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The  process  o f  thinning o f  a film formed be tween  a deformable bubble and a solid subs t ra tum 
is considered.  The  solution is obtained by match ing  the asymptot ic  coordinate  expansions ,  valid 
both  in the vicinity of  and  at a dis tance f rom the axis o f  symmet ry .  It is demons t ra ted  that  when  
the interfaces are at a shor t  dis tance from each  other,  the  film can be considered as being prac- 
tically plane-parallel.  An  express ion  is deduced  for the  rate of  thinning o f  such  a film, coincident  
in form with the  well-known law of  Reynolds ,  With the surfaces  fur ther  apart  f rom each other,  
equat ions  are obtained for the deformat ion o f  the  bubble and for the rate o f  its approach to the 
solid subs t ra tum.  

1. I N T R O D U C T I O N  

When interpreting the experimental data 
for the rate of thinning of microscopic 
foam and emulsion films, Reynolds' equa- 
tion (Eq. [26] of this work) is currently 
used (see, e.g,, (1-4)). However,  it is well 
known that its applicability to foam and 
emulsion systems is questionable for two 
main reasons: (a) the film surfaces are not 
tangentially immobile, and (b) they are de- 
formable and not plane-parallel. The first 
effect was taken into account by Radoev 
et  al. (5, 6), and Ivanov and Dimitrov (7) 
for foam films, and by Murdoch and Leng 
(8), Reed et  al. (9, 10), Ivanov and 
Traikov (11) and Traikov and Ivanov (12) 
for emulsion films. The second effect was 
considered theoretically by Princen (13), 
Lee and Hodgson (14), Hartland (15-17), 
Frankel and Mysels (18), and Radoev and 
Ivanov (19). In the main however, these 
studies deal either with the initial or middle 
stage of the film's evolution, when the 
deformation of the film surfaces and/or the 
deviation from Reynolds' equation are con- 
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siderable. On the other hand, experimental 
investigations reveal that with sufficiently 
small thicknesses and bubble radii and high 
surfactant concentrations, the film surfaces 
are almost plane-parallel and the rate of 
thinning concurs reasonably well with 
Reynolds' equation (1-4). 

True, the film's radius in these experi- 
ments is not too precisely set, but the film's 
thickness is measured directly. Therefore, 
though the applicability of Reynolds' law 
can be questioned with respect to the de- 
pendence of the rate of thinning on the 
film radius, with respect to the thickness, 
it is considered as being firmly established 
that with sufficiently thick films, where the 
disjoining pressure is so small as to be 
negligible, the rate of thinning is pro- 
portional to the third power of the thick- 
ness (1). 

Hartland (15) has numerically calculated 
the alteration of the film's profile with time, 
making use, as initial condition, of the 
experimentally defined profile at a certain 
moment. It was found that the film's 
deformation at the center diminished as it 
thinned, but that a ring of lesser thick- 
ness remained along its perimeter. The the- 
oretical analysis of the thinning of films 
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FIG. 1. Gas bubble moving along the axis z toward 
a solid plane. 

at lesser thicknesses entails considerable 
mathematical difficulties, arising from the 
nonlinearity of the equations and from the 
numerous effects to be taken into account. 
Nevertheless, a number of theoretical treat- 
ments have recently appeared on this prob- 
lem (20-24). In the main, these studies 
analyze the nature of the flow and the shape 
of the surface; they indicate that the profile 
of the surface may differ greatly, depend- 
ing on the model used and on the thickness 
at the film's center. The various laws of 
thinning deduced greatly differ from Reyn- 
olds' law (20, 22). 

This diversity of results is obviously as- 
sociated with the complexity of the process 
itself, which may proceed in a different 
manner in each individual case. On the 
other hand, however, the above-cited ex- 
perimental investigations indicate that 
conditions should exist at which Reynolds' 
law (in particular the proportionality of the 
rate of thinning to the third power of the 
thickness) is applicable. The present work 
is intended to demonstrate that it is pos= 
sible for the film to be practically plane- 
parallel and to thin out in accordance with 
a law differing only in its numerical co- 
efficient from Reynolds' law. Although only 
the case of a film formed by pressing a 
gas bubble against a solid substratum is 
considered, this conclusion is also valid for 
a film formed between two identical bub- 
bles. The effect of the disjoining pressure 
will be taken into account in a subse- 
quent paper. Since the presently used 
method of matched coordinate expansions 

is also applicable for a larger separation 
between bubble and substratum, in Section 
5 we have again derived the results previ- 
ously obtained in a different manner by 
Radoev and Ivanov (6, 19). 

2. FORMULATION OF THE PROBLEM 

The liquid flow is governed by the lubri- 
cation theory equations, which, for axial 
symmetry, have the form 

OP 

Or 

OP 

Oz 

~r~)r -{- 01)z 
Oz 

02Vr 
- ~-- ; [ l a ]  

Oz ~ 

- 0 ;  [ l b ]  

1 0  
= 0 ;  % -  r. [lc] 

r Or 

Here ~ is dynamic viscosity, P is pressure, 
and vr and v~ are velocity components (see 
Fig. 1). Equations [1] are only valid if the 
interval H between the two film surfaces is 
much inferior to the bubble radius Re 
(19, 25, 26). Assuming that outside of the 
film the bubble is spherical in shape, simple 
geometric reasoning indicates that H / R  e 

0.1, with r ~ 0.4Re. As the film radius is 
usually inferior to 0.05 Re (1) Eqs. [1] will 
also describe the flow in a fairly extensive 
region outside of the film, where there still 
is a noticeable dissipation of energy. Out- 
side of this region, the flow has an insignif- 
icant effect on the balance of forces and 
can be disregarded, as the pressure gradient 
is proportional to H -3 (19). This, at high 
values of r (r ~ ~), makes it possible to 
disregard any surface deformation and to 
approximate the shape of the surface to a 
parabola (see [7]). 

We shall formulate the boundary condi- 
tions in a more general form, as it will 
allow us to derive a differential equation 
applicable in other cases as well. Let us 
suppose we have not just one, but two 
bubbles A and B approaching each other 
along their line of centers (Fig. 2). The 
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equations of  the generatrices of  their 
surfaces are H a = HA(r) and H B = HB(r) 
and the thickness of the liquid core is 

V r ~ U A ,  

dH A OH a OH A 
v ~ - - -  - + U A -  

dt  Ot Or 

V r = O B ,  

dH B OH B 
V z = _ _  - -  U B _ _  

dt Ot 

pgA __ p = o - A A r H A ,  

pgB _ p = ~rBA~H B, 

2o- A 2o- B 
P = P m  =pgA _ p g B _ _ _  

R e  A Re  B 

H =  h and OH~Or = 0  

where Ar = (1/r)(O/Or)r(O/Or), Pg being the 
gas pressure in the bubble, Pm the pressure 
in the liquid at r---> w, o- the surface 
tension, and Rc the bubble radius. Equa- 
tions [2e] and [2f] follow from [lb] and 
from Laplace 's  equation for the capillary 
pressure,  and Eq. [2g] allows for the vanish- 
ing at r ~ ~ of  the pressure disturbance 
caused by the flow. 

By integrating [la] with [2a] and [2c], we 
have: 

z 2 0 P  
V r  - -  _ _ _ _  

2tx Or 

+ I UA - UR 

Z 
X - -  " +  U B 

H 

~- I U A  - U B  

H A m n B 

n B 

H 

1 21~ Or 

(HB) 2 OP 

21~ Or 

1 0 P  

2~ Or 

× ( H  A - HB)H]  
/ 

Inserting this in [lc] and integrating over  z 
from - H  B to H A, by means of [2b] and 
[2d] we obtain 

t 

H = H A +  H B. In the region where the 
energy is mainly dissipated (see above),  we 
assume OHA/Or "~ 1 and OHB/Or ~ 1. Then 
the appropriate boundary conditions will be 

[2a] 

at z = H A, 
[2b] 

[2c] 

OH B at z = - H  B, [2d] 

Or ' 

[2el 

[2f] 

at r ~ ~, [2g] 

at r = 0, [2hi 

O H _ v ~ [ g ( U A +  U ~) 
Ot I x  

OP 

12/~ ~ r  " 
[3] 

In the general case, the film profile H is 
dependent  on the time t, explicitly and 
through h = H(0), i.e., H = H[r,t,h(t)]. To 
simplify the solution, we shall proceed to a 
quasi-steady assumption; we assume that 
H,  and hence all other values are de- 
pendent  on t solely through h (5-7 ,  11, 19). 
This enables us to substitute in the left-hand 
side of  [3] 

OH OH dh OH 
. . . . .  vo , [4] 

Ot Oh dt Oh 

where V0 = -dh ld t ,  rate of thinning at the 
film center.  It was shown by Riolo et al. 
(31) that the quasi-steady assumption is 
fully justifiable for thin films with non- 
deformable interfaces (e.g., a thin film 
formed between two plane-parallel surfaces 
or two solid spheres (5 -7 ,  11, 19)) as, at 
small values of  Reynolds '  number,  the 
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FIG. 2. Mutual approaching along the axis z of two 
different bubbles A and B of radii Re A and Rc B and 
surface tensions tr A and tr B. 

velocity field can be dependent  on the time 
only through the boundary  conditions (28). 

It is shown in (19) that even with a 
deformable interface at the initial stages of  
the film formation,  when the bubble slightly 
deviates from the spherical shape, the quasi- 
steady assumption yields the exact  solution. 
It is also to be expected,  in the case 
under consideration,  with a slight deviation 
from the plane-parallel form of  the film, 
that this assumption may be applicable. 
There  seems to be supporting evidence of 
that in the experimental  investigations (29), 
which indicate that the rate of thinning of 
such films is dependent  on their thickness 
at a given moment  but not on their pre- 
history. 

It is difficult to say a priori whether  
the quasi-steady assumption can also be 
used in the intermediary stages of the film's 
evolution when the deformation of its sur- 
faces is considerable.  Frankel  and Mysels 
(18) have investigated this case on the basis 
of an equation similar to [3], and have 
obtained analytical expressions for h(t) and 
Hd(t) (lid is the barrier ring thickness,  i.e., 
the minimum thickness of  the film). How- 
ever,  the Ho/h ratio, which their theory 
leads to, is not explicitly dependent  on t. 
This suggests that in this case the form of 
the surface does not explicitly depend on 

t, either, i.e.,  that the quasi-steady as- 
sumption [4] may be utilized. It will not 
be so, of course,  if the deformation of the 
surface is due to some external  factors,  
e.g., corrugations of the surface as a result 
of  thermal fluctuations (27) or mechanical 
vibrations (30), or to some initial dis- 
turbances of the liquid within the drops, 
when the film is contiguous, at least on 
one of  its surfaces, to a liquid phase 
(31). The quasi-steady assumption will not 
be applicable even when such external  
perturbations are absent,  if h is a multiple- 
valued function of  t. 

Equation [3] is a concise formulation of 
Eqs. [1], [2a-d] .  It is the governing equation 
for all cases of  axisymmetric flow when 
the lubrication approximation is valid, i.e., 
when the distance h = H(0) between the 
two surfaces is sufficiently small to assume 
the validity of [1] and of  the approxi- 
mations OHA/Or ~ 1 and OHB/Or "~ 1. It 
cannot  be directly applied however  to con- 
crete systems because it relates four quan- 
tities: H,  U A, U B, and P. Some of  them 
can be expressed through the conditions 
for continuity of the components  of the 
stress tensor  at the film's surfaces and 
then Eq. [3] reduces to a differential 
equation either for  P (nondeformable sur- 
faces) or for  H (deformable surfaces). Such 
equations were previously derived and used 
by many authors (6, 17-24). 

For  the system under consideration (see 
Fig. 1), H B = 0 ,  U u = 0, and Rc B = ~ .  
With respect  to the bubble surface we con- 
sider only two limiting cases: (i) no slip 
(U  A = 0) and (ii) completely mobile surface 
(l~(Ovr/Oz) = 0 is substituted for [2a] in this 
case). Then Eq. [3] yields (we omit the 
superscript  A): 

3nt x - -  = Vr H 3 , 
Ot 

where n = 4 or 1 in case (i) or case (ii), 
respectively.  The last equation was first 
derived by Hart land (see Eq. [8] in (17)). 
Making use of  [2e] and [4], we obtain 
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3ntxV° OH Vr[Ha 0 ] 
o- 0 h  - ~r  (ArH) " [5] 

The relation between Vo and the external 
driving force F impelling the bubble toward 
the substratum is given by the equation 

[ O(H(° ) -H)] f  [6] F = 27ro- r -0r ' 

where 
F 2 

H (°) = h + - -  [7] 
2Re 

is the approximated equation of the equilib- 
rium (spherical) form of the bubble surface. 
Equation [6] follows from the balance of 
forces acting upon the bubble along the 
z-axis and from Eqs. [2el, [2g], and [7]2: 

f 
Rc 

F = 27r (P,-  Pm)rdr ~ 27ro- 
0 

X Ar(H (°) - H)rdr 

= 27ro- I r 0 (H  (°) - Or H)] [. [8] 

The bubble surface exhibits two distinct 
regions: In the first one (near the axis of 
symmetry where H ~ h) the deviation from 
the spherical form is considerable, and in 
the second (far from the axis of symmetry 
where H -> h), the disturbance due to the 
flow is small. It is then convenient to 
introduce the dimensionless variable 

y = 1 + Ygr 2, [9] 

which in these regions is of the order 
y ~ 1 (Ygr ~ 1) and y >> 1 ( ~ r  2 >>l), 
respectively. The parameter Y(, which is 
approximately equal to the inverse square 
of the radius of the " b o u n d a r y "  between 
these regions (see Sect. 3), will obviously 
be dependent on h. Indeed, when the bubble 

2 A similar force balance was used by Hartland 
(17). However, he has integrated over r only till the 
dimple radius. In this way a rather extensive region, 
where the energy dissipation is still noticeable, was 
disregarded. 

moves away from the substratum, its 
deformation is very small, and only at 
h = hi = F/4rrtr (6, 19) does its surface ac- 
quire the characteristic cupped form called 
"d imple ."  With h ~ hi, the dimple turns 
into an almost plane-parallel film. Hence,  
with respect to h, we shall distinguish 
the cases of great thickness (h >> hi) and 
small thickness (h ~ hi). 

When substituting [9] into [5], the de- 
pendence of y on h (through ~() must 
be accounted for, i.e., 

r h r 

+ = ~'r  20H + H', 
y Oy 

where the primes indicate differentiation 
with respect to h. So we obtain: 

-- { 02 
0 ( y _  1)Ha 

Oy Oy 2 

where 

1, l I 
3n~ Vo 

- - -  [ 1 1 ]  

16o-~ 3 

We shall, with respect to y, seek a solution 
to this equation by the method of matched 
coordinate expansions (32). 

With y >> 1, the expression for H can 
be found as follows. Because of [2h], the 
lower limit of [6] cannot give any contribu- 
tion to F. Since H (°~ is dependent on 
r2/2Rc (see [7]) for Fto be finite, H must con- 
tain the same term. We must also include a 
term with In y because this is the only 
function giving a finite contribution in [6]. 
With y >> 1, the remaining part of H(y) 
will be consistent with [2g] if it is repre- 
sented as a series with respect to the 
negative powers of y. Taking the first two 
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terms of  this series only, we can write (for 
y >> 1): 

_ _  a l  H -  y _ _ F I n  y + a0 + - - ,  [12] 
2~fR e 4fro- y 

where ao and al are functions of  h, and 
[6] has been used to determine the coef- 
ficient before In v. 

In order to find an equation for the co- 
efficients a0 and al, we shall substitute 
[12] into [10] and let y ~ ~. This means 
that in the final result, only the terms 
without y must be accounted for. The 
left-hand side (LHS) of  [10] is t ransformed 
as follows: 

LHS  = a Y ( ' ( y -  1) x 
e 47ro'y 

a~) ~ (  yY(' a , ' ) ]  
- + - -  + ao '  + 2~2Re y 

_ a { ~ . ,  ~ '  

~ [ ~  "o 2Rc 

F Y ( ~ '  t + O(y-i) .  
47r~ / 

Since in the right-hand side (RHS) of  [10] 

OY ~ (y  - 1) 

2 (  F ) 6al 
- a t  + yZ 47rtr y4 

in the limit y ----> ~ it is sufficient to write 

R H S =  0 ( { y ~ 2  oy lYt2--d-  ) 7 
( F )} F /4"n 'or -  al  

x ~ - at  - 
4rrtr 4~3Rc a 

So we get: 

4aYg2R~3 ( ~2ao' Yg' 
2 R~ 

F y ( , y ( , ~ _  F 

4zrtr J 4fro- 
al. [13] 

In the region ~fr 2 ~ 1 it is more con- 
venient to use [5] instead of [10]. By 
means of  the expansion H = h + d2r 2 
+ d4r4+ d6 r6 and [5], we have for this 
region 

H = h + d2r 2 + a ~  r 4 
4 h  3 

a ~  a 
+ ~ ( h d 2 '  - 6d2)r 6. [14] 

36h 4 

The asymptotic solutions [12] and [14] are 
matched in the region ~ r  2 ~ 1 by expand- 
ing In y and y- i  in [12] in series with respect  
to N r  2 and equating the coefficients in this 
series to those in [14]. We thus obtain 

h = a0 + at + (2Y(R~) -~, [15] 

o~Y( F 
- a~  + - -  [ 1 6 ]  

4h 8 87ro- 

F h Y ( '  ot 3 , 3FY~ 6 a l f f l ~  + 

36"h 4 Rc 27ro" 47ro- 

] + (alYg) 'h  = at + ~ [17] 
127ro- 

Equations [13], [15]-[17] allow the deter- 
mination of  the quantities a0, at, N,  and 
ot (i.e., V0). The elimination of a0 and a (by 
means of [15] and [16], respectively) yields 

(1 + 26013 + Y('h - 6ff((al + 1) 

+ h (G~) ' ]  = 6~h(1  + 3~1), [18] 

8~2h3(1 + 2al) 

x ( Y ( -  Yg/q' - YC') = 1 - al, [19] 

where we have introduced the dimension- 
less quantities 

h -  4~ro'h . y ( _  __FRcY~ . 

F 4zro- 

47total 
h t - - -  [20] 

F 

and the primes indicate differentiation 
with respect  to h. Equations [18] and 
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[19] will be solved in Section 3 for the 
case of  small thickness (h = h/hi < 1) and 
in Section 5 for great thickness (h >> 1). 

3. L I Q U I D  F I L M  O F  S M A L L  T H I C K N E S S  

(h < 1) 

When F is the buoyancy  force ,  h 
= 3rrh/pgRc a, where g denotes gravity and 
p, liquid density. Hence ,  with bubble radii 
Rc = 10 - 1 +  10 -~ cm, the condit ion h 
=< 0.1 will be realized in the thickness 
range 0 =< h ~ 10 -3 + 10 -6 cm. As investi- 
gations of  thin films are usually carried 
out in the range 3 x 10 -6 ~ h ~ 10 -5 cm 
(1), this case is the most  important  one. 
Using the expansions 

a l  = A0 (°) + A1 (°)/t + A2 (°)h2 + . . . .  [21] 

~( = Ko (°) + K l ( ° ) h  q- Ke(°)h 2 + . . . , [22] 

from [18] and [19] we find Ao (°)= 1, 
A1 (°) - -  A 2  (0) --  0 ,  . . . and Ko (°) = ¼, K1 (°) 
= - I / 5 ,  //2(0)= 1/5 . . . . .  Thus,  from [15], 
[16], and [12] (see also [19], [11], and [20]) 
we finally obtain 

v o  - 

H = h + - -  

87ro-eh  3 

n t x FRc 2 

x ( 1  - 1.6h + 2 . 2 4 h  2 + . . . ) ,  [23] 

r 2 F I n  1 + - -  
2 Rc 47ro" FRc 

r 2 1 
- - -  [ 2 4 ]  

TrOrr 2 

FRc 

In setting down [24], all terms of the order  
of h have been disregarded. 

Equation [24] is a correct  asymptotic  
expression with YCr 2 > 1 and YCr ~ < 1. In 
the transitional region between these two 
limiting cases it is however  only a crude 
interpolation formula. According to [24], in 
the region near the axis of  symmetry  the 
film is almost plane-parallel. The function 
H(r)  in [24] exhibits only one extremum: 
a minimum at r = 0. However ,  this does not 

mean that the possibility for the film sur- 
face to be dimpled is ruled out altogether. 
Indeed,  if a dimple does exist, its radius 
must be of the order  of 1 /~  '/2 (19), i.e., 
the dimple must be in the region in which 
Eq. [24] is only a rough approximation to 
the real film surface. As mentioned above,  
such a small dimple was found by Hart- 
land (15). 

An interesting feature of Eq. [24] is that 
it does not contain n and/~,  i.e., the form 
of the surface is not dependent  on the 
hydrodynamic  behavior  of the system. This 
conclusion, which was also reached intui- 
tively by Princen (13), concurs with the 
results obtained for the initial deforma- 
tions of  the bubble at h > 1 (see Eq. 
[37]). 

With h < 1 the series in parentheses in 
[23] is approximately equal to 1, and the 
velocity Vo, which in fact is the velocity 
of  thinning of the whole central almost 
plane-parallel part of the film (that with H 
--~ h) will be given by the expression 

87ro-2h3 
Vo - - -  [ 2 5 ]  

n t.c F R c  2 

When the film is formed between two dif- 
ferent bubbles, the theory is similar, but the 
calculations are more involved. These re- 
suits are to be published subsequently.  
We merely mention now that if the bubbles 
are identical and their surfaces tangentially 
immobile, Eq. [25] with n = 4 will still be 
valid. This result is to be expected.  

4. O N  T H E  V A L I D I T Y  O F  

R E Y N O L D S '  E Q U A T I O N  

Equation [25] contains only measurable 
quantities and can, in principle, be tested 
experimentally,  particularly in the case 
when the film is formed between a solid 
substratum and a bubble,  pressed by the 
buoyancy force. Nevertheless ,  it is inter- 
esting to put it in the form of Reynolds '  
equation (33) 

Vne = (2hvaF)/(3WzRv 4) [26] 
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which gives the rate of thinning Vr~ of a 
film of thickness hv formed between two 
rigid circular plates of equal radii RV. 

When [26] is used for experimental pur- 
poses, the thickness hv is usually measured 
by interferometry of 30 + 50% of the film 
surface (34). As the film is practically 
plane-parallel the experimental value hv can 
be considered as a virtual mean thickness 
and assumed equal to h in [25]. The film 
radius is determined visually, either as the 
radius of the plane-parallel part, or as the 
radius of the circumference comprised be- 
tween the first and the second interference 
rings (35). The difference between the two 
definitions does not normally exceed 10%. 

Since it is not possible to introduce the 
visual film radius in [25], we shall use the 
experimental observation that the latter 
does not differ appreciably from the radius 
Re of the equilibrium film which eventually 
forms between the bubble and the sub- 
stratum (36). The film radius Re can be 
calculated from Derjaguin-Kussakov's  
formula (19, 37) 

Re ~ = FRJ27ro'. [27] 

By eliminating Rc from [25] and [27], we 
thus obtain (with n = 4): 

h3F 
Vo - - -  [28] 

2'a'/~Re 4 

Except for the small difference in the nu- 
merical coefficients, this last equation is 
coincident with Reynolds' equation [26] 
if hv = h and Rv =Re.  In this case V0 
= 3AVRe. Another way of comparing [26] 
and [28] is to choose the value of Rv in 
such a way that with hv = h, both formulas 
give the same rate of thinning. In this case 
Rv = 1.07Re. The difference between Re 
and the value of Rv determined in this way 
is approximately equal to the uncertainty 
with which Rv is set at the experimental 
measurements (see above). The small dif- 
ference between V0 and Vrte (with Rv = Re) 
or Rv and Re (with V0 = Vrte) proves that 
Reynolds' equation [26] gives the rate of 
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thinning reasonably well. Analogous results 
are obtained when the bubble surface is 
tangentially mobile (put n = 1 in [25]), 
but in this case a factor 4 appears in the 
numerators of both [26] and [28]. 

We must emphasize that the relatively 
good numerical coincidence between [26] 
and [28] may to some extent be fortuitous. 
What is much more significant is that we 
find that the rate of thinning V0 is propor- 
tional to the third power of the film thick- 
ness h, which concurs with the experi- 
mental results (29, 35). 

When formulating the boundary condi- 
tions [2] and [6], we have assumed that the 
film is small, namely, that Re/R~ ~ 1 (see 
the comment after Eqs. [lc]). If the bubble 
is moved by the buoyancy force F 
= 4hTrR~pg, from [27] we have 

Re _ ( F ] 1/2 ( 2R~Zpg t ll2 

R~ \ 2-~R~} = \ 3o- } 

Since this ratio is decreasing with decreas- 
ing Re, we see, therefore, that our theory 
will be valid only for sufficiently small bub- 
bles. This is in agreement with the results 
of Buevich and Lipkina (23), whose com- 
puter solutions of Eqs. [1] have shown that 
with Re/Rc ~ 1 the film could thin without 
dimpling. This conclusion depends however 
on the value of h and at greater thick- 
nesses even small bubbles can have dimples 
(6, 19)). In this case however Eqs. [23], 
[24] are no longer valid and the film profile 
and the velocity of thinning are described 
by Eqs. [37], [38]. 

Cases in which the film is formed by 
blowing the bubble from a capillary tube 
to a plane substratum (36) (Fig. 3), or by 
sucking the liquid from a biconcave menis- 
cus (1, 29, 35), are more complicated, 
as the driving force F for these systems 
cannot be directly measured. It can, how- 
ever, be calculated as follows. Let the pres- 
sure in the equilibrium spherical bubble be 
/,go and the pressure in the liquid be Pm 
(Fig. 3a). If the pressure in the bubble is 
suddenly increased to Pg, the bubble will be 
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deformed and a lmost  plane-parallel  thinning 
film will be formed,  which can eventual ly  
turn into an equilibrium film of  radius Re 
(Fig. 3b). The capillary pressures  of  the 
spherical bubble Pc ° and of the meniscus 
in equilibrium with the film Pc will be (38, 39): 

2o- 
pc 0 = pg0 _ Pm -- COS ~, [29] 

Re 

Pc = P c - P r o  

2o-(R~ cos ~ - R~ sin 0) 
= [30] 

R c  2 - -  R e  2 

where Re is the capillary radius and ~ and 
0 are the contact  angles be tween the 
meniscus and the capillary wall and the thin 
film, respect ively.  Since the driving pres- 
sure A P  = Pg - pgO remains constant  dur- 
ing the film thinning, it can be calculated 
through [29] and [30]: 

AP = Pc - p 0  ~ 2°'Re2 cos 
Rd , [31] 

where we have  assumed R~ ~ R e. Hence  
the driving force will be 

F = crR~zAP 

2o- cos 
~ R e  2 - -  ~ R e 2 p c  0. [32] 

Rc 

Natural ly,  the same result is obtained for 
a film formed in a b iconcave  meniscus.  
Substituting this value for F in [28], we 
obtain 

h3Pc o 
Vo - - - ,  [33] 

2/xR~ 2 

which is analogous to Reynolds '  equat ion 
in the form used by Scheludko for the 
system under  considerat ion in the absence  
of disjoining pressure  (1, 29): 

2hv3Pe ° 
VR~ - - -  [34] 

3/xRv 2 

Equation [32] in the form F = 7rRv2p~ ° 
was derived by Scheludko (40) by assum- 
ing that the film thins under  the action of  
the driving pressure  A p  = Pc o applied on 

~ capillary 

Pm liquid Pm 
/ / / / 1 / / / / / / H I / / / / / / / / /  

solid 
o b 

FIG. 3. Schematic representation of the formation of 
a thin liquid film of equilibrium radius Re by blowing 
out a bubble from a capillary of a radius Rd (a) 
spherical bubble in equilibrium with gas and liquid 
phases of pressures/,go and Pro, respectively; (b) after 
increasing the gas pressure to Pg the bubble is de- 
formed and an equilibrium film forms. 

the film area ~-Rv 2. Although our derivation 
leads to the same result  [32], it is note- 
worthy that our driving pressure  is given 
by [31] and is much smaller than p 0 .  
Indeed,  with Re = 10- '  cm, R e = 10 -2 cm, 
o - - - 5 0  dyn cm -1 and ~p = 0, we obtain 
A p  = 10 dyn cm -2, whereas  p o = 103 dyn 
cm -2. The very small value of  the driving 
pressure  explains the ex t reme  sensitivity of  
these sys tems to external per turbat ions af- 
fecting the pressure  (1). 

5. W I D E L Y  S E P A R A T E D  B U B B L E  

A N D  S U B S T R A T U M  (h  >> 1) 

When the distance be tween the cap of  the 
bubble and the subst ra tum is very  great 
(h >> 1), the bubble is only slightly de- 
formed.  In this case asymptot ic  expres-  
sions for the coefficients fil and J(  in 
[18] and [19] can be obtained by using the 
expansions 

al = A0 ~=) + A 1  ( ~ ) h - 1  + • • • , [35] 

= Ko (~ + K , ( ~ h  -1 + . . . .  [36] 

Substituting these series into [18] and [19], 
we find Ao (~ = 0, A1 ( ~ =  %4 . . . .  , Ko (~ 
= 0 ,  g l  (~) = 1~ . . . .  Thus f rom [11], [12], 
and [9], also taking into account  [7], [2], 
and [16], we obtain the following expres-  
sions for the equation of  the bubble surface 
H(r)  and the velocity V0: 
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H =  h + r2/2Re 

- (F/4~'o-) In (1 + r2/2Rch),  [37] 

Vo = 2hF/3n~rlxRc 2. [38] 

Equations [37] and [38] (with n = 4) coin- 
cide, respectively, with the first approxima- 
tion for the bubble surface and the zero 
approximation for the velocity V0 obtained 
by Radoev and Ivanov (19), using the 
method of the parametric expansion with 
respect to the small parameter e = F/4~rcrR~ 

1. When F is the buoyancy force, 
E -- Rc~pg/3o - and we reach again the con- 
clusion that the present solution (and that in 
(19) as well) is valid for small bubbles. 
Since Eqs. [37] and [38] are analyzed in 
(19), we shall merely note at present that, 
with n = 1, Eq. [38] gives the rate of ap- 
proach of a slightly deformed bubble with 
a wholly mobile tangential surface toward a 
solid substratum. 
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