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Abstract

Multi-dimensional fluid flow plays a paramount role in the explosions of massive stars

as core-collapse supernovae. In recent years, three-dimensional (3D) simulations of

these phenomena have matured significantly. Considerable progress has been made

towards identifying the ingredients for shock revival by the neutrino-driven mecha-

nism, and successful explosions have already been obtained in a number of self-

consistent 3D models. These advances also bring new challenges, however. Prompted

by a need for increased physical realism and meaningful model validation, supernova

theory is now moving towards a more integrated view that connects multi-dimen-

sional phenomena in the late convective burning stages prior to collapse, the explo-

sion engine, and mixing instabilities in the supernova envelope. Here we review our

current understanding of multi-D fluid flow in core-collapse supernovae and their

progenitors. We start by outlining specific challenges faced by hydrodynamic simu-

lations of core-collapse supernovae and of the late convective burning stages. We then

discuss recent advances and open questions in theory and simulations.
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1 Introduction

The death of massive stars is invariably spectacular. In the cores of these stars,

nuclear fusion proceeds all the way to the iron group through a sequence of burning

stages. At the end of the star’s life, nuclear energy generation has ceased in the

degenerate Fe core (i.e., the core has become ‘‘inert’’), while nuclear burning

continues in shells composed of progressively light nuclei further out. Once the core

approaches its effective Chandrasekhar mass and becomes sufficiently compact,

electron captures on heavy nuclei and partial nuclear disintegration lead to collapse

on a free-fall time scale, leaving behind a neutron star or black hole. In most cases, a

small fraction of the potential energy liberated during collapse is transferred to the

stellar envelope, which is expelled in a powerful explosion known as a core-

collapse supernova, as first recognized by Baade and Zwicky (1934).

How precisely the envelope is ejected has remained one of the foremost

questions in computational astrophysics ever since the first modeling attempts in the

1960s (Colgate et al. 1961; Colgate and White 1966). In this review we focus on the

critical role of multi-dimensional (multi-D) fluid flow during the supernova

explosion itself and the final pre-collapse stages of their progenitors.
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For pedagogical reasons, it is preferable to commence our brief exposition of

multi-D hydrodynamic effects with the supernova explosion mechanism rather than

to follow the sequence of events in nature, or historical chronology.

1.1 The multi-dimensional nature of the explosion mechanism

In principle, the collapse of an iron core to a neutron star opens a reservoir of several

1053 erg of potential energy, which appears more than sufficient to account for the

typical inferred kinetic energies of observed core-collapse supernovae of order

1051 erg (see, e.g., Kasen and Woosley 2009; Pejcha and Prieto 2015).

Transferring the requisite amount of energy from the young ‘‘proto-neutron star’’

(PNS) is not trivial, however. The simplest idea is that the energy is delivered when

the collapsing core overshoots nuclear density and ‘‘bounces’’ due to the high

incompressibility of matter above nuclear saturation density, which launches a

shock wave into the surrounding shells (Colgate et al. 1961). However, the shock

wave stalls within milliseconds as nuclear dissociation of the shocked material and

neutrino losses drains its initial kinetic energy (e.g., Mazurek 1982; Burrows and

Lattimer 1985; Bethe 1990). The shock then turns into an accretion shock, whose

radius is essentially determined by the pre-shock ram pressure and the condition of

hydrostatic equilibrium between the shock and the PNS surface. It typically reaches

a radius between 100 and 200 km a few tens of milliseconds after bounce and then

recedes again.

Among the various ideas to ‘‘revive’’ the shock (for a more exhaustive overview

see Mezzacappa 2005; Kotake et al. 2006; Janka 2012; Burrows 2013) the neutrino-

driven mechanism is the most promising scenario and has been explored most

comprehensively since it was originally conceived—in a form rather different from

the modern paradigm—by Colgate and White (1966). The modern version of this

mechanism is illustrated in Fig. 1b: a fraction of the neutrinos emitted from the PNS

and the cooling layer at its surface are reabsorbed further out in the ‘‘gain region’’. If

the neutrino heating is sufficiently strong, the increased thermal pressure drives the

shock out, and the heating powers an outflow of matter in its wake.

However, according to the most sophisticated spherically symmetric (1D) models

using Boltzmann neutrino transport to accurately model neutrino heating and

cooling, this mechanism does not work in 1D (Liebendörfer et al. 2001; Rampp and

Janka 2000) except for the least massive1 supernova progenitors. For all other

progenitors, it is crucial that multi-D effects support the neutrino heating.

Convection occurs in the gain region because neutrino heating establishes a

negative entropy gradient (Bethe 1990), and was shown to be highly beneficial for

obtaining neutrino-driven explosions by the first generation of multi-D models from

the 1990s (Herant et al. 1992, 1994; Burrows et al. 1995; Janka and Müller

1995, 1996). Another instability, the standing-accretion shock instability (SASI;

Blondin et al. 2003; Blondin and Mezzacappa 2006; Foglizzo et al. 2006, 2007;

1 More precisely, the neutrino-driven mechanism works in 1D for progenitors with a steeply declining

density profile outside the core (Müller 2016) as in the case of electron-capture supernovae from super-

AGB stars (Kitaura et al. 2006) or the least massive iron core progenitors (Melson et al. 2015b).
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Laming 2007), arises due to an advective-acoustic amplification cycle and gives rise

to large-scale (‘ ¼ 1; 2) shock oscillations; it plays a similarly beneficial role in the

neutrino-driven mechanism as convection (Scheck et al. 2008; Müller et al. 2012a).

Rapid rotation could also modify the dynamics in the supernova core and support

the development of neutrino-driven explosions (Janka et al. 2016; Summa et al.

2018; Takiwaki et al. 2016).

Evidently, multi-D effects are also at the heart of the most serious alternative to

neutrino-driven explosions, the magnetohydrodynamic (MHD) mechanism (e.g.,

Akiyama et al. 2003; Burrows et al. 2007a; Winteler et al. 2012; Mösta et al.

2014b), which likely explains unusually energetic ‘‘hypernovae’’. But whether core-

collapse supernovae are driven by neutrinos or magnetic fields, it is pertinent to ask:

(a) (b) (c)

Fig. 1 Overview of the multi-D effects operating prior to and during a core-collapse supernova as

discussed in this review (below the dashed line) in the broader context of the evolution of a massive star.

a After millions of years of H and He burning, the star enters the neutrino-cooled burning stages (C, Ne,

O, Si burning). These advanced core and shell burning stages tpyically proceed convectively because

burning and neutrino cooling at the top and bottom of an active shell/core establish an unstable negative

entropy gradient. The interaction of the flow with convective boundaries can lead to mixing and transfer

energy and angular momentum by wave excitation. Rotation may modify the flow dynamics. b After the

star has formed a sufficiently massive iron core, the core undergoes gravitational collapse, and a young

proto-neutron star is formed. The shock wave launched by the ‘‘bounce’’ of the core quickly stalls, and is

likely revived by neutrino heating in most cases. In the phase leading up to shock revival, neutrino heating

drives convection in the heating or ‘‘gain’’ region, and the shock may execute large-scale oscillations due

the standing accretion shock instability (SASI). Rotation and the asymmetric infall of convective burning

shells can modify the dynamics. There is also a convective region below the cooling layer at the proto-

neutron star (PNS) surface. c After the shock has been revived and sufficient energy has been pumped into

the explosion by neutrino heating or some other mechanism, the shock propagates through the outer shells

on a time scale of hours to days. During this phase, the interaction of the (deformed) shock with shell

interfaces as well as reverse shock formation trigger mixing by the Rayleigh–Taylor (RT), the

Richtmyer–Meshkov (RM) instability, and (as a secondary process) the Kelvin–Helmholtz (KH)

instability. Once the shock breaks out through the stellar surface, the explosion becomes visible as an

electromagnetic transient. Mixing instabilities continue to operate on longer time scales throughout the

evolution of the supernova remnant
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How important are the initial conditions for the multi-D flow dynamics that leads to

shock revival?

1.2 The multi-D structure of supernova progenitors

For pragmatic reasons, supernova models have long relied on 1D stellar evolution

models as input, or at best on ‘‘1.5D’’ rotating models using the shellular

approximation (Zahn 1992). For non-rotating progenitors, spherical symmetry was

either broken by introducing perturbations in supernova simulations by hand, or due

to grid perturbations. For rotating and magnetized progenitors, spherical symmetry

is broken naturally, but on the other hand the stellar evolution models do not provide

the detailed multi-D angular momentum distribution and magnetic field geometry,

which must be specified by hand.

In reality, even non-rotating progenitors are not spherically symmetric at the

onset of collapse. Outside the iron core, there are typically several active convective

burning shells (Fig. 1a) that will collapse in the wake of the iron core within

hundreds of milliseconds. It was realized in recent years that the infall of

asymmetric shells can be important for shock revival (Couch and Ott 2013; Müller

2015; Couch et al. 2015; Müller et al. 2017a).

The multi-D structure of supernova progenitors is thus directly relevant for the

neutrino-driven mechanism, but the potential ramifications of multi-D effects during

the pre-collapse phase are in fact much broader: How do they affect mixing at

convective boundaries, and hence the evolution of the shell structure on secular time

scales? How do they affect the angular momentum distribution and magnetic fields

in supernova progenitors?

1.3 Observational evidence for multi-D effects in core-collapse supernovae

Observations contain abundant clues about the multi-D nature of core-collapse

supernova explosion. Large birth kicks of neutron stars (Hobbs et al. 2005; Faucher-

Giguère and Kaspi 2006; Ng and Romani 2007) and even black holes (Repetto et al.

2012) cannot be explained by stellar dynamics alone and require asymmetries in the

supernova engine. There is also evidence for mixing processes during the explosion

and large-scale asymmetries in the ejecta from the spectra and polarization

signatures of many observed transients (e.g., Wang and Wheeler 2008; Patat 2017),

and from young supernova remnants like Cas A (Grefenstette et al. 2014).

The relation between the asymmetries in the progenitor and the supernova core,

and the asymmetries in observed transients and gaseous remnants is not

straightforward, however. The observable symmetries are rather shaped by mixing

processes that operate as the shock propagates through the stellar envelope

(Fig. 1c). Rayleigh–Taylor instability occurs behind the shock as it scoops up

material and decelerates (Chevalier 1976; Bandiera 1984), and the interaction of a

non-spherical shock with shell interfaces can give rise to the Richtmyer–Meshkov

instability (Kifonidis et al. 2006). The asymmetries imprinted during the first

seconds of an explosion provide the seed for these late-time mixing instabilities, and

3D supernova modellling is now moving towards an integrated approach from the
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early to the late stages of the to better link the observations to the physics of the

explosion mechanism (e.g., Hammer et al. 2010; Wongwathanarat et al. 2013;

Müller et al. 2018; Chan et al. 2018, 2020), and, in future, even to the multi-D

progenitor structure.

1.4 Scope and structure of this review

In this review, we are primarily concerned with the numerical techniques for

modeling multi-D fluid flow in core-collapse supernovae and their progenitors, and

with our current understanding of the theory and phenomenology of the multi-D

fluid instabilities. Although multi-D effects are relevant to virtually all aspects of

core-collapse supernova theory, we can only afford cursory attention to many of

them in order to keep this overview focused.

There are many other reviews to fill the gap, or provide a different perspective.

Janka (2012) provides a very broad, but less technical, overview of the core-collapse

supernova problem. For the explosion mechanism and a different take on the role of

multi-D effects, the reader may also consult Mezzacappa (2005), Kotake et al.

(2006), Burrows (2013), Müller (2016), Janka et al. (2016) and Couch (2017). The

important problem of neutrino transport is treated in considerable depth by

Mezzacappa (2005, 2020) and is therefore not addressed in this review. A number of

reviews address the potential of neutrinos (e.g., Kotake et al. 2006; Müller 2019b)

and gravitational waves (Ott 2009; Kotake 2013; Kalogera et al. 2019) as

diagnostics of the multi-dimensional dynamics in the supernova core.

We shall start by discussing the governing equations for reactive, self-gravitating

flow and their numerical solution in the context of core-collapse supernovae and

convective burning in Sect. 2. We do not treat numerical methods for MHD in

supernova simulations, although we occasionally comment on the role of MHD

effects in the later sections. In the subsequent sections, we then review recent

simulation results and progress in the theoretical understanding of convection

during the late burning stages (Sect. 3), of supernova shock revival (Sect. 4), and

the hydrodynamics of the explosion phase (Sect. 5).

2 Numerical methods

Modeling the late stages of nuclear burning and the subsequent supernova explosion

involves solving the familiar equations for mass, momentum, and energy

conservation with source terms that account for nuclear burning and the exchange

of energy and momentum with neutrinos. Viscosity and thermal heat conduction

mediated by photons, electron/positrons, and ions can be neglected, and so we have

(in the Newtonian limit and neglecting magnetic fields),

oq

ot
þr � ðqvÞ ¼ 0; ð1Þ
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oqv

ot
þr � ðqv� vÞ þ rP ¼ �qrUþQm; ð2Þ

oqðeþ v2=2Þ
ot

þr � qðeþ v2=2Þvþ Pv
� �

¼ �qv � rUþ Qe þQm � v; ð3Þ

in terms of the density q, the fluid velocity v, the pressure P, internal energy density

e, the gravitational potential U, and the neutrino energy and momentum source

terms Qe and Qm. If we take e to include nuclear rest-mass contributions, there is no

source term for the nuclear energy generation rate; otherwise an additional source

term _Qnuc appears on the right-hand side (RHS) of Eq. (3). These equations are

supplemented by conservation equations for the mass fractions Xi of different

nuclear species and the electron fraction Ye (net number of electrons per baryon),

oqXi

ot
þr � ðqXivÞ ¼ _Xi;burn; ð4Þ

oqYe

ot
þr � ðqYeÞ ¼ _QYe

; ð5Þ

where the source terms _Xi;burn and _QYe
account for nuclear reactions and the change

of the electron fraction by b processes.

In the regime of sufficiently high optical depth, the effect of the neutrino source

terms could alternatively be expressed by non-ideal terms for heat conduction,

viscosity, and diffusion of lepton number (e.g., Imshennik and Nadezhin 1972;

Bludman and van Riper 1978; Goodwin and Pethick 1982; van den Horn and van

Weert 1983, 1984; Yudin and Nadyozhin 2008), but this approach would break

down at low optical depth. The customary approach to Eqs. (1–5) is, therefore, to

apply an operator-split approach and combine a solver for ideal hydrodynamics for

the left-hand side (LHS) and the gravitational source terms with separate solvers for

the source terms due to neutrino interactions and nuclear reactions. Simulations of

the Kelvin–Helmholtz cooling phase of the PNS over time scales of seconds form an

exception; here only the PNS interior is of interest so that it is possible and useful to

formulate the neutrino source terms in the equilibrium diffusion approximation

(Keil et al. 1996; Pons et al. 1999).

2.1 Hydrodynamics

A variety of computational methods are employed to solve the equations of ideal

hydrodynamics in the context of supernova explosions or the late stellar burning

stages. Nowadays, the vast majority of codes use Godunov-based high-resolution

shock capturing (HRSC) schemes with higher-order reconstruction (see, e.g.,

LeVeque 1998b; Martı́ and Müller 2015; Balsara 2017 for a thorough introduction).

Examples include implementations of the piecewise parabolic method of Colella

and Glaz (1985) or extensions thereof in the Newtonian hydroydnamics codes

PROMETHEUS (Fryxell et al. 1989, 1991; Müller et al. 1991), which has been

integrated into various neutrino transport solvers by the Garching group (Rampp
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and Janka 2002; Buras et al. 2006b; Scheck et al. 2006), its offshoot PROMPI

(Meakin and Arnett 2007b), PPMSTAR (Woodward et al. 2019), VH1 (Blondin and

Lufkin 1993; Hawley et al. 2012) as used within the CHIMERA transport code

(Bruenn et al. 2018), FLASH (Fryxell et al. 2000), CASTRO (Almgren et al. 2006),

ALCAR (Just et al. 2015), and FORNAX (Skinner et al. 2019). This approach is also

used in most general relativistic (GR) hydrodynamics codes for core-collapse

supernovae like COCONUT (Dimmelmeier et al. 2002; Müller et al. 2010), ZELMANI

(Reisswig et al. 2013; Roberts et al. 2016), and GRHYDRO (Mösta et al. 2014a).

Godunov-types scheme with piecewise-linear total-variation diminishing (TVD)

reconstruction are still used in the FISH code (Käppeli et al. 2011) and in the

relativistic FUGRA code of (Kuroda et al. 2012, 2016b). The 3DnSNe code of the

Fukuoka group (e.g., Takiwaki et al. 2012), which is based on the ZEUS code of

Stone and Norman (1992), has also switched from an artificial viscosity scheme to a

Godunov-based finite-volume approach with TVD reconstruction (Yoshida et al.

2019).

Alternative strategies are less frequently employed. The VULCAN code (Livne

1993; Livne et al. 2004) uses a staggered grid and von Neumann–Richtmyer

artificial viscosity (Von Neumann and Richtmyer 1950). The SNSPH code (Fryer

et al. 2006) uses smoothed-particle hydrodynamics (Gingold and Monaghan 1977;

Lucy 1977; for modern reviews see Price 2012; Rosswog 2015). Although less

widely used in supernova modeling today, the SPH approach has been utilized for

some of the early studies of Rayleigh–Taylor mixing (Herant and Benz 1991) and

convectively-driven explosions (Herant et al. 1992) in 2D and later for the first 3D

supernova simulations with gray neutrino transport (Fryer and Warren 2002). Multi-

dimensional moving mesh schemes have been occasionally employed to simulate

magnetorotational supernovae (Ardeljan et al. 2005) and reactive-convective flow

in stellar interiors (Dearborn et al. 2006; Stancliffe et al. 2011). More recently

‘‘second-generation’’ moving-mesh codes based on Voronoi tessellation, such as

TESS (Duffell and MacFadyen 2011) and AREPO (Springel 2010), have been

developed and employed for simulations of jet outflows (Duffell and MacFadyen

2013, 2015), and fallback supernovae (Chan et al. 2018). Spectral solvers for the

equations of hydrodynamics, while popular for solar convection, have so far been

applied only once for simulating oxygen burning (Kuhlen et al. 2003), but never for

the core-collapse supernova problem.

Since Godunov-based finite-volume solvers are now most commonly employed

for simulating core-collapse supernovae and the late burning stages, we shall focus

on the problem-specific challenges for this approach in this section.

2.1.1 Problem geometry and choice of grids

The physical problem geometry in global simulations of core-collapse supernovae

and the late convective burning stages is characterized by approximate spherical

symmetry, and one frequently needs to deal with strong radial stratification and a

large range of radial scales. For example, during the pre-explosion and early

explosion phase, the PNS develops a ‘‘density cliff’’ at its surface that is

123

3 Page 8 of 104 B. Müller



approximately in radiative equilibrium and can be approximated as an exponential

isothermal atmosphere with a scale height H of

H ¼ kTR2

GMmb

; ð6Þ

in terms of the PNS mass M, radius R, and surface temperature T, and the baryon

mass mb. With typical values of M� 1:5M�, R shrinking down to a final value of

� 12 km, and a temperature of a few MeV, the scale height soon shrinks to a few

100m. Later on during the explosion, the scales of interest shift to the radius of the

entire star, which is of order � 108 km for red supergiants.

The spherical problem geometry and the multi-scale nature of the flow is a

critical element in the choice of the numerical grid for ‘‘star-in-a-box’’ simulations.2

Cartesian grids, various spherical grids, and, on occasion, unstructured grids have

been used in the field for global simulations and face different challenges.

Grid-induced perturbations Cartesian grids have the virtue of algorithmic simplicity

and do not suffer from coordinate singularities, but also come with disadvantages as

they are not adapted to the approximate symmetry of the physical problem. The

unavoidable non-spherical perturbations from the grid make it impossible to

reproduce the spherically symmetric limit in multi-D even for perfectly spherical

initial conditions, or to study the growth of non-spherical perturbations in a fully

controlled manner. The former deficiency is arguably an acceptable sacrifice,

though it can limit the possibilities for code testing and verification, but the latter

can introduce visible artifacts in simulations. For example, Cartesian codes

sometimes produce non-vanishing gravitational wave signals from the bounce of

non-rotating cores (Scheidegger et al. 2010), and often show dominant ‘ ¼ 4 modes

during the growth phase of non-radial instabilities (Ott et al. 2012).

Handling the multi-scale problem Furthermore, a single Cartesian grid cannot easily

handle the multiple scales encountered in the supernova problem. Even with

Oð10003Þ zones, such a grid can at best cover the region inside 1000 km with

acceptable resolution, but following the infall of matter for several 100ms without

boundary artifacts and the development of an explosion requires covering a region

of at least 10; 000 km. This problem is often dealt with by using adaptive mesh

refinement (AMR; see, e.g., Berger and Colella 1989; Fryxell et al. 2000), which is

usually implemented as ‘‘fixed mesh refinment’’ for pre-defined nested cubic

patches (e.g., Schnetter et al. 2004). Other codes have opted to combine a single

central Cartesian patch or nested patches with a spherically symmetric region

(Scheidegger et al. 2010) or multiple spherical polar patches (Ott et al. 2012)

outside. For long-time simulations of Rayleigh–Taylor mixing in the envelope,

standard adaptive or pre-defined mesh refinement may not be sufficiently efficient

for covering the range of changing scales and necessitate manual remapping to a

2 Of course, some problems can or need to be studied using simplified geometries (planar or cylindrical)

or local simulations.
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coarser grids (‘‘homographic expansion’’) as the simulation proceeds (Chen et al.

2013).

In spherical coordinates, the multi-scale nature of the problem can be

accommodated to a large degree by employing a non-uniform radial grid that

transitions to roughly equal spacing in log r at large radii. Radial resolution can be

added selectively in strongly stratified regions like the PNS surface (Buras et al.

2006b), or one can use an adaptive moving radial grid (Liebendörfer et al. 2004;

Bruenn et al. 2018). However, some care must be exercised in using non-uniform

radial grids. Rapid variations in the radial grid resolution Dr=r can produce artifacts

such as artificial waves and disturbances of hydrostatic equilibrium.

It is also straightforward to implement a moving radial grid to adapt to changing

resolution requirements or the bulk contraction/expansion of the region of interest;

see Winkler et al. (1984), Müller (1994) for an explanation of this technique. The

MPA/Monash group routinely apply such a moving radial grid in quasi-Lagrangian

mode during the collapse phase (Rampp and Janka 2000), and, with a prescribed

grid function, in parameterized multi-D simulations of neutrino-driven explosions

(Janka and Müller 1996; Scheck et al. 2006) and in simulations of convective

burning (Müller et al. 2016b). The Oak Ridge group uses a truly adaptive radial grid

in their supernova simulations with the CHIMERA code (Bruenn et al. 2018). A

moving radial mesh might also appear useful for following the expansion of the

ejecta and the formation of a strongly diluted central region in simulations of mixing

instabilities in the envelope, but the definition of an appropriate grid function is non-

trivial. Most simulations of mixing instabilities in spherical polar coordinates have

therefore relied on simply removing zones continuously from the evacuated region

of the blast wave to increase the time step (Hammer et al. 2010) rather than

implementing a moving radial mesh (Müller et al. 2018).

Both fixed mesh refinement and spherical grids with non-uniform radial mesh

spacing only provide limited adaptability to the structure of the flow. Truly adaptive

mesh refinement can provide superior resolution in cases where very tenuous, non

volume-filling flow structures emerge. Mixing instabilities in the envelope are a

prime example for such a situation, and have often been studied using AMR in

spherical polar coordinates (Kifonidis et al. 2000, 2003, 2006) in 2D and Cartesian

coordinates (Chen et al. 2017).

The time step constraint in spherical polar coordinates While spherical polar

coordinates are well-adapted to the problem geometry, they also suffer from

drawbacks. One of these drawbacks—among others that we discuss further below—

is that the converging cell geometry imposes stringent constraints on the time step

near the grid axis and the origin. The Courant–Friedrichs–Lewy limit (Courant et al.

1928) for the time step Dt requires that Dt\r Dh=ðjvj þ csÞ in 2D and

Dt\r sin hDu=ðjvj þ csÞ in 3D in terms of the grid spacing Dh and Du in latitude

and longitude, and the fluid velocity v and sound speed cs. If Dh ¼ Du, this is worse

than a Cartesian code with grid spacing comparable to Dr by a factor Dh � 1 in 2D

and Dh2 � 1 in 3D near the origin.

Various workarounds have been developed to tame this time-step constraint.

Some core-collapse supernova codes (PROMETHEUS-VERTEX, CHIMERA, COCONUT)
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simulate the innermost region of the grid assuming spherical symmetry. The

approximation of spherical symmetry is well justified in the core, since the

innermost region of the PNS is convectively stable during the first seconds after

collapse and explosion until the late Kelvin–Helmholtz cooling phase. Even more

savings can be achieved by treating the PNS convection zone using mixing-length

theory (Müller 2015), but this is a more severe approximation that significantly

affects the predicted gravitational wave signals and certain features of the neutrino

emission and nucleosynthesis. Concerns have also been voiced that the imposition

of a spherical core region creates an immobile obstacle to the flow that leads to the

violation of momentum conservation, which might have repercussions on neutron

star kicks (Nordhaus et al. 2010a). While it is true that the PNS tends not to move in

simulations with a spherical core region, Scheck et al. (2006) found (using a careful

analysis based on hydro simulations in the accelerated frame comoving with the

PNS) that the assumption of an immobile PNS does not gravely affect the dynamics

in the supernova interior and the PNS kick in particular.

Even with a 1D treatment for the innermost grid zones, one is still left with a

severe time-step constraint at the grid axis in 3D. A number of alternatives to

spherical polar grids with uniform spacing in latitude h and longitude u can help to

remedy this. The simplest workaround is to adopt uniform spacing in l ¼ cos h

instead of h. In this case, one has sin h ¼ ð2Nh � 1Þ1=2=Nh �
ffiffiffi

2
p

N
�1=2
h in the zones

adjacent to the axis for Nh zones in latitude instead of sin h � N�1
h =2, so the time

step limit scales as Dt /
ffiffiffi

2
p

N
�1=2
h N�1

/ instead of Dt / N�1
h N�1

/ =2, where Nu is the

number of zones in longitude. Alternatively, one can selectively increase the h-grid

spacing in the zones close to the axis. However, the time step constraint at the axis is

still more restrictive than at the equator in this approach, and the aspect ratio of the

grid cells becomes extreme near the pole, which can create problems with numerical

stability and accuracy.

One approach to fully cure the time step problem, which was first proposed for

simulations of compact objects by Cerdá-Durán (2009), consists in abandoning the

logically Cartesian grid in r, h, and u and selectively coarsening the grid spacing in

u (and possibly h) near the axis (and optionally at small r) as illustrated in Fig. 2.

Such a mesh coarsening scheme has been included in the COCONUT-FMT code

(Müller 2015) with coarsening in the u-direction, and as a ‘‘dendritic grid’’ with

coarsening in the h- and u-direction in the FORNAX code (Skinner et al. 2019) and

the 3DnSNe code (Nakamura et al. 2019). Mesh coarsening can be implemented

following standard AMR practice by prolongating from the coarser grids to the finer

grids in the reconstruction step. Alternatively, one can continue using the hydro

solver on a fine uniform grid in h and u, and average the solution over coarse

‘‘supercells’’ after each time step, followed by a conservative prolongation or ‘‘pre-

reconstruction’’ step back onto the fine grid to ensure higher-order convergence.

This has the advantage of retaining the data layout and algorithmic structure of a

spherical polar code, but care is required to to ensure that the prolongation of the

conserved variables does not introduce non-monotonicities in the primitive

variables, which limits the pre-reconstruction step to second-order accuracy in

practice (Müller et al. 2019). A possible concern with mesh coarsening on standard
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spherical polar grids is that it may favor the emergence of axis-aligned bipolar flow

structures during the explosion phase in supernova simulations (Müller 2015;

Nakamura et al. 2019). In practice, however, strong physical seed perturbations

easily break any grid-induced alignment of the flow with the axis. As the more

simulations with mesh coarsening become available (Müller et al. 2019; Burrows

et al. 2020), it does not appear that axis alignment is a recurring problem.

Filtering in Fourier space, which has long been used in the meteorology

community (Boyd 2001), provides another means of curing the restrictive time step

constraint near the axis and has been implemented in the COCONUT-FMT code

(Müller et al. 2019). This can also be implemented with minimal interventions in a

solver for spherical polar grids, and is attractive because the amount of smoothing

that is applied to the solution increases more gradually towards the axis than with

mesh coarsening schemes. Müller et al. (2019) suggests that this eliminates the

problem of axis-aligned flows. On the downside, simulations with Fourier filtering

may occasionally encounter problems with the Gibbs phenomenon at the shock.

More radical solutions to the axis problem include overset grids and non-

orthogonal spherical grids. An overset Yin–Yang grid (Kageyama and Sato 2004)

has been implemented in the PROMETHEUS code (Wongwathanarat et al. 2010a;

Melson 2013) and used successfully for simulations of supernovae and convective

burning. The Yin–Yang grid provides near-uniform resolution in all directions,

solves the time step problem, and also eliminates the delicate problem of boundary

conditions at the axis of a spherical polar grid. The added algorithmic complexity is

limited to interpolation routines that provide boundary conditions; since each patch

is part of a spherical polar grid, no modifications of the hydro solver for non-

orthogonal grids are required. As a downside, it is more complicated—but possible

(Peng et al. 2006)—to implement overset grids in a strictly conservative manner. In

future, non-orthogonal grids spherical grids (Ronchi et al. 1996; Calhoun et al.

2008; Wongwathanarat et al. 2016) may provide another solution that avoids the

axis problem and ensures conservation in a straightforward manner, but applications

Fig. 2 Alternative spherical grids that avoid the tight time step constraint at the axis of standard spherical

polar grids: a Grid with mesh coarsening in the u-direction only. Only an octant of the entire grid is

shown. b Dendritic grid with coarsening in the h- and u-direction Image reproduced with permission

from (Skinner et al. 2019), copyright by AAS. c Overset Yin–Yang grid (Kageyama and Sato 2004;

Wongwathanarat et al. 2010a) with two overlapping spherical polar patches in yellow and cyan
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are so far limited to other astrophysical problems (Koldoba et al. 2002; Fragile et al.

2009; Shiota et al. 2010).

Boundary conditions The definition of the outer boundary conditions for Cartesian

grids can be more delicate and less flexible than for spherical grids. Simulations of

supernova shock revival and the late convective burning stages usually do not cover

the entire star for efficiency reasons, and sometimes it can even be desirable to

excise an inner core region, e.g., the PNS interior in supernova simulations (e.g.,

Janka and Müller 1996; Scheck et al. 2008; Ugliano et al. 2012; Ertl et al. 2016;

Sukhbold et al. 2016) or the Fe/Si core in the O shell burning models of Müller

et al. (2017a). To minimize artifacts near the outer and (for annular domains) the

inner boundary, the best strategy is often to impose hydrostatic boundary conditions

assuming constant entropy, so that the pressure P, density q, and radial velocity vr in

the ghost cells are obtained as

dP ¼
Z

qg dr; ð7Þ

dq ¼
Z

c�2
s dP; ð8Þ

vr ¼ 0: ð9Þ

in terms of the radial gravitational acceleration g and the sound speed cs (cf. Zingale

et al. 2002 for hydrostatic extrapolation in the plane-parallel case). This can be

readily implemented for spherical grid, and the same is true for inflow, outflow, or

wall boundary conditions for excised outer shells or an excised core.

In Cartesian coordinates, however, defining boundary conditions as a function of

radius is at odds with the usual strategy of enforcing the boundary conditions by

populating ghost zones along individual grid lines separately. For pragmatic

reasons, one often enforces standard boundary conditions (reflecting/inflow/outflow)

on the faces of the cubical domain instead (e.g., Couch et al. 2015), which is viable

as long as the domain boundaries are sufficiently distant from the region of interest.

Alternatively, one can impose fixed boundary conditions inside the cubical domain,

but outside a smaller spherical region of interest (e.g., Woodward et al. 2018).

Outflow conditions on an interior boundary, e.g., for fallback onto a compact

remnant, can also be implemented relatively easily (Joggerst et al. 2009).

On the other hand, the boundary conditions at the axis and the origin require

careful consideration in case of a spherical polar in order to minimize artifacts from

the grid singularities. Conventionally, one uses reflecting boundary conditions to

populate the ghost zones before performing the reconstruction in the r- and h-

direction, i.e., one assumes odd parity for the velocity components vr and vh
respectively, and even parity for scalar quantities and the transverse velocity

components. This usually ensures that vr and vh do not blow up near the grid

singularities, but in some cases stronger measures are required; e.g., one can enforce

zero vr or vh in the cell next to the origin/grid axis, or switch to step function
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reconstruction in the first cell. One may also need to impose odd parity for vu or for

better stability, or reconstruct the angular velocity component xu ¼ vu=r instead of

vu.

No hard-and-fast rules for such fixes at the axis and the origin can be given,

except perhaps that one should also consider treating the geometric source terms in

spherical polar coordinates differently (see below) before applying fixes to the

boundary conditions that reduce the order of reconstruction, or before manually

damping or zeroing velocity components. In fact, the symmetry assumptions behind

reflecting boundary conditions (i.e., vr ! 0 at the origin and vh ! 0) are actually

too strong. Strictly speaking, one should only impose the condition that the

Cartesian velocity components vx, vy, and vz are continuous across the singularity

for smooth flow. In principle, this can be accommodated during the reconstruction

by populating the ghost zones for r\0, h\0, and h[ p with values from the

corresponding grid lines across the origin or the axis, bearing in mind any flip in

direction of the basis vectors er, eh, and eu across the coordinate singularity. For the

reconstruction along the radial grid line with constant h and u, this comes down to

defining

vrðrÞ ¼
vrðr; h;uÞ; r[ 0

�vrðr; p� h;uþ 2pÞ; r\0

�

ð10Þ

vhðrÞ ¼
vhðr; h;uÞ; r[ 0

vhðr; p� h;uþ 2pÞ; r\0

�

ð11Þ

vuðrÞ ¼
vuðr; h;uÞ; r[ 0

�vuðr; p� h;uþ 2pÞ; r\0

�

; ð12Þ

and, similarly, for reconstruction in the h-direction along a grid line with constant r

and u:

vrðhÞ ¼
vrðr;�h;uþ 2pÞ; h\0

vrðr; h;uÞ; 0\h\p

vrðr; 2p� h;uþ 2pÞ; p\h

8

>

<

>

:

ð13Þ

vhðhÞ ¼
�vhðr;�h;uþ 2pÞ; h\0

vhðr; h;uÞ; 0\h\p

�vhðr; 2p� h;uþ 2pÞ; p\h

8

>

<

>

:

ð14Þ
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vuðhÞ ¼
�vuðr;�h;uþ 2pÞ; h\0

vuðr; h;uÞ; 0\h\p

�vuðr; 2p� h;uþ 2pÞ; p\h

8

>

<

>

:

: ð15Þ

This allows for non-zero values of vr and vh at the origin to reflect that matter can

flow across the origin and the axis. Such special polar boundary conditions have

been implemented for 3D light-bulb3 simulations of SASI and convection with

FLASH (Fernández 2015), and are also used in the FORNAX code (Skinner et al. 2019).

In practice, however, reflecting boundary conditions do not appear to pose a major

obstacle for flows across the axis or the origin if the diverging fictitious force terms

are treated appropriately (see below). The reason is that reflecting boundaries

merely slightly degrade the accuracy of the first cell interfaces away from the origin

and the axis; the fact that velocity components at the coordinate singularity are

(incorrectly) forced to zero on the cell interfaces at r ¼ 0, h ¼ 0, and h ¼ p does not

matter much because these interfaces have a vanishing surface area, so that the

interface fluxes must vanish anyway.

Geometric source terms Another obstacle in spherical polar coordinates is the

occurrence of fictitious force terms in the momentum equation. In terms of the

density q and the orthonormal components vi and gi of the velocity and gravitational

acceleration, the equations read,

oqvr

ot
þ 1

r2
or2qv2r
or

þ 1

r2
or2qvrvh

or
þ 1

r2
or2qvrvu

or
þ oP

or
¼ qgr þ q

v2h þ v2u

r
; ð16Þ

oqvh

ot
þ 1

r sin h

o sin hqvrvh

oh
þ 1

r sin h

o sin hqv2h
oh

þ 1

r sin h

o sin hqvhvu

oh

þ 1

r

oP

oh
¼ qgh þ q

cot hv2u � vrvh

r
;

ð17Þ

oqvu

ot
þ 1

r sin h

oqvrvu

ou
þ 1

r sin h

oqvhvu

ou
þ 1

r sin h

oqv2u

ou
þ 1

r sin h

oP

ou

¼ qgu � q
vrvu þ vhvu cot h

r
;

ð18Þ

where the fictitious force terms are singular at the origin and at the axis. Often

straightforward time-explicit discretization is sufficient for these source terms,

especially in unsplit codes with Runge–Kutta time integration. In a dimensionally

split implementation it can be advantageous to include a characteristic state cor-

rection in the Riemann problem due to (some of the) fictitious force terms (Colella

and Woodward 1984). Time-centering of the geometric source terms can also lead

to minor differences (Fernández 2015).

When stability problems or pronounced axis artifacts are encountered, one can

adopt a more radical solution and transport the Cartesian momentum density qv ¼
3 Broadly speaking, light-bulb simulations manually fix the neutrino luminosities and spectral properties,

or compute them based on simple analytic considerations, and also use simplified neutrino source terms.
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ðqvx; qvy; qvzÞ while still using the components va in the spherical polar basis as

advection velocities, so that the fictitious force terms disappear entirely,

oqv

ot
þ 1

ffiffiffi

c
p

o
ffiffiffi

c
p

qvva

oxa
þrP ¼ qg; ð19Þ

where a 2 fr; h;ug and c ¼ r4 sin2 h is the determinant of the metric. This has been

implemented in the COCONUT-FMT code as one of several options for the solution of

the momentum equation. Transforming back and forth between the spherical polar basis

for the reconstruction and solution of the Riemann problem and the Cartesian com-

ponents for the update of the conserved quantities might appear cumbersome, but in fact

one need not explicitly transform to Cartesian components at all. Instead one only needs

to rotate vectorial quantities from the interface to the cell center when updating the

momentum components in the spherical polar basis. For example, for uniform grid

spacing Dh in the h-direction, the flux difference terms from the h-interfaces j and jþ 1

for updating qvr and qvh in zone jþ 1=2 become

oqvr;jþ1=2

ot

� �

h

¼ cosDh=2½qvrvhDA	j þ sinDh=2½ðqv2h þ PÞDA	j

� cosDh=2½qvrvhDA	jþ1 þ sinDh=2½ðqv2h þ PÞDA	jþ1;

ð20Þ

oqvh;jþ1=2

ot

� �

h

¼ cosDh=2½ðqv2h þ PÞDA	j � sinDh=2½qvrvhDA	j

� cosDh=2½ðqv2h þ PÞDA	jþ1 � sinDh=2½qvrvhDA	jþ1;

ð21Þ

where DA is the interface area and Dh is the grid spacing in the h-direction, which is

assumed to be uniform here. The term for qvu is not modified at all. Apart from

eliminating the fictitious force terms in favor of flux flux terms, this alternative

discretization of the momentum advection and pressure terms also complies with the

conservation of total momentum (although discretization of the gravitational source

term may still violate momentum conservation).

The singularities at the origin and the pole constitute a more severe problem for

relativistic codes using free evolution schemes for the metric, where they can

jeopardize the stability of the metric solver. We refer to Baumgarte et al.

(2013, 2015) for a robust solution to this problem that has been implemented in their

NADA code; they employ a reference metric formulation both for the field equations

and the fluid equations that factors out metric terms that become singular and use a

partially implicit Runge–Kutta scheme to evolve the problematic terms.

Angular momentum conservation A somewhat related issue concerns the violation

of angular momentum conservation in standard finite-volume codes (both with

Eulerian grids and moving meshes). This is a concern especially for problems such

as convection in rotating stars and magnetorotational explosions where rotation

plays a major dynamical role and the evolution of the flow needs to be followed

over long time scales. It is also an issue for question such as pulsar spin-up by

asymmetric accretion, although a post-processing of the numerical angular
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momentum flux can help to obtain meaningful results even when there is a

substantial violation of angular momentum conservation (Wongwathanarat et al.

2013).

The problem of angular momentum non-conservation can be solved, or at least

mitigated, using Discontinuous Galerkin methods (Després and Labourasse 2015;

Mocz et al. 2014; Schaal et al. 2015), which are not currently used in this field

however, and can be avoided entirely in SPH (Price 2012). For a given numerical

scheme, increasing the resolution is usually the only solution to minimize the

conservation error, but in 3D spherical polar coordinates (and in 2D cylindrical

coordinates), one can still ensure exact conservation of the angular momentum

component Lz along the grid axis by conservatively discretizing the conservation

equation for qvur sin h,

oqvur sin h

ot
þ 1

r sin h

oqvrvur sin h

ou
þ 1

r sin h

oqvhvur sin h

ou

þ 1

r sin h

oqv2ur sin h

ou
þ oP

ou
¼ qgur sin h;

ð22Þ

instead of Eq. (18). Incidentally, this angular-momentum conserving formulation

emerges automatically in GR hydrodynamics in spherical polar coordinates if one

solves for the covariant momentum density components as in the COCONUT code

(Dimmelmeier et al. 2002). However, as a price for exact conservation of Lz, one

occasionally encounters very rapid rotational flow around the axis, and enforcing

conservation of only one angular component may add to artificial flow anisotropies

due to the spherical polar grid geometry. Moreover, this recipe cannot be used for

Yin–Yang-type overset spherical grids or for non-orthogonal spherical grids. If

angular momentum conservation is a concern, one can, however, resort to a com-

promise by conservatively discretizing the equations for qvhr and qvur,

oqvhr

ot
þ 1

r sin h

o sin hqvrvhr

oh
þ 1

r sin h

o sin hqv2hr

oh
þ 1

r sin h

o sin hqvhvur

oh

þ oP

oh
¼ qghr þ q

cot hv2u

r

ð23Þ

oqvur

ot
þ 1

r sin h

oqvrvur

ou
þ 1

r sin h

oqvhvur

ou
þ 1

r sin h

oqv2ur

ou
þ 1

sin h

oP

ou

¼ qgur � q
vhvu cot h

r
;

ð24Þ

which eliminates some of the fictitious force terms. This sometimes considerably

improves angular momentum conservation for all angular momentum components

and works for any spherical grid. Figure 3 illustrates the difference between the

standard form of the fictitious force term and the alternative form in Eqs. (23,24) for

a simulation of oxygen shell convection in a rapidly rotating gamma-ray burst

progenitor.
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2.1.2 Challenges of subsonic turbulent flow

In the final stages of massive stars one encounters a broad range of flow regimes.

The convective Mach number, i.e., the ratio of the typical convective velocity to the

sound speed, during the advanced convective burning stages is fairly low, ranging

from � 10�3 or less (Cristini et al. 2017) to � 0:1–0.2 in the innermost shells at the

onset of collapse (Collins et al. 2018). The flow is highly turbulent with Reynolds

numbers of order 1013–1016. During the supernova, one finds convective Mach

numbers from a few 10�2 in PNS convection to � 0:4 (Müller and Janka 2015;

Summa et al. 2016) in the gain region around shock revival, and as the shock

propagates through the envelope, the flow becomes extremely supersonic with Mach

numbers of up to several 102. The flow in unstable regions is typically highly

turbulent. In the gain region, one obtains a nominal Reynolds number of order 1017

based on the neutron viscosity (Abdikamalov et al. 2015), but non-ideal effects of

neutrino viscosity and drag play a role in the environment of the PNS (Burrows and

Lattimer 1988; Guilet et al. 2015; Melson et al. 2020). In the outer regions of the

PNS convection zone neutrino viscosity keeps the Reynolds number as low as

� 100 during some phases (Burrows and Lattimer 1988), and in the gain region

drag effects are still so large that the flow cannot be assumed to behave like ordinary

high-Reynolds number flow (Melson et al. 2020). Later on, as the shock propagates
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Fig. 3 Profiles of the mass-weighted, spherically-averaged specific angular momentum hji in 3D

simulations of convective oxygen shell burning in a rapidly rotating gamma-ray burst progenitor with an

initial helium core mass of 16M� from Woosley and Heger (2006). The red and blue curves show the

angular momentum distribution after a simulation time of 522 s (about 15 convective turnovers) for the

standard formulation (red) of the fictitious force terms in Eqs. (17,18) and for the alternative formulation

(blue) in Eqs. (23,24). The initial angular momentum profile is shown in black. The alternative

formulation reduces the violation of global angular momentum conservation from 20% to 7%. However,

for the standard formulation the effects of angular momentum non-conservation are much bigger locally

than suggested by the global conservation error. The fictitious force terms proportional to vr lead to a

considerable loss of angular momentum near the reflecting boundaries, even though the angular

momentum flux through the boundaries is exactly zero, and there is a spurious increase of angular

momentum at the bottom of the convective oxygen burning shell outside the mass coordinate m ¼ 2:7M�
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through the envelope and mixing instabilities develop, neutrino drag becomes

unimportant, and the flow is again in the regime of very high Reynolds numbers.

Both the vast range in Mach number and the turbulent nature of the flow present

challenges for the accuracy and robustness of numerical simulations. While even

relatively simple HRSC schemes can deal with Mach numbers of MaJ1 with

aplomb at reasonably high resolution, they can become excessively diffusive at low

Mach number because of spurious acoustic waves arising from the discontinuities in

the reconstruction (Guillard and Murrone 2004; Miczek et al. 2015). Moreover, the

acoustic time step constraint in explicit finite-volume codes becomes excessively

restrictive at low Mach number compared to the physical time scales of interest.

These problems can be dealt with by using various low-Mach number approxima-

tions, e.g., the anelastic approximation as in Glatzmaier (1984), or more general

formulations as in the MAESTRO code of Nonaka et al. 2010, or by a time-implicit

discretization of the full compressible Euler equations (Viallet et al. 2011; Miczek

et al. 2015). However, few studies (Kuhlen et al. 2003; Michel 2019) have used

such methods to deal with low-Mach number flow in the late stages of convective

burning massive stars as yet; they have been employed more widely to study, e.g.,

the progenitors of thermonuclear supernovae (Zingale et al. 2011; Nonaka et al.

2012)

Part of the reason is that advanced HRSC schemes remain accurate and

competitive down to Mach numbers of 10�2 and below depending on the

reconstruction method and the Riemann solver. Although it is impossible to decide a

priori whether a particular choice of methods is adequate for a given physical

problem, or what its resolution requirements are, it is useful to be aware of strengths

and weaknesses of different schemes in the context of subsonic turbulent flow.

Unfortunately, our discussion of these strengths and weaknesses must remain rather

qualitative because very few studies in the field have compared the performance of

different Riemann solvers and reconstruction schemes in full-scale simulations and

not only for idealized test problems.

Riemann solvers For supernova simulations with Godunov-based codes, a variety of

Riemann solvers are currently used. Newtonian codes typically opt either for a

(nearly) exact solution of the Riemann problem following Colella and Glaz (1985)4

or for approximate solvers that at least take the full wave structure of the Riemann

problem into account such as the HLLC solver (Toro et al. 1994). On the other

hand, the majority of relativistic simulations still resort to the HLLE solver (Einfeldt

1988) because of the added complexity of full-wave approximate Riemann solvers

for GR hydrodynamics; exceptions include the COCONUT code which routinely uses

the relativistic HLLC solver of Mignone and Bodo (2005), the COCONUT

simulations of Cerdá-Durán et al. (2005) using the Marquina solver (Donat and

Marquina 1996), and the convection simulations with the WHISKEYTHC code

(Radice et al. 2016), which uses a Roe-based flux-split scheme.

4 The solver of Colella and Glaz (1985) is not exact in the strict sense because it involves a local

linearization of the equation of state.
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The use of simpler solvers in GR simulations is a concern because one-wave

schemes behave significantly worse than full-wave solvers in the subsonic regime.

The problem of excessive acoustic noise from the discontinuities introduced by the

reconstruction is exacerbated because solvers like HLLE essentially have these

discontinuities decay only into acoustic waves. This results in stronger numerical

diffusion, but can also create artificial numerical noise because the diffusive terms

in the HLLE or Rusanov flux can generate spurious pressure perturbations from

isobaric conditions. While higher-order reconstruction can beat down the numerical

diffusion for smooth flows, a strong degradation in accuracy is unavoidable in

turbulent flow with structure on all scales.

Few attempts have as yet been made to quantify the impact of the more diffusive

one-wave solvers in supernova simulations. In an idealized setup, the problem was

addressed by Radice et al. (2015), who conducted simulations of stirred isotropic

turbulence with solenoidal forcing with a turbulent Mach number of Ma� 0:35, two
different Riemann solvers (HLLE vs. HLLC), and different reconstruction methods

and grid resolutions. Even when using PPM reconstruction, they still found

substantial differences between the HLLE and HLLC solver in the spectral

properties of the turbulence with the HLLE runs requiring about 50% more zones to

achieve an equivalent resolution of the turbulent cascade to HLLC. Although it is

not easy to extrapolate from the idealized setup of Radice et al. (2015) to core-

collapse supernova simulations, one must clearly expect resolution requirements to

depend sensitively on the Riemann solver. This is also illustrated by 2D supernova

simulations comparing the HLLE and HLLC solver using the COCONUT-FMT code

as shown in Fig. 4: starting from the initial seed perturbations, the HLLC model

shows a faster growth of large-scale SASI shock oscillations during its linear phase

and earlier emergence of parasitic instabilities (see Sect. 4.4 for the physics behind

the SASI) due to the smaller amount of numerical dissipation. The evolution of the

shock differs significantly during the first 100ms of SASI activity, although the

models become similar in terms of shock radius and shock asphericity later on.

However, even then HLLC run consistently shows a higher entropy contrast and

higher non-radial velocities within the gain region.

Reconstruction methods Similar concerns (not restricted to the low-Mach number

regime) as for the simpler Riemann solvers can be raised about the order of the

reconstruction scheme. There is certainly a clear divide between second-order

piecewise linear reconstruction and higher-order methods like the PPM, WENO

(weighted essentially non-oscillatory Shu 1997), and higher-order monotonicity-

preserving (MP Suresh and Huynh 1997) schemes. In their simulations of forced

subsonic turbulence, Radice et al. (2015) found similar differences between second-

order reconstruction using the monotonized central (MC; van Leer 1977) limiter—

one of the shaper second-order limiters—and runs using PPM or WENO as between

the HLLC and HLLE solver. Again, the lower accuracy of second-order schemes is

often clearly visible in full supernova simulations, which is again illustrated in

Fig. 4 for the same setup as above. Similar to the HLLE run, the simulations using

the MC limiter shows a delayed growth of the SASI and less small-scale structure.
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Comparing the more modern higher-order reconstruction methods is much more

difficult. For smooth problems like single-mode linear waves solutions, going

beyond the original 4th-order PPM method of Colella and Woodward (1984) to

methods of 5th order or higher can substantially reduce numerical dissipation; in the

Fig. 4 Snapshots of the entropy from 2D simulations of the 20M� progenitor of Woosley and Heger

(2007) using the COCONUT-FMT code at post-bounce time of 137ms (top row), 163ms (middle row), and

226ms (bottom row). The left and rights halves of the panels in the left column show the results for the

HLLE and HLLC solver with standard PPM reconstruction. The left and rights halves of the panels in the

right column show the results for second-order reconstruction using the MC limiter and 6th-order

extremum-preserving PPM reconstruction using the HLLC solver
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optimal case, the dissipation decreases with the grid spacing Dx as Dx�q for a qth

order method (Rembiasz et al. 2017). However, the higher-order scaling of the

numerical dissipation cannot be generalised to turbulent flow, because the

dissipation of the shortest realizable modes at the grid scale does not increase as

a higher power of q. Based on similarity arguments, one can work out that the

effective Reynolds number of turbulent flow increases only as Re�Dx�4=3 (Müller

2016) and not as Dxq as one might hope. The reason behind this limitation is that

increasing the order of reconstruction does not increase the maximum wavenumber

kmax of modes that can be represented on the grid, it merely limits numerical

dissipation to a narrow band of wavenumbers below kmax.

For the moderately subsonic turbulent flow in core-collapse supernovae during

the accretion phase, higher-order reconstruction often does not bring any tangible

improvements for this reason. Figure 4 again shows this by comparing runs using

standard 4th-order PPM and the 6th-order extremum-preserving PPM method of

Colella and Sekora (2008). In both cases, the evolution of the shock is very similar,

even though the phases of the SASI oscillations eventually falls out of sync. It is not

obvious by visual inspection that the higher-order method allows smaller structures

to develop. Only upon deeper analysis can small differences between the two

methods be found, for example the model with extremum-preserving reconstruction

maintains a measurably higher entropy contrast in the gain region and a slightly

higher turbulent kinetic energy in the gain region.

There are nonetheless situations where it is useful to adopt extremum-preserving

methods of very high order in global simulations of turbulent flow. First, such methods

open up the regime of low Mach numbers to explicit Godunv-based codes. Using their

APSARA code, Wongwathanarat et al. (2016) were able to solve the Gresho vortex

problem (Gresho and Chan 1990) with little dissipation down to a Mach number of

10�4 with the extremum-preserving PPM method of Colella and Sekora (2008), which

is about two orders of magnitude better than for the MC limiter (Miczek et al. 2015),

and about one order of magnitude better than for standard PPM.

Modern higher-order methods can also be crucial in certain simulations of mixing

at convective boundaries and nucleosynthesis. In the case of convective boundary

mixing, this has been stressed and investigated by Woodward et al. (2010, 2014),

who achieve higher accuracy for the advection of mass fractions in their PPMSTAR

code by evolving moments of the concentration variables within each cell (which is

somewhat reminiscent of the Discontinuous Galerkin method). They found that this

Piecewise-Parabolic Boltzmann method only requires half the resolution of standard

PPM to achieve the same accuracy (Woodward et al. 2010). Higher-order

extremum-preserving methods may also prove particularly useful for minimizing

the numerical diffusion of mass fractions in models of Rayleigh–Taylor mixing

during the supernova explosion phase, but this is yet to be investigated.

2.1.3 High-Mach number flow

Some of the considerations for subsonic flow carry over to the supersonic and

transsonic flow encountered during the supernova explosion phase where mixing
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instabilities also lead to turbulence, but there are also problems specific to the

supersonic regime.

Sonic points It is well known that the original Roe solver produces spurious expansion

shocks in transsonic rarefaction fans, which needs to be remedied by some form of

entropy fix (Laney 1998; Toro 2009). While other full-wave solvers—like the exact

solver and HLLC—never fail as spectacularly as Roe’s, they are still prone to mild

instabilities at sonic points. Under adverse conditions, these instabilities can be

amplified and turn into a serious numerical problem. In this case, it is advisable to

switch to a more dissipative solver such as HLLE in the vicinity of the sonic point. In

supernova simulations, this problem is sometimes encountered in the neutrino-driven

wind that develops once accretion onto the PNS has ceased. It can also occur prior to

shock revival in the infall region and severely affect the infall downstream of the

instability, especially when nuclear burning is included. In this case, the problem can be

easily overlooked or misidentified because it usually manifests itself as an unusually

strong stationary burning front, which may seem perfectly physical at first glance.

Odd-even decoupling and the carbuncle phenomenon Full-wave solvers like the

exact solver and HLLC are subject to an instability at shock fronts (Quirk 1994;

Liou 2000): for grid-aligned shocks, insufficient dissipation in the direction parallel

to the shock can cause odd-even decoupling in the solution, which manifests itself in

artificial stripe-like patterns downstream of the shock (Fig. 5). When the shock is

only locally tangential to a grid line, this instability can give rise to protrusions,

which is known as the carbuncle phenomenon. In supernova simulations, odd-even

decoupling was first recognized as a problem by Kifonidis et al. (2000), and since

then the majority of supernova codes (e.g., PROMETHEUS, FLASH, COCONUT, FORNAX)

have opted to handle this problem by adaptively switching to the more dissipative

HLLE solver at strong shocks following the suggestion of Quirk (1994). The

CHIMERA code (Bruenn et al. 2018) adopts the alternative approach of a local

oscillation filter (Sutherland et al. 2003), which has the advantage of not degrading

the resolution in the direction perpendicular to the shock, but has the drawback of

allowing the instability to grow to a minute level (which may be undetectable in

Fig. 5 Odd-even decoupling in

a 2D core-collapse supernova

simulation of a 20M� star with

the COCONUT that uses the

HLLC solver everywhere

instead of switching to HLLE at

shocks. The left and right panels

show the radial velocity in units

of the speed of light and the

entropy s in units of kb=nucleon
about 10ms after bounce. The

characteristic radial streaks from

odd-even decoupling are clearly

visible behind the shock
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practice) before smoothing is applied to the solution. The carbuncle phenomenon

can also occur in Richtmyer-type artificial viscosity schemes and be cured by

modifying the artificial viscosity (Iwakami et al. 2008). The carbuncle instability

remains a subject of active research in computational fluid dynamics, and a number

of papers (e.g., Nishikawa and Kitamura 2008; Huang et al. 2011; Rodionov 2017;

Simon and Mandal 2019) have attempted to construct Riemann solvers or artificial

viscosity schemes that avoid the instability without sacrificing accuracy away from

shocks, and may eventually prove useful for supernova simulations.

Kinetically-dominated flow In HRSC codes that solve the total energy equation, one

obtains the mass-specific internal energy e by subtracting the kinetic energy v2=2

from the total energy e. In high Mach-number flow, one has e 
 e and v2=2 
 e,

and hence subtracting these two large terms can introduce large errors in the internal

energy density and the pressure and sometimes leads to severe stability problems. A

similar problem can occur in magnetically-dominated regions in MHD. Sometimes

the resulting stability problems can be remedied by evolving the internal energy

equation

oqe

ot
þr � qevþ Pvð Þ � v � rP ¼ �qv � rUþ Qe þQm � v; ð25Þ

instead of Eq. (3) in regions of high Mach number or low plasma-b. However, in

doing so one sacrifices strict energy conservation, and hence one should apply this

recipe as parsimoniously as possible.

2.2 Treatment of gravity

Convective burning and core-collapse supernovae introduce specific challenges in

the treatment of gravity. In the subsonic flow regimes, one needs to be wary of

introducing undue artifical perturbations from hydrostatic equilibrium and take care

to avoid secular conservation errors. Moreover, in the core-collapse supernova

problem, general relativistic effects become important in the vicinity of the PNS.

2.2.1 Hydrostatic balance and conservation properties

For nearly hydrostatic flow, one has rP � �qrU, but this near cancellation is not

automatically reflected in the numerical solution when using a Godunov-based

scheme. Instead, the stationary numerical solution may be one with non-zero

advection terms that are exactly (but incorrectly) balanced by the gravitational

source term (Greenberg and Leroux 1996; LeVeque 1998a). Schemes that avoid this

pathology are called well-balanced. The proper cancellation between the pressure

gradient and the gravitational source term is particularly delicate if those two terms

are treated in operator-split steps. Different methods have been proposed to

incoroprate well-balancing into Godunov-based schemes. One approach is to use

piecewise hydrostatic reconstruction (e.g., Kastaun 2006; Käppeli and Mishra

2016). A related technique suggested by LeVeque (1998a) introduces discrete jumps
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in the middle of cells to obtain modified interface states for the Riemann problem

and absorb the source terms altogether.

In practice, these special techniques are not used widely in the field for two

reasons. First, it is not trivial to general these schemes to achieve higher-order

accuracy. Second, one already obtains a very well-balanced scheme by combing

higher-order reconstruction, an accurate Riemann solver, and unsplit time integra-

tion. For split schemes, one can ensure a quite accurate cancellation of the pressure

gradient and the source term by including a characteristic state correction as

described by Colella and Woodward (1984) for the original PPM method.

Nevertheless, the cancellation of the pressure gradient and the gravitational

source term in hydrostatic equilibrium is usually not perfect and typically leads to

minute odd-even noise in the velocity field that is almost undetectable by eye.

Computing the gravitational source term qv � rU in the energy equation using such

a noisy velocity field v can lead to an appreciable secular drift of the total energy.

For example, spurious energy generation can stop proto-neutron star cooling on

simulation time scales longer than a second (Müller 2009). This problem can be

circumvented by discretizing the energy equation starting from the form (Müller

et al. 2010)

oqðeþ v2=2þ UÞ
ot

r � qvðeþ v2=2þ UÞ þ Pv
� �

¼ q
oU

ot
: ð26Þ

This guarantees exact total energy conservation if the time derivative of the grav-

itational potential is zero. Under certain conditions, exact total energy conservation

can be achieved for a time-dependent self-gravitating configuration as well, and the

method can also be generalized to the relativistic case.

In principle, one can also implement the gravitational source term (in the

Newtonian approximation) in the momentum equation in a conservative form by

writing qg as the divergence of a gravitational stress tensor (Shu 1992). Such a

scheme has been implemented by Livne et al. (2004) in the VULCAN code. However,

this procedure involves a more delicate modification of the equations than in case of

the energy source term, because it essentially amounts to replacing q by the finite-

difference representation of the Laplacian ð4pGÞ�1
DU in the momentum source

term. Unless the solution for the gravitational potential is extremely accurate, large

acceleration errors may thus arise. Moreover, this approach does not work for

effective relativistic potentials (see Sect. 2.2.2). For these reasons, the conservative

form of the gravitational source term has not been used in practice in other codes.

Even though the issue of momentum conservation is of relevance in the context of

neutron star kicks, conservation errors do not seem to affect supernova simulation

results qualitatively in practice, and post-processing techniques can be used to infer

neutron star velocities from simulations with good accuracy (Scheck et al. 2006).

2.2.2 Treatment of general relativity

In core-collapse supernova simulations, the relativistic compaction of the proto-

neutron star reaches GM=Rc2 ¼ 0:1–0.2 even for a normal PNS mass M and a
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somewhat extended radius R of the warm PNS. Infall velocities of 0.15–0.3c are

encountered. Hence general relativistic (GR) and special relativistic effects are no

longer negligible, though the latter is more critical for the treatment of the neutrino

transport than for the hydrodynamics. For very massive neutron stars, cases of black

hole formation, or jet-driven explosions, relativistic effects can be more

pronounced.

A variety of approaches is used in supernova modelling to deal with relativistic

effects. Purely Newtonian models have now largely been superseded. Using

Newtonian gravity results in unphysically large PNS radii, and, as a consequence,

lower neutrino luminosities and mean energies and worse heating heating conditions

than in the relativistic case, even though the stalled accretion shock radius is larger

than in GR before explosion (Müller et al. 2012b; Kuroda et al. 2012; Lentz et al.

2012; O’Connor and Couch 2018b). As an economical alternative, one can retain

the framework of Newtonian hydrodynamics but incoroprate relativistic corrections

in the gravitational potential based on the TOV equation (Rampp and Janka 2002).

This approach was subsequently refined by Marek et al. (2005), Müller et al. (2008)

to account for some inconsistencies between the use of Newtonian hydrodynamics

and a potential based on a relativstic stellar structure equation, but full consistency

can never be achieved in the pseudo-Newtonian approach. In the multi-D case, the

relativistic potential replaces the monopole of the Newtonian potential, while higher

multipoles are left unchanged. From a purist point of view, this pseudo-Newtonian

approach is delicate because one sacrifices global conservation laws for energy and

momentum (which would still hold in a more complicated form in an asymptotically

flat space in full GR). In practice, this is less critical; in PNS cooling simulations by

Hüdepohl et al. (2010) the total emitted neutrino energy was found to agree with the

neutron star binding energy (computed from the correct TOV solution) to within 1%

for the modified TOV potential (Case A) of Marek et al. (2005).

If the framework of Newtonian hydrodyanmics is abandoned, one may still opt

for an approximate method to solve for the space-time metric as in the COCONUT

code (Dimmelmeier et al. 2005; Müller et al. 2010; Müller and Janka 2015). Elliptic

formulations such as CFC (conformal flatness conditions, Isenberg 1978) and xCFC

(a modification of CFC for improved numerical stability; Cordero-Carrión et al.

2009) can be cheaper and more stable than free-evolution schemes based on the 3 ?

1 decomposition (for reviews of these techniques, see Baumgarte and Shapiro 2010;

Lehner and Pretorius 2014) and maximally constrained schemes (Bonazzola et al.

2004; Cordero-Carrión et al. 2012). However, full GR supernova simulations

without the CFC approximation and with multi-group transport have also become

possible recently (Roberts et al. 2016; Ott et al. 2018; Kuroda et al. 2016b, 2018).

Although CFC remains an approximation, it is exact in spherical symmetry, and

comparisons with free-evolution schemes have shown excellent agreement in the

context of rotational collapse have shown excellent agreement even for rapidly

spinning progenitors (Ott et al. 2007).

Comparisons of pseudo-Newtonian and GR simulations have demonstrated that

using an effective potential is at least sufficient to reproduce the PNS contraction,

the shock evolution, and the neutrino emission in GR very well (Liebendörfer et al.

2005; Müller et al. 2010, 2012b). While Müller et al. (2012b) still found better
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heating conditions in the GR case than with an effective potential in their 2D

models, this comparison was not fully controlled in the sense that two different

hydro solvers were used, and the effect was related to subtle differences in the PNS

convection zone, which may well be related to factors other than the GR treatment

(cf. Sect. 4.7). Further code comparisons are desirable to resolve this. The pseudo-

Newtonian approach, does, however, systematically distort the eigenfrequencies of

neutron star oscillation modes (Müller et al. 2008). In particular, the frequency of

the dominant f-/g-mode seen in the gravitational wave spectrum is shifted up by

15–20% compared to the correct relativistic value (Müller et al. 2013).

2.2.3 Poisson solvers

In the Newtonian approximation, the gravitational field is obtained by solving the

Poisson equation

DU ¼ 4pGq: ð27Þ

In constrained formulations of the Einstein equations like (x)CFC, one encounters

non-linear Poisson equations.

In simulations of supernovae and the late convective burning stages, the density

field usually only deviates modestly from spherical symmetry and is not

exceedingly clumpy (except in the case of mixing instabilities in the envelope

during the explosion phase when self-gravity is less important to begin with). For

this reason, the usual method of choice for solving the Poisson equation (even in

Cartesian geometry) is to use the multipole expansion of the Green’s function

(Müller and Steinmetz 1995). Typically, no more than 10–20 multipoles are needed

for good accuracy, and very often only the monopole component is retained. Other

methods have been used occasionally, though, such as pseudospectral methods

(Dimmelmeier et al. 2005) and finite-difference solvers (e.g., Burrows et al. 2007b),

and the FFT (Hockney 1965; Eastwood and Brownrigg 1979) is a viable option for

Cartesian simulations.

Although it yields accurate results at fairly cheap cost, some subtle issues can

arise with the multipole expansion. When projecting the source density onto

spherical harmonics Y‘m to obtain multipole components q̂‘m ¼
R

Y�
‘mq dX, a naive

step-function integration can lead to a self-potential error (Couch et al. 2013) and

destroy convergence with increasing mulitpole number N‘. This can be avoided

either by performing the integrals over spherical harmonics Y�
‘m analytically (Müller

1994), or by using a staggered grid for the potential (Couch et al. 2013). The

accuracy of the solution can also be degraded if the central mass concentration

moves away from the center of the grid, which can be cured by off-centering the

multipole expansion (Couch et al. 2013). Problems with off-centred or clumpy mass

distributions can be cured completely if an exact solver is used. In Cartesian

geometry, this can be accomplished econmically using the FFT, and an exact solver

for spherical polar grid using a discrete eigenfunction expansion has recently been

developed as well (Müller and Chan 2019). On spherical multi-patch grids, the

efficient parallelization and computation of integration weights requires some
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thought and has been addressed by Almanstötter et al. (2018) and Wongwathanarat

(2019).

2.3 Reactive flow

Nuclear burning is the principal driver of the flow for core and shell convection in

the late, neutrino-cooled evolutionary stages of supernova progenitors. In core-

collapse supernovae nuclear dissociation and recombination play a critical role for

the dynamics and energetics, and one of the key observables, the mass of 56Ni, is

determined by nuclear burning.

Approaches to nuclear transmutations differ widely between simulation codes,

and range from the assumption of nuclear statistical equilbrium (NSE) everywhere

in some core-collapse supernova models to rather large reaction networks.

Naturally,the appropriate level of sophistication depends on the regime and the

observables of interest. The theory of nuclear reaction networks is too vast to cover

in detail here, and we can only touch a few salient points related to their integration

into hydrodynamics codes. For a more extensive coverage, we refer to textbooks

and reviews on the subject (Clayton 1968; Arnett 1996; Müller 1998; Timmes 1999;

Hix and Meyer 2006; Iliadis 2007).

Burning regimes As stellar evolution proceeds towards collapse, the ratio of the

nuclear time scale to both the sound crossing time scale and convective time scale

decreases, and the nuclear reaction flow involves an increasing number of reactions.

The burning of C, Ne, and to some extent of O is dominated by an overseeable

number of main reaction channels, and the relevant reaction rates are slow

compared to the relevant hydrodynamical time scales. During oxygen burning,

quasi-equilibrium clusters begin to appear and eventually merge into one or two big

clusters during Si burning (Bodansky et al. 1968; Woosley et al. 1973) that are

linked by slow ‘‘bottleneck’’ reactions. For sufficiently high temperatures, NSE is

established and the composition only depends on density q, temperature T, and the

electron fraction Ye and is given the Saha equation. At higher densities during core-

collapse, the assumption of non-interacting nuclei break down, and a high-density

equation of state is required (see Lattimer 2012; Oertel et al. 2017; Fischer et al.

2017, for recent reviews); this regime is not of concern here because the flow can be

treated as non-reactive.

Simple approaches In core-collapse supernova simulations, one sometimes simply

assumes NSE everywhere, which amounts to an implicit release of energy at the

start of a simulation. Although the Si and O shell will still collapse in the wake of

the Fe core, this is somewhat problematic, especially for long-time simulations

where the effect on the infall is bound to be more pronounced. For mitigating

potential artifacts from the inconsistency of the composition and equation of state

with the underlying stellar evolution model, it can be useful to initialise supernova

simulations using the pressure rather than the temperature of progenitor model.

A considerably better and very cheap approach, known as ‘‘flashing’’, is to use a

few key a-elements and non-symmetric iron group nuclei in addition to protons,
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neutrons, and a-particles and burn them instantly into their reaction products and

eventually into NSE upon reaching certain threshold temperatures (Rampp and

Janka 2002). Such an approach can capture the energetics of explosive burning in

the shock and the freeze-out from NSE in neutrino-driven outflows reasonably well,

but only gives indicative results on the composition of the ejected matter. The

choice of the proper NSE threshold temperature TNSEJ5GK can be particularly

delicate, since this depends on the entropy and expansion time scale of the outflow

and can critically affect the degree of recombination in the neutrino-heated ejecta.

For simulations of convective burning, a smooth behavior of the nuclear source

terms is required, but for C, Ne, or O burning, one can still resort to simple fit

formulae and only track the composition of the main fuel and ash if the goal is

merely to understand the dynamics of the flow (e.g., Kuhlen et al. 2003; Jones et al.

2017; Cristini et al. 2016, 2017; Andrassy et al. 2020). Often these source terms (or

also rates in calculations with veritable network) are rescaled if low convective

Mach numbers make simulations in the physical regime unfeasible. This can be

useful for exploring the parameter dependence of flow phenomena, but caution is

required because safe extrapolation to the physical regime may also require a

rescaling of other terms (e.g., thermal diffusivity, neutrino losses).

Reaction networks In 2D, Bazán and Arnett (1997) already conducted simulations of

convective burning with 123 species, but the use of large networks in 3D

simulations is still prohibitively expensive. Modern 3D simulations of convective

burning with the PROMPI (e.g., Meakin and Arnett 2006; Mocák et al. 2018),

PROMETHEUS (Müller et al. 2016b; Yadav et al. 2020), FLASH (Couch et al. 2015) and

3DNSNE (Yoshida et al. 2019) codes have therefore only use networks of 19–25

species consisting of a-elements, light particles, and at most a few extra iron-group

elements. In multi-D supernova simulations with neutrino transport the use of such

networks is feasible (von Groote 2014; Bruenn et al. 2013, 2016; Wongwathanarat

et al. 2017), though they have not been used widely yet. It is critical that such

reduced reaction networks appropriately account for side chains and the effective

reaction flow between light particles (Weaver et al. 1978; Timmes et al. 2000).

Their use is problematic for Si burning which requires networks of more than a

hundred species to accurately capture the quasi-equilibrium clusters and the effects

of deleptonization (Weaver et al. 1978) and for freeze-out from NSE with

considerable neutron excess. Larger networks or special methods for quasi-

equilibrium (Weaver et al. 1978; Hix et al. 2007; Guidry et al. 2013) will be

required for reliable multi-D simulations of convective Si burning.

Coupling to the hydrodynamics Some numerical issues arise when a nuclear

network is coupled to a Eulerian hydrodynamics solver, or even if the composition

is just tracked as a passive tracer. One such problem concerns the conservation of

partial masses, which is guaranteed analytically by a conservation Eq. (4) for each

species i,
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oqXi

ot
þr � ðqXivÞ ¼ _Xi;burn: ð28Þ

This equation can be solved using standard, higher-order finite-volume techniques.

However, the solution also has to obey the constraint

X

Xi ¼ 1; ð29Þ

which is not fulfilled automatically by the numerical solution, unless flat recon-

struction for the mass fractions is employed. One could enforce this constraint by

rescaling the mass fractions to sum up to unity, but this would violate the conser-

vation of partial masses. Plewa and Müller (1999) developed the Consistent Multi-

fluid Advection (CMA) method as the standard treatment to ensure both minimal

numerical diffusion of mass fractions and enforce conservation of partial masses.

This method involves a rescaling and coupling of the interpolated interface values

of the various mass fractions. Plewa and Müller (1999) demonstrated that simple

methods for the advection of mass fractions can easily result in wrong yields by a

factor of a few for some isotopes in supernova explosions.

Another class of problems is related to advection errors and numerical diffusion,

especially at contact discontinuities and shocks, which can lead to artificial

detonations or an incorrect propagation of physical detonations (Colella et al. 1986;

Fryxell et al. 1989; Müller 1998). To ensure that detonations propagate at the

correct physical velocity, nuclear burning should be switched off in shocked zones

(Müller 1998).5 Due to the extreme temperature dependence of nuclear reaction

rates, similar problems can arise away from discontinuities due to advection errors

that produce a small level of noise in the temperature. Artificial detonations can

easily develop in highly degenerate regions and around sonic points. Eliminating

such artifacts may require appropriate switches for pathological zones or very high

spatial resolution (e.g., Kitaura et al. 2006).

3 Late-stage convective burning in supernova progenitors

In the Introduction, we already outlined the motivation for multi-D simulations of

supernova progenitors in broad terms. On the most basic level, multi-D models are

needed to properly intialize supernova simulations and provide physically correct

seed perturbations for the instabilities that develop after collapse and in the

explosion phase. This does not, in fact, presuppose that 1D stellar evolution models

incorrectly predict the overall spherical structure of pre-supernova progenitors; in

principle such an initialization might involve nothing but adding some degrees of

freedom to 1D stellar evolution models without any noticeable change of the

spherically averaged stratification. Historically, however, simulations of late-stage

convection have focused on deviations of the multi-D flow from the predictions of

traditional mixing-length theory (MLT; Biermann 1932; Böhm-Vitense 1958; Weiss

5 Note also the use of front-tracking methods for unresolvable burning fronts (Reinecke et al. 2002;

Leung and Nomoto 2019), which are commonly used for modelling Type Ia supernovae and the O

deflagration in electron-capture supernova progenitors.
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et al. 2004) and not evolved progenitor models up to core collapse, whereas the

initialization problem has only been tackled recently by Couch et al. (2015), Müller

et al. (2016b, 2019), Yadav et al. (2020). In this section, we therefore address the

interior flow in convective regions and boundary effects first before specifically

discussing multi-D pre-supernova models.

3.1 Interior flow

Let us first consider the flow within convectively unstable regions. In MLT as

implemented in modern stellar evolution codes such as KEPLER (Weaver et al. 1978;

Heger and Woosley 2010) and MESA (Paxton et al. 2011), the convective velocity

vconv in such regions is tied to the superadiabaticity of the density gradient as

encoded by the Brunt–Väisälä xBV frequency and the local pressure scale height K,

vconv ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kdq=q g
p

¼ aKxBV; ð30Þ

where a is a tuneable parameter of order unity, and the MLT density contrast dq is

obtained from the the difference between the actual and density gradient oq=or and
the adiabatic density gradient ðoq=oPÞsðoP=orÞ,

dq ¼ Kqx2
BV

g
¼ K

oq

or
� oq

oP

� �

s

oP

or

� 	

¼ K
oq

or
� 1

c2s

oP

or

� �

: ð31Þ

Note that stellar evolution textbooks usually express the convective velocity and

density contrast in terms of the difference between the actual and adiabatic tem-

perature gradient (Clayton 1968; Weiss et al. 2004; Kippenhahn et al. 2012), but

Eqs. (30) and (31) are fully equivalent formulations that often prove less

cumbersome.

Using Eq. (30) for the convective velocity, Eq. (31) for the MLT density

contrast, and the temperature contrast dT ¼ ðoT=o ln qÞPðdq=qÞ, we then obtain the

convective energy flux Fconv (Kippenhahn et al. 2012; Weiss et al. 2004),

Fconv ¼ aeqcP dT vconv

¼ �aaeqcP
oT

o ln q

� �

P

K2x3
BV

g
;

ð32Þ

where cP is the specific heat at constant pressure, and ae is another tunable non-

dimensional parameter. Similarly, by estimating the composition contrast dXi using

the local gradient as dXi ¼ aXK oXi=or, we obtain the partial mass flux for species i

FXi
¼ qvconvdXi ¼ aXKqvconv

oXi

or
; ð33Þ

where aX is again a dimensionless parameter. When comparing 1D stellar evolution

models to each other or to multi-D simulations, one must bear in mind that slightly

different normalization conventions for Eqs. (32) and (33) are in use. Regardless of

these ambiguities, these coefficients are of order unity, for example the KEPLER code
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uses aae ¼ 1=2 and aaX ¼ 1=6 (Weaver et al. 1978), which can be conveniently

interpreted as a ¼ 1, ae ¼ 1=2 and aX ¼ 1=6 (Müller et al. 2016b),

In order to connect more easily to multi-D simulations, it is useful restate the

assumptions and consequences of MLT (without radiative diffusion) in a slightly

different language. Equation (30) can also be written as

v3conv
K

¼ a2 dq=q gvconv; ð34Þ

which we can interpret as a balance between the rate of buoyant energy generation

(a2 dq=q vconv) and turbulent dissipation (�� v3conv=K). Furthermore the work done

by bouyancy must ultimately be supplied by nuclear burning. Using thermodynamic

relations, we find that the potential energy Kdq=q g liberated by bubbles rising or

sinking by one mixing length is of the order of the enthalpy contrast dh of the

bubbles, which roughly equals the integral of the nuclear energy generation rate _qnuc
over one turnover time s ¼ K=vconv,

Kdq=q g� dh� _qnucK=vconv: ð35Þ

Together, Eqs. (34) and (35) lead to a scaling law vconv �ð _qnucKÞ1=3 for the typical

value of vconv in a convective shell.

In nature, balance between nuclear energy generation, buoyant energy genera-

tion, and turbulent dissipation is usually established over a few turnover times. On

longer time scales, active burning shells also adjust by expansion or contraction

until the total nuclear energy generation rate and neutrino cooling rate balance each

other (Woosley et al. 1972), with the nuclear burning dominating in the inner region

and neutrino cooling dominating in the outer region of the shell (Fig. 6).
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Fig. 6 Energy generation rate _qnuc (black), neutrino cooling rate j _qmj (red), and convective velocity vconv
(blue) in an 18:88M� progenitor (1D model, discussed in Yadav et al. (2020) in the innermost shells

about 1 hr before collapse. At this stage, balanced power still obtains. Nuclear energy generation

dominates at the bottom of the shells, while neutrino cooling dominates in the outer layers. The integrated

energy generation and cooling rate for the entire shell, which are given by the areas under the black and

red curve, nearly balance each other
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Because of the extremely strong temperature sensitivity of the burning rates, this

state of balanced power is difficult to maintain when setting up multi-D simulations

and will only be reestablished over a long, thermal time scale.6 In fact, the problem

of thermal adjustment has not yet been rigorously analyzed for any multi-D model

yet, and insufficient simulation time for thermal adjustment is a concern that needs

to be addressed in future. However, the problem of thermal adjustment is mitigated

during the latest phases of shell convection prior to collapse: As the core and the

surrounding shells contract, the nuclear burning rates accelerate to a point where

neutrino cooling and shell expansion by P dV work can no longer re-establish

thermal balance on the contraction time scale of the core, and the state of balanced

power is physically broken.

Two-dimensional simulations of convective burning The first attempts to simulate

late-stage convection in massive stars by Arnett (1994), Bazan and Arnett

(1994, 1998) targeted oxygen burning in a 20M� star in a 2D shellular domain

with the PROMETHEUS code using a small, 12-species reaction network and neutrino

cooling by the pair process. Starting from a simulation on a small wedge of 18� in
Arnett (1994), Bazan and Arnett (1994, 1998) subsequently considered broader

wedges in cylindrical symmetry of up to 135� with a resolution of up to 460
 128

grid cells, as well as cases with meridional symmetry on a 2D grid ðr;uÞ in radius

and longitude. The simulations were invariably limited to short periods (up to 400 s

in Bazan and Arnett 1998) and only a few convective turnover times. One

simulation (Bazán and Arnett 1997) also tackled Si burning in 2D with a large

network of 123 nuclei. These first-generation 2D models invariably found violent

convective motions with Mach numbers of 0.1–0.2 and velocities about an order of

magnitude above the MLT predictions, which cannot be accounted for by the

aforementioned ambiguities in the definition of the dimensionless coefficients. The

convective structures invariably tended to grow to the largest angular scale allowed

by the chosen wedge geometry, and large density perturbations were found at the

convective boundaries. Bazan and Arnett (1998) also stressed the high temporal

variability of the convective flow, going so far as to question whether a steady state

is ever established before collapse. Longer simulations of the same 20M� model

over 1200ms by the same group using the VULCAN code of (Livne 1993) showed the

emergence of a steady state, albeit quite different from the 1D stellar evolution

model due to convective boundary mixing (Asida and Arnett 2000).

To a large extent, the pronounced differences between these first-generation

simulations and MLT predictions stem from the assumption of 2D flow. In 2D

turbulence, the energy cascade is artificially inverted and goes from small to large

scales (Kraichnan 1967). As a result, the flow tends to organise itself into large

vortices, and dissipation occurs primarily in boundary layers (Falkovich et al. 2017;

Clercx and van Heijst 2017).

6 Note that this thermal time scale is more difficult to define than during early burning stages where

radiative diffusion is important.
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Three-dimensional simulations of convective burning Consequently, 3D simulations

of convective burning obtained considerably smaller convective velocities. The first

3D, full 4p solid angle models of O shell convection (along with models of core

hydrogen burning) were presented by Kuhlen et al. (2003) for a 25M� star with and

without rotation. Their simulations used the anelastic pseudospectral code of

Glatzmaier (1984) to follow convection for about 90 turnovers in the non-rotating

case, and approximated the burning and neutrino cooling rates by power-law fits.

Different from the earlier 2D models, they found convective velocities in good

agreement with the 1D MLT prediction in the underlying stellar evolution model,

but the still observed the emergence of large-scale flow patterns.

The use of simplified burning and neutrino loss rates, the anelastic approxima-

tion, and an explicit turbulent diffusivity in Kuhlen et al. (2003) still posed a

concern, which was subsequently addressed by a series of 2D and 3D simulations of

O and C burning (Meakin and Arnett 2006, 2007a, b; Arnett et al. 2009) in wedge-

shaped domains using the compressible PROMPI code and a larger reaction network

(25 species) than in the first generation of 2D models. These simulations confirmed

the significantly less violent nature of 3D convection compared to 2D (Meakin and

Arnett 2006, 2007b), and established good agreement between elastic and anelastic

simulations on the convective velocities and fluctuations of thermodynamic

quantities in the interior of convective zones, though anelastic codes cannot model

fluctuations at convective boundaries very well (Meakin and Arnett 2007a). They

also found balance between buoyant driving and turbulent dissipation (which is

essentially a restatement of the basic assumption of MLT) and observed rough

equipartiton between the radial and non-radial contributions to the turbulent kinetic

energy (Arnett et al. 2009). Their models still revealed differences from MLT in

detail, such as different correlation lengths for velocity and temperature and a non-

vanishing kinetic energy flux (Meakin and Arnett 2007b). Moreover, Meakin and

Arnett (2010) suggested that the implicit identification of the pressure scale height

with the dissipation length in MLT might lead to an underestimation of the

convective velocities. More recent work by the same group has stressed the time

variability of the convective flow (Arnett and Meakin 2011a, b) and criticized the

MLT assumption of quasi-stationary convective velocities. Specifically Arnett and

Meakin (2011b) pointed to strong fluctuations in the turbulent kinetic energy in the

3D oxygen shell burning simulation in a 23M� star by Meakin and Arnett (2007b),

which they attempted to motivate by recourse to the Lorenz model for convection in

the Boussinesq approximation. The connection between the simulations of

convective burning and the Lorenz model for a viscous-conductive convection

problem remains rather opaque, however.

More recent work on 3D convection by other groups has vindicated rather than

undermined MLT as an approximation for the interior of convective zones. Müller

et al. (2016b) conducted a 4p-simulation of O burning in an 18M� star up to the

point of collapse and found that convection reaches a quasi-stationary state after a

few turnovers with only small fluctuations in the turbulent kinetic energy. In line

with MLT and as in Arnett et al. (2009), the average convective velocity is well

described by a balance of turbulent dissipation and buoyant driving in their model,

and is in turn related to the average nuclear energy generation rate _qnuc as
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v3conv
K

� 0:7 _qnuc; ð36Þ

and even the profiles of the radial component of the turbulent velocity perturbation are

in good agreement with the corresponding 1D stellar evolution model. A similar scaling

was reported by Jones et al. (2017) based on idealized high-resolution simulations of O

burning with a simple EoS and parameterized nuclear source terms and by Cristini et al.

(2017) based on simulations of C burning in planar 3D geometry, also with a param-

eterized (and artificially boosted) nuclear source term. Jones et al. (2017) verified this

scaling over a wider range of convective luminosities and Mach numbers by applying

different boost factors to the nuclear generation rate.

Regarding the dominant scales of the convective flow, the recent global 3D shell

burning simulations (Chatzopoulos et al. 2014; Couch et al. 2015; Müller et al.

2016b; Jones et al. 2016; Yadav et al. 2020) confirm the emergence of large eddies

with low angular wavenumber ‘ that stretch across the entire convective zone.

Müller et al. (2016b) verified quantitatively that the peak of the turbulent energy

spectrum in ‘ agrees well with the wavenumber of the first unstable convective

mode at the critical Rayleigh number (Chandrasekhar 1961; Foglizzo et al. 2006),

‘ ¼ pðRþ þ R�Þ
2ðRþ � R�Þ

: ð37Þ

Further simulations that also explored thinner shells (Müller et al. 2019) show a

shift towards higher ‘ and corroborate this scaling as illustrated in Fig. 7. Beyond

this dominant wavenumber, the turbulence exhibits a Kolmogorov spectrum

(Chatzopoulos et al. 2014; Müller et al. 2016b).

Naturally, the modern 3D models still exhibit differences to MLT in detail even

within convective zones. For example, x2
BV often changes sign in the outer parts of a

convective layer in 3D, indicating that the spherically-averaged stratification is

nominally stable (Mocák et al. 2009; Müller et al. 2016b). Müller et al. (2016b)

also remark that the spherically-averaged mass fraction profiles tend to be flatter in

3D than in 1D, due to the usual asymmetric choice aX ¼ ae=3 for the MLT

parameters for material diffusion and energy transport, which probably ought to be

replaced by aX ¼ ae. A rigorous approach to quantify the structure of the convective

flow and the differences between 3D and 1D models is available in the form of

spherical Reynolds decomposition, which has been pursued systematically by

Viallet et al. (2013), Mocák et al. (2014) and Arnett et al. (2015). The mere form of

the Reynolds-averaged equations for bulk (i.e., spherically-averaged) and fluctuat-

ing quantities dictates that such an analysis invariably finds dozens of terms that are

implicitly set to zero in MLT.

Assessment How are we to evaluate these commonalities and differences between

3D simulations and 1D stellar evolution flow? For most purposes, the question is not

whether effects are missing in MLT-based 1D models (since the very purpose of an

approximation like MLT is to retain only the leading effects), but whether those

missing effects matter over secular time scales or have an impact during the

supernova explosion. As we shall discuss in detail in Sect. 4.5, the presence of
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asymmetries in convective shells indeed matters during the supernova, but the fact

is also that MLT and linear perturbation theory appear to predict the relevant

parameters—the velocities and dominant scales of convective eddies—quite well.

As far as the secular evolution of convective burning shells is concerned, there is

little evidence that MLT does not adequately describe the flow within convective

shells. There is typically good agreement in critical parameters for the shell

evolution like the total nuclear burning rate. Many effects that MLT captures

inaccurately and matter critically in models of convective envelopes and stellar

atmospheres—such as the precise deviation of the stratification from superadia-

bticity—are of minor importance for the bulk evolution of massive stars during the

late burning stages. For more tangible consequence of multi-D effects on secular

time scales, we need to consider convective boundaries in Sect. 3.3.
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Fig. 7 Dependence of the dominant eddy scale on the shell geometry illustrated by slices through 3D

supernova progenitor models with convective burning and their turbulent energy spectra. The 2D slices

show the radial velocity at the onset of collapse in progenitors of 12M� with metallicity Z ¼ 0 (top

right), 14:07M� with Z ¼ Z� (top left) , and 12:5M� with Z ¼ Z� (bottom left) with active convective O

shells. The bottom right panel shows turbulent energy spectra Eð‘Þ computed from the radial velocity

around the center of the convective zone. The dominant wavenumber expected from Eq. (37) is indicated

at the top; note that there is an uncertainty because the outer boundaries of the convective zones are fuzzy.

The dotted lines show the slope of a Kolmogorov spectrum. The plots for the 12M� and 12:5M� models

have been adapted from Müller et al. (2019). Image reproduced with permission, copyright by the authors
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3.2 Supernova progenitor models

Simulations to the presupernova stage Only a few models of convective burning

have yet been carried up to the point of core collapse (Couch et al. 2015; Müller

2016; Müller et al. 2016b, 2019; Yadav et al. 2020; Yoshida et al. 2019) because of

several obstacles. In order to accurately follow the composition changes and the

deleptonization in the Fe core and Si shell (i.e., in the NSE and QSE regime) that

drive the evolution towards collapse, reaction networks with well over a hundred

nuclei are required (Weaver et al. 1978). This is feasible in principle, but yet

impractical for well-resolved 3D simulations up to collapse. Furthermore, the initial

transient phase and imperfect hydrostatic equilibrium after the mapping from 1D to

multi-D may artificially delay the collapse.

Two different strategies have been employed to circumvent these problems. In

their simulation of Si burning in a 15M� star for 160 s, Couch et al. (2015) used an

extended 21-species a-network with some iron group nuclei added to model core

deleptonization (Paxton et al. 2011). In order to force the core to collapse, they

increased the electron capture rate on 56Fe by a factor of 50, and their 3D model in

fact reaches collapse more than six times faster than the corresponding 1D stellar

evolution model. This approach is problematic because any modification of the

contraction time scale of the core also affects the burning in the outer shells (Müller

et al. 2016b). Using the same 21-species network, Yoshida et al. (2019) managed to

evolve a 3D simulation of a 25M� star and several 2D simulations of different

progenitors for the last � 100 s without modifying the deleptonization rate. This

suggests that multi-D models can be evolved somewhat self-consistently to collapse

even though the short simulation time is a concern in this particular case, since it

remains unclear to what extent the results are affected by the initial transient.

The 3D studies of O shell burning in various progenitors by Müller (2016),

Müller et al. (2016b), Müller et al. (2019) and Yadav et al. (2020) have followed a

different approach and circumvented the problems of QSE and deleptonization by

excising the major part of the Fe core and Si shell and replacing them with an inner

boundary condition that is contracted according to a mass shell trajectory from the

corresponding 1D stellar evolution model. This approach can be justified for many

progenitors, which have no active convective Si shell, or only weak convection in

the Si shell.

Evolution towards collapse The convective flow in the contracting burning shells

shortly before collapse exhibits few noteworthy differences to the burning in quasi-

hydrostatic shells described in Sect. 3.1. The 3D simulations of the different groups

(Couch et al. 2015; Müller et al. 2016b; Yoshida et al. 2019) all show the

emergence of modes with a dominant wavelength of the order of the shell width

according to Eq. (37), and as far as comparisons have been performed, the

convective velocities remain in good agreement with MLT until shortly before

collapse. It is noteworthy, however, that the convective velocities and Mach

numbers tend to increase significantly during the last minutes before collapse

because the temperature at the base of the inner shells, and hence the burning rate,

increase as they contract in the wake of the core. The convective velocities then
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freeze out shortly before collapse once the burning rate changes on a time scale

shorter than the turnover time scale. This freeze-out seems to be captured

adequately by time-dependent MLT so that 1D stellar evolution models provide

good estimates for the convective velocities at the onset of collapse. Bigger

differences between 1D and 3D progenitor models can occur in case of small

buoyancy barriers between the O, Ne, and C shell, in which case 3D models are

more likely to undergo a shell merger (Yadav et al. 2020).

The evolution of the convective shells during collapse will be discussed in

Sect. 4.5.

Progenitor dependence Since 3D simulations indicate that convective velocities

and eddy scales can be estimated fairly well from 1D stellar evolution models, one

can already roughly outline the progenitor dependence of convective shell

properties as shown by Collins et al. (2018). Considering the active Si and O shell

burning shells at the onset of collapse in over 2000 progenitor models, they find a

number of systematic trends (Fig. 8): the O shell typically has a higher convective

Mach number (0.1–0.3) than the Si shell, where usually Ma\0:1, but there are

islands around 16M� and 19M� in ZAMS mass where the convective Mach

number in the Si shell reaches about 0.15 and is higher than in the O shell. The

highest convective Mach numbers of up to 0.3 are reached in the O shell of low-

mass progenitors with small cores as O burns deeper in the gravitational potential

at higher temperatures. The general trend towards lower convective velocities in

the O shell with higher progenitor and core mass is modified by variations in shell

entropy and the residual O mass fraction at the onset of collapse. Deviations from

this general trend also come about because the various C, Ne, O, and Si shell

burning episodes do not always occur in the same order, and because of shell

mergers.

The O shell is usually thicker and therefore allows large-scale modes with wave

numbers ‘\10 to dominate. Large-scale modes are more prevalent in progenitors

above 16M� with their more massive O shells. The first, thick Si shell is no longer

active at collapse in most cases, and there is typically only a thin convective Si shell
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and O shell (red) predicted from 1D single-star evolution models from the study of Collins et al. (2018).

Image reproduced with permission, copyright by the authors

123

3 Page 38 of 104 B. Müller



(if any) between the Fe core and O shell at collapse, which will dominated by small-

scale motions.

Collins et al. (2018) also find a high prevalence of late shell O–Ne shell mergers

among high-mass progenitors. In about 40% of their models between 16M� and

26M� such a merger was initiated within the last minutes of collapse.

Although some of these trends follow from robust structural features and trends

in the progenitor evolution, these findings will need to be examined with different

stellar evolution codes and may be modified in detail, especially when better

prescriptions for convective boundary mixing on secular time scales become

available.

3.3 Convective boundaries

Mixing by entrainment As one of the most conspicuous features in their first 2D

models of O shell burning, Bazan and Arnett (1994) and Bazán and Arnett (1997)

noted the mixing of considerable amounts of C from the overlying layer into the

active burning region. Although mixing across convective boundaries (sometimes

indistinctly called ‘‘overshooting’’) had already been a long-standing topic in stellar

evolution by then, these results were noteworthy because Bazan and Arnett (1994);

Bazán and Arnett (1997) found much stronger convective boundary mixing (CBM)

than compatible with overshoot prescriptions in 1D stellar evolution models of

massive stars. Second, they observed that the mixed material can burn vigorously

and thereby in turn dramatically affect the convective flow, i.e., there is the

possibility of a feedback mechanism that cannot occur in the case of envelope

convection or surface convection. Meakin and Arnett (2006) investigated this

problem further in a situation with active and interacting O and C shells and

observed strong excitation of p- and g-modes at convective-radiative boundaries,

which, as they suggested, might also contribute to compositional mixing.

Critical steps beyond a mere descriptive analysis of CBM during the late burning

stages were finally taken by Meakin and Arnett (2007a), who established i) the

presence of CBM also in 3D (albeit weaker than in 2D), ii) identified the dominant

process as entrainment driven by shear (Kelvin–Helmholtz and Holmböe)

instabilities at the convective boundary, and iii) verified that the mass entrainment
_M rate obeys a power law that can be motivated theoretically and has been verified

in laboratory experiments of shear-driven entrainment (Fernando 1991; Strang and

Fernando 2001):

_M ¼ 4pAqr2vconvRi
�n
b ; ð38Þ

Here, A and n are dimensionless constants and Rib is the bulk Richardson number,

which can be expressed in terms of the integral scale L of the turbulent flow and the

buoyancy jump Db across the boundary,
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RiB ¼ Db L

v2conv
: ð39Þ

The buoyancy jump can be obtained by integrating the square of the Brunt–Väisala

over the extent of the boundary layer from r1 to r2,

Db ¼
Z

r2

r1

�x2
BV dr: ð40Þ

In the case of a thin boundary layer, this reduces to Db ¼ g dq=q, where dq=q is the

density contrast across the convective interface. From their simulations, Meakin and

Arnett (2007b) determined values of A ¼ 1:06 and n ¼ 1:05 for the power-law

coefficients. Since the work expended to entrain material against buoyancy the force

of buoyancy must be supplied by a fraction of the convective energy flux (an

argument which was independently redeveloped by Spruit 2015), one expects a

value of n ¼ 1 for sufficiently high RiB.

Several subsequent 3D simulations (Müller et al. 2016b; Jones et al. 2017) have

confirmed a value of n � 1 for the scaling law (38). Müller et al. (2016b) found a

significantly smaller value of A � 0:1, however, but this may simply be due to

ambiguities in the definition and measurement of the integral length scale L, which

Müller et al. (2016b) identify with the pressure scale height K, and of the convective

velocity vconv that enters Eq. (39) for the bulk Richardson number. Jones et al.

(2017) expressed the entrainment law slightly differently by a proportionality _M /
_Qnuc to the total nuclear energy generation rate _Qnuc, which is equivalent to Eq. (38)

with n ¼ 1. Their simulations are particularly noteworthy because they employed

sufficiently high resolution to establish the entrainment law up to very high Rib.

Although they do not explicitly state values of Rib, one can estimate that their

models reach up to Rib ¼ 700–1000.

The simulations of Cristini et al. (2017, 2019) are a notable exception as they

find a significantly shallower power law with n ¼ 0:74. This different power-law

slope has yet to be accounted for, but it is important to note that despite the

shallower power law, Cristini et al. (2017, 2019) generally find lower entrainment

rates than Meakin and Arnett (2007b) for the same value of Rib with a much smaller

value of A ¼ 0:05. At Rib � 20, their entrainment rate is actually in very good

agreement with Müller et al. (2016b), and in the region of Rib ¼ 40–300 their data

are consistent with a steeper power law of n � 1. Since Cristini et al. (2017, 2019)

also explore a much broader range in bulk Richardson number than the

aforementioned studies, one possible interpretation could be that i) the value of A

was overestimated in Meakin and Arnett (2007b), and that ii) the low value of

n ¼ 0:74 may be due to a flattening of the entrainment law below Rib ¼ 20–30 for

some physical reasons, and perhaps a slight flattening at Rib[ 200 because of

numerical resolution effects.

Shell mergers Convective boundary mixing can take on a dramatic form when the

buoyancy jump between two shells is sufficiently small for the neighboring shells to
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merge entirely within a few convective turnover times. Such shell mergers have

long been known to occur in 1D stellar evolution models, in particular between O,

Ne, and C shells (e.g., Sukhbold and Woosley 2014; Collins et al. 2018). This is

because balanced power leads to very similar entropies in the O, Ne, and C shells,

and hence small buoyancy jumps between the shells. When nuclear energy

generation and neutrino cooling finally fall out of balance due to shell contraction,

the entropy of the inner (O or Ne) shell frequently increases and overtakes the outer

shell(s), so that such mergers are particularly prevalent shortly before collapse as

pointed out by Collins et al. (2018), who estimated that 40% of stars between 16M�
and 26M� collapse during an ongoing shell merger. Although such mergers occur

in 1D models, they may occur more readily in 3D, and 3D simulations are also

necessary to capture the composition inhomogeneities and nucleosynthesis during

the dynamical merger phase.

Shell mergers have indeed been seen in several recent 3D simulations. Müller

(2016) pointed out the breakout of a thin O shell through an inert, non-convective O

layer into the active Ne burning zone in a 12:5M� star in the last minute before

collapse, which, however, did not lead to a complete shell merger. Mocák et al.

(2018) found a merger between the O and Ne shell in a 23M� model, and noted that

the runaway entrainment leads to a peculiar quasi-steady with two distinct burning

zones for O (at the base) and Ne (further out) within the same convective shell.

However, their simulation only covered five turnover times and showed the merger

occurring during the initial transient phase. Yadav et al. (2020) simulated an O–Ne

shell merger in an 18:88M� over 15 turnover times, and were able to follow the

evolution from the pre-merger phase with a soft, but clearly defined shell boundary

and slow steady-state entrainment through the dynamical merger phase to a partially

mixed post-merger state at the onset of collapse.. They stressed the emergence of

large-scale asymmetries in the velocity field (with extreme velocities of up to

1700 km s�1) and the composition during the merger, although the compositional

asymmetries are already washed out somewhat at the point of collapse.

Impact on nucleosynthesis With multi-D simulations of the late-burning stages

firmly established, it is critical to identify observable fingerprints of additional

convective boundary mixing. The nucleosynthesis yields may provide one such

fingerprint, which has already been discussed by several studies, even though one

can only draw conclusions based on qualitative arguments and on 1D models with

artificially enhanced mixing so far.

Davis et al. (2019) pointed out that the assumptions for convective boundary

mixing can significantly affect the yields of various a-elements (C, O, Ne, Mg, Si),

simply as a consequence of the change in shell structure. However, entrainment and

shell mergers may leave more specific abundance patterns. In their investigation of

O–C shell mergers in 1D Ritter et al. (2018) found significant overproduction of P,

Cl, K, Sc, and possibly p-process isotopes, and argue that the occurrence of shell

mergers may have important consequences for galactic chemical evolution (GCE).

More recently, Côté et al. (2020) considered a Si–C shell merger, for which they

find significant overproduction of 51V and 52Cr, which allows them to strongly

constrain the rate of such events based on observed Galactic stellar abundances.
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This is related to the long-standing realization that the ashes of hydrostatic silicon

burning under neutron-rich conditions cannot be ejected in large quantities because

of GCE constraints (Woosley et al. 1973; Arnett 1996).

Supernova spectroscopy may also help constrain additional convective boundary

mixing and shell mergers may via their nucleosynthetic fingerprints. For example,

the ejection of neutron-rich material from the silicon shell that is mixed out by

entrainment before the explosion would lead to a supersolar Ni/Fe ratio as observed

in some supernovae (Jerkstrand et al. 2015). Mixing of minimal amounts of Ca into

O-rich zones can also have significant repercussions since only a mass fraction of a

few 10�3 in Ca is required for Ca to be the domnant coolant during the nebular

phase and quench O line mission in a shell (Fransson and Chevalier 1989; Kozma

and Fransson 1998). This diagnostic potential of supernova spectroscopy for

convective boundary mixing needs to be explored further in the future, but further

(macroscopic) mixing during the explosion presents a major complication as it is not

straightforward to disentangle the effect of mixing processes prior and during the

explosion.

Secular effect on stellar evolution Evaluating the observational consequences of the

convective boundary mixing seen in 3D models is also difficult because there is still

no rigorous method for treating these processes in 1D stellar evolution codes. A

crude estimate for the shell growth by entrainment can be formulated by noting that

the work required to entrain material with density contrast dq=q against buoyancy

must be no larger than a fraction of the time-integrated convective energy flux

(Spruit 2015; Müller 2016). During the late burning stage, the convective energy

flux is set by the nuclear energy generation rate, and hence one can estimate that the

entrained mass DMentr over the lifetime of a shell with mass Mshell and radius r is

roughly

GM

r

dq

q
DMentr �AMshellDQ; ð41Þ

where A is the dimensionless coefficient in Eq. (38) and DQ is the average Q-value

for a given burning stage (Müller 2016). Based on Eq. (41), Müller (2016) estimates

that O shells could grow by tens of percent in mass by entrainment; for Si shells one

expects a smaller effect, for C shells, the effect may be bigger.

How one can go beyond such simple estimates by using improved recipes for

convective boundary mixing in stellar evolution codes is still an unresolved

question. A common approach, based on the simulations of surface convection by

Freytag et al. (1996), models entrainment as diffusive overshooting with an

exponential decay of the MLT diffusion coefficient outside the convective

boundary. The length scale kOV for the exponential decay can be calibrated against

3D simulations. This approach has been followed by Côté et al. (2020), Davis et al.

(2019) and by many works on additional convective boundary mixing in low-mass

mass stars, but has several issues. Entrainment is a very different process than

diffusive overshoot that operates in a distinct physical regime (high Péclet number),

and hence one should not expect that it can be described by the same formalism

(Viallet et al. 2015). It is also unclear why diffusive overshoot should be applied
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only for compositional mixing in the entrainment regime. The common approach of

expressing kOV by the pressure scale height is also open to criticism because the

relevant length scale should be set by the convective velocities and the buoyancy

jump, so that one would rather expect kOV / v2conv=Db.
Staritsin (2013) proposed an alternative approach of extending convectively

mixed regions with time following the entrainment law (38), which better reflects

the physics of the entrainment process. However, this approach has not been applied

to the late neutrino-cooled burning stages yet (i.e., precisely where entrainment

should operate). It also has some conceptual issues, for example, the entrainment

law (38) obviously breaks down if there is convection on both sides of a shell

interface. Yet another approach for extra mixing in 1D models was followed by

Young et al. (2005), who handle mixing based on the local gradient Richardson

number Ri for shear flows, which is estimated using an elliptic equation for the

amplitudes of waves excited by convective motions (Young and Arnett 2005). This

approach is physically motivated, but is still awaiting (and worthy of) a more

quantitative comparison with 3D simulations beyond the qualitative discussion in

Young and Arnett (2005).

Flame propagation in low-mass progenitors Around the minimum progenitor mass

for supernova explosions, multi-D effects can have a more profound effect than

merely changing shell masses on a modest scale, and may decide about the final fate

of the star. This regime is best exemplified by the electron-capture supernova

channel of super-asymptotic giant branch (SAGB) stars (see Jones et al. 2013;

Doherty et al. 2017; Nomoto and Leung 2017; Leung and Nomoto 2019 for a

broader overview and a discussion of uncertainties). In this evolutionary channel,

the star builds up a degenerate core composed primarily of O and Ne. If this core

grows to 1:38M�, electron captures on Ne and Mg trigger an O deflagration.

Depending on the interplay of deleptonization (which decreases the degeneracy

pressure) and the nuclear energy release, the core either contracts, collapses to a

neutron stars, and explodes as an electron capture supernova, or the core does not

collapse and explodes as a weak thermonuclear supernova (Jones et al. 2016). Since

the flame is turbulent, its propagation needs to be modelled in multi-D, similar to

deflagrations in Type Ia supernovae. Simulations of this problem have been

conducted by Jones et al. (2016), Kirsebom et al. (2019) in 3D and (Leung and

Nomoto 2019; Leung et al. 2020) in 2D. Efforts to improve the nuclear input

physics and explore the sensitivity to the ignition geometry, general relativity, and

flame physics are ongoing (e.g., Kirsebom et al. 2019; Leung et al. 2020).

For slightly more massive stars, one encounters similar situations with

convectively-bounded flames after off-center ignition of O or Si (Woosley and

Heger 2015). Again, multi-D effects may significantly affect the final evolutionary

phase before collapse in this regime, but multi-D simulations of such supernova

progenitors are yet to be carried out (but see Lecoanet et al. 2016 for idealized 3D

simulations relevant to this regime).
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3.4 Current and future issues

Significant progress notwithstanding, multi-D simulations of the late stages of

convective burning still face further challenges. For the evolution towards collapse,

models will eventually need to include a more sophisticated treatment of burning

and deleptonization in the QSE and NSE regime and forgo the current approach of

either using small networks or excising the Fe/Si core. Perhaps an even greater

concern about the conclusions of current multi-D simulations lies with the time-

scale problem, however. No 3D simulations have yet been evolved sufficiently long

to reach the state of balanced power (or to reveal why it would not be reached). This

may have repercussions for turbulent entrainment, which ultimately taps the energy

in turbulent motions and hence cannot be completely disconnected from the energy

budget within a shell.

Moreover, although a few attempts have been made to simulate convection in

rotating shells in 2D (Arnett and Meakin 2010; Chatzopoulos et al. 2016) and 3D

(Kuhlen et al. 2003), multi-D simulations have yet to investigate the angular

momentum distribution and angular momentum transport during the late pre-

supernova stages in a satisfactory manner. Three-dimensional simulations are even

more critical for this purpose than in the non-rotating case since many relevant

phenomena such as (Rossby waves, Taylor-Proudman columns) cannot be modeled

adequately in 2D. Simulations also need to explore a larger parameter space since

the convective dynamics will depend on the Rossby number Ro� vconv=ðXRÞ
(where X is the rotational velocity). Furthermore, the time scales become a bigger

challenge because models need to be run for several rotational periods T ¼ 2pX�1

and several convective turnover times sconv (whichever is longer), which is

problematic since rotation in pre-supernova models is likely slow (e.g., Heger et al.

2005) so that Ro 
 1 and T 
 sconv. On the bright side, multi-D simulations may

reveal much more interesting differences to 1D stellar evolution models: Both

Kuhlen et al. (2003) and Arnett and Meakin (2010) found pronounced differential

rotation developing from a rigidly rotating initial state, and Arnett and Meakin

(2010) suggest that convective shells might adjust to a stratification with constant

angular momentum as a function of radius rather than to uniform rotation as

assumed in stellar evolution models. However, more simulations and more rigorous

analysis is required to investigate these claims.

The problem of rotation can obviously not be solved without including magnetic

fields in the long run. It is well known (e.g., Shu 1992) that the criterion for the

instability of rotating flow becomes less restrictive in the MHD case, and effects

such as the magnetorotational instability (MRI, Balbus and Hawley 1991) or a

small-scale dynamo may enforce a more uniform rotation profile than hydrody-

namic convection alone. But the importance of magnetic fields is not confined to the

case rotating progenitors. Prompted by helioseismic measurements that indicate

smaller convective velocities in the deeper layer of the solar convection zone (Gizon

and Birch 2012; Hanasoge et al. 2012), some simulations of magnetoconvection in

the Sun found a suppression of convective velocities by up to 50% compared to

hydrodynamic simulations due to strong magnetic fields from a small-scale dynamo
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that reach equipartition with the turbulent kinetic energy (Hotta et al. 2015).

Magnetic fields can also inhibit or enhance mixing in shear layers (Brüggen and

Hillebrandt 2001) and may hence affect convective boundary mixing. Thus, there is

still plenty of ground left to explore for simulations of the late burning stages.

4 Core collapse and shock revival

In the Introduction, we already outlined a variety of multi-D effects than can play a

role in reviving the stalled supernova shock as a subsidiary agent to neutrino heating

(i.e., neutrino-driven convection in the gain region, the SASI, and progenitor

asphericities), or also as the main drivers of the explosion (rotation and magnetic

fields). Historically, a number of works have also considered convection in the PNS

interior as a means for precipitating explosions by enhancing the neutrino emission

from the PNS (Epstein 1979; Wilson and Mayle 1988; Burrows and Lattimer 1988;

Wilson and Mayle 1993), but these hopes were not substantiated in subsequent

decades. Nonetheless, convection inside the PNS remains important for various

aspects of the supernova problem such as the neutrino and gravitational wave

signals and the nucleosynthesis conditions in the innermost ejecta.

Since each of these phenomena has proved rich and complex over the years, it is

no longer possible to treat them adequately within a chronological narrative of the

quest for the supernova explosion mechanism. Nevertheless, ascertaining the

explosion mechanism by means of first-principle simulations remains the overriding

concern in supernova theory, and it is therefore still useful to recapitulate the

progress in supernova explosion modelling from the advent of the first 2D models

with a simplified treatment of neutrino heating and cooling in the 1990s (Herant

et al. 1992; Shimizu et al. 1993; Yamada et al. 1993; Janka et al. 1993; Herant

et al. 1994; Burrows et al. 1995; Janka and Müller 1995, 1996). A more detailed

analysis of the individual hydrodynamic phenomena beyond this chronicle of

simulations is then provided in Sects. 4.1–4.7.

Neutrino-driven explosions in 2D Although the 2D simulations of the early and mid-

1990s had shown multi-D effects to be helpful for shock revival, these models did

not utilize neutrino transport on par with the best available methods for 1D

simulations at the time. In a first attempt to better model neutrino heating and

cooling in 2D by using the pre-computed neutrino radiation field from a 1D

simulation with multi-group flux limited diffusion, Mezzacappa et al. (1998) were

unable to reproduce the successful explosions found in earlier 2D models. This led

to a resurgence of interest in accurate methods for neutrino transport, culiminating

in the development of Boltzmann solvers for relativistic (Yamada et al. 1999;

Liebendörfer et al. 2001, 2004) and pseudo-Newtonian simulations (Rampp and

Janka 2000, 2002). The explosion problem was then revisited in 2D using various

types of multi-group neutrino transport from the mid-2000s onwards. Neutrino-

driven explosions were obtained in many of these 2D simulations for a wide range

of progenitors (Buras et al. 2006a; Marek and Janka 2009; Müller et al.

2012b, a, 2013; Janka 2012; Janka et al. 2012; Suwa et al. 2010, 2013; Bruenn
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et al. 2013, 2016; Nakamura et al. 2015; Burrows et al. 2018; Pan et al. 2018;

O’Connor and Couch 2018b), though still with significant differences between the

various simulation codes.

Challenges and successes in 3D Following isolated earlier attempts at 3D modelling

using the ‘‘light-bulb’’ style models of the 1990s (Shimizu et al. 1993; Janka and

Müller 1996), or gray flux-limited diffusion (Fryer and Warren 2002), the role of 3D

effects in the explosion mechanism was finally investigated vigorously in the last

decade, starting again with simple light-bulb models (Nordhaus et al. 2010b; Hanke

et al. 2012; Couch 2013; Dolence et al. 2013). Except for spurious results in

Nordhaus et al. (2010b), these light-bulb models indicated a similar ‘‘explodability’’

in 2D and 3D. However, subsequent 3D models with rigorous neutrino transport

proved more reluctant to explode; indeed the first 3D models of 11:2M�, 20M�,
and 27M� progenitors using multi-group, three-flavour neutrino transport did not

explode at all (Hanke et al. 2013; Tamborra et al. 2014a).

Even though various groups have now obtained explosions in 3D simulations,

shock revival usually occurs later than in 2D, and often requires additional (and

sometimes hypothetical) ingredients to improve the heating conditions or a specific

progenitor structure. For low-mass single-star (Melson et al. 2015b; Müller 2016;

Burrows et al. 2019) and binary (Müller et al. 2018) progenitors just above the iron-

core formation limit, 3D simulations readily yield explosions since the steep drop of

the density outside the iron core implies a rapid drop of the accretion rate onto the

shock after bounce. For more massive stars the record is mixed. For standard, non-

rotating progenitors in the range between 11:2M� and 27M� and unmodified, state-

of-the-art microphysics, no explosions were found in simulations using the VERTEX

code (Hanke et al. 2013; Tamborra et al. 2014a; Melson et al. 2015a; Summa et al.

2018) and the FLASH-M1 code (O’Connor and Couch 2018a). On the other hand, the

Oak Ridge group obtained an explosion for a 15M� star (Lentz et al. 2015) with

their CHIMERA code, and the Princeton group observed shock revival in eleven out of

fourteen models between 9M� and 60M� (Vartanyan et al. 2019b; Burrows et al.

2019; Radice et al. 2019; Burrows et al. 2020) with the FORNAX code. In both cases the

accuracy of the microphysics, the neutrino transport, and gravity treatment appears

comparable to VERTEX. Three-dimensional simulations using other codes (that are

constantly evolving!) are more difficult to compare as they involve simplifications in

the microphysics or transport compared to VERTEX, CHIMERA, and FORNAX, although

some of them compensate for this by higher resolution in real space and energy space

and a better treatment of gravity. At any rate, results obtained with other codes such as

COCONUT-FMT, FUGRA, ZELMANI, and 3DNSNE add to the picture of simulations

straddling the verge between successful shock revival (Takiwaki et al. 2012, 2014;

Müller 2015; Roberts et al. 2016; Chan et al. 2018; Ott et al. 2018; Kuroda et al. 2018)

and failure (Müller et al. 2017a; Kuroda et al. 2018) for standard, non-rotating

progenitors and standard or simplified microphysics.

These different results may simply indicate that the neutrino-driven mechanism

operates close to the critical threshold for explosion in nature. Observations of

supernova progenitors indeed indicate that black hole formation occurs already at

relatively low masses down to to � 15M� for single stars (Smartt et al. 2009;
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Smartt 2015). Since the lack of robust explosions in 3D persists to even lower

masses, and since strongly delayed explosions in 3D may turn out too weak to be

compatible with observations, several groups have explored new avenues towards

more robust explosions. Some of the proposed ideas invoke modifications or

improvements to the microphysics that ultimately lead to improved neutrino heating

conditions, such as strangeness corrections to the neutral-current scattering rate

(Melson et al. 2015a) and muonization (Bollig et al. 2017). Other studies have

explored purely hydrodynamic effects. Among these, Takiwaki et al. (2016), Janka

et al. (2016), Summa et al. (2018) pointed out that rapid progenitor rotation could

be conducive to shock revival even without invoking MHD effects. Another idea

posits that including seed perturbations from the late convective burning stages can

facilitate shock revival. First studied by Couch and Ott (2013) and Müller and Janka

(2015) using parametric initial conditions, this ‘‘perturbation-aided’’ mechanism has

subsequently been explored further using pre-collapse perturbations from 3D

models of the late burning stages, initially with ambiguous results in the leakage

simulations of Couch et al. (2015) and then in a number of 3D simulations using

multi-group neutrino transport (Müller 2016; Müller et al. 2017a, 2019), where it

led to robust explosions over a wider mass range from 11:8M� to 18M� for single

stars.

Neutrino-driven explosion models have thus matured considerably in recent

years, but it would be premature to declare the problem of shock revival solved. The

discrepancies between the results of different groups have yet to be sorted out, and

there is still no ‘‘gold standard’’ among the simulations that combines the best

neutrino transport, the best microphysics, 3D progenitor models, and general

relativity. Moreover, phenomenological models of neutrino-driven explosions

(Ugliano et al. 2012; Pejcha and Thompson 2015; Sukhbold et al. 2016; Müller

et al. 2016a) suggest that a different mechanism is still needed to explain hypernova

explosions with energies above 2
 1051 erg.

Magnetohydrodynamic simulations The mechanism(s) behind hypernovae likely

rely on rapid rotation and strong magnetic fields (Akiyama et al. 2003; Woosley and

Bloom 2006), but the importance of magnetic fields may not end there. There may

be a continuous transition from neutrino-driven explosions to MHD-driven

explosions (Burrows et al. 2007a), and strong magnetic fields may also a role in

non-rotating progenitors as an important driving agent or as a subsidiary to neutrino

heating (Obergaulinger et al. 2014).

Although the ideas of Akiyama et al. (2003) quickly triggered first 2D MHD

core-collapse supernova simulations (e.g., Yamada and Sawai 2004; Sawai et al.

2005; Obergaulinger et al. 2006; Shibata et al. 2006), there is still only a small

corpus of magnetorotational supernova explosion models, especially if we focus on

models of the entire collapse, accretion, and early explosion phase using reasonably

detailed microphysics and disregard parameterized models of relativistic and non-

relativistic jets and of collapsar disks. Burrows et al. (2007a) presented 2D

simulations of magnetorotational explosions of a 15M� progenitor (later followed

by MHD simulations of accretion-induced by collapse in Dessart et al. 2007) with

the Newtonian radiation-MHD code VULCAN and demonstrated the ready emergence
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of jets powered by strong hoop stresses for sufficiently strong initial fields. Burrows

et al. (2007a) made the important point that these non-relativistic jets are a distinctly

different phenomenon from the relativistic jets seen in long gamma-ray bursts

(GRBs), which may be formed several seconds after shock revival.

Like most other subsequent simulations, these models relied on parameterized

initial conditions with artificially strong magnetic fields to mimic the purported fast

amplification of much weaker fields in the progenitor by the magnetorotational

instability (Balbus and Hawley 1991; Akiyama et al. 2003). They also imposed the

progenitor rotation profile by hand. The 2D studies of Obergaulinger and Aloy

(2017, 2020), Bugli et al. (2020) have recently explored variations in the assumed

initial field strength and topology and the assumed rotation profiles more

thoroughly. While they find considerable variation in the outcome of their models,

it is interesting to note that in some instances Obergaulinger and Aloy (2020) even

find magnetorotational explosions for the unmodified rotation profile and magnetic

field strength of two of the 35M� progenitor models from Woosley and Heger

(2006), although it is not perfectly clear what the precise geometry of the field in the

stellar evolution models ought to be.

The imposition of axisymmetry is an even bigger concern in the case of

magnetorotational supernovae than for nuetrino-driven explosion models. Several

3D simulations of MHD-driven explosions have by now been performed, but among

these only Obergaulinger and Aloy (2020) included multi-group neutrino transport,

whereas the others (Winteler et al. 2012; Mösta et al. 2014b, 2018) employed a

leakage scheme. The prospects for successful magnetorotational explosions in 3D

are still somewhat unclear. Mösta et al. (2018) reported the destruction of the

emerging jets by a kink instability, although the jet can apparently be stabilised if

the poloidal field strength is comparable to the toroidal field strength (Mösta et al.

2018). Moreover, the explosion dynamics already depends sensitively on the

assumed initial field geometry; strong dipole fields appear to be required for the

most powerful explosions (Bugli et al. 2020). Given the vast uncertainties

concerning the initial rotation rates, field strengths, and field geometries in the

supernova progenitors, considerably more work is necessary before the magnetoro-

tational mechanism can be considered robust even for a small sub-class of

progenitors. We will therefore focus only on the hydrodynamics of neutrino-driven

explosions in the subsequent discussion.

4.1 Structure of the accretion flow and runaway conditions in spherical

symmetry

Before analyzing the role of multi-D phenomena in core-collapse supernovae in

greater depth, it is expedient to discuss the structure of the supernova core that

emerges once the gain region has formed a few tens of milliseconds after collapse in

an idealized, spherically-symmetric picture as shown in Fig. 9. Our discussion

closely follows the works of Janka (2001), Müller and Janka (2015) and Müller

et al. (2016a) which may be consulted for further details.
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Structure of the accretion flow At this stage, the PNS consists of an inner core of

about 0:5M� (depending on the equation of state) with low entropy, which is

surrounded by an extended mantle of about 1M� that was heated to entropies of

about 6kb=nucleon as the shock propagated through the outer part of the collapsed

iron core and most of the Si shell. The mantle extends out to the neutrinosphere at

high subnuclear densities, where neutrinos on average undergo their last interaction

before escape (for details see Kotake et al. 2006; Janka 2017; Müller 2019b;

Mezzacappa 2020). In the atmosphere immediately outside the neutrinosphere

radius Rm, the pressure P is dominated by non-relativistic baryons, and neutrino

interactions are still frequent enough to act as ‘‘thermostat’’ and maintain a roughly

isothermal stratification, resulting in an exponential density profile (Janka 2001):

q ¼ qm exp �GMmn

rkbTm
1� Rm

r

� �� 	

; ð42Þ

where M is the PNS mass, Rm, Tm, and qm are the neutrinosphere radius, temperature,

and density, and mn is the neutron mass. To maintain rough isothermality with the

neutrinosphere, the accreted matter must cool as it is advected through the atmo-

sphere. Below a density of about 1010 g cm�3, the pressure is dominated by rela-

tivistic electron-positron pairs and photons, and around this point neutrino heating

starts do dominate over neutrino cooling at the gain radius Rg.
7 Since the cooling

and heating rate scale with T6 / P3=2 and LmE
2
m=r

2 in terms of the matter temper-

ature T and the electron-flavor neutrino luminosity Lm and mean energy Em (ap-

propriately averaged over electron neutrinos and antineutrinos), balance between

heating and cooling defines an effective thermal boundary condition for the radia-

tion-dominated gain region further out,
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Fig. 9 Schematic 1D structure of the supernova core after the formation of the gain region, illustrated by

profiles of the density q, pressure P, temperature T (left), radial velocity vr , entropy s, and electron

fraction Ye (right). The profiles are taken from a 1D radiation hydrodynamics simulation of the 20M�
progenitor of Woosley and Heger (2007) at a post-bounce time of 200ms. See text for details

7 Properly speaking, the EoS transition radius between the baryon-dominated and the radiation-

dominated regime and the gain radius are close, but the gain radius is slightly larger (Janka 2001). For

many purposes it is not critical to distinguish them.
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P3=2 / LmE
2
m

R2
g

: ð43Þ

Before shock revival, the stratification between the gain radius is roughly adiabatic

out to the shock,8 resulting in power-law profiles q / r�3 and T / r�1 for the

temperature and density. Ahead of the shock, the infalling material moves with a

radial velocity of jvrj �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

GM=r
p

(i.e., a large fraction of the free-fall velocity), and

the density is given in terms of the mass acrretion rate _M as q ¼ _M=ð4pr2jvrjÞ. In a

quasi-stationary situation, the stalled accretion shock will adjust to a radius Rsh such

that the jump conditions are fulfilled and the post-shock pressure Psh and the pre-

shock ram pressure Pram ¼ qv2r are related by

Psh ¼
b

b� 1
Pram ¼ b

b� 1

_M

4pR2
sh

ffiffiffiffiffiffiffiffi

GM

Rsh

r

/ _MR
�5=2
sh : ð44Þ

Here b is the compression ratio in the shock, which varies from b � 10 early on,

which is slightly larger than the value of b ¼ 7 for an ideal gas with adiabatic index

c ¼ 4=3 because of the dissociation of nuclei in the shock, to b � 4 during the

explosion phase when there is a net release of energy by burning in the shock.

Equation (44) immediately implies that the quasi-stationary accretion shock radius

increases with the post-shock pressure roughly as Rsh / P
2=5
sh . Recognizing that the

heating rate _qheat / LmT
2
m r

�2 and the cooling rate _qcool / T6 / P3=2 balance at the

gain radius, and using the adiabatic stratification in the gain region and the jump

conditions, one can go further and derive that the shock radius scales as (Janka

2012; Müller and Janka 2015)

Rsh /
ðLmT2

m Þ
4=9

R
16=9
g

_M2=3M1=3
; ð45Þ

in spherical symmetry in terms of Lm, Tm, Rg, M and the mass accretion rate _M,

which is related to the density profile of the progenitor (Woosley and Heger 2012;

Müller et al. 2016a).

Conditions for shock revival So far, we have assumed a stationary accretion flow in

this picture. The problem of shock revival is, however, related to the breakdown of

stationary accretion solutions (Burrows and Goshy 1993; Janka 2001), or more

strictly speaking, to the development of non-linearly unstable flow perturbations

(Fernández 2012). The transition to runaway shock expansion can be understood in

terms of a competition of time scales, namely the advection or residence time sadv
that the accreted material spends in the gain region, and the time scale sheat for

unbinding the material in the gain region by neutrino heating (Thompson 2000;

8 This is because neutrino heating does not change the entropy appreciably as material traverses the gain

region as long as the heating conditions are far from critical. Furthermore, mixing reduces the entropy

gradient in 3D once convection or SASI have developed.
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Janka 2001; Thompson et al. 2005; Buras et al. 2006a; Murphy and Burrows 2008).

These can be computed in terms of the binding energy Eg and mass Mg of the gain

region, the mass accretion rate _M, and the volume-integrated heating rate _Qm as

sadv ¼
Mg

_M
; ð46Þ

sheat ¼
jEgj
_Qm

: ð47Þ

Transition to runaway expansion is expected if sadv=sheatJ1, which is borne out by

1D light-bulb simulations with a pre-defined neutrino luminosity (Fernández 2012).

Alternatively, the runaway condition can be expressed in terms of a critical lumi-

nosity Lcrit above which there are no stationary 1D accretion solutions (Burrows and

Goshy 1993). Janka (2012) and Müller and Janka (2015) have pointed out that these

two descriptions are essentially equivalent by converting the time-scale criterion

into a power law for the critical value of the ‘‘heating functional’’ L ¼ LmE
2
m ,

Lcrit ¼ ðLmE2
mÞcrit / ðM _MÞ3=5R�2=5

g : ð48Þ

Other largely equivalent ways to characterize the onset of a runaway instability (at

least in spherical symmetry) are the notion that the Bernoulli parameter reaches zero

somehwere in the gain region around shock revival (Burrows et al. 1995; Fernández

2012), and the antesonic condition c2s[ 3=8GM=r (Pejcha and Thompson 2012),

which is effectively a condition for the flow enthalpy just like the Bernoulli

parameter (Müller 2016).

4.2 Impact of multi-dimensional effects on shock revival

Qualitative description This simple picture is useful for qualitatively understanding

how multi-D effects modify the spherically-averaged bulk structure of the post-

shock flow and hence affect the conditions for shock revival. It is intuitive from

Eq. (44) that increasing the post-shock pressure (e.g., by turbulent heat transfer), or

adding turbulent or magnetic stresses will increase the shock radius and modify

Eq. (45) for the spherically symmetric case. This will then affect the time scales sadv
and sheat and thereby modify the conditions for runaway shock expansion driven by

neutrinos. Moreover, certain multi-D phenomena may also facilitate runaway shock

expansion more directly by dumping extra energy into the gain region, which may

take the form of thermal energy, turbulent kinetic energy, or magnetic energy. This

is, of course, only a coarse-grain interpretation of the effect of multi-D effects,

which needs to be based on a more careful analysis of the underlying hydrodynamic

phenomena.
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The studies from the 1990s also outlined qualitative explanations for the

beneficial role of multi-D effects. Herant et al. (1994) interpreted convection as of

an open-cycle heat engine that continuously pumps transfers energy from the gain

radius (where neutrino heating is strongest) further out into the gain region, and

Janka and Müller (1996) similarly stress the importance of more effective heat

transfer from the gain region to the shock. Herant et al. (1994) argued that large-

scale mixing motions are also advantageous because they continue to channel fresh

matter to the cooling region during the explosion phase so that the neutrino heating

is not quenched when the shock is revived. Finally, Burrows et al. (1995) pointed

out what we now subsume under the notion of turbulent stresses: As the convective

bubbles collide with the shock surface with significant velocities (or in modern

parlance provide ‘‘turbulent stresses’’) and thereby deform and expand it.

Modified critical luminosity Since then, the impact of multi-D effects has been

analyzed more quantitatively. Several studies (Buras et al. 2006a; Murphy and

Burrows 2008; Hanke et al. 2012) showed that the advection time scale sadv is

systematically larger in multi-D, while the onset of runaway shock expansion is still

determined by the criterion sadv=sheat. This suggests that the runaway is still

powered by neutrino heating just as in 1D, and that multi-D effects facilitate

explosions facilitate shock revival by somewhat expanding the stationary shock,

keeping a larger amount of mass in the gain region, and thereby increasing the

heating efficiency.9 To a lesser extent, mixing also reduces the binding energy of the

gain region (Müller 2016), but this appears to be of secondary importance for shock

revival.

Building on the 1D picture from Sect. 4.1, the increase of the quasi-stationary

shock radius can be understood as the consequence of additional ‘‘turbulence’’10

terms that arise in a spherical Reynolds or Favre decomposition of the flow, whose

importance can be gauged by the square of the turbulent Mach number Ma in the

gain region (Müller et al. 2012a). Using light-bulb simulations, Murphy et al.

(2013) demonstrated quantitatively that the inclusion of Reynolds stresses

(‘‘turbulent pressure’’) largely accounts for the higher shock radius in multi-D

models. The critical role of the turbulent pressure was confirmed by Couch and Ott

(2015) using a leakage scheme and by Müller and Janka (2015) with multi-group

neutrino transport.

The resulting effect on the critical luminosity can be estimated by including a

turbulent pressure term11 in Eq. (44), which ultimately leads to (Müller and Janka

2015)

9 Note that this refers to a comparison of multi-D and 1D models for a given set of parameters of the

accretion flow (Lm, Em, M, _M, and Rg. When comparing multi-D and 1D models at the threshold to

explosion (with different Lm and Em), the heating efficiency can be lower in multi-D (Couch and Ott 2015),

but this does not mean that there is a different runaway mechanism (Müller 2016).
10 It is important to stress that ‘‘turbulence’’ is something of a convenient misnomer in this context and

refers to any deviation from quasi-stationary, spherically-symmetric flow. This should be carefully

distinguished from the usual notion of turbulence in high-Reynolds number flow, although the two

concepts are frequently conflated.
11 An alternative approach to account for the effect of the turbulent pressure is to use an effective

adiabatic index c[ 4=3 in the gain region (Radice et al. 2015).
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ðLmE2
mÞcrit / ðM _MÞ3=5R�2=5

g 1þ 4Ma2

3

� ��3=5

¼ ðLmE2
mÞcrit;1D 1þ 4Ma2

3

� ��3=5

;

ð49Þ

where the critical luminosity in 1D, ðLmE2
mÞcrit;1D, is modified by a correction factor

containing the turbulent Mach number in the gain region. Although based on a

rather simple analytic model, Eq. (49) describes shock revival in 2D (Summa et al.

2016) and 3D models (Janka et al. 2016) remarkably well. This suggests that the

critical parameter for increased explodability in multi-D is indeed the turbulent

Mach number, although, as argued by Mabanta and Murphy (2018), the larger

accretion shock radius may not be due to turbulent pressure alone. Even if other

effects such as turbulent heat transport, turbulent dissipation (Mabanta and Murphy

2018), and even turbulent viscosity (Müller 2019a) play a role, one expects a scaling

law similar to Eq. (49) simply because any leading-order correction to the 1D jump

condition (44) from a spherical Reynolds decomposition will scale with Ma2, only

with a slightly different proportionality constant than in Eq. (49). The turbulent

Mach number itself will be determined by the growth and saturation mechanisms of

the non-radial instabilities in the gain region as discussed in the following sections.

4.3 Neutrino-driven convection in the gain region

Convection in the gain region develops because neutrino heating establishes a

negative entropy gradient. In many respects, this ‘‘hot-bubble convection’’

resembles convection on top of a quasi-hydrostatic spherical background structure

as familiar from the earlier phases of stellar evolution, but there are subtle

differences because the instability occurs in an accrretion flow.

Condition for instability Under hydrostatic conditions, the Ledoux criterion for

convective instability can be written as (Buras et al. 2006b),

CL ¼ oq

or
� 1

c2s

oP

or
¼ oq

os

� �

P;Ye

os

or
þ oq

oYe

� �

P;s

oYe

or
[ 0; ð50Þ

in terms of the gradients of density, pressure, entropy s and electron fraction Ye.

Using a local stability analysis for a displaced blob, one finds a growth rate ImxBV,

where the Brunt–Väisälä frequency xBV is defined as

x2
BV ¼ � gCL

q
: ð51Þ

In a stationary accretion flow, the radial derivatives can be expressed in terms of the

time derivatives _s and _Ye and the advection velocity vr,
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CL ¼ 1

vr

oq

os

� �

P;Ye

_sþ oq

oYe

� �

P;s

_Ye

" #

[ 0: ð52Þ

Once the gain region forms around 80–100ms after bounce, the electron fraction

gradient plays a minor role for stability, and the material in the gain region can be

well described as a radiation-dominated gas with P / ðqsÞ4=3 so that

x2
BV ¼ � g _qe

vrc2s
: ð53Þ

This has an important consequence: different from a hydrostatic background, the

stability of a heated accretion flow (or outflow) depends on the sign of the advection

velocity rather than on the profile of the heating function. Using the aforementioned

scaling for the heating rate and assuming a linear velocity profile behind the shock,

we obtain an estimate

x2
BV / GM

R2
g

hLmE2
mi

R2
g

bRsh

GM

� �1=2
Rsh

Rg

� �

: ð54Þ

More importantly, however, advection can stabilize the flow against convection

because perturbations only have a finite time to grow as they cross the gain region as

pointed out by Foglizzo et al. (2006), who demonstrated that instability is regulated

by a parameter v,

v ¼
Z

rsh

rg

ImxBV

jvr j
dr: ð55Þ

Instability should only occur for vJ3. This has indeed been confirmed in a number

of parameterized (Scheck et al. 2008; Fernández et al. 2014; Fernández 2015;

Couch and O’Connor 2014) and self-consistent simulations (Müller et al. 2012a;

Hanke et al. 2013) in 2D and 3D.

Dominant eddy scale Similar to the situation in convective shell burning, the length

scale of the most unstable linear mode is determined by the width of the gain region

according to Eq. (37) (Foglizzo et al. 2006). In 3D this remains the characteristic

length scale of convective eddies during the non-linear saturation stage (e.g., Hanke

et al. 2013). Since the ratio of the shock and gain radius typically lies in the range

Rsh=Rg ¼ 1:5–2 before the heating conditions become close to critical, convection is

characterized by medium-scale eddies with angular wavenumbers ‘ � 4–8 during

the accretion phase (Hanke et al. 2013; Couch and O’Connor 2014). Around and

after shock revival, large-scale modes with ‘ ¼ 1 and ‘ ¼ 2 emerge. By contrast, 2D

simulations of hot-bubble convection tend to develop large-scale (‘ ¼ 1 and ‘ ¼ 2)

vortices during the non-linear stage (Hanke et al. 2012, 2013; Couch 2013; Couch
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and O’Connor 2014) as a result of the inverse turbulent cascade of 2D turbulence

(Kraichnan 1967).

Non-linear saturation The evolution towards shock revival typically proceeds over

sufficiently long time scales for hot-bubble convection to reach a quasi-stationary

state. Using 2D light-bulb simulations, Murphy et al. (2013) first demonstrated that

this quasi-stationary state closely mirrors the situation in stellar convection (cf.

Sect. 3.1), i.e., neutrino heating, buoyant driving, and turbulent dissipation balance

each other (see also Murphy and Meakin 2011), and as a result the convective

luminosity scales with the neutrino heating rate. Alternatively, the quasi-stationary

state can be characterized by the notion of marginal stability; the flow adjusts itself

that such that the v-parameter for the spherically averaged flow converges to hvi �
3 (Fernández et al. 2014). Müller and Janka (2015) showed that these properties of

the non-linear stage result in a scaling law for the convective velocity that is

completely analogous to Eq. (36). In 2D simulations, the velocity perturbations dv

scale as

dv ¼ ð _qmðRsh � RgÞÞ1=3; ð56Þ

in terms of the average mass-specific neutrino heating rate _qm in the gain region. In

3D, the convective velocities are slightly smaller (Müller 2016),

dv ¼ 0:7½ _qmðRsh � RgÞ	1=3: ð57Þ

The smaller proportionality constant in 3D can be motivated by the tendency of the

forward turbulent cascade to create smaller structures, which decreases the dissi-

pation length and increases the dissipation rate of the flow.

Quantitative effect on shock revival Based on these scaling laws for the convective

velocity, Müller and Janka (2015) determined that convective motions should reach

a characteristic squared turbulent Mach number Ma� 0:3–0.45 around the time of

shock revival. Using this value in Eq. (49) for the modified critical luminosity, they

predict a reduction of the critical luminosity by 15–25% due to convection, which is

in the ballpark of the numerical results (Murphy and Burrows 2008; Hanke et al.

2012; Couch 2013; Dolence et al. 2013; Fernández et al. 2014; Fernández 2015)

One might also be tempted to use Eqs. (56) and (57) to explain the lower

explodability of self-consistent 3D models compared to their 2D counterparts. The

nature of the differences between 2D and 3D is more complicated, however, since

the critical luminosity for shock revival is roughly equal in 2D and 3D light-bulb

simulations. Evidently, there are effects that partly compensate for the smaller

convective velocities in 3D in some situations: the forward turbulent cascade

(Melson et al. 2015b) and the different behavior of the Kelvin–Helmholtz instability

in 3D (Müller 2015) affect the interaction between updrafts and downdrafts and can

result in reduced cooling in 3D (Melson et al. 2015b). Moreover, compatible with

earlier studies of the Rayleigh–Taylor instability for planar geometry (Yabe et al.
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1991; Hecht et al. 1995), Kazeroni et al. (2018) found a faster growth of convective

plumes and more efficient mixing in a planer toy model of neutrino-driven

convection. Along similar lines, Handy et al. (2014) appealed to the higher volume-

to-surface ratio of convective plumes in 3D to explain the reduced critical

luminosity in 3D in their light-bulb simulations. It is plausible that these factors

establish a similar critical luminosity threshold for shock revival in light-bulb

simulations, but they do not explain the much more decisive effect of dimension-

ality in self-consistent simulations. One possible explanation lies in the fact that

explosions in self-consistent models usually occur in a short non-stationary phase

with a rapidly decreasing mass accretion rate and neutrino luminosity around the

infall of the Si/O shell interface; under these conditions the more sluggish

emergence of large-scale modes in 3D due to the forward cascade may delay or

inhibit shock revival (Lentz et al. 2015). Moreover, the more rapid response of the

mass accretion rate to shock expansion in 3D (Melson et al. 2015b; Müller 2015)

might be hurtful around shock revival because this effect can reduce the accretion

luminosity and hence undercut neutrino heating before a runaway situation can

develop.

Resolution dependence and turbulence Because of the turbulent nature of neutrino-

driven convection, the spectral properties of the flow and the the resolution

dependence in simulations have received considerable attention in the literature.

Most self-consistent models with multi-group neutrino transport can only afford a

limited resolution (about 1:5�–2� in angle and about 100 zones or less in the gain

region) and do not reach a fully developed turbulent state, with Handy et al. (2014)

going so far as to speak of ‘‘perturbed laminar flow’’ instead. Various authors

(Abdikamalov et al. 2015; Radice et al. 2015, 2016) have argued that considerably

Fig. 10 The advective-acoustic mechanism for the standing accretion shock instability. Upward

propagating acoustic waves (blue) generate vorticity perturbations (red) as they interact with the accretion

shock (orange circle). The vorticity perturbations are advected downward with the accretion flow to the

PNS surface where they generate acoustic waves due to advective-acoustic coupling in the steep density

gradient. Instability for a given mode obtains if the product of the amplitude ratios Qsh and Qr for

between ingoing and outgoing waves at the shock and PNS surface satisfies QshQr[ 1. Image

reproduced with permission from Guilet and Foglizzo (2012), copyright by the authors

123

3 Page 56 of 104 B. Müller



higher resolution is needed to obtain clean turbulence spectra with a developed

inertial range and a Kolmogorov spectrum and raised concerns that a pile-up of

kinetic energy (‘‘bottleneck effect’’) at small scales might affect the overall

dynamics. However, the detailed spectral properties of the flow are usually not critical,

and integral properties of the flow are more important for the impact of convection on

shock revival. The resolution dependence nonetheless remains a concern for the

question of shock revival, as some 3D resolution studies (Hanke et al. 2012;

Abdikamalov et al. 2015; Roberts et al. 2016) found a trend towards decreasing

explodability with increased resolution. Recent work by Melson et al. (2020) resolved

most of these concerns in a resolution study using light-bulb simulations. They

demonstrated that the resolution dependence in Hanke et al. (2012) was a spurious

effect connected to details in their light-bulb scheme, and instead found a trend towards

increased explodability at higher resolution. In rough agreement with Handy et al.

(2014), Melson et al. (2020) found that the overall flow dynamics converges at an

angular resolution of about 1�, which is not far from what most self-consistent

simulations can afford (but one still needs to bear in mind that the resolution

requirements depend on the details of the numerical scheme, cf. Sect. 2.1.2). Melson

et al. (2020) also pointed out that neutrino drag plays a non-negligible role in the gain

region, so that merely increasing the resolution does not add physical realism beyond

numerical Reynolds numbers of a few hundred unless neutrino drag is also included as

a non-ideal effect. Melson et al. (2020) speculate that findings of decreased

explodability with higher resolution in Cartesian 3D models may be explained because

the grid-induced seed asphericities are lower at higher resolution.

4.4 The standing accretion shock instability

Using adiabatic 2D simulations of spherical accretion shocks, the seminal work of

Blondin et al. (2003) demonstrated that another instability, dubbed ‘‘SASI’’

(standing accretion shock instability), can operate in the supernova core even

without a convectively unstable gradient in the gain region. This instability takes the

form of large-scale (‘ ¼ 1 and sometimes ‘ ¼ 2) oscillatory motions of the shock,

and it was immediately realized that it can support shock revival in a similar manner

as convection. In early 2D supernova simulations, the SASI was sometimes

confused with convection because the two phenomena share superficial similarities

like high-entropy bubbles and low-entropy accretion downflows. However, the

SASI is set apart from convection by dipolar (and sometimes quadrupolar) flow.

Foglizzo et al. (2006) pointed out that for the typical ratio between the shock and

gain radius in the pre-explosion phase there are no unstable convective modes with

‘ ¼ 1; 2 in the gain region; instead one finds ‘ � 4–8 according to Eq. (37), and for

v\3 the flow becomes stable against convection altogether without strong

perturbations (see also Sect. 4.3). This implies that a different instability mecha-

nism—the one discovered by Blondin et al. (2003)—must be responsible for the

‘ ¼ 1 and ‘ ¼ 2 modes in supernova models with small ratios Rsh=Rg.

Amplification mechanism The stability of accretion shocks had in fact already been

analyzed earlier in the context of accretion onto compact objects using linear
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perturbation theory (Houck and Chevalier 1992; Foglizzo 2001, 2002), which

provided useful groundwork for identifying the physical mechanism behind the

SASI and explaining the ‘ ¼ 1; 2 nature of the instability from its dispersion

relation. The accepted picture is now that of a vortical-acoustic cycle (Foglizzo

2002; Foglizzo et al. 2007): Shock deformation generates vorticity waves that are

advected towards the PNS surface, and due the deceleration of the flow in the steep

density gradient below the gain region (see Fig. 9), these vorticity waves in turn

generate outgoing sound waves that again couple to acoustic waves at the shock

(Fig. 10). Although a purely acoustic amplification cycle has been considered as

well (Blondin and Mezzacappa 2006), analytical (Laming 2007, 2008; Yamasaki

and Yamada 2007) and numerical (Ohnishi et al. 2006; Scheck et al. 2008;

Fernández and Thompson 2009a, b) studies have on the whole supported the

advective-acoustic cycle, culminating in the work of Guilet and Foglizzo (2012)

who sharpened and summarized the arguments in favor of this amplification

mechanism.

Different from convection, the SASI is an oscillatory instability with a

periodicity TSASI that is set by the sum of the advective and acoustic crossing

times sadv and sac between the shock and the deceleration region (Foglizzo et al.

2007),

TSASI ¼ sadv þ sac ¼
Z rsh

rr

dr

jvrj
þ
Z rsh

rr

dr

cs � jvrj
: ð58Þ

The advective time scale usually dominates, and neglecting a weak dependence on

the PNS mass, one can determine empirically that the period of the ‘ ¼ 1 mode of

the SASI roughly scales as (Müller and Janka 2014),

TSASI ¼ 19ms
Rsh

100 km

� �3=2

ln
Rsh

RPNS

� �

; ð59Þ

where RPNS is the PNS radius. SASI-induced fluctuations in the neutrino emission

(Lund et al. 2010; Tamborra et al. 2013; Müller and Janka 2014; Müller et al. 2019)

and gravitational waves (Kuroda et al. 2016a, 2018; Andresen et al. 2017) could

provide direct observational confirmation for the SASI if this frequency can be

identified in spectrograms of the neutrino or gravitational wave signal.

The growth rate of the SASI is set both by the period TSASI and the quality factor

Q of the amplification cycle (Foglizzo et al. 2006, 2007),

xSASI ¼
ln jQj
TSASI

; ð60Þ

where Q depends on the coupling between vortical and acoustic waves at the shock

and in the deceleration region, and hence on the details of the density profile and the

thermodynamic stratification. Nuclear dissociation and recombination also affect the

SASI growth rate and saturation amplitude (Fernández and Thompson 2009a, b).

Interplay of SASI, convection, and neutrino heating In reality, the SASI grows in an

accretion flow with neutrino heating, and in 2D, it is not trivial at first glance to
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distinguish SASI and convection in the non-linear phase where both instabilities

lead to a similar ‘ ¼ 1 ‘‘sloshing’’ flow. Nonetheless, a clear distinction between a

SASI- and convection-dominated regime already emerged in 2D models using gray

(Scheck et al. 2008) or multi-group (Müller et al. 2012a) neutrino transport, or

simpler light-bulb models (Fernández et al. 2014): Different from convection-

dominated models SASI-dominated models clearly show an oscillatory growth of

the multipole coefficients of the shock surface and coherent wave patterns in the

post-shock cavity in the linear regime, and maintain a rather clear quasi-periodicity

even in the non-linear regime. The distinction between the two different regimes

tends to become more blurred around shock revival, when large-scale convective

modes emerge and the periodicity of the SASI oscillations is eventually broken.

The criterion v � 3 roughly separates the two regimes even though unstable SASI

modes can in principle exist above this value. The reason is likely that convection

destroys the coherence of the waves involved in the SASI amplification cycle

(Guilet et al. 2010) if v[ 3. For v\3, high quality factors ln jQj � 2 can be reached

and result in rapid SASI growth. In terms of PNS parameters and progenitor

parameters, such low values of v\3 are encountered in case of rapid PNS and shock

contraction (Scheck et al. 2008) and appear to occur preferentially in high-mass

progenitors with high mass accretion rates (Müller et al. 2012b), although a detailed

survey of the progenitor-dependence of the v-parameter is still lacking.

Three-dimensional simulations with neutrino transport (Hanke et al. 2013;

Tamborra et al. 2014b; Kuroda et al. 2016a; Müller et al. 2017a; Ott et al. 2018;

O’Connor and Couch 2018a) as well as simplified leakage and light-bulb models

(Couch and O’Connor 2014; Fernández 2015) show an even cleaner distinction

between the SASI- and convection-dominated regimes for several reasons. The

convective eddies remain smaller in the non-linear stage than in 2D because of the

forward cascade, and without the constraint of axisymmetry, the convective flow is

not prone to artificial oscillatory sloshing motions. The SASI, on the other hand,

exhibits a cleaner periodicity prior to shock revival in 3D, and can develop a spiral

mode that is very distinct from convective flow (e.g., Blondin and Mezzacappa

2007; Fernández 2010; Hanke et al. 2013; see also Sect. 5.3 for possible

implications on neutron star birth periods). Self-consistent models show that the

post-shock flow can transition back and forth between the convection- and SASI-

dominated regime as the accretion rate and PNS parameters, and hence the v-

parameter change (Hanke et al. 2013).

Saturation mechanism Guilet et al. (2010) argued that parasitic Kelvin–Helmholtz

and Rayleigh–Taylor instabilities are responsible for the non-linear saturation of the

SASI, and showed that this mechanism can explain the saturation amplitudes in the

adiabatic simulations of Fernández and Thompson (2009b). Assuming that the

Kelvin–Helmholtz instability is the dominant parasitic mode in 3D, one can derive

(Müller 2016) a scaling law for the turbulent velocity fluctuations dv in the saturated

state,
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dv�xSASIðRsh � RgÞ�
ln jQjðRsh � RgÞ

sadv
� lnQjhvrij; ð61Þ

which is in good agreement with self-consistent 3D simulations. Interestingly, this

scaling results in similar turbulent velocities as in the convection-dominated regime

for conditions typically encountered in supernova core (Müller 2016).

The saturation of the SASI can also be understood as a self-adjustment to

marginal stability (Fernández et al. 2014), which is a closely related concept. As the

SASI grows in amplitude, the flow is driven towards hvi � 3, but stays slightly

below this critical value (Fernández et al. 2014).

Effect on shock revival The SASI provides similar beneficial effects as convection to

increase the shock radius and bring the accretion flow closer to a neutrino-driven

runaway, i.e., it generates turbulent pressure, brings high-entropy bubbles to large

radii, channels cold matter towards the PNS, and converts turbulent kinetic energy

thermal energy throughout the gain region by turbulent dissipation. Due to the

different instability mechanism (which feeds on the energy of the accretion flow

directly instead of the neutrino energy deposition), and the different flow pattern

(which affects the rate of turbulent dissipation), the quantitative effect on shock

revival can be different from convection. Using light-bulb simulations Fernández

(2015) indeed found a significantly lower critical luminosity in the SASI-dominated

regime than in the convection-dominated regime and a lower critical luminosity in

3D by � 20% compared to 2D, which he ascribed to the ability of the spiral mode

to store more kinetic energy than sloshing modes in 2D. An even bigger difference

to convective models (albeit with a different and very idealized setup) was found by

Cardall and Budiardja (2015). Self-consistent simulations, on the other hand, have

not found higher explodability in 3D in the SASI-dominated regime (Melson et al.

2015a). The reason for this discrepancy could, e.g., lie in the feedback of shock

expansion on neutrino heating, but is not fully understood at this stage. Cardall and

Budiardja (2015) also observed considerably more stochastic variations in shock

revival in the SASI-dominated regime in their idealized models (i.e., a smeared-out

critical luminosity threshold), but it again remains to be seen whether this is borne

out by self-consistent 3D models, where the SASI oscillations tend to be of smaller

amplitude and shorter period than in Cardall and Budiardja (2015).

4.5 Perturbation-aided explosions

Progenitor asphericities from convective shell burning can aid shock revival by

affecting both the growth and saturation of convection of the SASI. That a higher

level of seed perturbations leads to a faster growth of non-radial instabilities behind

the shock and thereby fosters explosions (as in the early studies of Couch and Ott

2013; Couch et al. 2015) may be intuitive, but appears less important in practice. In

self-consistent simulations, shock revival typically occurs only once convection or

the SASI have already reached the stage of non-linear saturation, and it is rather the

permanent ‘‘forcing’’ by infalling perturbations that matters (Müller and Janka

2015; Müller et al. 2017a). In either case, it is useful to separately consider (a) how
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the initial perturbations in the porgenitor are translated to perturbations ahead of the

shock, and (b) how the infalling perturbations interact with the shock and the post-

shock flow.

Initial state and infall phase Typically, the Si and O shell (and sometimes a Ne

shell) are the only active convective shells that can reach the shock at a sufficiently

early post-bounce time to affect shock revival. As described in Sect. 3.2, these

shells are characterized by Mach numbers Maprog � 0:1 with significant variations

between different shells and progenitors, and can have a wide range of dominant

angular wave numbers ‘. Due to its subsonic nature, the flow is almost solenoidal

with r � ðqvÞ � 0, and density perturbations dq=q�Ma2prog are small within

convective zones. Viewed as a superposition of linear waves, the convective flow

consists mostly of vorticity and entropy waves with little contribution from acoustic

waves.

From analytic studies of perturbed Bondi accretion flows in the limit r ! 0 in a

broader context (Kovalenko and Eremin 1998; Lai and Goldreich 2000; Foglizzo

and Tagger 2000), it is known that such initial perturbations are amplified during

infall, and that acoustic waves are generated from the vorticity and entropy

perturbations. Estimating the pre-shock perturbations for the problem at hand

(Takahashi and Yamada 2014; Müller and Janka 2015; Abdikamalov and Foglizzo

2020) involves some subtle differences, but the upshot is rather simple: Advective-

acoustic coupling generates strong acoustic perturbations ahead of the shock that

scale linearly with the convective Mach number at the pre-collapse stage (Müller

and Janka 2015; Abdikamalov and Foglizzo 2020),

dP=P� dq=q�Maprog: ð62Þ

According to simulations (Müller et al. 2017a) and analytic theory (Abdikamalov

and Foglizzo 2020), this scaling is roughly independent of the wave number ‘.12

Shock-turbulence interaction and forced shock deformation The infalling pertur-

bations affect the shock and the post-shock flow in several ways (Müller and Janka

2015; Müller et al. 2016b). They provide a continuous flux of acoustic and tranverse

kinetic energy into the gain region, and also create post-shock density perturbations

that will be converted into turbulent kinetic energy by buoyancy. Moreover, the

shock becomes deformed due to the anisotropic ram pressure (Fig. 11), which

results in fast lateral flow behind the shock, i.e., in the generation of additional

transverse kinetic energy. Thus, more violent turbulent flow can be maintained in

the gain region, which is conducive to shock revival [cf. Eq. (49)]. If the infalling

perturbations are of large scale, the deformation of the shock creates large and

stable high-entropy bubbles. This is also helpful for shock revival since runaway

shock expansion in multi-D appears to require the formation of such large bubbles

12 If strong acoustic perturbations were present at the pre-collapse stage, these modes with higher ‘
would grow faster during the linear stage (Takahashi and Yamada 2014), but quickly undergo non-linear

damping (Müller and Janka 2015).
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with sufficient buoyancy to rise and expand against the supersonic drag of the

infalling material (Fernández et al. 2014; Fernández 2015).

There is as yet no comprehensive quantitative theory for the interaction of

infalling perturbations with the shock and the instabilities in the gain region, but

several studies have investigated aspects of the problem. Using order-of-magntitude

estimates, Müller et al. (2016b) argued that turbulent motions are primarily boosted

by the action of buoyancy on the injected post-shock density perturbations. This

hypothesis is supported by controlled parameterized simulations of shock-

turbulence interactions in planar geometry (Kazeroni and Abdikamalov 2019).

Müller et al. (2016b) also attempted to derive a correction for the saturation value of

turbulent kinetic energy depending on the convective Mach number Maprog and

wave number ‘ in the progenitor. They predicted a reduction of the critical

luminosity functional Lcrit ¼ ðLmE2
mÞcrit by

dLcrit

Lcrit

� 0:47
Maprog

‘gheatgacc
ð63Þ

in terms of the heating efficiency gheat and the accretion efficiency

gheat ¼ L=ðGM _M=RgÞ. However, the analysis of Müller et al. (2016b) did not

account in detail for the interaction of the infalling perturbations with the shock.

This has been investigated using linear perturbation theory (Takahashi et al. 2016;

Abdikamalov et al. 2016, 2018; Huete et al. 2018; Huete and Abdikamalov 2019).

As a downside, this perturbative approach cannot easily capture the non-linear

interaction of the injected perturbations with fully developed neutrino-driven con-

vection and the SASI, but Huete et al. (2018) recently incorporated the effects of

Fig. 11 Interaction of infalling perturbations with the shock and the post-shock flow, illustrated by

snapshots of the entropy (in units of kb=nucleon, left panel) and the absolute value of the non-radial

velocity (in units of km s�1, right panel) in the 12:5M� model of Müller et al. (2019) at a post-bounce

time of 510ms. The left panel also shows the deformation of the isodensity surface with q ¼
7
 106 g cm�6 (red curve). Due to the infalling density perturbations, the pre-shock ram pressure is

anisotropic and creates a protrusion of the shock. Additional energy is pumped into non-radial motions in

the gain region both because of substantial lateral velocity perturbations ahead of the shock and because

of the oblique infall of material through the deformed shock
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buoyancy downstream of the shock. The more sophisticated treatment of Huete

et al. (2018) predicts a similar effect size as Eq. (63).

Phenomenology of perturbation-aided explosions Whatever its theoretical justifi-

cation, Eq. (63) successfully captures trends seen in 2D and 3D simulations of

perturbation-aided explosions starting from parameterized initial conditions or 3D

progenitor models. Both high Mach numbersJ0:1 and large-scale convection with

‘.4 are required for a significant beneficial effect on the heating conditions (Müller

and Janka 2015). In this case, the perturbations can be the decisive factor for shock

revival as in the 18M� model of Müller et al. (2017a). In leakage-based models

with high heating efficiency early on (Couch and Ott 2013; Couch et al. 2015), the

effect is smaller, especially if the pre-collapse asphericities are restricted to

medium-scale modes as in octant simulations (Couch et al. 2015).

By now, there is a handful of exploding supernova models that use multi-group

neutrino transport and 3D progenitor models (Müller et al. 2017a, 2019). While this

is encouraging, more 3D simulations are needed to determine to what extent

convective seed perturbations generally contribute to robust explosions. At present,

one can nonetheless extrapolate the effect size based on the properties of convective

shells in 1D stellar evolution models using Eq. (63). Analysing over 2000 supernova

progenitors computed with the KEPLER code Collins et al. (2018) predict a

substantial reduction of the critical luminosity due to perturbation by 10% or more

in the mass range between 15M� and 27M�, and in isolated low-mass progenitors.

Below 15M�, the expected reduction is usually 5% or less, which could still make

the convective perturbations one of several important ingredients for robust

explosions. In the vast majority of progenitors, only asphericities from oxygen shell

burning are expected to have an important dynamic effect.

4.6 Outlook: rotation and magnetic fields in neutrino-driven explosions

Earlier on, we already briefly touched simulations of magnetorotational explosion

scenarios and the uncertainties that still beset this mechanism. It is noteworthy that

rotation and magnetic fields could also play a role within the neutrino-driven

paradigm.

Rotationally-supported explosions Since early attempts to study the impact of

rotation on neutrino-driven explosions either employed a simplified neutrino

treatment (e.g., Kotake et al. 2003; Fryer and Warren 2004; Nakamura et al. 2014;

Iwakami et al. 2014) or were restricted to 2D in the case of models with multi-group

transport (Walder et al. 2005; Marek and Janka 2009; Suwa et al. 2010), more

robust conclusions had to wait for 3D simulations with multi-group neutrino

transport (Takiwaki et al. 2016; Janka et al. 2016; Summa et al. 2018). The 3D

simulations indicate that the overall effect of rapid rotation is to support neutrino-

driven explosions. Centrifugal support reduces the infall velocities and hence the

average ram pressure at the shock (Walder et al. 2005; Janka et al. 2016; Summa

et al. 2018). Moreover, 3D neutrino hydrodynamics simulations of rotating models

tend to develop a strong spiral SASI (Janka et al. 2016; Summa et al. 2018). This is
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in line with analytic theory (Yamasaki and Foglizzo 2008) and idealized simulations

(Iwakami et al. 2009; Blondin et al. 2017; Kazeroni et al. 2018), which demon-

strated that rotation enhances the growth rate of the prograde spiral mode and

stabilises the retrograde mode. For sufficiently rapid rotation, an even more violent

spiral corotation instability can occur (Takiwaki et al. 2016). There is also a

subdominant adverse effect, since lower neutrino luminosities and mean energies at

low latitudes close to the equatorial plane are detrimental for shock revival (Walder

et al. 2005; Marek and Janka 2009; Summa et al. 2018), which is particularly

relevant since the explosion tends to be aligned with the equatorial plane in the case

of rapid rotation (Nakamura et al. 2014). Summa et al. (2018) found that the overall

combination of these effects can be encapsulated by a further modification of the

critical luminosity,

ðLmE2
mÞcrit ¼ ðLmE2

mÞcrit;1D 1þ 4Ma2

3

� ��3=5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j2

GMRsh

s

: ð64Þ

Here j is the spherically-averaged angular momentum of the shell currently falling

through the shock. The last factor accounts for the reduced pre-shock velocities, and

the effect of stronger non-radial flow in the gain region is implicitly (but not

predictively) accounted for in the turbulent Mach number.

Magnetic fields without rotation Given the expected pre-collapse spin rates, rotation

is unlikely to have a major impact in the vast majority of supernova explosions. It is

harder to exclude a significant role of magnetic fields a priori. Even if the progenitor

core rotates slowly and does not have strong magnetic fields, convection and the

SASI might furnish some kind of turbulent dynamo process that could generate

dynamically relevant fields in the gain region. There could also be other processes to

provide dynamically relevant magnetic fields, e.g., the accumulation of Alfvén

waves at an Alfvén surface (Guilet et al. 2011) or the injection of Alfvén waves

generated in the PNS convection zone (Suzuki et al. 2008).

The simulations available so far do not suggest that sufficiently high field

strengths can be reached by a small-scale turbulent dynamo. In idealized 2D and 3D

simulations of Endeve et al. (2010, 2012), the SASI indeed drives a small-scale

turbulent dynamo, and strong field amplification occurs locally up to equipartition

and super-equipartition field strengths, especially when a strong spiral mode

develops. On larger scales, the magnetic field energy remains well below

equipartition, however, and does not become dynamically important. The total

magnetic energy in the gain region remains one order of magnitude smaller than the

turbulent kinetic energy, and the field does not organize itself into large-scale

structures. The situation is similar in the 2D neutrino hydrodynamics simulations of

non-rotating progenitors of Obergaulinger et al. (2014) for initial field strengths of

up to 1011 G, with even lower ratios between the total magnetic and turbulent kinetic

energy in the gain region. Only for initial field strengths of � 1012 G, which yields

magnetar-strength fields after collapse, do Obergaulinger et al. (2014) find that

magnetic fields become dynamically important and accelerate shock revival. If the
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fossil field hypothesis for magnetars is correct and the fields of the most strongly

magnetized main-sequence stars translate directly to supernova progenitor and

neutron star fields by flux conservation (Ferrario and Wickramasinghe 2006), such

conditions for magnetically-aided explosions might be still realized in nature in a

substantial fraction of core-collapse events.

Ultimately, a thorough exploration of resolution effects and initial field

configurations in the convection- and SASI-dominated regime will be required in

3D to confidently exclude a major role of magnetic field in weakly magnetized,

slowly rotating progenitors. First tentative results from 3D MHD simulations with

neutrino transport (Fig. 12) suggest a picture of fibril flux concentrations with

equipartition field strengths, and sub-equipartition fields in most of the volume, akin

to the situation in solar convection (e.g., Solanki et al. 2006).

4.7 Proto-neutron star convection and LESA instability

Prompt convection Convective instability also develops inside the PNS. As already

recognized in the late 1980s (Bethe et al. 1987; Bethe 1990), a first episode of

‘‘prompt convection’’ occurs within milliseconds after bounce around a mass

coordinate of � 0:8M� as the shock weakens and a negative entropy gradient is

established. The negative entropy gradient is, however, quickly smoothed out, and

the convective overturn has no bearing on the explosion mechanism, although it can

leave a prominent signal in gravitational waves (see reviews on the subject; Ott

2009; Kotake 2013; Kalogera et al. 2019).

Fig. 12 Entropy s in kb=nucleon (left panel) and the logarithm log10 PB=Pgas of the ratio between the

magnetic pressure PB and the gas pressure Pgas (right panel) in a 3D simulation (left half of panels) and a

2D simulation (right half of panels) of the slowly rotating progenitor 15M� progenitor m15b6 of Heger

et al. (2005) with the COCONUT-FMT code. The initial field is assumed to be combination of a dipolar

poloidal field and a toroidal field. Outside convective zones, the field strength is taken from the

progenitor, inside convective zones, the magnetic pressure is set to a fraction of 10�4 of the thermal

pressure. The figures shows meridional slices 140ms after bounce. Field amplification is driven by

convection. Strong fields are generated in regions of strong shear, but these strong field are highly

localized, and the total magnetic energy in the gain region remains much smaller than the turbulent

kinetic energy and thermal energy
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Proto-neutron star convection Convection inside the PNS is triggered again latter as

neutrino cooling establishes unstable lepton number (Epstein 1979) and entropy

gradients (see profiles in Fig. 9). PNS convection was investigated extensively in

the 1980s and 1990s as a possible means of enhancing the neutrino emission from

the PNS, which would boost the neutrino heating and thereby aid shock revival

(e.g., Burrows 1987; Burrows and Lattimer 1988; Wilson and Mayle 1988, 1993;

Janka and Müller 1995; Keil et al. 1996). In particular, Wilson and Mayle

(1988, 1993) assumed that PNS convection operates as double-diffusive ‘‘neutron

finger’’ instability that significantly increases the neutrino luminosity.

None of the modern studies of PNS convection since the mid-1990s (Keil et al.

1996; Buras et al. 2006a; Dessart et al. 2006) found a sufficiently strong effect of

PNS convection on the neutrino emission for a significant impact on shock revival.

PNS convection indeed increases the heavy flavor neutrino luminosity by � 20% at

post-bounce times ofJ150ms, leaves the electron neutrino luminosity about equal,

but tends to decrease the electron antineutrino luminosity, and reduces the mean

energy of all neutrino flavors (Buras et al. 2006a). This can be explained by the

effects of PNS convection on the bulk structure of the PNS, namely a modest

increase of the PNS radius and a higher electron fraction (due to mixing) close to the

neutrinosphere of me and �me (Buras et al. 2006a). Convective instability appears to be

governed by the usual Ledoux criterion and does not develop as a double-diffusive

instability in the simulations.

LESA instability Although PNS convection does not have a decisive influence on

shock revival, its indirect effect on the gain region is quantitatively important;

effectively PNS convection changes the inner boundary condition for the flow in the

gain region. PNS convection also has an important impact on the neutrino signal

from the PNS cooling phase (e.g., Roberts et al. 2012; Mirizzi et al. 2016), and may

provide a sizable contribution to the gravitational wave signal (Marek et al. 2009;

Yakunin et al. 2010; Müller et al. 2013; Andresen et al. 2017; Morozova et al.

2018).

Moreover, starting with (Tamborra et al. 2014a), the dynamics of PNS

convection has proved more intricate upon closer inspection in recent years with

potential repercussions on nucleosynthesis and gravitational wave emission. In their

3D simulations, Tamborra et al. (2014a) noted that a pronounced ‘ ¼ 1 asymmetry

in the electron fraction develops in the PNS convection zone, which leads to a

sizable anisotropy in the radiated lepton number flux, i.e., the fluxes of electron

neutrinos and antineutrinos show a dipole asymmetry with opposite directions. The

direction of the dipole varies remarkably slowly compared to the characteristic time

scales of the PNS. Curiously, no such pronounced dipole was seen in the velocity

field, which remained dominated by small-scale eddies. This is very different from

convection in the gain region or the convective burning in the progenitors, where the

asymmetries in the entropy and the composition are reflected in the velocity field as

well. This unusual phenomenon, which is illustrated in Fig. 13, has been christened

LESA (‘‘Lepton Number Emission Self-Sustained Asymmetry’’), and could have

important repercussions on the composition of the ejected matter, whose Ye is

sensitive to the differences in electron neutrino and antineutrino emission.
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Since then this phenomenon has been reproduced by many 3D simulations using

very different methods for neutrino transport (O’Connor and Couch 2018a; Janka

et al. 2016; Glas et al. 2019; Powell and Müller 2019; Vartanyan et al. 2019a), and

even in the 3D leakage models of Couch and O’Connor (2014) The dipolar Ye
asymmetry has also been seen in the 2D Boltzmann simulations of Nagakura et al.

(2019). This demonstrates that the LESA is a robust phenomenon; claims that it

depends on the details of neutrino transport (Nagakura et al. 2019) are not

convincing.

The nature of this instabiity is still not fully understood. Tamborra et al. (2014a)

initially suggested a feedback cycle between ‘ ¼ 1 shock deformation, a dipolar

asymmetry in the accretion flow, and a dipolar asymmetry in the lepton fraction in

the PNS convection zone. However, more recent studies suggest that the LESA does

not depend on an external feedback cycle between asymmetries in the accretion

flow and asymmetries in the PNS convection zone. Glas et al. (2019) demonstrated

that LESA can be even more pronounced in exploding low-mass progenitor models

with low accretion rates, which suggests that the mechanism behind LESA works

within the PNS convection zone.

This, however, leaves the question why the flow within the PNS convection zone

would organise itself to generate a dipolar lepton fraction asymmetry. Some papers

have, however, formulated first qualitative arguments to suggest that there is an

internal mechanism for a dipole asymmetry in the lepton fraction, and that LESA

may just be a very peculiar manifestation of buoyancy-driven convection. What

appears to play a role is that the lepton fraction gradient becomes stabilizing against

convection in the middle of the PNS convection zone (Janka et al. 2016; Powell and

Müller 2019). Janka et al. (2016) suggested that this can give rise to a positive

feedback loop because a hemispheric lepton asymmetry will attenuate or enhance

the stabilizing effect in the different hemispheres, thereby leading to more vigorous

Fig. 13 LESA instability in a simulation of an 18M� star at time of 453ms after bounce, illustrated by

2D slices showing the electron fraction Ye (left) and the radial velocity in units of km s�1 in the PNS

convection zone. Note that the Ye distribution in the PNS convection zone between radii of 10 km and

20 km shows a clear dipolar asymmetry, whereas the radial velocity field is dominated by small-scale

modes superimposed over a much weaker dipole mode. Image repoduced with permission from Powell

and Müller (2019), copyright by the authors
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convection in one hemisphere, which in turn maintains the lepton asymmetry. On a

different note, Glas et al. (2019) sought to explain the large-scale nature of the

asymmetry by applying the concept of a critical Rayleigh number for thermally-

driven convection (Chandrasekhar 1961). However, one still needs to account for

the fact that the typical scales of the velocity and lepton number perturbations

appear remarkably different in the PNS convection zone. This was confirmed by the

quantitative analysis of Powell and Müller (2019), who found a very broad turbulent

velocity spectrum peaking around ‘ ¼ 20, which conforms neither to Kolmogorov

or Bolgiano–Obukhov scaling for stratified turbulence. Powell and Müller (2019)

suggested that this could be explained by the scale-dependent effective buoyancy

experienced by eddies of different sizes as they move across the partially stabilized

central region of the PNS convection zone. Powell and Müller (2019) also remarked

that the non-linear state of PNS convection is characterized by a balance between

the convective and diffusive lepton number flux. All these aspects suggest that the

LESA could be no more than a manifestation of PNS convection, but that PNS

convection is in fact quite dissimilar from the high-Péclet number convection as

familiar from the gain region or the late convective burning stages. A satisfactory

explanation of the phenomenon likely needs to go beyond concepts from linear

stability theory and the usual global balance arguments behind MLT, and will have

to take into account scale-dependent forcing and dissipation, and the ‘‘double-

radiative’’ nature of the instability.

Since the stabilising lepton number gradient in the middle of the PNS convection

zone figures prominently in these attempts to understand LESA, one might

justifiably ask whether there is some role for double-diffusive instabilities in the

PNS after all. Local stability analysis (Bruenn et al. 1995; Bruenn and Dineva 1996;

Bruenn et al. 2004) in fact suggests that double-diffusive instabilities (termed lepto-

entropy fingers and lepto-entropy semiconvection) should occur in the PNS. But

why were such double-diffusive instabilities never identified in multi-D simulations

so far? Further careful analysis and interpretation of the simulation results and

theory is in order to clarify this. One possible interpretation could be that the

characteristic step-like lepton number profile established by LESA (Powell and

Müller 2019) is actually a manifestation of layer formation in the subcritical regime

as familiar from semiconvection (Proctor 1981; Spruit 2013; Garaud 2018).

However, the slow, global turnover motions in LESA do not readily fit into this

picture.13 One should also beware premature conclusions because PNS convection

is an inherently difficult regime for numerical simulations due to small convective

Mach numbers of order � 0:01 and the importance of diffusive effects. The

potential issues go beyond the question of resolution and unphysically high

numrical Reynolds numbers (cf. 2.1.2), and there are concrete reasons to investigate

these in more depth. For example, although different codes agree qualitatively

13 That the LESA is also seen in models without lateral diffusion may not an obstacle for this

interpretation. Lateral diffusion is essential to obtain semiconvective overstability, but layer formation

can occur below the threshold for overstability (Proctor 1981; Spruit 2013).
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concerning the region of instability and the qualitative features of the convective

flow, substantial differences in the turbulent kinetic energy density have been

reported in a comparison between the ALCAR and VERTEX codes in the PNS

convection zone, even though the agreement between the codes is otherwise

excellent (Just et al. 2018). While it is unlikely that the uncertainties in models PNS

convection have any impact on the problem of shock revival, they need to be

addressed to obtain a better understanding of LESA and reliable predictions of

gravitational wave signals and the nucleosynthesis conditions in the neutrino-heated

ejecta.

5 The explosion phase

Regardless of whether the explosion is driven by neutrinos or magnetic fields, there

is no abrupt transition to a quasi-spherical outflow after shock revival. In this

section, we shall focus on the situation in neutrino-driven explosions, which has

already been quite thoroughly explored.

5.1 The early explosion phase

In typical neutrino-driven models, the multi-dimensional flow structure in the early

explosion phase appears qualitatively similar to the pre-explosion phase at first

glance. Buoyancy-driven outflows and accretion downflows persist for hundreds of

milliseconds to seconds and allow for simultaneous mass accretion and ejection.

Because of the ongoing accretion, high neutrino luminosities and hence high heating

rates can be maintained to continually dump energy into the developing explosion.

As the shock radius slowly increases, large-scale ‘ ¼ 1 and ‘ ¼ 2 modes start to

dominate the flow irrespective of whether medium-scale convection or large-scale

SASI modes dominated prior to shock revival, even though 2D explosion models

probably tended to exaggerate this effect. The basic features of this pictures have

held since the 1990s (Herant et al. 1992; Shimizu et al. 1993; Yamada et al. 1993;

Janka et al. 1993; Herant et al. 1994; Burrows et al. 1995; Janka and Müller

1995, 1996), and have proved critical for explaining the energetics of core-collapse

supernovae.14 Even in electron-capture supernova progenitors, which explode even

without the help of multi-dimensional effects (Kitaura et al. 2006), there is a brief

phase of convective overturn after shock revival (Wanajo et al. 2011).

More recent 3D explosion models using multi-group transport (Takiwaki et al.

2014; Melson et al. 2015a; Lentz et al. 2015; Müller 2015; Müller et al.

2017a, 2019; Burrows et al. 2020) have confirmed this picture, but paved the

way towards a more quantitative theory of the explosion phase. In massive

progenitors, shock expansion is usually sufficiently slow for one or two dominant

bubbles of neutrino-heated ejecta to form (Fig. 14). Only at the low-mass end of the

14 Critiques of the neutrino-driven mechanism have occasionally overlooked (Papish et al. 2015) and

then ultimately rebranded the simultaneous outflows and downflows as ‘‘jittering jets’’ (Soker 2019). In

this latest instalment, the alternative jittering-jet scenario seems to have come down to little more than a

question of unconventional terminology for well-established phenomena in neutrino-driven explosions.
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progenitor spectrum (Melson et al. 2015b; Gessner and Janka 2018) do the

convective structures freeze out so quickly that the neutrino-heated ejecta are

organized in medium-scale bubbles instead of a unipolar or bipolar structure.

The detailed dynamics of the outflows and downflows proved to be significantly

different in 3D compared to 2D, and that only restricted insights on explosion and

remnant properties and nucleosynthesis can be gained from the impressive corpus of

successful 2D simulations with multi-group transport (Buras et al. 2006a; Marek

and Janka 2009; Müller et al. 2012a, b, 2013; Janka 2012; Janka et al. 2012; Suwa

et al. 2010, 2013; Bruenn et al. 2013, 2016; Nakamura et al. 2015; Burrows et al.

2018; Pan et al. 2018; O’Connor and Couch 2018b). Except at the lowest masses,

the 2D simulations are uniformly characterized by almost unabated accretion

through fast downflows that reach directly to the bottom of the gain region, by

Fig. 14 Volume renderings of the entropy in different 3D supernova simulations showing the emergence

of stable large-scale plumes around and after shock revival as a common phenomenon despite differences

in resolution and in the neutrino transport treatment. The outer translucent surface is the shock, the

structures inside are neutrino-heated high-entropy bubbles: a 15M� model of Lentz et al. (2015) with a

unipolar explosion geometry at a post-bounce time of 400ms. b 3M� He star model of Müller et al.

(2019) at 1238ms, with two prominent plumes in the 7 o’clock and 11 o’clock directions and weaker

shock expansion on the opposite side. c 20M� model of Burrows et al. (2020, Fig. 8) with a more dipolar

explosion geometry at 651ms. d 11:2M� model of Nakamura et al. (2019, Fig. 6) at a time of 991ms.

Images reproduced with permission from [a] Lentz et al. (2015), copyright by AAS; [c] from Burrows

et al. (2020) and [d] from Nakamura et al. (2019), copyright by the authors

123

3 Page 70 of 104 B. Müller



outflows that are often weak and intermittent, and by a halting rise of explosion

energies. Long-time 2D simulations showed that this situation can persist out to

more than 10 s (Müller 2015), and as a result, implausibly high neutron star masses

are reached. The halting growth of explosion energies in 2D can partly be explained

by the topology of the flow which lends itself to outflow constriction by equatorial

downflows, but the primary difference between 2D and 3D lies in the velocity of the

downflows. Melson et al. (2015b) already noticed that the downflows appear to

subside more quickly in their 3D model of a low-mass progenitor, which they

ascribed to the forward turbulent cascade in 3D; this led to a slight enhancement of

the explosion energy by 10% in 3D compared to 2D. In more massive progenitors

with stronger accretion after shock revival stronger braking of the downflows in 3D

compared to 2D is even more evident (Müller 2015). Instead of crashing into a

secondary accretion shock at � 100 km at a sizable fraction of the free-fall velocity,

the downflows are gently decelerated, and secondary shocks rarely form. Müller

(2015) ascribed this pathology of the 2D models to the behavior of the Kelvin–

Helmholtz instability between the outflows and downflows, which is stabilized at

high Mach numbers in 2D, but can always grow in 3D (Gerwin 1968). Since the

typical Mach number of the downflows is higher during the explosion phase, the

assumption of 2D symmetry becomes even more problematic than during the

accretion phase.

5.2 Explosion energetics

Estimators for the explosion energy Strictly speaking, the final demarcation between

ejected and accreted material15 cannot be determined before the explosion becomes

kinetically dominated after shock breakout, and the same holds true for the final

explosion energy Eexp. It is, however, customary and useful to consider the

diagnostic explosion energy Ediag (often shortened to ‘‘diagnostic energy’’ or

‘‘explosion energy’’ when there is no ambiguity), which is defined as the total

energy of the material that is nominally unbound at any given instance (Buras et al.

2006a; Müller et al. 2012b; Bruenn et al. 2013). By definition the diagnostic energy

will eventually asymptote to Eexp, but might do so only over considerably longer

time scales than can be simulated with neutrino transport. In particular, the

diagnostic energy can in principle decrease as the shock sweeps up bound material

from the outer shells. To account for this, one can correct Ediag for the binding

energy of the material ahead of the shock (‘‘overburden’’) to obtain a more

conservative estimate for Eexp (Bruenn et al. 2016). In practice, Ediag usually rises

monotonically because energy continues to be pumped into the ejecta over seconds,

but there are exceptions, most notably in cases of early black hole formation (Chan

15 We avoid the term ‘‘mass cut’’, which is commonly used for describing artificial 1D explosion models.

The boundary of the ejecta region is not a sphere, and does not correspond to a unique mass shell under

realistic conditions.
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et al. 2018). In most cases, one expects that Ediag levels out after a few seconds and

then provides a good estimate for Eexp.

Explosion energies from self-consistent simulations Unfortunately, Ediag has not

levelled off in most of the available self-consistent 3D explosion models, though the

growth of the explosion energy has already slowed down significantly in some long-

time simulations using the COCONUT-FMT code (Müller et al. 2017a, 2018, 2019).

Even in 2D, only some of the models of the Oakridge group appear to have

approached their final explosion energy (Bruenn et al. 2016).

This means that no final verdict on the fidelity of the simulations can be

pronounced based on a comparison with observationally inferred explosion

energies. The models of Müller et al. (2017a, 2018, 2019) and Bruenn et al.

(2016), whose explosion energies are admittedly on the high side among modern

simulations, have demonstrated that neutrino-driven explosions can reach energies

of up to 8
 1050 erg. Similarly, plausible nickel masses of several 0:01M� appear

within reach, although no firm statements can be made for COCONUT-FMT models

due to uncertainties in the Ye of the ejecta from the approximative transport

treatment, and due to the highly simplified treatment of nucleon recombination.

Explosion energies beyond 1051 erg may simply be a matter of longer simulations,

different progenitor models, and slightly improved physics; and there may be no

conflict with the distribution of observationally inferred explosion energies (Kasen

and Woosley 2009; Pejcha and Prieto 2015; Müller et al. 2017b) of Type IIP

supernovae. First attempts to extrapolate the non-converged explosion energies

from simulations and compare them to observations using a rigorous statistical

framework (Murphy et al. 2019) indicate that the predicted values are still

somewhat too low, but Murphy et al. (2019) also point out that conclusions are

premature due to biases and uncertainties in the comparison.

Growth of the explosion energy Even at this stage, the simulations already elucidate

how the energy of neutrino-driven explosions is determined. Upon closer inspection,

the energy budget of the ejecta is quite complicated and includes contributions from

the injection of neutrino-heated material from below, form nucleon recombination

and nuclear burning, from the accumulation of bound material by the shock, and

from turbulent mixing with the downflows (for a broader discussion, see Marek and

Janka 2009; Müller 2015; Bruenn et al. 2016). Nonetheless, a few key findings have

emerged. The most critical determinant for the growth of Ediag is the mass outflow

rate _Mout of neutrino-heated material. Neutrino heating only marginally unbinds the

material, and the net contribution to Ediag comes from the energy �rec released by

nucleon recombination, which occurs at a radius of about 300 km. To first order, the

resulting growth rate of the diagnostics energy is (Scheck et al. 2006; Melson et al.

2015b; Müller 2015),

_Ediag � _Mout�rec: ð65Þ

In principle, 8:8MeV per nucleon can be released from full recombination to the

iron group, but for the relevant entropies and expansion time scales, recombination

123

3 Page 72 of 104 B. Müller



is incomplete and does not convert all the neutrino-heated ejecta to iron-group

elements. Mixing between the outflows and downflows reduces the effective value

of erec further to about 5–6MeV=nucleon.
The mass outflow rate is roughly determined by the volume-integrated neutrino

heating rate and the energy required to lift the material out of the gravitational

potential. One can argue that the relevant energy scale is the binding energy at the

gain radius jegainj, so that

_Mout ¼ gout
_Qm

jegainj
: ð66Þ

with some efficiency parameter gout that accounts for the fact that only part of the

neutrino-heated matter is ejected. Initially, one finds gout\1 as expected, but Müller

et al. (2017a) pointed out that the situation changes later after shock revival because

much of the ejected material never makes it down to the gain radius and starts is

expansion significantly further out with lower initial binding energy. This leads to

efficiency parameters gout[ 1, and helps compensate for the declining heating rates

as the supply of fresh material to the gain radius slowly subsides.

The situation in 2D models is somewhat different (Müller 2015). Here, the

ejected material comes from close to the gain radius, and the outflow efficiency gout
is lower than in 3D. Although the lack of turbulent mixing results in a higher

asymptotic specific total energy and entropy in 2D, the net effect is a slower growth

of the explosion energy than in 3D. Moreover, the higher entropies in 2D will result

in reduced recombination to the iron group and hence lower nickel masses. Despite

these shortcomings, 2D simulations remain of some use because they already allow

extensive parameters studies of explodability and explosion and remnant properties

(Nakamura et al. 2015).

5.3 Compact remnant properties

Accretion rates and remnant masses The forward cascade and the stronger Kelvin–

Helmholtz instabilities between the outflows and downflows in 3D imply that the

accretion rate onto the PNS drops more quickly than in 2D (Müller 2015). As a

result, some self-consistent 3D simulations have been able to determine firm

numbers for final neutron star masses (Melson et al. 2015b; Müller et al. 2019;

Burrows et al. 2019, 2020), barring the possibility of late-time fallback. The

predicted neutron star masses appear roughly compatible with the range of observed

values (Özel and Freire 2016; Antoniadis et al. 2016), but as with all other

explosion and remnant properties, a robust statistical comparison is not yet possible.

Neutron star kicks Observations show that most neutron stars receive a considerable

‘‘kick’’ velocity at birth. The kick velocity is typically a few hundred km s�1, but

there is a broad distribution ranging from very low kicks up to more than

1000 km s�1 (e.g., Hobbs et al. 2005; Faucher-Giguère and Kaspi 2006; Ng and

Romani 2007). The large-scale ejecta asymmetries that emerge during the explosion

provide a possible explanation for this phenomenon (for an overview including
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other mechanisms such as aniostropic neutrino emission, see Lai et al. 2001; Janka

2017).

The 2D simulations of the 1990s could not yet naturally obtain the full range of

observed kick velocities by a hydrodynamic mechanism (Janka and Müller 1994),

unless unrealistically large seed asymmetries in the progenitor were invoked

(Burrows and Hayes 1996). A plausible range of kicks was first obtained in

parameterized 2D simulations by Scheck et al. (2004, 2006), thanks to more slowly

developing explosions that allowed the ‘ ¼ 1-mode of the SASI, or an ‘ ¼ 1

convective mode to emerge. The work of Scheck et al. (2004, 2006) revealed that

the kick velocity can grow for well over a second in models with slower shock

expansion. They concluded that the kick arises primarily from the asymmetric

gravitational pull of over- and underdense regions in the ejecta (later termed

‘‘gravitational tugboat mechanism’’16) rather than from pressure force and

hydrodyanmic momentum fluxes onto the PNS; anisotropic neutrino emission was

found to play only a minor role. Subsequent simulations have not fundamentally

changed this analysis. Although various studies showed that the momentum flux

onto the PNS can be comparable to the gravitational force onto the PNS (Nordhaus

et al. 2010a, 2012; Müller et al. 2017a), this does not invalidate the tugboat

mechanism. Effectively, the contribution of each parcel of accreted material to the

PNS momentum via the hydrodynamic flux and the gravitational tug almost cancel,

and the net acceleration of the PNS is due to the gravitational pull of the material

that is actually ejected.

Three-dimensional simulations have not altered this picture substantially. Even

though 2D simulations tend to obtain higher kicks, values of several hundred km s�1

were already obtained in the parameterized 3D simulations of Wongwathanarat

et al. (2010b, 2013). Recently, Müller et al. (2017a, 2019) performed sufficiently

long 3D simulations with multi-group neutrino transport to extrapolate the final kick

velocities, which fall nicely within the observed range of up to 1000 km s�1.

Based on the physics of the kick mechanism, various authors have posited a

correlation between the kick and the ejecta mass (Bray and Eldridge 2016) or, using

more refined arguments, on the explosion energy (Janka 2017; Vigna-Gómez et al.

2018). Tentative support for a loose correlation comes from the small kicks obtained in

simulations of low energy, ultra-stripped supernovae (Suwa et al. 2015; Müller et al.

2017a) and electron-capture supernovae (Gessner and Janka 2018), and from more

recent 3D simulations over a larger range of progenitor masses (Müller et al. 2019).

Neutron star spins If the downflows hit the PNS surface with a finite impact

parameter, they also impart angular momentum onto the PNS. While this was

realized already by Spruit and Phinney (1998), 3D simulations are needed for

quantitative predictions of PNS spin-up by asymmetric accretion. The predicted

spin-up in 3D models of non-rotating varies. Parameterized simulations (Wong-

wathanarat et al. 2010b; Rantsiou et al. 2011; Wongwathanarat et al. 2013) tend to

find longer neutron star spin periods of hundreds of milliseconds to seconds (but

16 The term ‘‘tugboat mechanism’’ was in fact suggested later by Jeremiah Murphy and introduced into

the literature in Wongwathanarat et al. (2013).
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extending down to 100ms in Wongwathanarat et al. 2013). Recent 3D simulations

using multi-group transport (Müller et al. 2017a, 2019) obtain spin periods between

20ms and 2:7 s, which roughly coincides with the range of observationally inferred

birth periods (Faucher-Giguère and Kaspi 2006; Perna et al. 2008; Popov and

Turolla 2012; Noutsos et al. 2013). Assuming the core angular momentum is

conserved after the collapse to a PNS and not changed by angular momentum

transport during the explosion, current stellar evolution models computed with the

Tayler–Spruit dynamo, predict spin periods in the same range (Heger et al. 2005),

which makes it difficult to draw inferences on the explosion mechanism or the

progenitor rotation from the observed spin periods. None of the simulations can as

yet explain the spin-kick alignment that is suggested by observations (Johnston

et al. 2005; Ng and Romani 2007; Noutsos et al. 2013). Proposed mechanisms for

natural spin-kick alignment by purely hydrodyanmic processes (Spruit and Phinney

1998; Janka 2017) have not been borne out by the models. However, the possibility

of natural spin-kick alignment in rotating progenitors has yet to be investigated.

Role of the spiral SASI mode In the first idealized simulations of the spiral mode of

the SASI, Blondin and Mezzacappa (2007) noted a significant flux of angular

momentum into the ‘‘neutron star’’ (modeled by an inner boundary condition) that

would lead to rapid neutron star rotation in the opposite direction to the SASI flow

with angular frequencies of the order of 100 rad s�1 even in the case of non-rotating

progenitors. This idea has been explored further in several numerical (Hanke et al.

2013; Kazeroni et al. 2016, 2017) and analytical (Guilet and Fernández 2014)

studies. The potential for spin-up of non-rotating progenitors may be more modest

than initially thought; both numerical and analytical results suggest that the angular

momentum imparted onto the PNS is only a few 1046 erg s, corresponding to spin

periods of hundreds of milliseconds (Hanke et al. 2013; Guilet and Fernández

2014). Moreover, part of the angular momentum contained in the spiral mode may

be accreted after shock revival, negating the separation of angular momentum

previously achieved by the SASI. Spin-up and spin-down by SASI in the case of

rotating progenitors still merits further investigation; the idealized simulations of

Kazeroni et al. (2017) suggest different regimes of random spin-up and spin-down

for slow progenitor rotation, systematic spin-down for intermediate rotation, and

weaker spin-down for high rotation rates in the regime of the corotation instability.

The possibility of magnetic field amplification due to the induced shear in the PNS

surface region in the case of significant spin-up or spin-down by the SASI also

needs to be explored.

5.4 Mixing instabilities in the envelope

Structure of the flow in the later explosion phase As the propagating shock scoops

up matter and as the explosion energy levels off, the structure of the post-shock

region changes (Fig. 15a). Early on, the post-shock expansion velocities are

subsonic and the outflows are accelerated by a positive pressure gradient, but

eventually the post-shock flow enters a Sedov-like regime where a positive pressure
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gradient is established and matter is decelerated behind the shock (Chevalier 1976).

Generally, the shock velocity vsh also decreases17 as the mass Mej of the shock

ejecta grows; it roughly scales as vsh / ðEexp=MejÞ1=2. The shock can, however,

transiently accelerate when it encounters density gradients steeper than q / r�3 at

shell interfaces (Sedov 1959). Both effects can be captured by the formula of

Matzner and McKee (1999),

vsh � 0:794
Eexp

Mej

� �1=2
Mej

qr3

� �0:19

: ð67Þ

The post-shock pressure and density profiles adjust to variations in shock velocity to

establish something of a ‘‘quasi-hydrostatic’’ stratification behind the shock with an

effective gravity that is directed outward. However, once the post-shock velocities

become supersonic, the post-shock pressure profile can no longer globablly adjust to

changing shock velocities, and reverse shocks are formed. A first reverse shock

forms typically forms at a few 1000 km as the developing neutrino-heated wind

crashes into more slowly moving ejecta. Later on, further reverse shocks emerge

after the shock encounters various shell interfaces. Their strength depends on the
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Fig. 15 a Emergence of Rayleigh–Taylor instability during the propagation of the shock through the

envelope, illustrated by spherically averaged profiles of density q, pressure P, and radial velocity vr from

a 2D long-time simulation of a 9:6M� star based on the explosion model of Müller et al. (2013). At this

stage (140 s after the onset of the explosion), the shock has reached the He shell, and a reverse shock has

formed. Behind the forward shock, the pressure gradient is positive and decelerates the expansion of the

ejecta. Rayleigh–Taylor (RT) instability grows in a region with dq=dr\0 behind the shock. Note that the

structure of the blast wave can be more complicated in general with several unstable regions and reverse

shocks that interact with each other. b Mass fraction isocontours in a 3D model of mixing in SN 1987A.

Note that while the biggest Ni-rich Rayleigh–Taylor clumps are seeded by large-scale asymmetries from

the early explosion phase, these develop into the finger-like structures characteristic of the Rayleigh–

Taylor instability, and there is also considerable growth of small-scale plumes. Image reproduced with

permission from Wongwathanarat et al. (2015), copyright by ESO

17 Note that deceleration of the post-shock matter and deceleration of the shock do not always coincide,

though they are closely related phenomena. One can have _vr\0 and _vsh[ 0.
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density jump at the shell interface. In hydrogen-rich progenitors, the reverse shock

from the H/He interface is particularly strong (especially in red supergiant) and

therefore sometimes referred to simply as the reverse shock.

Rayleigh–Taylor instability The non-monotonic variations in vsh result in mon-

monotonic post-shock entropy and density profiles, and some layers become

Rayleigh–Taylor unstable (Chevalier 1976; Müller et al. 1991; Fryxell et al. 1991).

In the relevant highly compressible regime, the growth rate for the Rayleigh–Taylor

instability from a local stability analysis is given by Bandiera (1984), Benz and

Thielemann (1990) and Müller et al. (1991)

xRT ¼ cs

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o lnP

or

o lnP

or
� C

o ln q

or

� �

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

geff
1

C

o lnP

or
� o ln q

or

� �

s

; ð68Þ

where geff ¼ q�1
oP=or is the effective gravity. The second form elucidates that

stability is determined by the sub- or superadiabaticity of the density gradient as for

buoyancy-driven convection. In the relevant radiation-dominated regime, compo-

sition gradients have a minor impact on stability, and the entropy gradient is the

deciding factor. However, since the effective gravity points outwards, positive

entropy gradients are now unstable. Such positive entropy gradients arise when the

shock accelerates at shell interfaces. One should note that the actual growth rate of

perturbations depends on their length scale (Zhou 2017), and Eq. (68) roughly

applies to the fastest growing modes with a wavelength comparable to the width of

the unstable region. Since the unstable regions tend to be narrow, Rayleigh–Taylor

mixing tends to produce smaller, clumpy structures, but large-scale asymmetries can

also grow considerably for sufficiently strong seed perturbations.

Intriguingly, it has been suggested that the overall effect of Rayleigh–Taylor

mixing can roughly be captured in 1D by an appropriate turbulence model (Duffell

2016; Paxton et al. 2018). The key idea here is to incorporate the proper growth

rate, saturation behavior, and a velocity-dependent mixing length (Duffell 2016).

While a first comparison of this model with 3D results from Wongwathanarat et al.

(2015) proved encouraging (Paxton et al. 2018), a few caveats remain. A detailed

analysis of Rayleigh–Taylor mixing in a 3D model of a stripped-envelope

progenitor by Müller et al. (2017a) unearthed some basis for a phenomenological

1D description of Rayleigh–Taylor mixing (most notably buoyancy-drag balance in

the non-linear stage) and suggested some improvements to the model of Paxton

et al. (2018), but cast doubt on the use of local gradient to estimate the density and

composition contrasts of the Rayleigh–Taylor plumes. In particular, the Rayleigh–

Taylor instability sometimes produces partial inversions of the initial composition

profiles, which cannot be modeled by diffusive mixing in 1D.

In addition to the Rayleigh–Taylor instability, the Richtmyer–Meshkov instability

(see Richtmyer 1960; Zhou 2017, for details of the instability mechanism) can develop

because the shock is generally aspherical and hits the shell interfaces obliquely. The

literature on mixing instabilities in supernovae is extensive, and we can only provide a

very condensed summary of extant numerical studies. We will exclusively focus on the

optically thick phase of the explosion and not consider the remnant phase.
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Simulations of mixing in SN 1987A After a few earlier numerical experiments,

significant interest in mixing instabilities was prompted by observations of

SN 1987A that pointed to strong early mixing of nickel (see Arnett et al. 1989b;

McCray 1993, and references therein). Two-dimensional simulations of mixing

instabilities (Arnett et al. 1989a; Müller et al. 1991; Fryxell et al. 1991; Hachisu

et al. 1990; Benz and Thielemann 1990; Herant and Benz 1992) in the wake of

SN 1987A took a first step towards explaining the observed mixing. The typical

picture revealed by these models is that of a strong Rayleigh–Taylor instability at

the H/He-interface with linear growth factors of thousands (Müller et al. 1991),

Some models (Müller et al. 1991; Fryxell et al. 1991) also showed a second

strongly unstable region at the He/C-interface that eventually merges with the mixed

region further outside. Mixing was dominated by many small-scale plumes in these

first-generation simulations. However, the maximum velocities of nickel plumes

still fell short by about a factor of two compared to the observed velocities of up to

� 4000 km s�1.

Many subsequent studies have investigated stronger, large-scale initial seed

perturbations as a possible explanations for the strong mixing in SN 1987A and

other observed Type II supernovae. Such seed perturbations are naturally expected

in the neutrino-driven paradigm from the SASI and low-‘ convective modes, and in

magnetorotational explosions with veritable jets. Most simulations have explored

the effect of large-scale seed perturbations by specifying them ad hoc (e.g.,

Nagataki et al. 1998; Nagataki 2000; Hungerford et al. 2003; Couch et al. 2009;

Ono et al. 2013; Mao et al. 2015; Ellinger et al. 2012). One must therefore be

cautious in drawing conclusions on the role of ‘‘jets’’ in explaining the observed

mixing. In fact, simulations with artificially injected jets rather serve to rule out

kinetically-dominated jets in Type IIP supernovae based on early spectropolarime-

try, though thermally-dominated jets are not excluded in principle (Couch et al.

2009).

In their 2D AMR simulations, Kifonidis et al. (2000, 2003, 2006) followed a

more consistent approach by starting from light-bulb simulations of neutrino-driven

explosions. While the seed asymmetries from the early explosion phase initially led

to high nickel clump velocities in the Type IIP model of Kifonidis et al.

(2000, 2003), the final velocities were still too small because the clumps were

caught behind the reverse shock and underwent fast deceleration by supersonic drag

after crossing it. Kifonidis et al. (2000) found that this can be avoided with a more

slowly developing and more aspherical explosion. In this case, they found less

clump deceleration because the clumps make it beyond the H/He interface before

the reverse shock develops, and also found strong downward mixing of hydrogen

with the help of the Richtmyer–Meshkov instability.

A very convincing picture of mixing in SN 1987A has emerged since the advent

of 3D simulations. Simulations of single-mode perturbations by Kane et al. (2000)

already suggested a faster growth of the Rayleigh–Taylor instability in 3D. A first

3D simulation of mixing in SN 1987A based on a 3D explosion model using gray
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neutrino transport was conducted by Hammer et al. (2010), who were able to obtain

realistic mixing of nickel, hydrogen, and other elements even without the need for

strong initial shock deformation and a strong Richtmyer–Meshkov instability.

Hammer et al. (2010) explain the reduced deceleration of plumes as a result of a

more favorable volume-to-surface ratio of the clumps in 3D compared to 2D, where

the clumps are actually toroidal. Stronger mixing in 3D was also confirmed in a

study not specifically focused on SN 1987A (Joggerst et al. 2010b). The attainable

nickel clump velocities are, however, quite sensitive to the progenitor structure

(Wongwathanarat et al. 2015). Interestingly, the origin of the fastest and biggest

clumps in Hammer et al. (2010) and in some of the other subsequent 3D simulations

could be traced back to the most prominent convective bubbles that formed around

shock revival, i.e., the late-time instabilities still contain traces of the early

asymmetries imprinted by the neutrino-driven engine. As a next step towards model

validation, synthetic light curves based on the 3D models of Wongwathanarat et al.

(2015) were computed by Utrobin et al. (2015), and the results are encouraging.

While the fit to the observed light curve is still not perfect, the discrepancies likely

indicate uncertainties in the progenitor structure and the precise initial conditions

after shock revival and not a problem of the neutrino-driven explosion scenario for

SN 1987A.

Stripped-envelope supernovae Mixing instabilities are also highly relevant in the

context of stripped-envelope supernovae. Due to the lack of a H envelope (or a

small mass of the H envelope in the case of Type IIb events), the early asymmetries

are not shredded as strongly by Rayleigh–Taylor mixing as in Type IIP supernovae,

so that spectroscopy and spectropolarimetry offer a more direct glimpse on global

asymmetries generated by the engine (see Wang and Wheeler 2008 for observa-

tional diagnostics of asymmetries). Moreover, the presence or absence of He lines in

Ib/c supernovae is sensitive to the mixing of nickel (Dessart et al. 2012, 2015;

Hachinger et al. 2012), and so is the detailed shape of the light curve (Shigeyama

and Nomoto 1990; Yoon et al. 2019).

Two-dimensional simulations of Rayleigh–Taylor mixing in Ib/c supernovae

were first conducted by Hachisu et al. (1991, 1994). These simulations were based

on helium star models, which are a viable approximation for progenitors that lost

their envelope due to Case B/Case C mass transfer, but used artificially triggered

explosions. Hachisu et al. (1991, 1994) found indications of stronger mixing in less

massive helium stars. Baron (1992) interpreted this as pointing towards an

association of Ib and Ic supernovae with low- and high-mass helium stars,

respectively. Kifonidis et al. (2000, 2003) triggered the explosion somewhat more

realistically using a light-bulb scheme, but constructed their Ib supernova progenitor

by artificially removing the hydrogen envelope at collapse (implying an inconsistent

envelope structure); their finding on the mixing of nickel were qualitatively similar

to Hachisu et al. (1991, 1994).

Wongwathanarat et al. (2017) took an ambitious step towards comparing

stripped-envelope models with observations by performing a 3D simulation of a

neutrino-driven explosion that matches the global asymmetries in the distribution of
44Ti and 56Ni and the neutron star kick in Cas A to an astonishing degree. The
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required progenitor for a Type IIb (i.e., partially stripped) supernova was again

constructed by manually removing part of the envelope at collapse, but in terms of

simulation fidelity this is likely less of an issue than the fact that the neutrino-driven

explosion was still tuned to match the desired explosion energy.

A first 3D simulation of mixing in an ultra-stripped progenitor starting from a

self-consistent explosion model was conducted by Müller et al. (2018) with a view

to observations of fast and faint Ic supernovae (Drout et al. 2013; De et al. 2018).

The model showed mixing of substantial amounts of nickel in a few narrow dense

plumes out to about half way through the He envelope. These findings are, however,

difficult to extrapolate to other, less extreme stripped-envelope supernova progen-

itors. A more thorough exploration of mixing in Ib/c supernovae and a quantitative

comparison of 3D models of mixing instabilities with the spectropolarimtery of

observed Ib/c events is called for.

Mixing and fallback Mixing instabilities have also been studied as a possible

explanation of abundances in extremely metal-poor stars. Umeda and Nomoto

(2003) suggested that the high [C/Fe] in some of these stars can be explained by

invoking a combination of Rayleigh–Taylor mixing and fallback in the supernovae

that supposedly contributed to their initial composition.18 Joggerst et al. (2009)

conducted 2D simulations of this scenario using the FLASH code. Their simulations

indeed showed enhanced fallback in low- and zero-metallicity progenitors, and

hence a possible mechanism for low iron-group yields in metal-poor environments,

but Rayleigh–Taylor mixing was not sufficient for ejecting the required amount of

iron-group and intermediate-mass elements to match observed abundances. In a

follow-up study that surveyed a broader range of rotating progenitors with two

different metallicities (Z ¼ 0 and Z ¼ 10�4 Z�) using the CASTRO code, Joggerst

et al. (2010a) were able to find better matches of the supernova yields to abundance

patterns from ultra-metal poor stars. A similar study was conducted by Chen et al.

(2017) to explain the abundances in the most iron-poor star to date (SMSS

J031300.36-670839.3, Keller et al. 2014) by fallback in an explosion with modest

energy. However, all of these simulations were restricted to 2D and imposed seed

perturbations by hand in spherically symmetric models. A first 3D simulation of a

fallback supernova from collapse to shock revival by the neutrino-driven

mechanism, through black hole formation, and on to shock breakout was performed

by Chan et al. (2018). In their model, fallback proceeds in a qualitatively different

manner than in previous studies; the iron-group material is accreted early, the post-

shock flow involves global asymmetries during the first tens of seconds (which

could potentially generate substantial black hole kicks and spins), but no mixing

instabilities occur later on. While the work of Chan et al. (2018) has demonstrated

the feasibility of a forward-modelling approach to fallback supernovae, they

explored only a single progenitor, and a broader investigation is necessary to

understand the phenomenology of fallback in three dimensions.

18 Jet-driven explosions could provide an alternative mechanism to explain the observed abundance

patterns (e.g., Maeda and Nomoto 2003; Nomoto et al. 2006).
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Nr. 27)

123

3 Page 82 of 104 B. Müller

https://doi.org/10.1111/j.1365-2966.2005.08888.x
https://doi.org/10.1086/174199
https://doi.org/10.1017/S174392131000030X
https://doi.org/10.1088/0004-637X/733/2/78
http://arxiv.org/abs/1101.5646
https://doi.org/10.1088/0004-637X/741/1/33
https://doi.org/10.1086/185458
https://doi.org/10.1146/annurev.aa.27.090189.003213
https://doi.org/10.1088/0004-637X/690/2/1715
https://doi.org/10.1088/0004-637X/809/1/30
https://doi.org/10.1086/317774
http://arxiv.org/abs/astro-ph/0006451
https://doi.org/10.1073/pnas.20.5.254
https://doi.org/10.1073/pnas.20.5.254
https://doi.org/10.1086/170270
https://doi.org/10.1007/s41115-017-0002-8
https://doi.org/10.1007/s41115-017-0002-8
https://doi.org/10.1093/mnras/255.2.267
https://doi.org/10.1093/mnras/255.2.267
https://doi.org/10.1103/PhysRevD.87.044026
https://doi.org/10.1103/PhysRevD.87.044026
https://doi.org/10.1103/PhysRevD.91.064035
https://doi.org/10.1086/187543
https://doi.org/10.1016/S0375-9474(97)00313-8
https://doi.org/10.1086/305346
http://arxiv.org/abs/astro-ph/9702239
https://doi.org/10.1086/185620
https://doi.org/10.1086/185620
https://doi.org/10.1016/0021-9991(89)90035-1
https://doi.org/10.1103/RevModPhys.62.801
https://doi.org/10.1103/RevModPhys.62.801
https://doi.org/10.1086/165715


Blondin JM, Lufkin EA (1993) The piecewise-parabolic method in curvilinear coordinates. Astrophys J

Suppl 88:589. https://doi.org/10.1086/191834

Blondin JM, Mezzacappa A (2006) The spherical accretion shock instability in the linear regime.

Astrophys J 642:401–409. https://doi.org/10.1086/500817. arXiv:astro-ph/0507181

Blondin JM, Mezzacappa A (2007) Pulsar spins from an instability in the accretion shock of supernovae.

Nature 445:58–60. https://doi.org/10.1038/nature05428. arXiv:astro-ph/0611680

Blondin JM, Mezzacappa A, DeMarino C (2003) Stability of standing accretion shocks, with an eye

toward core-collapse supernovae. Astrophys J 584:971–980. https://doi.org/10.1086/345812. arXiv:

astro-ph/0210634

Blondin JM, Gipson E, Harris S, Mezzacappa A (2017) The standing accretion shock instability:

enhanced growth in rotating progenitors. Astrophys J 835(2):170. https://doi.org/10.3847/1538-

4357/835/2/170

Bludman SA, van Riper KA (1978) Diffusion approximation to neutrino transport in dense matter.

Astrophys J 224:631–642. https://doi.org/10.1086/156412

Bodansky D, Clayton DD, Fowler WA (1968) Nuclear quasi-equilibrium during silicon burning.

Astrophys J Suppl 16:299. https://doi.org/10.1086/190176
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J (2019) Discovery of an exceptionally strong b-decay transition of 20F and implications for the fate

of intermediate-mass stars. Phys Rev Lett 123(26):262701. https://doi.org/10.1103/PhysRevLett.

123.262701. arXiv:1905.09407

Kitaura FS, Janka HT, Hillebrandt W (2006) Explosions of O–Ne–Mg cores, the crab supernova, and

subluminous type II-P supernovae. Astron Astrophys 450:345–350. https://doi.org/10.1051/0004-

6361:20054703. arXiv:astro-ph/0512065

Koldoba AV, Romanova MM, Ustyugova GV, Lovelace RVE (2002) Three-dimensional magnetohy-

drodynamic simulations of accretion to an inclined rotator: the ‘‘cubed sphere’’ method. Astrophys J

576(1):L53–L56. https://doi.org/10.1086/342780

Kotake K (2013) Multiple physical elements to determine the gravitational-wave signatures of core-

collapse supernovae. C R Physique 14:318–351. https://doi.org/10.1016/j.crhy.2013.01.008

Kotake K, Yamada S, Sato K (2003) Anisotropic neutrino radiation in rotational core collapse. Astrophys

J 595(1):304–316. https://doi.org/10.1086/377196

Kotake K, Sato K, Takahashi K (2006) Explosion mechanism, neutrino burst and gravitational wave in

core-collapse supernovae. Rep Progr Phys 69(4):971–1143. https://doi.org/10.1088/0034-4885/69/4/

R03. arXiv:astro-ph/0509456

Kovalenko IG, Eremin MA (1998) Instability of spherical accretion: I. Shock-free Bondi accretion. Mon

Not R Astron Soc 298:861–870. https://doi.org/10.1046/j.1365-8711.1998.01667.x

Kozma C, Fransson C (1998) Late spectral evolution of SN 1987A. II. Line emission. Astrophys J

497(1):431–457. https://doi.org/10.1086/305452

Kraichnan RH (1967) Inertial ranges in two-dimensional turbulence. Phys Fluids 10:1417–1423. https://

doi.org/10.1063/1.1762301

Kuhlen M, Woosley WE, Glatzmaier GA (2003) 3D anelastic simulations of convection in massive stars.

In: Turcotte S, Keller SC, Cavallo RM (eds) 3D stellar evolution, ASP conference series, vol 293.

Astronomical Society of the Pacific, San Francisco, p 147. arXiv:astro-ph/0210557

Kuroda T, Kotake K, Takiwaki T (2012) Fully general relativistic simulations of core-collapse

supernovae with an approximate neutrino transport. Astrophys J 755:11. https://doi.org/10.1088/

0004-637X/755/1/11. arXiv:1202.2487

Kuroda T, Kotake K, Takiwaki T (2016a) A new gravitational-wave signature from standing accretion

shock instability in supernovae. Astrophys J 829(1):L14. https://doi.org/10.3847/2041-8205/829/1/

L14

Kuroda T, Takiwaki T, Kotake K (2016b) A New multi-energy neutrino radiation-hydrodynamics code in

full general relativity and its application to the gravitational collapse of massive stars. Astrophys J

Suppl 222:20. https://doi.org/10.3847/0067-0049/222/2/20

Kuroda T, Kotake K, Takiwaki T, Thielemann FK (2018) A full general relativistic neutrino radiation-

hydrodynamics simulation of a collapsing very massive star and the formation of a black hole. Mon

Not R Astron Soc 477:L80–L84. https://doi.org/10.1093/mnrasl/sly059

Lai D, Goldreich P (2000) Growth of perturbations in gravitational collapse and accretion. Astrophys J

535:402–411. https://doi.org/10.1086/308821. arXiv:astro-ph/9906400

Lai D, Chernoff DF, Cordes JM (2001) Pulsar jets: implications for neutron star kicks and initial spins.

Astrophys J 549:1111–1118. https://doi.org/10.1086/319455

Laming JM (2007) Analytic approach to the stability of standing accretion shocks: application to core-

collapse supernovae. Astrophys J 659:1449–1457. https://doi.org/10.1086/512534. arXiv:astro-ph/

0701264

123

3 Page 92 of 104 B. Müller

https://doi.org/10.1051/0004-6361:20030863
http://arxiv.org/abs/astro-ph/0302239
http://arxiv.org/abs/astro-ph/0302239
https://doi.org/10.1051/0004-6361:20054512
http://arxiv.org/abs/astro-ph/0511369
http://arxiv.org/abs/astro-ph/0511369
https://doi.org/10.1007/978-3-642-30304-3
https://doi.org/10.1103/PhysRevLett.123.262701
https://doi.org/10.1103/PhysRevLett.123.262701
http://arxiv.org/abs/1905.09407
https://doi.org/10.1051/0004-6361:20054703
https://doi.org/10.1051/0004-6361:20054703
http://arxiv.org/abs/astro-ph/0512065
https://doi.org/10.1086/342780
https://doi.org/10.1016/j.crhy.2013.01.008
https://doi.org/10.1086/377196
https://doi.org/10.1088/0034-4885/69/4/R03
https://doi.org/10.1088/0034-4885/69/4/R03
http://arxiv.org/abs/astro-ph/0509456
https://doi.org/10.1046/j.1365-8711.1998.01667.x
https://doi.org/10.1086/305452
https://doi.org/10.1063/1.1762301
https://doi.org/10.1063/1.1762301
http://arxiv.org/abs/astro-ph/0210557
https://doi.org/10.1088/0004-637X/755/1/11
https://doi.org/10.1088/0004-637X/755/1/11
http://arxiv.org/abs/1202.2487
https://doi.org/10.3847/2041-8205/829/1/L14
https://doi.org/10.3847/2041-8205/829/1/L14
https://doi.org/10.3847/0067-0049/222/2/20
https://doi.org/10.1093/mnrasl/sly059
https://doi.org/10.1086/308821
http://arxiv.org/abs/astro-ph/9906400
https://doi.org/10.1086/319455
https://doi.org/10.1086/512534
http://arxiv.org/abs/astro-ph/0701264
http://arxiv.org/abs/astro-ph/0701264


Laming JM (2008) Erratum: ‘‘Analytic approach to the stability of standing accretion shocks: application

to core-collapse supernovae’’ (ApJ, 659, 1449 [2007]). Astrophys J 687(2):1461–1463. https://doi.

org/10.1086/592088

Laney CB (1998) Computational gasdynamics. Cambridge University Press, Cambridge. https://doi.org/

10.1017/CBO9780511605604

Lattimer JM (2012) The nuclear equation of state and neutron star masses. Annu Rev Nucl Part Sci

62(1):485–515. https://doi.org/10.1146/annurev-nucl-102711-095018

Lecoanet D, Schwab J, Quataert E, Bildsten L, Timmes FX, Burns KJ, Vasil GM, Oishi JS, Brown BP

(2016) Turbulent chemical diffusion in convectively bounded carbon flames. Astrophys J 832(1):71.

https://doi.org/10.3847/0004-637X/832/1/71

Lehner L, Pretorius F (2014) Numerical relativity and astrophysics. Annu Rev Astron Astrophys

52:661–694. https://doi.org/10.1146/annurev-astro-081913-040031

Lentz EJ, Mezzacappa A, Bronson Messer OE, Liebendörfer M, Hix WR, Bruenn SW (2012) On the

requirements for realistic modeling of neutrino transport in simulations of core-collapse supernovae.

Astrophys J 747:73. https://doi.org/10.1088/0004-637X/747/1/73. arXiv:1112.3595

Lentz EJ, Bruenn SW, Hix WR, Mezzacappa A, Messer OEB, Endeve E, Blondin JM, Harris JA,

Marronetti P, Yakunin KN (2015) Three-dimensional core-collapse supernova simulated using a 15

M� progenitor. Astrophys J 807:L31. https://doi.org/10.1088/2041-8205/807/2/L31

Leung SC, Nomoto K (2019) Final evolution of super-AGB stars and supernovae triggered by electron

capture. Publ Astron Soc Australia 36:e006. https://doi.org/10.1017/pasa.2018.49

Leung SC, Nomoto K, Suzuki T (2020) Electron-capture supernovae of super-AGB stars: sensitivity on

input physics. Astrophys J 889(1):34. https://doi.org/10.3847/1538-4357/ab5d2f. arXiv:1901.11438

LeVeque RJ (1998a) Balancing source terms and flux gradients in high-resolution Godunov methods: the

quasi-steady wave-propagation algorithm. J Comput Phys 146(1):346–365. https://doi.org/10.1006/

jcph.1998.6058

LeVeque RJ (1998b) Nonlinear conservation laws and finite volume methods. In: Steiner O, Gautschy A

(eds) Computational methods for astrophysical fluid flow. Saas-Fee Advanced Course, vol 27.

Springer, Berlin, pp 1–159. https://doi.org/10.1007/3-540-31632-9_1

Liebendörfer M, Mezzacappa A, Thielemann FK, Messer OE, Hix WR, Bruenn SW (2001) Probing the

gravitational well: no supernova explosion in spherical symmetry with general relativistic

Boltzmann neutrino transport. Phys Rev D 63(10):103004:1–13. https://doi.org/10.1103/

PhysRevD.63.103004. arXiv:astro-ph/0006418

Liebendörfer M, Messer OEB, Mezzacappa A, Bruenn SW, Cardall CY, Thielemann FK (2004) A finite

difference representation of neutrino radiation hydrodynamics in spherically symmetric general

relativistic spacetime. Astrophys J Suppl 150:263–316. https://doi.org/10.1086/380191. arXiv:astro-

ph/0207036

Liebendörfer M, Rampp M, Janka HT, Mezzacappa A (2005) Supernova simulations with Boltzmann

neutrino transport: a comparison of methods. Astrophys J 620:840–860. https://doi.org/10.1086/

427203

Liou MS (2000) Mass flux schemes and connection to shock instability. J Comput Phys 160(2):623–648.

https://doi.org/10.1006/jcph.2000.6478

Livne E (1993) An implicit method for two-dimensional hydrodynamics. Astrophys J 412:634. https://

doi.org/10.1086/172950

Livne E, Burrows A, Walder R, Lichtenstadt I, Thompson TA (2004) Two-dimensional, time-dependent,

multigroup, multiangle radiation hydrodynamics test simulation in the core-collapse supernova

context. Astrophys J 609:277–287. https://doi.org/10.1086/421012. arXiv:astro-ph/0312633

Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024.

https://doi.org/10.1086/112164

Lund T, Marek A, Lunardini C, Janka HT, Raffelt G (2010) Fast time variations of supernova neutrino

fluxes and their detectability. Phys Rev D 82(6):063007. https://doi.org/10.1103/PhysRevD.82.

063007. arXiv:1006.1889

Mabanta QA, Murphy JW (2018) How turbulence enables core-collapse supernova explosions. Astrophys

J 856:22. https://doi.org/10.3847/1538-4357/aaaec7

Maeda K, Nomoto K (2003) Bipolar supernova explosions: nucleosynthesis and implications for

abundances in extremely metal-poor stars. Astrophys J 598(2):1163–1200. https://doi.org/10.1086/

378948

123

Hydrodynamics of core-collapse supernovae and their... Page 93 of 104 3

https://doi.org/10.1086/592088
https://doi.org/10.1086/592088
https://doi.org/10.1017/CBO9780511605604
https://doi.org/10.1017/CBO9780511605604
https://doi.org/10.1146/annurev-nucl-102711-095018
https://doi.org/10.3847/0004-637X/832/1/71
https://doi.org/10.1146/annurev-astro-081913-040031
https://doi.org/10.1088/0004-637X/747/1/73
http://arxiv.org/abs/1112.3595
https://doi.org/10.1088/2041-8205/807/2/L31
https://doi.org/10.1017/pasa.2018.49
https://doi.org/10.3847/1538-4357/ab5d2f
http://arxiv.org/abs/1901.11438
https://doi.org/10.1006/jcph.1998.6058
https://doi.org/10.1006/jcph.1998.6058
https://doi.org/10.1007/3-540-31632-9_1
https://doi.org/10.1103/PhysRevD.63.103004
https://doi.org/10.1103/PhysRevD.63.103004
http://arxiv.org/abs/astro-ph/0006418
https://doi.org/10.1086/380191
http://arxiv.org/abs/astro-ph/0207036
http://arxiv.org/abs/astro-ph/0207036
https://doi.org/10.1086/427203
https://doi.org/10.1086/427203
https://doi.org/10.1006/jcph.2000.6478
https://doi.org/10.1086/172950
https://doi.org/10.1086/172950
https://doi.org/10.1086/421012
http://arxiv.org/abs/astro-ph/0312633
https://doi.org/10.1086/112164
https://doi.org/10.1103/PhysRevD.82.063007
https://doi.org/10.1103/PhysRevD.82.063007
http://arxiv.org/abs/1006.1889
https://doi.org/10.3847/1538-4357/aaaec7
https://doi.org/10.1086/378948
https://doi.org/10.1086/378948


Mao J, Ono M, Nagataki S, Ma H, Ito H, Matsumoto J, Dainotti MG, Lee SH (2015) Matter mixing in

core-collapse supernova ejecta: large density perturbations in the progenitor star? Astrophys J

808(2):164. https://doi.org/10.1088/0004-637X/808/2/164

Marek A, Janka HT (2009) Delayed neutrino-driven supernova explosions aided by the standing

accretion-shock instability. Astrophys J 694:664–696. https://doi.org/10.1088/0004-637X/694/1/

664. arXiv:0708.3372

Marek A, Janka HT, Buras R, Liebendörfer M, Rampp M (2005) On ion–ion correlation effects during

stellar core collapse. Astron Astrophys 443:201–210. https://doi.org/10.1051/0004-6361:20053236.

arXiv:astro-ph/0504291

Marek A, Janka HT, Müller E (2009) Equation-of-state dependent features in shock-oscillation modulated

neutrino and gravitational-wave signals from supernovae. Astron Astrophys 496:475–494. https://

doi.org/10.1051/0004-6361/200810883. arXiv:0808.4136

Martı́ JM, Müller E (2015) Grid-based methods in relativistic hydrodynamics and magnetohydrody-

namics. Living Rev Comput Astrophys 1:3. https://doi.org/10.1007/lrca-2015-3

Matzner CD, McKee CF (1999) The expulsion of stellar envelopes in core-collapse supernovae.

Astrophys J 510:379–403. https://doi.org/10.1086/306571. arXiv:astro-ph/9807046

Mazurek TJ (1982) The energetics of adiabatic shocks in stellar collapse. Astrophys J 259:L13–L17.

https://doi.org/10.1086/183839

McCray R (1993) Supernova 1987A revisited. Annu Rev Astron Astrophys 31:175–216. https://doi.org/

10.1146/annurev.aa.31.090193.001135

Meakin CA, Arnett D (2006) Active carbon and oxygen shell burning hydrodynamics. Astrophys J

637:L53–L56. https://doi.org/10.1086/500544. arXiv:astro-ph/0601348

Meakin CA, Arnett D (2007a) Anelastic and compressible simulations of stellar oxygen burning.

Astrophys J 665:690–697. https://doi.org/10.1086/519372. arXiv:astro-ph/0611317

Meakin CA, Arnett D (2007b) Turbulent convection in stellar interiors. I. Hydrodynamic simulation.

Astrophys J 667:448–475. https://doi.org/10.1086/520318. arXiv:astro-ph/0611315

Meakin CA, Arnett WD (2010) Some properties of the kinetic energy flux and dissipation in turbulent

stellar convection zones. Astrophys Space Sci 328:221–225. https://doi.org/10.1007/s10509-010-

0301-6

Melson T (2013) Core-collapse supernova hydrodynamics on the Yin–Yang grid with PROMETHEUS-

VERTEX. Master’s thesis, Ludwig-Maximilians Universtiät München

Melson T, Janka HT, Bollig R, Hanke F, Marek A, Müller B (2015a) Neutrino-driven explosion of a 20

solar-mass star in three dimensions enabled by strange-quark contributions to neutrino-nucleon

scattering. Astrophys J 808:L42. https://doi.org/10.1088/2041-8205/808/2/L42

Melson T, Janka HT, Marek A (2015b) Neutrino-driven supernova of a low-mass iron-core progenitor

boosted by three-dimensional turbulent convection. Astrophys J 801:L24. https://doi.org/10.1088/

2041-8205/801/2/L24

Melson T, Kresse D, Janka HT (2020) Resolution study for three-dimensional supernova simulations with

the PROMETHEUS-VERTEX code. Astrophys J 891(1):27. https://doi.org/10.3847/1538-4357/

ab72a7. arXiv:1904.01699

Mezzacappa A (2005) Ascertaining the core collapse supernova mechanism: the state of the art and the

road ahead. Annu Rev Nucl Part Sci 55:467–515. https://doi.org/10.1146/annurev.nucl.55.090704.

151608

Mezzacappa A (2020) In prep., Living Rev Comput Astrophys

Mezzacappa A, Calder AC, Bruenn SW, Blondin JM, Guidry MW, Strayer MR, Umar AS (1998) An

investigation of neutrino-driven convection and the core collapse supernova mechanism using

multigroup neutrino transport. Astrophys J 495:911–926. https://doi.org/10.1086/305338. arXiv:

astro-ph/9709188

Michel A (2019) Modeling of silicon burning during late stages of stellar evolution. PhD thesis,

Universität Heidelberg
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Supernova neutrinos: production, oscillations and detection. Riv Nuovo Cimento 39:1–112. https://

doi.org/10.1393/ncr/i2016-10120-8

123

3 Page 94 of 104 B. Müller

https://doi.org/10.1088/0004-637X/808/2/164
https://doi.org/10.1088/0004-637X/694/1/664
https://doi.org/10.1088/0004-637X/694/1/664
http://arxiv.org/abs/0708.3372
https://doi.org/10.1051/0004-6361:20053236
http://arxiv.org/abs/astro-ph/0504291
https://doi.org/10.1051/0004-6361/200810883
https://doi.org/10.1051/0004-6361/200810883
http://arxiv.org/abs/0808.4136
https://doi.org/10.1007/lrca-2015-3
https://doi.org/10.1086/306571
http://arxiv.org/abs/astro-ph/9807046
https://doi.org/10.1086/183839
https://doi.org/10.1146/annurev.aa.31.090193.001135
https://doi.org/10.1146/annurev.aa.31.090193.001135
https://doi.org/10.1086/500544
http://arxiv.org/abs/astro-ph/0601348
https://doi.org/10.1086/519372
http://arxiv.org/abs/astro-ph/0611317
https://doi.org/10.1086/520318
http://arxiv.org/abs/astro-ph/0611315
https://doi.org/10.1007/s10509-010-0301-6
https://doi.org/10.1007/s10509-010-0301-6
https://doi.org/10.1088/2041-8205/808/2/L42
https://doi.org/10.1088/2041-8205/801/2/L24
https://doi.org/10.1088/2041-8205/801/2/L24
https://doi.org/10.3847/1538-4357/ab72a7
https://doi.org/10.3847/1538-4357/ab72a7
http://arxiv.org/abs/1904.01699
https://doi.org/10.1146/annurev.nucl.55.090704.151608
https://doi.org/10.1146/annurev.nucl.55.090704.151608
https://doi.org/10.1086/305338
http://arxiv.org/abs/astro-ph/9709188
http://arxiv.org/abs/astro-ph/9709188
https://doi.org/10.1051/0004-6361/201425059
https://doi.org/10.1111/j.1365-2966.2005.09546.x
https://doi.org/10.1393/ncr/i2016-10120-8
https://doi.org/10.1393/ncr/i2016-10120-8


Mocák M, Müller E, Weiss A, Kifonidis K (2009) The core helium flash revisited. II. Two and three-

dimensional hydrodynamic simulations. Astron Astrophys 501:659–677. https://doi.org/10.1051/

0004-6361/200811414

Mocák M, Meakin C, Viallet M, Arnett D (2014) Compressible hydrodynamic mean-field equations in

spherical geometry and their application to turbulent stellar convection data. arXiv:1401.5176

Mocák M, Meakin C, Campbell SW, Arnett WD (2018) Turbulent mixing and nuclear burning in stellar

interiors. Mon Not R Astron Soc 481(3):2918–2932. https://doi.org/10.1093/mnras/sty2392

Mocz P, Vogelsberger M, Sijacki D, Pakmor R, Hernquist L (2014) A discontinuous Galerkin method for

solving the fluid and magnetohydrodynamic equations in astrophysical simulations. Mon Not R

Astron Soc 437(1):397–414. https://doi.org/10.1093/mnras/stt1890

Morozova V, Radice D, Burrows A, Vartanyan D (2018) The gravitational wave signal from core-

collapse supernovae. Astrophys J 861(1):10. https://doi.org/10.3847/1538-4357/aac5f1
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