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Hydroelastic waves on fluid sheets
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Nonlinear travelling waves on a two-dimensional inviscid fluid sheet are investigated
when the sheet is bounded above and below by two thin elastic plates. Symmetric
and antisymmetric solution branches are identified, together with a pair of bifurcation
branches. It is shown that far along the branches the solutions approach limiting
configurations that correspond to static solutions valid in the absence of fluid forcing.
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1. Introduction

The interaction between a moving fluid and a deformable boundary is a topic of
fundamental interest in fluid mechanics (e.g. Korobkin, Părău & Vanden-Broeck 2011).
Theoretical understanding of hydroelasticity can be applied to numerous industrial
problems and it aids understanding of a host of naturally occurring phenomena. In this
paper we discuss two-dimensional hydroelastic waves propagating on sheets of fluid
that are bounded by elastic plates. The fluid motion is assumed to be both inviscid and
irrotational. Two elastic plates sandwich a layer of moving fluid and deform according
to the dynamic pressure exerted by the fluid. The plates are assumed to be thin and
upon deformation to develop both in-plane and transverse shear tensions, as well as a
bending moment. The fluid motion and elastic deformation are coupled together via a
dynamic balance relating the hydrodynamic loading to the elastic stresses prevailing in
the plates.

In the case when the transverse shear tension and bending moment are both
identically zero, the in-plane tension is constant and the more classical problem of
capillary waves travelling along fluid sheets is recovered. In this case Taylor (1959)
noted that there are two types of small-amplitude waves: symmetric and antisymmetric.
Nonlinear solutions were calculated exactly by Kinnersley (1976). Crowdy (1999)
gave a simpler method of computing the same waves using a complex variable
technique. New solutions that bifurcate from the main symmetric Kinnersley branch
were identified by Blyth & Vanden-Broeck (2004). In the present problem we find that
again only symmetric and antisymmetric waves exist at small amplitude, and we trace
the nonlinear development of the waves as an appropriate elasticity parameter is varied
for a fixed flux of fluid through the sheet.

Although the present study is purely theoretical, practical applications in which
hydroelastic waves occur are manifest. Examples include flapping flags (e.g. Shelley,
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Vandenberghe & Zhang 2005) and biomedical applications such as heart valves (e.g.
Jia et al. 2007) and air flow in the windpipe (e.g. Grotberg 1994). In particular, our
work may find application in flat-plate-type fuel assemblies found in nuclear reactor
cooling systems. These assemblies are composed of a number of elastic plates placed
in parallel to each other, with coolant fluid flowing through the gaps between them
(e.g. Kim & Davis 1995). In this application it is desired that the plates remain flat
and in parallel during operation. However, when the coolant flow rates between the
plates are large, the plates may deform.

In § 2 we formulate the parallel elastic plate problem to be studied. In § 3 we
consider static solutions in the absence of a fluid motion, and in § 4 we study
travelling waves when there is a prevailing flow between the plates.

2. Problem formulation

We investigate periodic waves of wavelength λ propagating at constant speed along
a fluid sheet confined between two elastic plates as illustrated in figure 1. Gravity is
neglected, and the fluid motion is assumed to be inviscid and both incompressible and
irrotational. The plates are free to deform to accommodate the travelling waves. As the
plates deform, they develop both in-plane and shear tensions, which are balanced by
the pressure in the liquid. The regions above the upper plate and beneath the lower
plate are assumed to be dynamically inactive and at a constant pressure, which is taken
to be zero.

Disregarding inertia, a mechanical equilibrium balance of forces and moments in the
elastic plates yields (e.g. Flaherty, Keller & Rubinow 1972)

γ � + κq = 0, q� − κγ = ±p, q = m�, (2.1)

where a prime denotes differentiation with respect to arclength s along the plate, γ (s)

and q(s) are the tangential and shear tensions in the plate, respectively, with units
of force per unit length, m(s) is the bending moment, and p is the pressure in the
liquid. The plus/minus sign applies at the upper/lower plate respectively. The curvature
κ = θ �(s), where θ is the angle made between the tangent to an elastic plate and the
x axis. For the bending moment, we adopt the simple linear relationship suggested by
previous workers,

m = EBκ, (2.2)

where EB is a bending modulus. Thin-shell theory predicts that EB = Eh3/[12(1 − ν2)],
where E is Young’s modulus, ν is Poisson’s ratio and h is the plate thickness, which is
here assumed to be constant (e.g. Fung 1965). The relationship (2.2) has been justified
for the case of an inextensible elastic plate, as assumed here, by Pozrikidis (2002).
Integrating (2.1) once with respect to arclength and eliminating γ and q, we obtain the
dynamic relationship between the pressure and elastic stresses,

p = ±EB(κ
�� + 1

2
κ3 − σκ/λ2), (2.3)

where σ = λ2γ /EB + λ2κ2/2 is a constant of integration. The plus sign applies at the
upper plate and the minus sign applies at the lower plate. We remark that (2.3) is
consistent with the recent hydroelastic formulation of Plotnikov & Toland (2011).

We work in a frame of reference (x, y) moving at the constant speed of the wave, as
shown in figure 1. The wave speed of the elastic plate is assumed to be the same as
that of the liquid – note that the formulation of Plotnikov & Toland (2011) allows for
different wave speeds. To define the wave speed, c, we take the average velocity over
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FIGURE 1. Sketch of periodic waves travelling along a liquid sheet bounded by two elastic
plates. Arclength s is measured as increasing from left to right on both of the elastic plates.

one period of a streamline, writing

c =
1

λ

� x=λ

x=0

u · dx, (2.4)

where dx = (dx, dy) is parallel to a streamline, u = (u, v) = ∇φ is the fluid velocity
and φ(x, y) is the velocity potential. Since the flow is irrotational, c is the same for
any choice of streamline. It follows that, when x changes by λ, then φ changes by cλ.

Since the fluid motion inside the sheet is governed by Laplace’s equation, it is
useful to introduce a complex potential f = φ + iψ , where ψ(x, y) is the stream
function defined so that ψ = 0 on the upper surface and ψ = Q∗ < 0 on the lower
surface. Since φ and ψ are both harmonic functions, f is analytic and it only remains
to satisfy the normal stress balance at the interfaces between the liquid and the elastic
plates. Applying Bernoulli’s equation at the interfaces and using (2.3) we obtain

1

2
U2 ±

EB

ρ

�

κ �� +
1

2
κ3 −

σκ

λ2

�

= c2B, (2.5)

where the plus/minus signs follow the same convention as above, ρ is the density of
the liquid and U = |u| is the fluid speed at the respective plate. The Bernoulli constant
c2B is assumed to be the same on both plates and is to be found. Before proceeding,
we non-dimensionalize using c as the reference velocity and λ as the reference length,
and define the dimensionless flux Q = Q∗/(cλ) < 0. Henceforth all quantities presented
are dimensionless.

We seek solutions periodic in φ with unit period. All of the waves to be computed
are assumed to be symmetric about φ = 0. In order to compute the waves we use
essentially the same method as that adopted by Blyth & Vanden-Broeck (2004). We
introduce the analytic function τ (φ, ψ) − iθ(φ, ψ), which is defined so that

u − iv = eτ−iθ . (2.6)

In non-dimensional form, (2.5) becomes

1

2
U2 ± D(κ �� + 1

2
κ3 − σκ) = B, (2.7)

where U = eτ and the curvature terms are given by

κ = eτ
∂θ

∂φ
, κ �� = e3τ

�

2

�

∂τ

∂φ

�2
∂θ

∂φ
+ 3

∂τ

∂φ

∂2θ

∂φ2
+

∂2τ

∂φ2

∂θ

∂φ
+

∂3θ

∂φ3

�

, (2.8)

with the dimensionless parameter D defined by

D =
EB

ρc2λ3
. (2.9)
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We recall that the plus/minus signs apply to the upper/lower plate, respectively. The
dimensionless constant σ is arbitrary and can be thought of as a measure of pre-
stressing of the elastic plates prior to deformation. In the simplest case of a liquid
sheet of uniform thickness with parallel elastic plates, the curvature is zero and we
obtain σ = D−1(γ /ρc2λ), where the term in the bracket is the dimensionless tension in
the plates; if the plates are unstressed, this tension is zero and so σ = 0.

One may infer from the linear stability theory of De Langre (2002) that two types of
periodic wave are possible when the deformation on the elastic plates is small, namely
symmetric waves, where a trough on the upper wave is above a peak on the lower
wave, and antisymmetric waves, where a trough on the upper wave is above a trough
on the lower wave, as shown in figure 1. Assuming waves of small amplitude, our
preceding analysis leads to the dispersion relations

coth(πQ) + 2πD(σ + 4π2) = 0, tanh(πQ) + 2πD(σ + 4π2) = 0, (2.10)

for symmetric and antisymmetric waves, respectively. Our goal is to compute large-
amplitude waves for different values of the governing parameters, namely Q, D and σ .
The linear dispersion relations for small-amplitude capillary waves are obtained from
(2.10) in the limit D → 0 while holding the product Dσ fixed. The waves will be
calculated using a numerical method to be described in § 4. First we present a short
discussion of static solutions in the absence of fluid motion. It will be seen later that
these are useful for interpreting the travelling wave solutions in an appropriate limit.

3. Static solutions

When there is no flow in the sheet, the fluid pressure is constant and there is no
mechanical coupling between the two elastic plates. The balance of forces in the upper
plate, for example, demands that the term in the bracket on the left-hand side of (2.7)
vanish. Integrating once with respect to arclength we obtain

κ � 2 + 1

4
κ4 − σκ2 = d, (3.1)

where d is a constant of integration. It is possible to integrate (3.1) to obtain κ(s)

in terms of elliptic functions. However, this leads to rather complicated formulae (see
Vassilev, Djondjorov & Mladenov 2008) and so, as an alternative and more convenient
approach, we compute solutions numerically. Before attempting a numerical solution,
it is helpful first to examine the possible solution trajectories in the (κ, κ �) phase plane.
Two representative trajectories are shown in figure 2(a) for σ = 0 and σ = 0.5, both
for the sample choice d = 1. The large dots indicate the points (−k0, 0) and (k0, 0). In
the case σ = 0 we have k0 = (4d)1/4.

The qualitative shape of the orbits shown in figure 2(a) indicates the existence
of periodic solutions for κ . To compute the periodic wave profiles, we rewrite
(3.1) as a first-order system and integrate numerically using the fourth-order
Runge–Kutta method starting from the left-hand dot and advancing to the right-
hand dot (see figure 2a) to complete the upper half of an orbit. The lower half
is completed by symmetry. The profile of the plate in physical (x, y) space is
obtained by simultaneously integrating the system x�� = −κy�, y�� = κx�, where the
prime denotes differentiation with respect to arclength. Consistent with the current non-
dimensionalization, we further demand that x changes by a unit amount as we travel
around the circuit in figure 2(a). So, if S represents the total arc distance covered
in travelling through a complete orbit in the phase plane, then defining x(S) ≡ X, we
require that X = 1.
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FIGURE 2. (a) Typical phase portraits of (3.1) in the (κ, κ �) plane: σ = 0, d = 1, thin line;
σ = 0.5, d = 1, thick line. (b) Variation of X with d for solutions of (3.1) for various σ : σ = 0,
thin solid; σ = 0.6, thin dashed; σ = 1.4, thick solid; and σ = 2.0, thick dashed. Also shown
is a thin line indicating the level X = 1.
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FIGURE 3. Static wave profiles for σ = 1.0: (a) d = 2.4 and (b) d = 36.9.

The condition X = 1 can be satisfied by an appropriate choice of the integration
constant d. In figure 2(b) we show how X varies with d for a number of choices of σ .
When σ = 0 we find that X approaches infinity as d → 0. For σ > 0, as d decreases, X

attains a maximum value before reaching zero at a finite value of d. For σ = 0 there
is one candidate value of d, for 0 < σ < 1.4 there are two, and for σ > 1.4 there are
none. Sample wave profiles are shown in figure 3 for the case σ = 1.0 when d = 2.4
and d = 36.9 are the two possibilities. As σ is decreased, the profile corresponding to
the smaller value of d eventually undergoes self-intersection.

Profiles featuring n waves in one period of unit length, where n ∈ Z, may be
obtained by seeking d such that X = 1/n. For a further discussion of periodic solutions
to (3.1) see Vassilev et al. (2008).

4. Travelling wave solutions

We compute travelling wave solutions to (2.7) numerically using a collocation
method. Following Vanden-Broeck & Miloh (1995) we express the solution in the
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form

τ − iθ = a0 +

∞
�

n=1

an e2inπf +

∞
�

n=1

bn e−2inπf , (4.1)

where a0 and the coefficients an and bn are to be found and are all real. The latter

follows from the assumed symmetry about φ = 0. In numerical practice we truncate

each of the series in (4.1) after a finite number of terms N − 1. Next we introduce the

N collocation points φ
(u)
j on the upper plate, where ψ = 0, and the N − 1 points φ

(l)
j on

the lower plate, where ψ = Q:

φ
(u)
j =

j − 1

2N
, j = 1, . . . , N; φ

(l)
j =

j − 1

2(N − 1)
, j = 1, . . . , N − 1. (4.2)

We then apply (2.7) with the plus sign at the N upper collocation points and (2.7) with

the minus sign at the N − 1 lower collocation points. Notice that we only collocate

one half of each wave. Next, in keeping with the non-dimensionalization above, we

demand that x varies by a unit amount over one wavelength. Equivalently, because of

the wave symmetry,

� 1/2

0

∂x

∂φ
dφ =

� 1/2

0

e−τ cos θ dφ =
1

2
. (4.3)

We apply (4.3) on the upper plate only, and discretize the integral using the trapezium

rule with N intervals defined by the collocation points (4.2). We now have a total of

2N nonlinear algebraic equations for the 2N unknowns including an (n = 0, . . . , N − 1),

bn (n = 1, . . . , N − 1) and the Bernoulli constant B. We solve the equations for a

chosen value of D using Newton’s method with a suitable initial guess. Alternatively,

it may be more convenient to fix the value of a1 and to compute D as part of the

solution. Once a solution has been computed, x and y are obtained by integrating the

identity

∂x

∂φ
+ i

∂y

∂φ
=

1

u − iv
= e−τ+iθ .

The wave separation at a chosen φ is computed by evaluating numerically the integral

� 0

Q

∂y

∂ψ
dψ =

� 0

Q

e−τ cos θ dψ. (4.4)

To provide a check on the numerical method, we compared the results against the

linear dispersion relations (2.10) and confirmed excellent agreement. In practice, when

computing large-amplitude waves we find that a large value of N is required to obtain

an accurate solution. For example, for some of the solutions to be presented in the

next section, a value of N = 800 or more is required, leading to very long computation

times. To reduce the size of N while maintaining the same level of accuracy, we can

impose the following relations between the coefficients: an = e2πnQ bn for symmetric

waves, and an = (−1)n e2πnQ bn for antisymmetric waves (see Blyth & Vanden-Broeck

2004 for an explanation of these relations). The value of N used in each case is quoted

in the figure captions.
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FIGURE 4. Q = −0.5, σ = 0. (a) The symmetric (solid line) and antisymmetric (broken line)
solution branches. The asymptote shown as a dotted line at E = 11.48 corresponds to the
limiting static configuration. (b) The bifurcation branches (thick line) emanating from the
symmetric branch (solid line). The antisymmetric branch is shown as a broken line.

4.1. Results and discussion

We characterize the solutions using the dimensionless measure of elastic bending
energy,

E =
λ

2

� L

0

κ2 ds =
1

2

� 1

0

eτ

�

∂θ

∂φ

�2

dφ, (4.5)

where L is the total arclength of the deformed plate in one period and κ is the
curvature in one or other of the plates. The main focus of the ensuing discussion is
on the case Q = −0.5 and σ = 0; other values are considered towards the end of the
section.

Small-amplitude waves are symmetric or antisymmetric, obey the appropriate
dispersion relation in (2.10), and are sinusoidal in profile. As D increases, the waves
tend to increase in amplitude and nonlinear effects come into play. Figure 4(a) shows
the solution space for the case Q = −0.5 and σ = 0 on a graph of D against E .
The solid line is the symmetric solution on which wave profiles are symmetric. The
broken line is the antisymmetric solution branch. These two branches connect with the
predictions of linear theory as E → 0. Two other solution branches, which bifurcate
nonlinearly from the symmetric solution branch, are shown in figure 4(b) with thick
lines.

Sample wave profiles along the symmetric solution branch are plotted in figure 5.
Typical wave profiles along the antisymmetric branch are shown in figure 6. As D

increases, the bending energy E approaches an asymptotic limit, as can be seen in
figure 4(a), and the wave profiles approach a limiting configuration. A wave profile
on the symmetric branch that is close to the limiting profile is shown in figure 7(a)
for D = 2.0. Only one half of a wavelength of the lower wave is shown. When D is
increased from this value, the profile changes very slightly but not significantly.

Referring to (2.7), it is reasonable to suppose that for large D the solution may
be approximated to leading order by setting the bracketed terms in that equation to
zero. This is tantamount to seeking a static solution as discussed in § 3. The wave
profile obtained by solving the static plate (3.1) for σ = 0 is shown as a broken line
in figure 7(a). The agreement between this and the limiting travelling wave profile is
striking. The static profile corresponds to the point where the solid line in figure 2(b)
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FIGURE 5. Q = −0.5, σ = 0. Wave profiles on the symmetric branch for (a) D = 0.0133 and
(b) D = 0.2. The waves were computed with N = 800. Wave profiles on the symmetric branch
for D > 0.2 are very similar to those shown in (b).
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FIGURE 6. Q = −0.5, σ = 0. Wave profiles on the antisymmetric branch for (a) D =
0.0133 and (b) D = 0.2. The waves were computed with N = 800. Wave profiles on the
antisymmetric branch for D > 0.2 are very similar to those shown in (b).
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FIGURE 7. Q = −0.5, σ = 0. (a) A near-limiting lower wave profile (solid line) on the
symmetric branch at D = 2.0 (N = 800). One half of one wavelength is shown. The barely
visible broken line is the solution of the static plate equation (3.1). (b) Plot of log ∆(0) versus
log D. The broken line is of slope −1 and intercepts the horizontal axis at log(1.4).
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FIGURE 8. Q = −0.5, σ = 0. (a) The velocity U along the lower wave plotted against φ.
(b) Wave profiles on the lower bifurcation branch for D = 0.0048 (N = 60, thin lines) and
D = 0.02 (N = 240, thick lines).

meets the level X = 1. The energy for this static profile is E = 11.48, and it is towards
this value, shown with a dotted line in figure 4(a), that the energies on the symmetric
and antisymmetric branches asymptote as D becomes large.

To provide further evidence that the wave profiles are indeed attaining the static
profiles in the limit D → ∞, we examine the size of the modulus of the terms in
brackets in (2.7) for large values of D. We define ∆(φ) ≡ |κ �� + κ3/2 − σκ| and
consider the variation of log ∆(0) with log D as D increases. (Note that ∆(0) is the
maximum value of ∆ over one wavelength.) This relationship is plotted in figure 7(b)
for the wave profiles on the symmetric branch for the case σ = 0. The plot indicates
that ∆ ≈ 1.4/D when D is sufficiently large. The factor of 1.4 has been obtained by
fitting a straight line to the data, shown as a broken line in the figure. In general,
this factor will depend on Q. We have also confirmed numerically that ∆ is inversely
proportional to D for D large on the antisymmetric branch.

Although the limiting profile coincides with the static solution, it is important to
note that this does not mean that the fluid inside the sheet is not moving, merely
that the elastic forces in the plate dominate over the dynamic pressure imposed by
the fluid. This becomes clear, for example, by looking at the velocity, U, along one
wavelength of the wave, and this is shown in figure 8(a) for the lower wave. The
velocity approaches zero at φ = 0.5, which is at the mid-point of the lower wave
trough (the rightmost point on the wave shown in figure 7a). Noting the comments
of the previous paragraph, we see that consistency is maintained in (2.7). Since the
bracketed terms decay like D−1, we obtain a balance across all terms in the equation at
the next order of approximation.

The bifurcation branches were discovered by examining the determinant of the
Jacobian matrix used for Newton’s method when solving the system of nonlinear
algebraic equations formulated in § 2. In common with the problem of pure capillary
waves studied by Blyth & Vanden-Broeck (2004), we found that there are no
bifurcations along the antisymmetric solution branch. Wave profiles along the lower
bifurcation branch are plotted in figure 8(b). A limiting state is reached far along the
branch in which the lower wave profile becomes flat and the upper wave approaches
a static wave solution. Wave profiles along the upper bifurcation branch are shown
in figure 9(a). In this case it is the upper wave profile that flattens out far along the
bifurcation branch.
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FIGURE 9. Q = −0.5. (a) Profiles on the upper bifurcation branch for D = 0.005 (N = 80,
thin lines) and D = 0.05 (N = 200, thick lines). (b) An overturning profile for σ = 0.9
(N = 1900). The broken line overlaid onto the lower wave is the static wave prediction for
d = 40.3.

The static solutions computed in § 3 suggest that limiting travelling wave

configurations featuring overturning should be attained if σ is taken to be large

enough. In figure 9(b) we show the computed upper and lower wave profiles for the

case σ = 0.9. Superimposed onto the lower wave is the static wave prediction for the

larger of the two possible values of d (recall from the discussion in § 3 that, for some

values of σ , of which σ = 0.9 is included, there are two possible static profiles; further

comment on this is made below).

This discussion has focused on the value Q = −0.5. The results are similar for

other values of Q. For all the cases that we examined, we found only one bifurcation

point along the symmetric branch and none on the antisymmetric branch. As Q

increases, the bifurcation point on the symmetric branch moves to smaller values of D.

This behaviour contrasts with the situation for capillary waves, where the number of

bifurcations along the symmetric branch varies with Q (Blyth & Vanden-Broeck 2004).

For pure capillary waves, the elastic terms (corresponding to the first two terms

in brackets in (2.7)) are absent. Large-amplitude solutions have been discussed by

Kinnersley (1976), who computed exact solutions, and by Blyth & Vanden-Broeck

(2004), who discovered some new bifurcation branches. Our results reduce to those

for pure capillary waves in the limit D → 0 while holding Dσ fixed, which effectively

removes the elastic terms from (2.7). Solutions that are close to those seen for pure

capillary waves may be computed within the present framework by selecting a small

value of D and a moderate value of Dσ . We have computed such solutions and found

that they look very similar to those appearing in figure 2(d) of Blyth & Vanden-Broeck

(2004) so that the waves are almost self-touching.

Our results for static plates suggest that, when σ lies within certain bounds,

there are three possible profiles: a flat plate and two non-trivial solutions with

large-amplitude deformation. We have demonstrated that our travelling wave solutions

approach one of these static solutions in the limit of large D. However, there remains

the issue of whether or not the other non-trivial static solution is relevant to the

dynamics of the liquid sheet. It might be hypothesized that there exists another

travelling wave solution branch that approaches the other non-trivial static solution

in some limit. We have not been able to identify such a branch and we leave its

possible existence as an open question.



Hydroelastic waves on fluid sheets 551

Acknowledgements

This work was supported in part for J.M.V.-B. by EPSRC under grant
EP/H022740/1, and for E.I.P. by EPSRC under grant EP/H008489/1.

R E F E R E N C E S

BLYTH, M. G. & VANDEN-BROECK, J. M. 2004 New solutions for capillary waves on fluid sheets.
J. Fluid Mech. 507, 255–264.

CROWDY, D. G. 1999 Exact solutions for steady capillary waves on a fluid annulus. J. Nonlinear
Sci. 9, 615–640.

DE LANGRE, E. 2002 Absolutely unstable waves in inviscid hydroelastic systems. J. Sound Vib. 256
(2), 299–317.

FLAHERTY, J. E., KELLER, J. B. & RUBINOW, S. I. 1972 Post buckling behaviour of elastic tubes
and rings with opposite sides in contact. SIAM J. Appl. Math. 23 (4), 446–455.

FUNG, Y. 1965 Foundations of Solid Mechanics. Prentice-Hall.

GROTBERG, JB 1994 Pulmonary flow and transport phenomena. Annu. Rev. Fluid Mech. 26 (1),
529–571.

JIA, L. B., LI, F., YIN, X. Z. & YIN, X. Y. 2007 Coupling modes between two flapping filaments.
J. Fluid Mech. 581 (1), 199–220.

KIM, G. & DAVIS, D. C. 1995 Hydrodynamic instabilities in flat-plate-type fuel assemblies. Nucl.
Engng Des. 158 (1), 1–17.

KINNERSLEY, W. 1976 Exact large amplitude waves on sheets of fluid. J. Fluid Mech. 77,
229–241.
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