Ev − EdE

eβ(EF−E) + 1
=

21/2m∗
h
3/2

π2h̄3

∫ 0

−∞

√
−EdE

eβ(EF−Ev−E) + 1
, (2b)

where β = 1/(kBT ), and we used a change of integration variable E − Ec = E in Eq. (2a)

and E −Ev = E in Eq. (2b). Using the definitions of the chemical potentials µe = EF −Ec

and µh = EF − Ev gives

ne =
21/2m∗

e
3/2

π2h̄3

∫ +∞

0

√
EedEe

eβ(Ee−µe) + 1
, (3a)

nh =
21/2m∗

h
3/2

π2h̄3

∫ +∞

0

√
EhdEh

eβ(Eh+µh) + 1
, (3b)

where we also made a change of sign of the integration variable, E = −Eh, in Eq. (3b).

For waves with very low phase speeds compared to the mean particle speed, or for static

screening of a test charge, the electrons and holes have the time to stream and reach equi-

librium to screen the perturbations. In this case, the compression can be considered to be

isothermal (β =constant), and the equation of state (EoS) reads (e.g. [33])

P (is)
s =

23/2m∗
e
3/2

3π2h̄3

∫ +∞

0

E3/2
e dEe

eβ(Ee−µe) + 1
, (4a)

P (is)
s =

23/2m∗
h
3/2

3π2h̄3

∫ +∞

0

E3/2
h dEh

eβ(Eh+µh) + 1
. (4b)
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Carrying out the integrals, Eqs. (3a,b) and (4a,b) can be expressed as

ns = −NsLi3/2 [−exp (±βµs)] , P (is)
s = −Ns

β
Li5/2 [−exp (±βµs)] , (5)

where Liν(z) is the polylogarithm function of the order ν and the argument z, and where

the upper/lower sign is for the electrons/holes. Here, the effective densities of states for the

electrons and holes are given by [1]

Ne =
2

Λ3
e

= 2

(
m∗

e

2πβh̄2

)3/2

, Nh =
2

Λ3
h

= 2

(
m∗

h

2πβh̄2

)3/2

, (6)

where Λs is the electron(hole) de Broglie thermal wavelength. The EoS (5) can then be

written

P (is)
s =

ns

β

Li5/2[− exp(±βµs)]

Li3/2[− exp(±βµs)]
(7)

A similar EoS as Eq. (7) has been used for the electrons to study low-frequency ion-acoustic

waves in an electron-ion quantum plasma [33].

In the opposite limit, for electrostatic waves with wave speeds much higher than the

average particle speed, the electrons and holes do not have the time to stream and reach an

equilibrium. The distribution in phase space (velocity, space) then behaves to first order as

an incompressible phase-fluid [35] governed by a collisionless Boltzmann (Vlasov) equation,

and where the chemical potential must be constant for one-dimensional compression. This

leads to the adiabatic EoS

P (ad)
s =

ns0Gs

β

(
ns

ns0

)3

, (8)

with the equilibrium number density, temperature and chemical potential related through

ns0 = −NsLi3/2 [−exp (±βµs0)] , (9)

and we denoted

Gs =
Li5/2[− exp(±βµs0)]

Li3/2[− exp(±βµs0)]
. (10)

In the language of thermodynamics, the exponent 3 in Eq. (8) may be interpreted as the

adiabatic index γ = (D + 2)/D with the number of degrees of freedom D = 1 for one-

dimensional adiabatic compression [19, 35]. For this case, we also have ξs = 3.

At equilibrium, the number densities of the electrons and holes are related to the intrin-

sic number density ni via the mass-action law ne0nh0 = n2
i . In the presence of arbitrary
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doping the equilibrium values of the number densities are given through the generalized

semiconductor theory [1] as

ne0 = −N

2
+

(
N2

4
+ n2

i

)1/2

, nh0 =
N

2
+

(
N2

4
+ n2

i

)1/2

. (11)

The mass-action law then reads

FIG. 2: (a) The electron (solid) and hole (dashed) equilibrium number densities as functions of the

equilibrium electron chemical potential µe0 for different temperatures T . (b) Dependence of the

intrinsic number density ni with T . Thicker curves indicate higher values of T listed above each

panel.

ni =
√
NeNhLi3/2 [−exp (βµe)] Li3/2 [−exp (−βµh)], (12)

where in the classical limit βµe ≪ −1 and βµh ≫ +1, we have Li3/2[− exp(βµe)] ≈

− exp(βµe) and Li3/2[− exp(−βµh)] ≈ − exp(−βµh), and Eq. (12) reduces to ni =
√
NeNh exp[β(µe − µh)/2] =

√
NeNh exp(−βEg/2) [1]. Note that µe0 < 0 and µh0 > 0

for nondegenerate semiconductors. For the case of an N-type (Nd − Na ≫ ni) semicon-

ductor such as Arsenic-Boron doped silicon (Si) with NA > NB, we have ne0 ≃ Nd − Na

and nh0 = n2
i /ne0, and for P-type (Na − Nd ≫ ni) semiconductor with NB > NA, we have

nh0 ≃ Na − Nd and ne0 = n2
i /nh0. We note that for a nondegenerate intrinsic (N = 0)

semiconductors, the equilibrium chemical potential relation µe0 = −µh0 = −Eg/2 (with
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ne0 = nh0 = ni) holds for the electron-hole fluid, due to balance between electron-hole gen-

eration and recombination. Also, for a given temperature but varying doping concentration,

the relation µh0 − µe0 = Eg is satisfied in general for extrinsic (N ̸= 0) semiconductors.

Figure 2(a) shows the variation of the equilibrium electron and hole number densities ne0

and nh0 as functions of the electron chemical potential µe0 for different temperatures T in

an undoped Si semiconductor with m∗
e = 0.26m0, m

∗
h = 0.36m0 and Eg = 1.12eV (There

are two different definitions for carrier effective mass [43], namely, effective mass for DoS

calculations and that for conductivity calculations. The longitudinal and transverse electron

effective masses of electrons in silicon are respectively m∗
el = 0.89m0 and m∗

et = 0.19m0

which lead to the conductivity effective mass of m∗
ec = 3/(1/m∗

el + 2/m∗
et) = 0.26m0). The

equilibrium electron chemical potential is negative for low number densities (ne0 < 1020cm−3)

corresponding to non-degenerate electrons. An increase of the temperature leads to an

increase of both ne0 and nh0. However, the mass-action law dictates that ne0 is low when

nh0 is high, and vice versa. Figure 2(b) shows the intrinsic number density ni of Si as a

function of µe0 for different temperatures. It is seen that except for µe0 very close zero or to

the gap-energy, the value of ni is nearly independent of µe0, while it increases significantly

with increasing temperature.

III. ELECTRON-HOLE LANGMUIR AND ACOUSTIC-LIKE OSCILLATIONS

In order to study high frequency electron-hole excitations in semiconductors one may

use the model (1) with ξs = 3, together with the EoS (8) for adiabatic compression of the

electron-hole fluid as

∂ns

∂t
+∇ · (nsus) = 0, (13a)

∂us

∂t
+ (us · ∇)us =

qs
m∗

s

∇ϕ− ns0V
2
TsGs

ns

∇
(

ns

ns0

)3

+
h̄2

2m∗
s
2
∇

(
∆
√
ns√
ns

)
, (13b)

∆ϕ = 4πe (ne − nh +N) , (13c)

where VTs =
√
kBT/m∗

s is the thermal speed. Next, we linearize the system by using

ns = ns0+ns1, u = u1 and ϕ = ϕ1 and Fourier analyze the system by assuming a plane-wave

perturbation for the first order linear quantities, so that ns1, us1, and ϕ1 are proportional

to exp(ik · r − iωt). The dielectric function of the electron-hole system is of the form
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D(k, ω) = 1 + χe + χh with the electron and hole susceptibilities χs given by

χs =
ω2
ps

h̄2k4/ (4m∗
s
2) + 3V 2

TsGsk2 − ω2
. (14)

For a pure electron gas without holes (ωph = 0), the dispersion relation 1 + χe = 0 recovers

wave frequencies of the Langmuir oscillations in the non-degenerate classical (βµe0 ≪ −1)

and fully degenerate quantum (βµe0 ≫ 1) limits [35] as

ωc =

(
ω2
pe + 3V 2

Tek
2 +

h̄2k4

4m∗
e
2

)1/2

, ωq =

(
ω2
pe +

3

5
V 2
Fek

2 +
h̄2k4

4m∗
e
2

)1/2

, (15)

where VFe =
√
2EFe/m∗

e is the Fermi speed and EFe = (h̄2/2m∗
e)(3π

2ne0)
2/3 is the electron

Fermi energy. In the high-temperature classical limit, the quantum term h̄2k4/4m2
e can

usually be neglected, and the classical Bohm-Gross dispersion relation of the Langmuir

excitations is retained.

It is observed that the high frequency dielectric function of semiconductors is calculated

using Eq. (14) in terms of electron and hole equilibrium chemical potentials, µe0(N,Eg, T )

and µh0(N,Eg, T ) for a given doping scheme, gap-energy and temperature. The generalized

mass-action law, using Eqs. (5), (11) and (12), can be written

NeLi3/2 [− exp (βµe0)]−NhLi3/2 {− exp [−β (Eg + µe0)]} = N. (16)

Moreover, writing the dielectric function as

D(k, ω) = 1 +
1

Ce −Deω2
+

1

Ch −Dhω2
, (17)

where Cs = Ask
4 + Bsk

2, As = h̄2/(4m∗
s
2ω2

ps), Bs = 3GsV
2
Ts/ω

2
ps, and Ds = 1/ω2

ps, the

solutions of the dispersion relation D(k, ω) = 0 are given by

ω =
1√
2

√√√√(
Ce + 1

De

+
Ch + 1

Dh

)
±

√(
Ce + 1

De

− Ch + 1

Dh

)2

+
4

DeDh

, (18)

where the positive and negative signs under the square root are associated with a Langmuir-

and acoustic-like branch, respectively. The occurrence of such branches is a well-known

characteristics of pair plasmas [40, 41] such as electron-ion, electron-positron and pair-ion

plasmas. The Langmuir and acoustic branches have been discussed in the past for classical

equal-mass plasmas [42], electron-positron plasmas [44], and for semiconductor electron-hole
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FIG. 3: Dispersion curves for electron-hole oscillations in doped Si (Eg = 1.12eV, me = 0.26m0

and mh = 0.36m0 with m0 being the free electron mass). Panels show the dispersion curve for

various values of electron chemical potential. The normalization factors are r1 = 10−4cm and

ω1 =
√

4πe2n0/m0 with n0 = 1012cm−3. The solid and dashed profiles correspond to Langmuir

and acoustic-like mode, respectively.

plasmas using a collective Schrödinger model [45]. In classical pair plasmas, however, the

acoustic branch is heavily damped [44] due to phase-mixing of particles.

Figure 3 shows dispersion curves for a silicon electron-hole fluid for different values of µe0

at T = 300K. The existence of two branches is apparent of which one is acoustic-like (shown

as dashed) and the other Langmuir-like (shown as solid). Figure 5(a) shows the dispersion
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in P-type Si with µe0 = −0.6eV. As the electron chemical potential value is increased (the

sample becomes N-type by introducing donor atoms like As) by going from plot (a) via (b)

to (d) with µe0 = −0.5eV, it is seen that the two branches have almost equal frequencies at

k ≈ 0.12r−1
1 . This proximity of the modes can become even more pronounced as the Fermi

level approaches the valence band. Similar effects have been reported in other studies on

pair-charged plasmas [40, 42].

Figure 4(a) shows the cutoff frequency at k = 0 for the electron-hole Langmuir branch in

Si with respect to µe0 for different values of T . The frequency has a minimum at the mid-gap

for all temperatures. It is also observed that in both N-type (µe0 > −0.56eV) and P-type

(µe0 < −0.56eV) Si the frequency increases exponentially with |µe0 + 0.56eV|. Figure 4(b)

shows the plateau-like variation of the group speed (with respect to the electron equilibrium

chemical potential) for the acoustic-like branch for k = 0.1r−1
1 at different values of T . Here,

the group speed increases for all values of µe0 (equivalently the doping concentration) with

increasing temperature. It is also seen that the group speeds of the acoustic-like oscillations

are higher in the P-type region compared to the N-type region (This feature is directly

related to the effective masses of electrons and holes, where, for higher electron effective mass

semiconductors the group speeds of the acoustic-like oscillations are higher in the N-type

region compared to the P-type region). This shows the asymmetrical behavior of electron-

hole oscillations in regions with different doping types. It is further observed that the group

speed of the acoustic-like branch is nearly independent of µe0 at each semiconductor doping

region. In Fig. 4(c), we show the group speed of the Langmuir branch versus µe0 for

k = 0.1r−1
1 and different values of T . The group speed has a maximum at approximately

the mid-gap point of the semiconductor. However, contrary to that of the acoustic like

branch, the amplitude/width of the maximum decreases/increases sharply with increasing

temperature. The asymmetry between the N- and P-type regions are also apparent in Fig.

4(c), and this asymmetry is even more pronounced for higher values of the wavenumber as

seen in Fig. 4(d). Hence, Figs. 4(b)-(c) clearly illustrate the differences in the dynamics of

electron-hole oscillations in N- and P-type semiconductors.
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IV. THE STATIC CHARGE SHIELDING BY ELECTRONS AND HOLES

Let us now study the static limit of the dielectric function of an electron-hole liquid

for arbitrary doping and finite temperature. In doing so, we use the low-frequency kinetic

corrected quantum hydrodynamic model as given in Ref. [33] and the isothermal EoS (7).

Using the identity ∇P
(is)
s = ±ns∇µs, the set of closed hydrodynamic equations for electron

and hole species read

0 = ±e∇ϕ∓∇µs +
ξsh̄

2

6m∗
s

∇
(
∇2√ns√

ns

)
, (19a)

∇2ϕ = 4πe [ne − nh +N − Zδ(r)] , (19b)

where Z is the charge state of the test charge, δ(r) is Dirac’s delta-function and the zeroth

order low-frequency correction factor to the Bohm diffraction term is given by

ξs0 =
Li3/2 [− exp (±βµs0)] Li−1/2 [− exp (±βµs0)]

Li1/2[− exp (±βµs0)]
2 . (20)

Figure 5(a) shows the variation of ξe0 versus µe0 for different values of T . For a given value of

T , the value of ξe0 decreases from the limiting classical value of ξs0 = 1 for βµe0 ≪ −1 to the

limiting fully degenerate value ξs0 = 1/3 for βµe0 ≫ 1. However, for −Eg ≤ µs0 ≤ 0 we have

0.795 ≤ ξe0 ≤ 1 for all temperatures and semiconductor gap-energies. The step-like vertical

profile in Fig. 5(a) indicates the value of ξe0 as a function of µe0 at T = 0. Figure 5(b)

shows the ξe0 (solid curve) and ξh0 (dashed curve) at T = 300K. Linearizing and Fourier

analyzing the system of Eqs. (19), we arrive at the static dielectric function

Dξ(k, 0) = 1 + χe + χh, (21)

where the electron and hole susceptibilities are given by

χs =
ω2
ps

ξs0h̄
2k4/(12m∗

s
2) + v2Tsk

2
, (22)

and we introduced the generalized thermal speed

vTs = VTs

√
Li3/2 [− exp(±βµs0)]

Li1/2 [− exp(±βµs0)]
, VTs =

√
kBT

m∗
s

(23)

For the case of highly doped N-type (Nd ≫ Na) and P-type (Na ≫ Nd) semiconductors, it

is observed that χe ≫ χh and χh ≫ χe, respectively. Hence, the static dielectric function
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simplifies significantly in these limiting cases, and we obtain, respectively,

DNhd(k, 0) ≃ 1 +
ω2
pe

ξe0h̄
2k4/(12m∗

e
2) + v2Tek

2
, (24a)

DPhd(k, 0) ≃ 1 +
ω2
ph

ξh0h̄
2k4/(12m∗

h
2) + v2Thk

2
. (24b)

The corresponding screening potential is of the general form [23]

ϕ(r) =
Ze

2π2

∫
exp(ikr)

k2D(k, 0)
d3k =

Ze

2r

[
(1 + b) e−k+r + (1− b) e−k−r

]
. (25)

The potential given in Eq. (25) with the dielectric function given by either Eq. (24a) or

(24b) is known to admit repulsive and attractive forms [36]

ϕr(r) = (Ze/r) exp(−Ar) [cosh(Br) + b sinh(Br)] , ηs <
1

4
, 1 < b < ∞, (26a)

ϕa(r) = (Ze/r) exp(−A′r) [cos(B′r) + b′ sin(B′r)] , ηs >
1

4
, 0 < b′ < ∞, (26b)

where the parameters are defined as

A = k0s

√√
4ηs + 1√
4ηs

, B = k0s

√
1−

√
4ηs√

4ηs
, b =

1√
1− 4ηs

, (27a)

A′ = k0s

√√
4ηs + 1√
4ηs

, B′ = k0s

√√
4ηs − 1√
4ηs

, b′ =
1√

4ηs − 1
, (27b)

and ηs = ξs0h̄
2ω2

ps/(12m
∗
s
2v2Ts) and k0s = ωps/vTs.

In Fig. 6(a), we show the profiles of the screening potential in highly doped N-Type Si

for various doping concentration. This potential is of non-oscillatory repulsive type given in

Eq. (26a). The screening becomes more effective (screening length decreases) as the doping

concentration increases. This trend also appears for highly doped P-Type Si in Fig 6(b)

which is also of repulsive type. It is observed that the screening effect by holes in acceptor

concentrated semiconductor samples is as effective as that of electrons in an N-type semi-

conductors. An even more striking effect concerning the screening by holes is seen in Fig.

6(c) which indicates that in a highly acceptor-doped semiconductor the oscillatory attractive

screening is more pronounced than that of electrons in highly doped N-type semiconductors

with similar doping scheme. This is an interesting property of electron-hole static charge

screening in doped semiconductors with many possible implications in semiconductor science

and technology. For example, the dynamics and mobility of carriers in semiconductors, and

hence the device operation, is directly related to the electric permittivity. The static charge

13



shielding is of main concern in fabrication of integrated semiconductor devices and is impor-

tant in the response of semiconductor detectors to external electrostatic or electromagnetic

perturbations.

V. SUMMARY

We have presented a QHD theory for the investigation of high-frequency electron-hole

oscillations in semiconductors and static charge shielding by electrons and holes by taking

into account the kinetic corrections to the finite temperature chemical potential and quantum

diffraction effects in the hydrodynamic model. It is found that holes contribute to the

dynamics of oscillations and screening in semiconductors as effective as the electron fluid.

Examination of the linear dispersion relation shows the appearance of both a Langmuir

branch and an acoustic-like branch in the wave spectrum. The acoustic-like mode has some

interesting features regarding the asymmetric behavior in N- and P-type semiconductors.

An attractive screening potential also exists for some plasma parameters, and the attractive

potential is more pronounced in highly acceptor-doped P-type semiconductors than in highly

donor-doped N-type semiconductors with similar doping concentration.
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FIG. 4: (a) The long wavelength Langmuir-like branch normalized frequency versus µe for different

temperatures for a Si sample. (b) The group speed of the acoustic-like branch versus µe for

different temperatures and k = 0.1r−1
1 . (c) The group speed of the Langmuir-like branch versus

µe for k = 0.1r−1
1 and different values of T . (d) The group speed of Langmuir-like branch versus

µe for different wavenumbers at T = 300K. The subregions µe0 < −Eg/2 and µe0 > −Eg/2

correspond to P- and N-type Si regions, respectively. The normalization factors are r1 = 10−4cm,

ω1 =
√

4πe2n0/m0 with n0 = 1012cm−3 and v1 = r1/ω1. Thicker curves indicate higher values of

the temperature listed above each panel.
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FIG. 5: (a) The low-frequency kinetic correction prefactor ξe0 versus µe0(eV) for different tempera-

tures. The increase in the thickness of solid profile indicates the increase in the temperature values.

The values of ξe0 = 1 and ξe0 = 1/3 correspond to the classical non-degenerate and fully-degenerate

cases, respectively. (b) Comparison between ξe0 (solid) and ξh0 (dashed) at room temperature.
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FIG. 6: Profiles of the static charge screening potential by (a) electrons in highly doped N-type Si,

(b) holes in highly doped P-type Si. (c) The Shukla-Eliasson-type attractive screening by electrons

and holes. The normalization factors used in these plots are r0 = 10−7cm and ϕ0 = Ze/r0. The

increase in thickness of curves in panels (a) and (b) indicate the increase in the corresponding

doping concentrations above each panel.
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