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Hydrogel microphones for stealthy underwater
listening
Yang Gao1,2, Jingfeng Song3,4, Shumin Li2,4, Christian Elowsky5, You Zhou5, Stephen Ducharme3,4,

Yong Mei Chen1, Qin Zhou2,4 & Li Tan2,4

Exploring the abundant resources in the ocean requires underwater acoustic detectors with a

high-sensitivity reception of low-frequency sound from greater distances and zero reflections.

Here we address both challenges by integrating an easily deformable network of

metal nanoparticles in a hydrogel matrix for use as a cavity-free microphone. Since metal

nanoparticles can be densely implanted as inclusions, and can even be arranged in coherent

arrays, this microphone can detect static loads and air breezes from different angles, as

well as underwater acoustic signals from 20Hz to 3 kHz at amplitudes as low as 4 Pa.

Unlike dielectric capacitors or cavity-based microphones that respond to stimuli by deforming

the device in thickness directions, this hydrogel device responds with a transient modulation

of electric double layers, resulting in an extraordinary sensitivity (217 nF kPa� 1 or 24mCN� 1

at a bias of 1.0V) without using any signal amplification tools.

DOI: 10.1038/ncomms12316 OPEN
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T
he oceans coverB71% of the Earth’s surface area, with only
5% being explored by human activities1 (http://oceanservice.
noaa.gov/facts/exploration.html). Towards the explorations,

numerous underwater vehicles have been developed with a
great amount of knowledge learned from fish. To complement
vision, fish adopt a lateral line system to sense pressure variations
and to detect water flows and acoustic waves2,3. These skills help
them in mastering swimming behaviours such as rheotaxis,
schooling and prey tracking4,5. Similarly, underwater vehicles,
such as submarines, monitor flow velocities and sound waves to
navigate, identify hostile objects, track ocean currents and surface
waves, and communicate with each other6,7. However, in the
current era of stealthy warfare, conventional ceramic piezoelectric
sound navigation and ranging (SONAR) systems8,9 suffer from
large acoustic impedance mismatch with water, rendering them
easily detectable, because they efficiently reflect incoming acoustic
signals. For example, a piezoelectric ceramic such as PZT has a
density (r) of 7,600 kgm� 3 and a bulk modulus (K) close to
100GPa (refs 10,11). In comparison, water has much smaller
values in both (r¼ 1,000 kgm� 3 and K¼ 2.0GPa)12. Therefore,
the acoustic impedance (

ffiffiffiffiffiffi

rK
p

) of PZT is 420 times that of water!
This large mismatch introduces two problems. It reflects 80%
incoming acoustic power, reducing detectable signal fivefold, and
returning a large echo that makes the sensor highly detectable by
scanning SONAR. In addition, the detection efficiency of
PZT-based acoustic sensors is relatively poor at low frequencies.
Alternatively, suspended thin membranes of poly(vinylidene
fluoride)13 or graphene14 stretched over air cavities have been
proposed as microphones to afford a higher sensitivity than PZT15,
or to detect ultrasound from bats, but these configurations
introduce even larger mismatch in acoustic impedance between
the device (air) and water. Considering the advances in
acoustic metamaterial cloaking16,17, which greatly attenuates
incoming acoustic signals, thereby concealing submarine
bodies from SONAR detection, a ceramic piezoelectric detector
or cavity-based microphone, which is necessarily kept outside of
this ‘invisibility cloak’, remains a strong acoustic reflector.

In contrast to a rigid solid such as ceramics or a low-density
compliant medium such as air, hydrogels are soft polymeric
materials that, being mostly water, have almost perfect acoustic
impedance matching with water18. Polar functional groups
from the backbone or side chains allow hydrogels to absorb a
large amount of liquid into a three-dimensional polymer
networks without leaking. Unlike a dielectric capacitor, where
the capacitance is governed by the distance between two parallel
electrodes19–22, hydrogel capacitors derive their capacitance from
electrical double layers (EDLs)23,24. When a piece of gel is
sandwiched between two electrodes and when the electrodes are
biased, a thin layer of charged ions will be attracted to the
nanometre vicinity of the electrodes. The gap between this layer
of ions and that opposite charges from the electrodes defines the
thickness, or Debye length (k� 1)25, of the EDL. Due to a small
value of k� 1, capacitors based on this mechanism have three to
five orders of magnitude higher specific capacitance than those
with purely dielectric media21. Furthermore, the EDL capacitors
can be optimized by carefully matching the sizes of the ions to the
pore sizes of the electrodes26.

With the excellent acoustic impedance match to water, a
hydrogel capacitor seems to be a promising pressure sensor or
acoustic transducer. The problem, however, is that the low
compressibility of water means that an EDL capacitor would have
low sensitivity to pressures. In addressing this limitation, we
report here that a suitable sensor can be made by incorporating a
deformable network of metal nanoparticles (MNPs) into the
hydrogel. The MNP network makes the capacitor highly sensitive
to mechanical stimuli through a coupling between deformation of

the MNP network and the ion modulation. As a result, this
MNP–hydrogel capacitor is able to detect deformation, pressure
and acoustic waves.

Results
Highlight of hydrogel microphone. Figure 1a shows an example
of a 9mm2 hydrogel microphone fabricated by forming MNP
network consisting dendritic structures 2–3mm in size and being
buried inside the soft and translucent hydrogel matrix (Fig. 1b).
This MNP–hydrogel microphone was electrically biased at 1V and
submerged in water (Fig. 1c), where it picked up acoustic waves
and produced a signal 30 dB stronger at low frequencies than a
commercial hydrophone (Fig. 1d). Moreover, the hydrogel
microphone has a wide frequency response, up to 2 kHz (Fig. 1e)
and has a pronounced directional sensitivity perpendicular to the
sensor surface (Fig. 1f). The slight distortion of response signals
can be ascribed to the non-ideal sound transfers from the amplifier
and loudspeaker to the water tank (Supplementary Fig. 1).
Even more noteworthy, this device provides an estimated
sensitivity of 217 nFkPa� 1 (DC per unit pressure) for acoustic
waves, 410,000 times the sensitivity of conventional capacitive
sensors incorporating elastic pyramids (15.6 pF kPa� 1; device area
of 64mm2)20 and 6,000 times the sensitivity of capacitive sensors
incorporating silver nanowires (34.2 pF kPa� 1; area of 16mm2)19.
The MNP–hydrogel capacitor also has favourable performance as
an electromechanical transducer, with a response of 24mCN� 1, in
comparison with the best high-performance piezoelectric oxides,
such as lead magnesium niobate-lead titanate solid solution, which
has a response of 2.8 nCN� 1 (refs 27,28). Unlike David Hughes’
early version of acoustic transmitter29 (carbon microphone) that
works by compacting loosely connected carbon particles between
two metallic plates with a change in resistance, the hydrogel device
is completely void or cavity-free, implying zero-reflection towards
SONAR scanning. In the following sections, we describe the
fabrication of the MNP–hydrogel capacitor and the mechanisms of
coupling between capacitance and pressure.

Fabrication of MNP–hydrogel capacitors. Given a flat electrode,
a uniform EDL will cover the entire electrode surface. If the
surface is porous, then only pores larger than the EDL thickness
will contribute to the effective area. If we make a porous,
deformable electrode inside hydrogels, we could then tune the
area of the EDL by simply changing the size of these pores. One
type of such porous electrode is a network of MNPs.

The capacitor design requires two key components, an MNP
network formed within the hydrogel and conducting electrodes
on the surface. Producing the MNP networks presents the first
challenge, because the nanoparticles are too large to diffuse into
the hydrogel. Current methods for incorporating nanoparticles
into hydrogels include mixing nanoparticles during the hydrogel
synthesis30 or using ultraviolet light31 or g-rays32 to initiate
particle formation from noble metal ions, but these methods are
not suitable for making the MNP networks. The second challenge
is fabricating contacts on the surface of the hydrogel after the
MNP network has been formed. Conventional vacuum deposition
methods for applying metal patterned electrodes to solid
dielectric materials are not suitable for use with hydrogels,
because water in the gels will evaporate in vacuum. Therefore, to
fabricate the microphones, we turned to molecular diffusion and
self-assembly to synthesize a dendritic network of MNPs directly
inside the hydrogel, and to electroless plating to form the device
electrodes.

The MNP network was synthesized using the following
procedure, which is shown schematically in Fig. 2a. In step 1,
silver ions were diffused into a slab of hydrogel from an aqueous
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solution of silver nitrate (AgNO3). Then, in step 2, the hydrogel
was removed from the solution, placed on a glass slide coated
with a transparent anode of indium tin oxide and covered with an
amorphous silicon (a-Si) wafer to serve as a photocathode, which
was biased at 3V with respect to the anode. In step 3, the cathode
was illuminated through a mask with 630 nm light with a power
density of 222mWcm� 2 for a total exposure of 30 s. The mask

defined six independent microphones measuring 3� 3mm2.
The areas of the insulating a-Si that were exposed to the
illumination becomes photoconducting33 allowing electrons to
pass through the indium tin oxide (ITO) anode and reducing the
silver ions, which arranged metallic silver nanoparticles into a
dendritic network. Since the network of silver nanoparticles is
organized mainly normal to the surface, they do not constitute a
contiguous electrode. The ITO glass and a-Si electrodes were
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Figure 2 | Fabrication of hydrogel microphones and their response to

static pressures. (a) Steps to fabricate deformable network of metal

nanoparticles (MNPs) and surface electrode: (step 1) hydrogel pre-soaked

in an aqueous bath of AgNO3 (10mM); (step 2) hydrogel is sandwiched

and biased between an amorphous silicon (a-Si) and an ITO plate; (step 3)

photo-activated a-Si reduces Agþ into Ag(0) nanoparticles at specific

locations; (step 4) MNP–hydrogel soaked in copper sulfate bath to prepare

a smooth and robust layer of surface electrodes. (b) Photos of patterned Ag

nanoparticles in skin depth of the hydrogel. Scale bar, 3.0mm. (c) High-

resolution SEM image and schematic of a dendritic MNP network inside the

hydrogel. (d) MNP–hydrogel (solid lines) responds to a static pressure of

5.4 kPa with more than four times in relative capacitance change or seven

to eight times in capacitance change than MNP-free device (dashed lines).

Note: data from Table 1, where tests with three samples for each data point

are performed. The relative errors of DC and DC/C0 for MNP–hydrogel are,

respectively, 21–25% and 3.5–4.5%. For MNP-free hydrogel, the relative

errors of DC and DC/C0 are, respectively, 13.0–13.5% and 3.0–4.0%

(Supplementary Table 1).
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Figure 1 | Highlight of hydrogel microphone. (a) Photos (full view and

sliced) and (b) scanning electron microscopy (SEM) image of the hydrogel

membrane implanted with a patch (3� 3mm2) of silver dendrites

(highlighted yellow). (c) Set-up and circuit using the membrane as a

microphone. (d) Better performance of the hydrogel microphone at low

frequencies than a commercial device (hydrophone). (e) Hydrogel

microphone is capable of detecting underwater sound at 2 kHz and (f) at all

angles. Note: the 0� orientation is for top surface of the microphone facing

towards the loudspeaker.
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removed and the hydrogel was rinsed with deionized (DI) water
to remove the remainder of the silver salts.

For deposition of the electrodes by electroless plating, step 4,
the hydrogel was immersed in an aqueous bath of copper sulfate
(CuSO4 � 5H2O)

34,35. Because the Ag nanoparticles are highly
catalytic towards copper reduction, electrodes of copper were
selectively deposited on surfaces where the MNP networks were
formed under illumination. Once the hydrogel surface was
wiped clean, a new ITO anode was applied to the bottom as a
static/dynamic load sensor. Because the MNP growth inside the
hydrogel matrix occurs at the cathode side (reduction of metal
ions), any metals or even metal supported a-Si can be used as the
contact electrode (steps 2 and 3). In contrast, the anode
(positive bias) must be expendable like aluminum or ITO to
prevent water electrolysis or decomposition inside the hydrogel.

The method of forming the dendritic MNP network by selective
area photoconduction affords a simple and versatile means for
forming complex microphone patterns. This is illustrated in
Fig. 2b, where a digital projector and optical microscope were used
to illuminate the hydrogel with a variety of structures36.
Furthermore, the method affords a convenient technique for
producing customized microphone arrays (acoustic emitters)
with tailored reception (emission) patterns suitable, for example,
for synthetic aperture array SONAR or ultrasound37,38 or for
producing structured acoustic beams.

It is perhaps remarkable that this fabrication process works
so well. One reason is that electroless plating in Fig. 2a deposits
a smooth and robust layer of copper over the areas that
having silver nanoparticles, creating an easy and reliable electrical
access to the MNP network. However, copper growth can also
start from the inside of the gel body. For example, copper ions
from sulfate bath can diffuse into the hydrogel first, then adsorb
on the surfaces of imbedded Ag nanoparticles before their later
reduction into a copper metal. While one would think that doing
the electroless plating over a short duration will limit the amount
of copper ions in the hydrogel body, a kinetically fast chemical
reaction usually makes the copper electrode grainy and therefore
mechanically weak and fracture prone. This problem can be
mitigated by increasing the crosslink density of hydrogel, which
greatly impedes diffusion of the copper ions. This is because
diffusion of copper ions in the hydrogel is largely controlled by
the polymer networks through van der Waals39 and electrostatic
interactions40. We found increasing the concentration of
monomers (3.0M) during hydrogel preparation adequately
prevented copper growth in the gel.

Another remarkable feature is that silver ions were not reduced
into a continuous and lush silver mirror as in conventional
electroplating41,42. This is in large part because the hydrogel
is a highly viscous material43; as the silver ions collect inside
the gel matrix, they naturally form dendritic networks (Fig. 2c;
Supplementary Fig. 2). From a materials physics point of view, we
can suppose that the silver growth occurs at the structural defect

sites of the gel membrane. In other words, water-swollen
hydrogels can be regarded as aggregates of tiny polymer blobs
containing polymer networks44,45. Inside each polymer blob or
network, there are water molecules hydrogen bonded to the
polymer network where they are also associated with silver ions.
Outside the blob there are water-rich gaps that can be regarded as
boundaries between these polymer blobs or simply as structural
defect sites. As most water molecules inside these gaps are free to
move, a quick reduction of silver ions triggers the formation of
silver nanoparticles within the channels linking the blobs. In the
end, the nanoparticles will be distributed deep into the hydrogel,
not accumulating at the surface (highlighted as a brown wavy
line, Fig. 2c). After the silver ions near the surface are reduced to
form nanoparticles, they extend the cathode further into the
hydrogel. This is similar to the dendritic nature of electrical
breakdown in materials (or lightning in air), where plasma trails
branch propagate as they extend the electrical potential surface.

Device response to static load. Now we will shift the focus
back to the capacitive device constructed and look at their response
under a static load of 5.4 kPa (Table 1; Fig. 2d). Three things are
worth of noting: the first is the relatively large capacitance value
(tenths of a nF) of the devices and their wide range of tunability
(0.94–312.5 nF, Table 1), which is readily controlled by salt
concentrations (10� 2 to 1,000mM; see Methods for details).
Unlike those dielectric counterparts19–22,46,47, where the
capacitance (pF) is determined by device thicknesses that is
usually fixed at fabrication, the small EDL thickness or short Debye
length25,48 along the electrode/hydrogel interface, results in a
relatively large capacitance, approximately independent of device
thickness, and furthermore affords control through salt
concentration. Instead of being a uniform structure, EDL
consists of two parts25,49–51: one is the compact layer that closely
sits next to the electrode surface, with a gap distance (d) of
subnanometre, the other is the diffusion layer caused by irregular
thermal motion of ions, which can extend to some distance away
from the electrode surface. Notably, the thickness of this diffusion
layer (d) is related to Debye length (k� 1), which can range from
subnanometres at high salt concentration to several hundreds of
nanometres at low salt concentration25. In the present study, the
electrolyte solution is at low molarity, where the Debye length k� 1

is much larger than the compact layer gap distance d. Hence,
the EDL capacitance is dominated by the diffusion length, where
the thickness is usually tens to hundreds of nanometres. Certainly,
when salt concentration increased by five orders of magnitude,
from 10–2 to 103mM, the device capacitance increased by 300
times. Such a large capacitance also produces greater charge on
deformation, potentially resulted in a large signal-to-noise
ratio. Next, we examine the intriguing behaviour in Fig. 2d
(dashed lines), where the control sample (MNP-free hydrogel)
also exhibited an appreciable capacitance change of 0.05–5.0 nF

Table 1 | Pressure-induced capacitance change.

Salt concentration (mM) MNP-free hydrogel MNP–hydrogel

C0 (nF) DC (nF) DC/C0 (%) Dn
N
/n
N

(%) C0 (nF) DC (nF) DC/C0 (%) DA/A (%)

10� 2 0.94 0.05 5.3 10.9 3.45 0.83 24.0 17.7

1 6.38 0.3 4.7 9.6 15.625 2.5 16.0 10.8

10 15 0.6 4.0 8.2 36.67 4.4 12.0 7.7

100 81.5 2.2 2.7 5.5 170.73 14 8.2 5.4

1,000 312.5 5.0 1.6 3.2 476.2 10 2.1 0.5

Note: all the values of C0, DC and DC/C0 showed here are the average values using three samples by performing one test on each sample.

Ion concentration modulation (Dn
N
/n
N
) and deformable MNP (DA/A) in hydrogel capacitors contribute to capacitance variation under a static pressure of 5.4 kPa.
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under pressure, for a nontrivial relative capacitance change
(DC/C0¼ 1.6–5.3%). If one considers that the aluminum
electrode (foil) did not form a conformal contact to the control
sample, an increase in electrode contact area on the elimination of
voids between the foil and the hydrogel could cause an increase in
capacitance. However, such an increase shall not be inversely
proportional to salt concentrations. A decrease in EDL thickness
can, on the other hand, increase the capacitance; but expecting a
moderate pressure of 5.4 kPa to directly shorten the distance
between the ion–electron pairs in a planer EDL is unrealistic.
Rather, a local variation in ion or salt concentration along the
electrolyte–electrode interface is a more likely mechanism.
In fact, hydrogels such as polyacrylamide (PAAm) have been
known for their structural heterogeneity52,53, where polymer
networks or blobs of different sizes individually control its ion
retention and mobility. Such that, under compression, deformed
hydrogel networks could release trapped ions to both electrodes.
These extra ions can then alter the Debye length of the EDL,
resulting in an increased capacitance. Time wise, a relocation of
ions over a distance of 10mm (L) would take B50ms (t¼ L2/2D,
assuming diffusion constant (D)54 of 10� 5 cm2 s� 1), suggesting a
fast enough response to a static or low-frequency load.

Analytically, the capacitance of the device (Al/hydrogel/ITO) is
dominated by the EDL capacitor on the aluminum side, as it is 25
times smaller in area than the ITO plate (see Methods). This EDL
capacitance can be estimated using a simple capacitor model, that
is, C0 ¼ ee0

A
k� 1, where e is the relative dielectric constant and e0 is

the electric permittivity of the vacuum, A is the effective area of
the electrode, and k� 1 is the EDL thickness. Since EDL thickness
is inversely proportional to the square root of ion concentrations
(n
N
)25, the capacitance change due to ion concentration change

(Dn
N
) is:

DC ¼ ee0
A

k� 1

k� 1

k� 10
� 1

� �

¼ C0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Dn1
n1

s

� 1

 !

� 1

2
C0

Dn1
n1

: ð1Þ

A linear relationship between relative capacitance change and
ion concentration change can therefore be established (Table 1).
Under compression, the MNP-free hydrogel experiences a
moderate concentration fluctuation (Dn

N
/n
N

¼ 10.9–3.2%) at
the electrolyte–electrode interface. These changes contribute to a
reduced EDL thickness and a large perturbation (5.3%) in
capacitance for devices having less salt (10� 2mM) or a small
perturbation (1.6%) to those having more salt (103mM).
Even though the latter perturbation is small, a large initial
capacitance (312.5 nF) in a stress-free device yet manifests into a
nontrivial increase of 5.0 nF (Fig. 2d).

The implantation of MNPs presents a much more effective way
to tune the overall capacitance, while the ion concentration
modulation (Dn

N
) provides further control even with already-

fabricated devices. The distortion of the dendritic or fractal
network of MNPs directly changes the effective electrode area
(DA). Indeed, under the same pressure, we saw approximately
three to four times of increased response in relative capacitance
change (DC/C0¼ 8.2–24%) or seven to eight times of response in
capacitance change (DC¼ 0.83–14.0 nF; solid lines, Fig. 2d). Since
DC is dependent on both Dn

N
and DA, if we assume ion

concentration varies the same amount under the same pressure
variation (that is, Dn

N
is the same), then we can extract DA

directly from the device response (Supplementary Note 1).
As shown in Table 1, under compression, the deformable network
of MNPs experiences a B18% increase in effective electrode
area at the lowest salt concentration (10� 2mM), but a moderate

increase (5%) at an intermediate salt condition of 100mM. To
better appreciate this variation in response, let us take a closer
look at the diagrams in Fig. 3a and pay attention to the
non-uniform spacing between nanoparticles inside this spongy
network structure. Following the dendritic shape of MNP
network (Fig. 2c), metal particles at the end of those branches
will be spaced farther away from the stem than those near the
stem–branch joints. Now, when a vertical load is applied at
the top surface (compression mode, Fig. 3a), the structure of the
MNP branches along the vertical direction (the stem) start to
separate from those at slanted angles (branch). As a consequence,
the opening between the branch and stem will increase, so
that each branch releases more ‘free’ spaces for the formation
of additional double layers. However, a thick EDL (low ion
concentration) can only be inserted in those wide gaps at the far
end of branches; a thin EDL (high ion concentration), on the
other hand, can be tucked close into the stem–branch joints. If
true, this model of a concentration-dependent response can be
used to explain the sudden drop for DC shown in Fig. 2d and it
also implies that slender branches on the side are the main sites
for EDL tuning. In contrast, when the MNP network is
pushed from the side (shear mode, Fig. 3a), gaps between the
stem–branches will close. As such, few ions will be trapped for
EDL build-up. Either way, a capacitance increase or decrease
should be observed, depending on the location of external loads
relative to the sites of MNP branches. As shown in Fig. 3b, we did
find good agreement with above analysis, where arrays of
hydrogel capacitors show increased capacitance over areas having
a direct contact with the external loads. Other sections further
away from the peak loads show diminished values.

We use the data shown in Fig. 3c to verify that shear force is
indeed the main cause to capacitance decrease. In this
experiment, an airflow of 50ml s� 1 was incident on the
MNP–hydrogel surfaces from four different angles (30–90�;
B1.0 kPa in pressure at y¼ 90�). Regardless of the airflow
directions, all four devices exhibit reduced capacitance, with
greater reduction at larger incidence angles. This might seem
counter-intuitive, but it is easily understood by noting that the air
streamlines conform to the hydrogel surface and mainly induces
shear force. Parallel incidence allows longer distances to develop
thicker boundary layers, which reduces the velocity gradient near
the hydrogel surface, and thus the shear force is smaller55. Yet,
one seemingly undesired feature observed in Fig. 3c is the long
recovery time (B5.0 s) after turning off the airflow, whereas the
loading stage is much faster (0.1 s). Since the external load is
applied over the bulk of hydrogel device, with gel as the major
mechanical structure of the device, the device response follows
the viscoelastic behaviour of the gel. At the beginning of the
loading step, the gel is far away from the new equilibrium state
and hence deforms quickly towards it. However, the loading step
is very short, and when the stress is released, the gel is only
slightly perturbed from its original equilibrium state, and
therefore relaxes slowly towards it. The observed slow recovery
time is due to the small equivalent spring constant (Young’s
modulus)56,57 or ultra-soft nature of the hydrogel membrane.
Because the MNP network is embedded in the gel matrix, how
fast the pore can be opened or closed critically depends on the
response of the gel matrix. Overall, while compressive forces
induce capacitance increase for the device, we found that shear
force can indeed induce a capacitance decrease.

Device response to underwater acoustic waves. The high
sensitivity of EDL capacitance to mechanical deformation
(Supplementary Fig. 3) encourages us to explore its potential
application as an underwater microphone, where the mechanical
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deformation is induced by acoustic waves58. These studies exploit
one of the key strengths of the hydrogels, excellent acoustic
impedance match to water. To verify this, we sealed the
MNP–hydrogel device with a plastic wrap, soaked it in water
and directed acoustic waves perpendicular towards the device.
Figure 4a (for 10–2mM salt concentration) and Figure 4b
(for 100mM salt concentration) illustrate how efficient the
acoustic wave is at modulating the capacitance. Wave amplitudes
of only 12 Pa produce robust signals with amplitude 23mV.
Clearly, a larger sound pressure gives rise to an increased
signal (voltage), with the gel of higher ion concentration more
sensitive to low pressures (Fig. 4b). As the measured signal is

from an oscilloscope and is due to a current flow through the
external resistor (R¼ 100 kO; Fig. 1c), we can further convert this
voltage signal into capacitance change (DC; Supplementary
Note 2; Supplementary Fig. 4). Figure 4c shows a plot of the
absolute capacitance change recorded as a function of sound
pressure amplitude from 4 to 70 Pa (Supplementary Note 3;
Supplementary Fig. 5). A careful look at these data suggests that
the performance of this hydrogel microphone roughly falling into
two regimes, with a higher sensitivity regime above a sound
pressure of 30 Pa, but lower sensitivity below this value. Even in
the lower sensitivity regime, the hydrogel device responds with
orders of magnitude larger absolute capacitance change (nF) than
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conventional dielectric devices (pF)19–22,46,47, primarily owing to
the intrinsically large value of EDL capacitance and the efficient
acoustic coupling of the gel membrane to water. For example,
the base value of the MNP–hydrogel device at a low ion
concentration (10� 2mM) at 100Hz is B50 nF (Supplementary
Fig. 6), Fig. 4c gives us a relative capacitance change
(DC/C0B14% at 67 Pa) that appears comparable to the same
device operated in air at 1 kHz of measurement frequency
(DC/C0¼ 10% at 1.0 kPa, Supplementary Fig. 3). An even more

revealing comparison is that the device sensitivity in water
(217 nF kPa� 1) is over 2,000 times larger than in air
(0.1 nF kPa� 1). Overall, this example confirms a high acoustic
coupling efficiency of the gel membrane to underwater sound.

Consider the fact that the MNP network is surrounded by a
hydrogel network that is relatively dense (3.0M monomer
concentration)59, exposed to a high-frequency pressure wave,
this dense network may not be able to keep up with the
deformation rate of metal particles. As such, we can regard the
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deformation of the MNP network and the hydrogel network as
vibrations from a spring and a damper, respectively, where device
response over a broad frequency will inform us general roles of
these two structural units. Figure 4d showed response of this
hydrogel microphone (amplitude of signal as dB) to sound over a
wide range of frequencies, as recorded by a network analyser.
A relatively flat response of � 152 dB from 20 to 600Hz is
observed for a device with a high ion concentration (100mM),
accompanied by the signal gradually approaching the noise
level of � 195 dB at 3 kHz. However, when the bias for this
microphone is reversed (copper negative and ITO positive), the
device performance drops, with a weaker response of � 160 dB
(20–600Hz) and then a noise level of � 195 dB even at 2 kHz.
This latter measurement indicates a level of asymmetry or
anisotropy from the microphone, where cations at the MNP
side apparently are less favoured towards additional EDL
build-up. Since this type of anisotropy can be also found in
ion-selective membranes60 and can be interpreted as increased
internal resistance for the motion of cations, energy conversion
efficiency from a mechanical vibration (sound wave) to an
electrical one (capacitance) therefore must be reduced. For low
ion concentration ones (10� 2mM), the device starts rather
similarly with a flat response of � 165 dB (20–600Hz) then drops
to a noise level of � 200 dB at 3 kHz. Because the average salt
concentration in ocean is B600mM, the hydrogel microphone
containing this much of salt is slightly better than the one
with 100mM salt (Supplementary Fig. 7). A simple vibration
model with a mass, a spring and a damper suggests both the MNP
and hydrogel network structure play important roles in
governing the response of the microphone at higher frequencies
(Supplementary Note 4; Supplementary Fig. 8).

In addition to the general trend of decreasing response towards
higher frequencies, small fluctuations can also be observed. If
linear frequency axis is used, the fluctuation appears to be
periodic. Indeed, a Fourier transform (Fig. 4e) of the frequency
response curve shows a prominent peak at B18ms
corresponding to B55Hz periodicity (peaks to the left of this
one represents d.c. or slowly varying components that have been
discussed previously). We attribute this to interference of waves
residing in the hydrogel, similar to optical Fabry–Pérot
interference. The nature of these waves is however not acoustic
due to the small wave velocity of B0.055m s� 1 (using
Fabry–Pérot interference equation, wave velocity is the hydrogel
thickness of 1mm times the frequency periodicity of 55Hz). The
existence of this slowly propagating wave is further confirmed by
phase curves of the hydrogel microphone in Fig. 4f (note a linear
scale of frequency is used) with near-constant negative slopes,
indicating a time delay61. From the magnitude of the slopes, time
delays of 15–20ms are extracted, corresponding to a wave
velocity of 0.05–0.067m s� 1. This time delay, again, is not caused
by the sound propagation time which is estimated to be o0.1ms,
as can be seen in the hydrophone measurement that has nearly
zero slope (a sudden phase change nearB50–100Hz is attributed
to passing the resonating frequency of hydrophone and
loudspeaker, respectively61). We suspect an ion concentration
wave has caused such a nontrivial delay and the previous
fluctuations in response curve. Possibly, ion concentrations are
quickly modulated by acoustic waves that change the surface area
of the silver nanoparticle electrode, yet it does not immediately
induce electrical current until the perturbation of the ion
concentration reaches the counter electrode, where the resistor
is connected to. A crude model of such is formulated and can be
found in Supplementary Note 5. We note the existence of this ion
concentration wave in a solid or gel has never been documented
before despite its well-known counterpart (ion acoustic wave) in
plasma62,63; therefore, this new phenomenon deserves more

efforts in the future, especially on their dependence on device
structure, electrical bias, as well as properties of the gel
membrane.

Discussion
The deformable dendritic network of MNPs is a critical
component of the hydrogel capacitor, enabling it to efficiently
detect airflow, touch and underwater acoustic waves.
This sponge-like superstructure grows from the photocathode
by an electrochemical reduction of dispersed silver ions inside
a hydrogel matrix. Under external load, these metallic
superstructures bear two roles in capacitance tuning, one through
deformation to change the electrode area for EDL build-up or
removal and the other through the applied bias and the
deformation of MNP network to modulate the ion concentration
in gel body. In comparison with energy generators of piezoelectric
mechanism27, even though the device operates as an
energy storage device, it provides a remarkably large
responsivity of 24mCN� 1 at a bias of 1.0 V, whereas crystals of
Pb(Mg1

3
Nb2

3
)O3-PbTiO3 have responsivities of only 2.8 nCN� 1

(refs 27,28). While soft and flexible materials play an increasingly
large role in the current era of smart and portable
electronics21,64,65, this work illustrates the opportunities
afforded by ion-rich EDLs in hydrogels. As this mechanism is
further optimized and exploited, we expect that the excellent
acoustic impedance match to water, the ease in processing and
manufacturing, and greatly increased sensitivities afforded by the
EDL modulation approach will lead to numerous uses in
human–computer interfaces as well. Quite surprisingly, the
microphones also exhibit a highly intriguing ion wave
resonance. Because the hydrogel matrix functions as a
transparent skeleton to underwater acoustic waves and as an
ion reservoir, transient modulation of EDLs creates a packet of
ionic waves, moving from the MNP-planted side to the
MNP-free side. As such, response of this hydrogel capacitor is
not only sensitive to internal ion concentrations, but also
differs from traditional dielectric- or piezoelectric-based
devices by delivering an ionic wave-superimposed response
every 55Hz, a phase lag of 15–20ms, as well as an unmatched
performance at low frequencies.

Methods
Synthesis of metal ion-loaded hydrogel membrane. We chose Agþ as the
source of metal ions and there is no major difference in synthesizing a pristine
hydrogel versus Agþ -loaded one. Generally, 10ml aqueous solution of acrylamide
(monomer; 3.0M, 2.133 g), methylene bisacrylamide (crosslinker; 10.0mol%,
0.456 g), ammonium persulfate (initiator; 0.05mol%, 0.003 g) and AgNO3

(30.0mM, 0.051 g) were mixed in a 50ml plastic beaker. Then, the solution was
pipetted to fill a small volume between two parallel glass sheets that were separated
by a silicone spacer of 1.0mm in thickness. Agþ -loaded PAAm hydrogel
membrane was peeled from the substrate and cut into desired shape and size after
1 h of gelation at room temperature.

Converting metal ions into network of MNPs. To control the growth site of
MNP in hydrogels, the Agþ -loaded PAAm membrane was first placed on top of
an amorphous silicon substrate (a-Si; 3.4� 2.3 cm2; Solar-powered Polyresin Rock
Garden Lights; Greenbrier International Inc.) that was previously soaked in a dilute
solution of hydrochloride (2.0M, 50ml) to etch away the aluminum cover and later
rinsed with copious DI water (100ml). Then, an ITO (Sigma Aldrich)-coated glass
slide was covered on top of this hydrogel membrane, followed by exposing the a-Si
surface with a projected light from an optical microscope (Meiji, Japan) and
simultaneously biasing the ITO as anode and a-Si as cathode under a voltage
of 3.0 V for 5 s. This photoconduction from a-Si effectively triggered the formation
of a dark coloured network of Ag nanoparticles inside the hydrogel membrane.

Copper coating on hydrogel. MNP–hydrogel was first immersed in DI water for
48 h to remove excess Agþ inside the host membrane (DI water replaced every
12 h). Then, the ion-free membrane was transferred to a plating solution (10ml)
consisting of CuSO4 � 5H2O (80mM, 0.18 g), ethylenediaminetetraacetic acid
(165mM, 0.48 g), K4[Fe(CN)6] (150 mM, 0.6mg), NaOH (adjust pH to 12.8, 0.04 g)
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and formaldehyde (300mM, 225ml) for 60min at room temperature. Once a
smooth layer of copper is coated atop the MNP–hydrogel, it was rinsed with DI
water and kept wet until a later use.

Fabrication of static pressure sensor. To map the shape of a static load or
pressure, a 4� 4 sensor array was fabricated first by growth of four 3� 27mm
stripes of Ag nanoparticles on one side of the PAAm hydrogel membrane and then
another four stripes orthogonally on the other side, followed by electroless copper
plating (Supplementary Fig. 9). Each copper stripe was then connected with a thin
copper wire (12G) through a silver paste (Electron Microscopy Sciences), followed
by further coating with epoxy glue (Loctite Quick Set Epoxy) to secure a firm
contact for the later capacitance measurement. A 3� 3mm square of Ag
nanoparticles patch was fabricated in the shallow surface of hydrogel, followed by
electroless copper plating to study the capacitance change under different salt
concentrations and different static loads.

Static pressure measurement. A weight of 5.0 g (square shape with an area of
9mm2) was placed on top of the hydrogel device (with MNP or without), with a
pressure calculated as 5.4 kPa, to determine the capacitance change in the device
under various salt concentrations. For pressure mapping, a static load was applied by
placing a weight of 66, 59 or 3.0 g on top of the copper-coated MNP–hydrogel
(device size of 81 (‘O’ shape), 72 (‘L’ shape) and 4mm2 (small dot)), corresponding
to a pressure of 8.0 kPa. To study the static load sensitivity, a series of weights
ranging from 0.9 to 9.0 g were used, with pressures calculated from 1.0 to 10.0 kPa.
For the detection of air movement, a piece of copper-coated MNP–hydrogel with
3� 3mm area of Ag nanoparticles was used as the sensing device (ITO as another
electrode). The airflow was generated by gently squeezing a rubber blower fixed on a
ring stand, where the gas release duration is controlled, with the pressure being read
by placing the syringe close to a digital balance. The angle of blowing is adjusted to
ensure the tip of the blower always pointing to the centre of the Cu electrode. The
distance between the tip of rubber blower and the surface of hydrogel was fixed at
10mm, and the pressure generated by gripping was controlled at 1.0 kPa.

Preparation of salt-loaded hydrogel devices. Hydrogel membrane (PAAm only
or copper-coated one) was immersed in a plastic beaker that contains an aqueous
solution of NaCl with a concentration of 10� 2, 1, 10, 100 or 1,000mM for 4 h
(note: ion concentration inside the gel can be much less, dependent on the density
and chemical structure of the gel66). Then, the copper-coated MNP–hydrogel was
wiped dry and wired with an ITO plate (15� 15mm2) for capacitance
measurement. In the case of MNP-free one, a piece of aluminum foil (3� 3mm2)
was used as a counter electrode to pair up with ITO plate for capacitance probing.

Scanning electron and confocal laser scanning microscopy. The Ag-implanted
PAAm hydrogel is sectioned into B60mm thick slices (Vibratome 1000) to expose
the cross-sectional profile and subsequently loaded into a super critical point dryer
(Samdri 780A) to remove the water content without causing significant structural
change to the hydrogel. The dried slice is then glued on a metal plate and examined
directly with a Hitachi S-4700 FE-SEM (field emission scanning electron
microscope) under a voltage of 10–20 kV. For confocal microscopy, a bulk piece of
Ag-implanted PAAm gel is placed on top of a glass side, scanned with a � 60 water
immersion lens and imaged using a Nikon A1 confocal laser scanning
microscope system on a Nikon Eclipse 90i using the 561.4 nm excitation laser line
(Nikon Instruments Inc., Melville, NY).

Capacitance measurement. Capacitance of the hydrogel depends heavily on
frequency and voltage applied (Supplementary Fig. 6). We chose 1 kHz and 20mV
(parallel mode) for the capacitance measurement due to its relative insensitivity to
measurement frequencies and minimal interference to electrolytes inside the
hydrogel membrane. All the capacitances were measured by using Hewlett Packard
(4263B) LCR meter, and experimental data were exported to a LabVIEW program.

Underwater acoustic wave detection. A plastic wrap is used to insulate the
hydrogel device from its aqueous environment, therefore no current shorting or ion
infiltration between the device and its liquid background occurs. Then, the device
was placed inside a home-made metal mesh cage and immersed in water, by
connecting the leads of the device with an external resistor (100 kO) via a
home-designed circuit (Fig. 1c) to convert capacitance change into voltage output.
A computer program-controlled loudspeaker (Dayton Audio, DAEX25VT-4
Vented 25mm Exciter 20W 4Ohm) driven by an amplifier (Lepai, LP-2020A þ
Tripath TA2020 Class-T Hi-Fi Audio Amplifier) served as the acoustic wave
generator, from which both frequencies and amplitudes are adjusted. An
oscilloscope (Rigol DS1102E) was used to record the voltage output on the external
resistor (100 kO). For frequency sweeping and phase lag measurements, a network
analyser (Hewlett Packard 3577A) was used as both an acoustic wave generator and
a signal receiver, with the experimental data collected by a customized LabVIEW
program.

Calibration of underwater sound pressure with hydrophone. To determine the
local sound pressure applied on the hydrogel microphone, a commercial hydro-
phone (SQ 26 Cetacean Research Technology, Seattle, WA) was used to replace the
hydrogel device at the same location under identical acoustic impact conditions
(settings controlled by the sound card on computer and the amplification ratio).
Once voltage output from the hydrophone is recorded by an oscilloscope, sound
pressure with unit of Pa was calculated using peak-to-peak voltage and sensitivity
map of the hydrophone (Supplementary Note 3; Supplementary Fig. 5).

Spectrogram and audio recording. Audio input in the form of a sine sweep with
constant amplitude over frequencies from 20Hz to 3 kHz is applied to the
MNP–hydrogel microphone. The signal recorded was analysed for the frequency
content by Fourier transform analysis. A short speech (Supplementary Movie) was
also recorded using this MNP–hydrogel microphone, without using any low-noise
pre-amp or installing electromagnetic shielding around the apparatus.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files.
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Supplementary Figure 3. The static response of the hydrogel device to external 

loads from 1.0 to 8.0 kPa.  The device response can be quantified in two ways, one 

by relative capacitance change (ΔC/C0; dimensionless) and the other by the absolute 

capacitance change (ΔC; unit of nF). While the relative response is what is usually 

reported in literature
1-6

 it is more useful to look at the absolute response, the change in 

capacitance, since it determines the magnitude of the measured charge. In either case, 

the slope in Supplementary Figure 3 gives us an absolute device sensitivity of 0.1 

nF/kPa, or a relative sensitivity of 4.8 kPa
-1

. In comparison, a dielectric capacitor 

coupled with a transistor
5
 has an absolute sensitivity of 15.4 pF/kPa (or 8.4 kPa

-1
), 

while a recently reported dielectric device (embedded with Ag nanowires)
1
 has an 

absolute sensitivity of 34.2 pF/kPa (or 3.8 kPa
-1

). Clearly, the ion-rich device has far 

higher absolute sensitivity, and comparable relative sensitivity, in comparison to 

conventional dielectric sensors, mainly due to the intrinsically large electric double 

layer (EDL) capacitance and the deformation of MNP electrode. It is, however, 

worthwhile to note that the MNP networks in the hydrogel capacitor are also 

electrically biased (20 mV from the LCR meter), so that deformation of them can also 

attract or repel additional ions from the neighboring hydrogel. As a consequence, ion 

concentrations next to these MNP can be modulated through the combination of 

deformation and applied bias. 

 

 

 

 



 

 

Supplementary Figure 4. Response (voltage output) of hydrogel microphones with 

different ion concentration (a) 10
-2

 and (b) 100 mM towards acoustic waves as in 

Supplementary Figure 5(c-d). 

   



 

 

 

Supplementary Figure 5.  (a) Response (voltage output) of a commercial 

hydrophone (SQ 26-07) to a selected reference acoustic wave.  (b) Sensitivity map of 

hydrophone SQ 26-07 (provided by Cetacean Research Technology) towards varieties 

of frequencies (10-60 kHz).  A series of acoustic waves as input signal applied on the 

hydrogel microphones with different ion concentrations (c) 10
-2

 and (d) 100 mM, 

which are recorded by oscilloscope directly.  Note:  These pulsed signals are from 

the loudspeaker/amplifier directly, not from the hydrogel sensors. 

  



 

 

Supplementary Figure 6. (a)-(c) Capacitances of MNP-hydrogels with salt 

concentrations of 10
-2

, 10, and 100 mM show a flat response only when the 

measurement frequency is above 1 kHz. (d) Cyclic voltammetry (10 mV/s scan) gives 

these samples a capacitance value of 243, 560, and 1293 μF respectively. 
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Supplementary Figure 9.  Schematic of the pressure mapping test with a 4 × 4 

sensing array.  Inset shows the hydrogel sample used for this experiment.  Briefly, a 

solid weight (PDMS block) with a controlled mass and bottom area is placed on a 

predefined location.  Capacitance readings from different paired electrodes (one 

from the top and another from the bottom) are then recorded to map out the pressure 

zone on top of the hydrogel sensor array. 
 

 

 

 

  



 

Supplementary Table 1. Statistic measurements of hydrogel capacitors 

 Salt concentration (mM) 

10
-2

 1 10 100 1000 

 

 

 

 

 

 

 

 

 

MNP-free 

hydrogel 

 

 

 

C0 

(nF) 

C01 

C02 

C03 

Average 

Standard Deviations

Relative Standard 

Deviations (Errors)

0.94 

0.75 

0.88 

0.86 

0.097 

0.113 

6.38 

7.22 

5.87 

6.49 

0.682 

0.105 

15 

17.27 

14.32 

15.53 

1.545 

0.099 

81.5 

90.82 

70.02 

80.78 

10.419 

0.129 

312.5 

365.6 

284.7 

320.9 

41.104

0.128 

 

 

ΔC 

(nF) 

ΔC1 

ΔC2 

ΔC3 

Average 

Standard Deviations

Relative Standard 

Deviations (Errors)

0.052 

0.04 

0.05 

0.047 

0.006 

0.136 

0.309 

0.361 

0.278 

0.316 

0.042 

0.133 

0.612 

0.732 

0.57 

0.638 

0.084 

0.132 

2.11 

2.51 

1.95 

2.19 

0.288 

0.131 

5.142 

6.11 

4.63 

5.294 

0.752 

0.142 

 

 

 

ΔC/C0

ΔC1/C0 

ΔC2/C0 

ΔC3/C0 

Average 

Standard Deviations

Relative Standard 

Deviations (Errors)

0.055 

0.053 

0.057 

0.055 

0.002 

0.036 

0.048 

0.05 

0.047 

0.048 

0.0013

0.027 

0.041 

0.042 

0.039 

0.041 

0.0013

0.032 

0.026 

0.028 

0.028 

0.027 

0.0011 

0.039 

0.016 

0.017 

0.016 

0.016 

0.0002

0.0137

 

 

 

 

 

 

 

 

 

MNP- 

hydrogel 

 

 

 

C0 

(nF) 

C01 

C02 

C03 

Average 

Standard Deviations

Relative Standard 

Deviations (Errors)

3.4 

2.3 

3.7 

3.13 

0.737 

0.235 

15.63 

19.33 

12.44 

15.8 

3.448 

0.218 

36.67 

28.84 

44.02 

36.51 

7.591 

0.208 

170.73 

212.18 

141.24 

174.72 

35.638 

0.204 

476.2 

395.11

562.87

478.06

83.895

0.175 

 

 

ΔC 

(nF) 

ΔC1 

ΔC2 

ΔC3 

Average 

Standard Deviations

Relative Standard 

Deviations (Errors)

0.83 

0.52 

0.85 

0.733 

0.185 

0.252 

2.52 

3.31 

2.11 

2.646 

0.61 

0.231 

4.44 

3.71 

5.68 

4.61 

0.996 

0.216 

14.39 

16.75 

10.97 

14.04 

2.906 

0.207 

10.11 

8.81 

13.07 

10.66 

2.184 

0.205 



 

 

 

 

ΔC/C0

ΔC1/C0 

ΔC2/C0 

ΔC3/C0 

Average 

Standard Deviations

Relative Standard 

Deviations (Errors)

0.244 

0.226 

0.23 

0.233 

0.009 

0.041 

0.161 

0.171 

0.17 

0.167 

0.005 

0.033 

0.121 

0.128 

0.129 

0.126 

0.0045

0.036 

0.084 

0.079 

0.078 

0.08 

0.0035 

0.044 

0.021 

0.022 

0.023 

0.022 

0.001 

0.045 

Note: Relative Standard Deviations = Standard Deviations/Average 

  



 

Supplementary Note 1: Relative Electrode Area Change in Network of MNP 

Our MNP-hydrogel capacitor (Cu/Ag MNP/hydrogel/ITO) adopts ITO as one 

of the electrodes just like the MNP-free device (Al/hydrogel/ITO), but a different 

counter electrode design.  We consider at the ITO side (15 × 15 mm
2
) the EDL 

capacitance has a value of C.  In our control sample (Al/hydrogel/ITO), a pure 

aluminum foil (3 × 3 mm
2
) is the counter electrode, therefore the EDL capacitance 

there is C/25.  Now, a porous electrode of MNP that is m times larger in surface area 

replaces Al, resulting in a capacitance of mC/25.  Capacitance (C0) of the 

MNP-hydrogel device is then: 

଴ܥ   ൌ ஼ൈ೘మఱ஼஼ା೘మఱ஼ ൌ ൬ ௠ଵା೘మఱ൰ ቀ ஼ଶହቁ                      (1) 

Under pressure, the change in ion concentration (Δn∞) in the hydrogel membrane will 

change the EDL capacitance in ITO side to C’.  Meanwhile, the surface area in the 

porous MNP electrode can change, with an area now q times (assume q = m + Δm) 

that of an aluminum foil (3 × 3 mm
2
).  Capacitance change in the MNP-hydrogel 

device is, 

࡯∆           ൌ ൬ ૚ା࢓ ૛૞൰࢓ · ૚૛૞ ૙ࢿࢿ ష૚ࣄ࡭ ൤൬૚ା ࢓૛૞࢓ ൰ ൬ ૚ାࢗ ૛૞൰ࢗ ష૚ᇲࣄష૚ࣄ െ ૚൨           (2) 

or 

࡯∆                     ൌ ૙࡯ ൤൬૚ା ࢓૛૞࢓ ൰ ൬ ૚ାࢗ ૛૞൰ࢗ ට૚ ൅ ಮ࢔ಮ࢔∆ െ ૚൨              (3) 

where A is the electrode area of the ITO plate.  If we assume Δm is much smaller 

than 25, then Eqn. (3) becomes: 

࡯∆                       ൌ ૙࡯ ൤ቀ૚ ൅ ࢓࢓∆ ቁ ට૚ ൅ ಮ࢔ಮ࢔∆ െ ૚൨              (4) 

where Δm/m equals to the relative area change in the porous MNP electrode.  By 

plugging in relative capacitance change (ΔC/C0) and ion concentration variations 

(Δn∞/n∞), we can extract the values of relative area change as in Table 1. 

 

Supplementary Note 2: Calculate Capacitance Change (ᇞC) in MNP-Hydrogel 

under Dynamic Load 

Capacitance change (ᇞC) under dynamic load (underwater acoustic waves) is 



 

calculated by converting response (voltage output) into a current (i) flowing through 

the resistor (Rf): 

                               ଴ܸ ൌ ௙ܴ ൈ ݅                               (5) 

Where V0 is the response (voltage output) of the hydrogel sensor that is simply treated 

as half of the peak-to-peak response (Vpp/2) and Rf is the applied resistance back in 

Figure 1C (value of 10
5 Ω). Meanwhile, ݅ ൌ ܸ ௱஼௱௧ , where V is the applied voltage on 

the hydrogel sensor (1.0 V) and ݐ߂ as 1/4 of a full cycle of our measured signal. At a 

sound input frequency of 100 Hz, our measured signal also has a frequency of 100 Hz, 

giving us a ݐ߂  of 2.5 ൈ 10ିଷ  s. Such that, ᇞ ܥ ൌ 1.25  ൈ  10ି଼  ௣ܸ௣  (F). For 

example, in Figure S4, when the hydrogel microphone of 10
-2 

mM (a) shows a 

response (Vpp) of 0.6 V, the calculated ᇞ  is then 7.5 nF. When it shows a response ܥ

(Vpp) of 0.144 V, capacitance change is then 1.8 nF. 

 

Supplementary Note 3: Calibration of Sound Pressures 

We use a commercial listening device (hydrophone, SQ 26-07) with known 

sensitivity to calibrate the sound pressure in our experiments. First, acoustic wave at 

100 Hz is fixed by setting volume of the loudspeaker and parameters on the amplifier.  

Then this sound is applied through a water tank and received by the SQ 26-07 

hydrophone, with the voltage output from the hydrophone recorded by an oscilloscope.  

Since sensitivity (S) of hydrophone is giving by: 

                    ܵ ൌ 20 ݋݈ ଵ݃଴ ௏ೃಾೄ௏బ                             (6) 

where S can be found in Figure S5(b) at a specific frequency (for example, S = -169 

@ 100 Hz), VRMS the root-mean-square voltage signal from oscilloscope, and V0 the 

reference voltage (1.0 V ref. 1 μPa).  Then, VRMS can be calculated from experimental 

data by converting the peak-to-peak voltage (Vpp): 

                           ோܸெௌ ൌ ௏೛೛ଶ√ଶ                               (7) 

Based on the sensitivity (S) and recorded VRMS, V0 can be then calculated.  Since 

each 1.0 V of V0 corresponds to 1 μPa of pressure, a different V0 will then tell us the 

sound pressure other than the reference level. For example, in Figure S5a when the 



 

response of hydrophone shows a Vpp of 0.32 V, giving us a value of V0 of 0.33 ൈ 10
8
 

V. Such that, calculated sound pressure will be 33 Pa. Now, we apply this same 

acoustic wave to our hydrogel sensor, plus a few other sounds at different intensities. 

We directly measure the voltage of these acoustic waves with an oscilloscope, as 

shown in Figure S5(c-d). As the acoustic wave back in Figure S5(a) delivers a 

peak-to-peak voltage of 5.6 V in Figure S5(c), then the other acoustic waves at other 

intensities can be calculated by scaling their voltage output vs. 5.6 V. 

 

Supplementary Note 4: Vibrational Model for the MNP-hydrogel Microphone to 

Acoustic Waves 

Response of our hydrogel microphone at different acoustic loads can be 

modeled as a mass, a spring, and a damper that are connected in parallel.  A dynamic 

load such as an acoustic wave then produces a vibration of those combined elements 

at a giving frequency.  A standard solution of resulting vibrational displacement (X) 

is: ሺܨ଴/݇ሻ/ඥሺ1 െ ଶሻଶݎ ൅ ሺ2߫ݎሻଶ, where F0 is the amplitude of incoming acoustic 

wave, k the spring constant, r the ratio of input frequency (f) vs. natural vibrational 

frequency (fn) of the system, and ς the damping coefficient.  Inside this solution, we 

can select appropriate parameters like F0/k, fn, and ς to fit experimental results.  

Generally, the shape of the curve will be defined by the last two parameters but the 

magnitude by the first parameter.  To fit three situations in Figure 4D, both the 

parameters fn and ς can be kept at the same value (fn = 350 Hz and ς = 0.5), but with 

different value of F0/k. Fits are all plotted as black curves overlapping the 

experimental data as showed in Supplementary Figure 7.  Particularly, the top curve 

(100 mM) has F0/k value of 70, the middle curve (100 mM; copper positive and ITO 

negative biased) a value of 48, and the bottom one (10
-2

 mM; copper negative and 

ITO positive biased) a value of 40. As the MNP structure and hydrogel matrix 

remained the same in all three situations, from these numbers, we can generally 

conclude that ion concentration or the biasing directions determines the value of 

spring constant (1/k), with the MNP structure and polymer network respectively for 



 

natural frequency (fn) and damping coefficient (ς). 

 

Supplementary Note 5: Model for Sensor Time Delay 

A time delay of ~15 ms was measured using the phase shift data of the sensor 

(Figure 4F).  This cannot be explained by the time needed for sound propagation 

(distance from speaker to detector is ~10 cm, causing ~0.1 ms delay using sound 

velocity of ~ 1000 m/s in water).  The short delay is verified with hydrophone 

measurement.  We found that the delay is also related to the ion concentration in 

hydrogel.  To explain the delay specific to our hydrogel microphone, a 

slow-propagating wave with linear dispersion (so velocity is constant) is required.  

This wave can be defined as ion concentration wave, so that when the electrically 

grounded side of the hydrogel sensor generates an ion concentration variation due to 

the incoming sound waves, a periodical disturbance of the ion concentration will 

propagate towards the biased side of the hydrogel, causing charge variation on the 

amplifier input.  The model is established below: 

Due to the ion mean free time scale is much shorter than our device response 

time scale, we can assume a constant ion velocity under external electrical field E, so 

that an electrical mobility μ in hydrogel is established where the drift velocity v of ion 

is  

                             vdrift = μ E                             (8) 

The concentration variation in the hydrogel membrane will result in a diffusion 

velocity: 

ௗ௜௙௙௨௦௜௢௡ݒ                            ൌ ݇஽(9)                        ݊ߘ 

Under a constant bias voltage at steady state, a leak current through hydrogel 

established a constant electric field inside the gel.  However the ion velocity is zero 

because total ion number stays constant and ions cannot recombine at the electrodes 

as long as the bias voltage is smaller than the electrolysis voltage: 

                             ݇஽݊ߘ െ ܧߤ ൌ 0                        (10) 

Here we are looking for plane wave solution with wave vector in thickness direction 

of the hydrogel, so we drop the vector mark and use notation v1e
i(kx-ωt)

, where e
i(kx-ωt) 



 

represents propagating plane wave.  A constant bias voltage is applied along the 

thickness direction of the hydrogel, so E can be divided into two parts: E0 + E1e
i(kx-ωt)

, 

where E0 is the constant bias and E1 term is the ion concentration variation caused 

additional electrical field.  Note v, E1 can be complex here to denote the phase factor.  

Here diffusion velocity caused by the concentration gradient is treated as a constant 

velocity v0 balancing drift velocity and the equation becomes: 

 v0 + v1e
i(kx-ωt) 

- μ E0 - μ E1e
i(kx-ωt) 

= 0               (11) 

or                       v0 = μ E0, and v1 - μ E1= 0                   (12) 

Here the terms with time dependence is separated with terms without time 

dependence.  The continuity equation comes from the total ion number stays 

constant: 

                       
డ௡డ௧ ൅ ߘ݊ · ݒ ൅ ݒ · ݊ߘ ൌ 0                      (13) 

Again the ion concentration n can be decomposed into two parts: n = n0 + n1e
i(kx-ωt)

, 

where the n0 term is the unperturbed ion concentration, and n1 term represents the 

perturbed concentration (note n1 can be complex to include the phase factor).  The 

continuity equation then becomes:  

 n0v1 + (v0-ω/k) n1 = 0                      (14) 

The electrical field generated by charged ions is described by Gauss's Law: 

            െ ௤ఢబ ݊ ൅ ߘ · ܧ ൌ 0             (15) 

Using plane wave assumption on E and n, assuming a charge neutral hydrogel body 

we find: 

                          െ ௤ఢబ ݊ଵ ൅ ଵܧ݇݅ ൌ 0                        (16) 

From (14), (15) and (16), we get the equation for n1: 

              െ ௤ఢబ ݊ଵ ൅ ݅ ௞ఓ௡బ ቀఠ௞ െ ଴ቁܧߤ ݊ଵ ൌ 0                 (17) 

or                          ݇ ൌ ଵఓாబ ߱ ൅ ݅ ௤௡బாబఢబ                       (18) 

The second term is imaginary which describes the attenuation of the plane wave as it 

propagates.  The first term is the propagation term, and we see that the group 

velocity of propagation is: 



 

௚ݒ                              ൌ డఠడ௞ ൌ  ଴                        (19)ܧߤ

The bias field is on the order of 0.2 V over 1 mm thickness (10
2
 V/m), ion mobility 

for sodium in water is on the order of 2 × 10
-4

 m
2
V

-1
s

-1
.  The ion concentration wave 

is therefore estimated to propagate with a velocity on the order of 0.04 m/s.  Going 

across the 1 mm thickness would take ~ 25 ms, which agrees with the experiment on 

the order of magnitude. 
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