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Abstract: Hydrogels, which are hydrophilic polymer networks, have attracted great attention, and
significant advances in their biological and biomedical applications, such as for drug delivery, tissue
engineering, and models for medical studies, have been made. Due to their similarity in physiological
structure, hydrogels are highly compatible with extracellular matrices and biological tissues and
can be used as both carriers and matrices to encapsulate cellular secretions. As small extracellular
vesicles secreted by nearly all mammalian cells to mediate cell–cell interactions, exosomes play very
important roles in therapeutic approaches and disease diagnosis. To maintain their biological activity
and achieve controlled release, a strategy that embeds exosomes in hydrogels as a composite system
has been focused on in recent studies. Therefore, this review aims to provide a thorough overview
of the use of composite hydrogels for embedding exosomes in medical applications, including the
resources for making hydrogels and the properties of hydrogels, and strategies for their combination
with exosomes.

Keywords: composite hydrogel; exosome; biomedical engineering

1. Introduction

Hydrogels are three-dimensional macromolecular polymeric networks composed of
hydrophilic polymer chains. They can generally be divided into three categories according
to their origin: natural, synthetic, and hybrid. Hydrogels are degradable, with a high affinity
for water, and can be fabricated under physiological conditions, resulting in excellent
biocompatibility [1]. They can be formed chemically and/or physically upon initiation with
crosslinking agents and produced with a certain viscosity and elasticity. The innovation
of Wichterle and Lim pioneered a new approach to applying crosslinked hydroxyethyl
methacrylate (HEMA) hydrogels as biomaterials in 1960 [2]. In the two decades following
this discovery, Lim and Sun demonstrated calcium alginate hydrogels with applications in
cell encapsulation [3]. It is not surprising that hydrogels, having mechanical and structural
properties similar to those of many tissues and the extracellular matrix (ECM), have
attracted great attention, and significant progress has been made in designing, synthesizing,
and using these materials for many biological and biomedical applications [4].

Exosomes are small, single-membrane, secreted extracellular vesicles (EVs), enriched
in certain proteins, nucleic acids, and lipids. Budding at both the plasma and endosomal
membranes of all the mammalian cell types studied to date, they are produced to remodel
the ECM and deliver signals and functional macromolecules to adjacent cells. Numerous
surface molecules on exosomes enable them to be internalized via endocytosis by recipient
cells, playing an important role in regulating cell–cell communication [5]. Therefore, the
study of exosomes in the pathology of various diseases is an active area of research, and
the exploration of therapeutic exosomes as delivery vesicles has offered new insights for
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clinical applications in recent years. However, the stability and retention of exosomes
released in vivo are major hurdles, as they are rapidly cleared by the innate immune system
or accumulate in the liver, spleen, and lungs via the blood circulation [6].

To overcome the rapid clearance and maintain the bioactivity of exosomes, hydrogels
have been utilized to realize protection and controlled release by encapsulating these small
vesicles. The excellent biodegradability of hydrogels allows them to be controlled by cell
growth. Additionally, when they are used as scaffolds, exosomes can be loaded and released
through their porous structure [7]. This review outlines the major applications of the hydrogel
encapsulation of exosomes for physiological and pathological contexts, with a focus on the
synthesis of, modification of, and exosome-loading strategies for hydrogels (Figure 1).
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Figure 1. Hydrogels for exosome delivery in biomedical applications. Inward budding of the cellular
plasma membrane results in the formation of endosomes, and the continuous inward invagination of
the limiting membrane produces multivesicular bodies (MVBs). MVBs then fuse with the lysosome
or plasma membrane, while the vesicles are released into the extracellular matrix to form exosomes.
The secreted exosomes mainly contain proteins, nucleic acids, and lipids. The proteins contained in
exosomes can be divided into two categories: one includes those commonly expressed in exosomes
which can be used as markers (CD9, CD63, and CD81); the other includes the specific proteins from
the parent cells. Hydrogels, as hydrophilic polymer networks, can encapsulate exosomes, overcoming
the issue of low tissue retention and ensuring a controlled-release platform to localize their activity.
Composite exosome–hydrogel systems have been applied in fields including tissue engineering and
the study of pathogenesis. (Created with https://biorender.com/ accessed on 17 April 2022).
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2. Hydrogels

Hydrogels, as hydrophilic polymer networks, absorb from 10–20% (an arbitrary lower
limit) up to thousands of times their dry weights in water [2]. The high water content
provides physical similarity to tissue, and gives the hydrogels excellent biocompatibil-
ity and the capability to easily encapsulate molecules [8]. The structural integrity of
hydrogels depends on the crosslinks formed between the polymer chains, chemically
and/or physically [9]. Naturally derived hydrogels are mostly formed by self-assembling
physical crosslinks, including hydrogen bonds, van der Waals forces, and hydrophobic
interactions, which cause macromolecules to fold and adopt well-defined structures and
functionality [10]. Therefore, they can be synthesized in situ and used in injectable drug-
delivery systems. Chemical crosslinking provides better stability because it allows substan-
tially improved flexibility and spatiotemporal precision during gelation. The conventional
mechanisms include radical polymerization, the chemical reaction of complementation
groups, high-energy irradiation, and enzyme-enabled biochemistry, among others [11].

According to the different resources from which the polymers are sourced, hydro-
gels can be classified into natural, synthetic, and hybrid types. Recently, their network
architectures, which can also be defined as conventional and unconventional polymer
networks, such as interpenetrating and semi-interpenetrating polymer networks, have
been extensively investigated. Concerning gel formation and drug release, a novel type of
hydrogel capable of responding to a change in environmental conditions, such as tempera-
ture, pH, or the concentration of biomolecules, is the environment-sensitive hydrogel. As
the design and preparation of hydrogels have been discussed in depth elsewhere, only a
brief overview of common polymers is provided below [1,4,12].

2.1. Natural Hydrogels

Hydrogels derived from natural polymers tend to be highly compatible with biological
tissues due to their similarity to the natural ECM or its components [13]. Therefore, the
biodegradability and cell interactions in the tissue microenvironment of natural polymer
networks mean that naturally derived hydrogels are widely used in tissue-engineering
applications, and nearly all the hydrogels used for exosome encapsulation are based on
naturally derived polymers [1]. The natural polymers for hydrogels can generally be
divided into polysaccharides (alginate, hyaluronic acid, chitosan, agarose, and cellulose)
and proteins (collagen, gelatin, and fibrin).

Alginate has been widely used as a scaffold in tissue engineering for cells, their encap-
sulation, and drug delivery; alginate is a linear polysaccharide copolymer of (1–4)-linked
b-d-mannuronic acid (M) and a-l-guluronic acid (G) monomers and can be obtained from
brown seaweeds and bacteria [14–16]. Alginate hydrogels are hypotoxic and easily avail-
able, while the dissociation of individual chains during gelation results in a loss of mechan-
ical stiffness. Hyaluronic acid (HA) has been investigated for cell and molecule delivery,
stem cell therapy, and tissue regeneration [17–19]. It is the simplest glycosaminoglycan
(GAG), composed of a repeating disaccharide of (1–3)- and (1–4)-linked beta-D-glucuronic
acid and N-acetyl-beta-D-glucosamine units, and is present in all mammals, especially in
soft connective tissues [20,21]. HA hydrogels are nonimmunogenic, are biocompatible, and
can be degraded by hyaluronidase for cell regulation. Chitosan is a linear polysaccharide,
composed of β-(1–4)-linked D-glucosamine and N-acetyl-D-glucosamine, and obtained
from arthropod exoskeletons [22]. Similar to naturally occurring GAGs, it has been applied
in tissue engineering, showing excellent biocompatibility and biodegradability [23].

As the most abundant protein in animal bodies and the main component of the natural
ECM, low-immunogenic collagen comprises three polypeptide chains wrapped around
one another to form a three-stranded rope structure [24]. By introducing various chem-
ical crosslinks, physical treatments, and other polymer modifications, collagen can be
mechanically and stably enhanced, and is widely used in drug delivery and tissue recon-
struction [25–27]. Gelatin is a single-stranded molecule naturally derived from breaking the
triple-helix structure of collagen. Similar to collagen, gelatin requires covalent crosslinking,
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modifications, and interactions to further improve its physical properties [28,29]. GelMA
hydrogels are hydrogels that are covalently crosslinked by introducing methacryloyl sub-
stituent groups to gelatin through photoinitiated radical polymerization [30]. A cargo-
delivery platform can be created by mixing GelMA with nanoparticles such as laponite
nanoclay to form a GelMA/nanoclay hydrogel with desirable combined mechanical and
biological properties for specific biological applications [31]. Fibrin is a naturally derived
polymer that is attractive for use in tissue sealants and adhesives for controlling bleeding
in wound healing [32], as well as for scaffolds for tissue engineering [33,34]. It can be
produced autologously from blood, thus possessing low antigenicity and being less likely
to induce inflammatory responses [35].

However, the stability, mechanical properties, and cell adhesion of natural hydrogels
need to be improved by extra crosslinking and modifications to realize specific biological
and mechanical properties [13]. Covalent crosslinkers (e.g., glutaraldehyde and genipin)
and physical treatments (e.g., UV irradiation and heating) have been applied to improve
the mechanical properties of natural hydrogels [36–39]. A classic example of peptide
modification is the introduction of the arginine–glycine–aspartic acid (RGD) sequence,
which is used to enhance the cell-adhesion property [40].

2.2. Synthetic Hydrogels

Synthetic hydrogels can be fabricated with specific molecular weights, block structures,
degradable linkages, and crosslinking modes to have tunable architectures at customized
size scales and with controlled degradation rates. In addition, synthetic polymers are good
in terms of cost, supply, and reproducible production. Examples of such synthetic materials
discussed here are vinyl polymers (PHEMA and PVA), PEG, and polyesters (PLA).

Poly(hydroxyethyl methacrylate) (PHEMA) hydrogels can be prepared by the free-
radical polymerization of HEMA. Copolymerization with acrylic or acrylamide monomers
can achieve tunable swelling and mechanical properties for PHEMA hydrogels [41]. How-
ever, pure PHEMA requires extra biofunctional and bioactive motifs to realize cell adhesion
and degradability in the tissue microenvironment [42]. PVA is mainly obtained from the
partial or full hydrolysis of poly(vinyl acetate). Physically crosslinked PVA hydrogels
exhibit high elasticity and fatigue resistance with low friction. PVA hydrogels, therefore,
have been widely studied for cartilage tissue engineering [43]. Similar to PHEMA, pure
PVA hydrogels need to be conjugated with several oligopeptide sequences to enhance their
cellular interactions [44].

Hydrogels made from poly(ethylene glycol) (PEG) and the chemically similar poly
(ethylene oxide) (PEO) are usually obtained from the polymerization of ethylene oxide [45].
Chemically crosslinked PEG hydrogels can be formed by photo-/UV-induced or radiation-
induced free-radical polymerization with the modification of end chains with various
chemical groups [46]. The physically crosslinked networks can also be generated by various
motifs, which render the hydrogels reversible and stimulus-responsive [47]. Meanwhile, a
triblock copolymer hydrogel has also been successfully manufactured and showed good
performance for slow-release small EVs [48].

Poly(lactic acid) (PLA) is obtained from the ring-opening polymerization of lactide.
The stability of PLA hydrogels can be improved via chemical crosslinking, such as photo-
crosslinking to prevent autocatalytic decomposition [49]. Depending on the choice of lactide
monomer, poly(L-lactic acid) (PLLA) and poly(D,L-lactic acid) (PDLLA) can be generated
as stereoisomers, and result in differing stiffnesses for hydrogels encapsulating hMSCs [50].

The limitation of synthetic hydrogels is the lack of native tissue topography and
structure. Ergo, hybrid hydrogels comprising both natural and synthetic materials have
recently attracted increasing attention, with the biological moieties of natural materials
being combined with the benefits of tunable synthetic materials [7]. They are defined
as polymers composed of hundreds of chemically or physically crosslinked nanogels, or
systems combined with different polymers and/or with nanoparticles. The structural
similarity to the natural ECM, tunable viscoelasticity and mechanical properties, high water
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contents, and permeability for oxygen and essential nutrients make hybrid hydrogels good
candidates for tissue-engineering scaffolds [51].

3. Exosomes
3.1. Characterization and Biogenesis of Exosomes

Nearly all types of mammalian cells secrete extracellular vesicles (EVs), including
mesenchymal stem cells [52], immune cells [53], neuronal cells [54], endothelial cells [55],
and cancer cells [56]. As determined by their biogenesis, EVs can be broadly divided into
three categories: exosomes, microvesicles, and apoptotic bodies [57]. Exosomes originate
from endosomes with a size range of 40 to 160 nm (average ~100 nm) in diameter [58]. The
inward budding of the cellular plasma membrane results in the formation of endosomes,
and the continuous inward invagination of the limiting membrane produces multivesicular
bodies (MVBs) [59]. Therefore, they can selectively incorporate cytosolic contents, and
transmembrane and peripheral proteins, which contributes to the heterogeneity of exo-
somes. MVBs may then fuse with lysosomes or the plasma membrane, while the vesicles
released into the extracellular matrix form exosomes [60,61].

Exosomes mainly contain proteins, nucleic acids, and lipids; the proteins contained
in exosomes can be divided into two categories. One comprises proteins commonly ex-
pressed in exosomes that can be used as markers to identify exosomes, such as the CD9,
CD63, and CD81 tetraspanin proteins, as well as TSG101, Alix, flotillin, and Rab [62]. The
other comprises specific proteins from exosomes from different sources. For example,
exosomes from T cells can carry CD3 molecules [63]. A major feature of exosomes that
can distinguish them from other biological vesicles is that they contain a large number of
nucleic acids, including DNA, RNA, miRNA, and noncoding RNA [55,64–66]. Moreover,
exosomes can be engineered to deliver diverse therapeutic payloads. Small RNAs (sRNAs),
particularly microRNAs, are transferred to mediate cell-to-cell communication and deliver
genetic information [67,68].

Since the above biogenesis of exosomes is physiologic behavior, large-scale production
for clinical studies and commercialization requires a higher yield of exosomes. There are
some strategies used to stimulate EV shedding and enhance yield that can also be explored
for exosomes. Wang et al. found that exosome secretion by MSCs could be enhanced by
N-methyldopamine and norepinephrine without altering their modulatory capacity [69].
Other strategies such as pH variations or low-oxygen conditions may also stimulate an
increase in exosome production [70].

3.2. Isolation and Analyses of Exosomes

The heterogeneity of exosomes originates from their size, molecular content, functional
impact, and cellular origin. Therefore, the isolation and detection of exosomes are necessary
for their embedding in hydrogels [71]. A variety of conventional isolation and enrichment
methods have been developed, including ultracentrifugation, gradient ultracentrifugation,
coprecipitation, size-exclusion chromatography, and field-flow fractionation. Ultracentrifu-
gation is the current gold standard and most commonly used conventional approach for
exosome isolation [72]. Sucrose-gradient centrifugation can further fractionate according to
different vesicular densities and is more typically used to isolate exosomes. Coprecipita-
tion is performed using commercial kits that rely on polymer coprecipitation, which are
expensive for large-scale usage and lack specificity for exosomes [71]. Size-exclusion chro-
matography and field-flow fractionation separate exosomes and other molecules based on
their sizes and molecular weights [73,74]. Compared to conventional methods, various new
enrichment methods such as microfluidic filtering, contact-free sorting, and immunoaffinity
enrichment have been developed to improve the isolation efficiency and specificity [75–78].

Since the enrichment methods are mainly based on the size, structure, and capture of
some of the membrane proteins of exosomes, it is necessary to study exosomes by physical,
chemical, and biological characterization to distinguish them from other vesicles and
macromolecular protein complexes. Scanning electron microscopy (SEM) and transmission
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electron microscopy (TEM) are widely used to determine the morphology and structure of
exosomes [79]. Dynamic light scattering (DLS) and nanoparticle-tracking analysis (NTA)
are still attractive techniques for measuring the concentrations and size distributions of
exosomes [80,81]. Conventional methods for the detection of exosomal proteins include
Western blotting, enzyme-linked immunosorbent assay (ELISA), mass spectrometry, and
flow cytometry [82–84], while novel methods include micro-nuclear magnetic resonance
(µNMR) and exosome sensors [85,86]. It has been found that exosomes are enriched with
tetraspanins (CD9, CD63, and CD81), membrane trafficking proteins (RAB proteins and
annexins), and MVB-related proteins (ALIX, TSG101, and clathrin) [87]. The nucleic acids of
exosomes, as potential circulating biomarkers, and intercellular regulators can be amplified
through polymerase chain reactions (PCRs) and sequenced [71].

Despite these developments, some questions remain for subpopulations of EVs lacking
precise definitions. It is still difficult to distinguish exosomes from other small vesicles
with confidence. According to the updated guidelines for studies of EVs, researchers are
encouraged to consider the use of operational terms for EV subtypes that refer to physical
characteristics, biochemical composition, or descriptions of conditions or cells of origin [88].
Therefore, many studies have regarded different types of EVs as an entire cargo to deliver a
packaged set of bioactive components [89]. For the further understanding of EVs’ contents,
single-EV analysis provides a benchmark by resolving EVs at a single-particle level [90].
Rogers et al. successfully detected EVs by using a single-EV microarray, which can assess
EV proteins comprehensively and quantitatively [91].

3.3. Physiological Functions of Exosomes

Exosomes can be released under normal physiological conditions to regulate a range
of biological processes. However, the precise roles of exosomes remain unclear due to the
lack of physiological models in vitro and in vivo [90]. Ongoing experimental advances are
likely to yield a thorough understanding of their heterogeneity and biological functions.
The section below briefly discusses their main physiological functions.

1. Exosomes as mediators of intercellular communication. There are a variety of mech-
anisms that mediate cell–cell communication via exosomes. The phagocytosis-like
uptake of exosomes by recipient cells enables them to transmit signals and molecules.
Specific miRNA and protein cargoes in exosomes can contribute to tissue develop-
ment and maintenance [92]. By directly fusing with the receptor cells, exosomes
can exchange transmembrane proteins and lipids [93]. These properties mean that
exosomes are involved in many physiological and pathological processes.

2. Exosomes as remodelers of the ECM. Cells can release exosomes into the ECM to
manipulate its composition and function. Conversely, changes in the ECM affect
cellular proliferation, migration, and organ morphogenesis. For example, exosomes
can promote ECM synthesis by regulating matrix metalloproteinases (MMPs) [94],
whereas some exosomes can inhibit the deposition of the ECM by suppressing
collagen biosynthesis [95].

3. Exosomes as regulators of the immune response. Exosomes secreted by cells can
modulate the immune response in various ways. Antigen-presenting cells can shed
exosomes with the same cell-surface proteins such as MHC II and costimulatory
signals [96]. An example of this is the release of exosomes containing bacterial mRNA
by macrophages to activate the immune system [97]. MSC-derived exosomes can
carry cytokines, miRNA, and other active molecules involved in proinflammatory
and anti-inflammatory regulation [98].

4. Exosome-Loading Strategies

The stability and retention of exosomes are a major hurdle for clinical applications,
as they are eliminated immediately by the immune system once injected in vivo [99].
Conventional delivery in cell-free exosome therapy includes intravenous, subcutaneous,
and intraperitoneal injections. However, fluorescence imaging revealed that the majority of
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directly injected exosomes accumulated in various organs and tissues such as the liver and
spleen [100]. Consequently, the method of administration should be optimized to achieve a
high therapeutic efficacy and specificity, which requires delivering desirable exosomes to
target tissues.

As the field rapidly evolves, biomaterials such as hydrogels allow exosomes to over-
come the low tissue retention and ensure a controlled-release platform to localize their
activity [7]. By embedding exosomes in a composite system, hydrogels play a dual role as
carriers for cargo delivery and matrices for cellular interaction. Some of the first polymers
used to synthesize hydrogels such as PHEMA and PEG are commonly used as cell culture
materials. Much of the pioneering work with these hydrogels sought to elucidate the effects
of the matrix stiffness on biological behavior [12]. However, these synthetic hydrogels are
typically amorphous, homogeneous materials, considerably different from those of the
native ECM. As progress has been made in 3D cell cultures, several strategies that permit
cells and cellular molecules to spread and signal under physiological conditions have
emerged. Hydrogels exhibiting passive hydrolytic degradation or cell-mediated enzymatic
degradation have been considered, which enable the degradation rate of the matrices to be
customized for the optimal release of the entrapped exosomes [4].

There are three common approaches for loading exosomes into a hydrogel matrix:

1. Polymers and exosomes are mixed and injected with crosslinkers in situ simultane-
ously. Exosomes are mixed with both polymers and crosslinkers simultaneously, and
injected in situ with a dual-chamber syringe. After irradiation, ion exchanges, or envi-
ronmental changes, polymerization can be achieved, inducing gelation [101]. In situ
gelation can realize precise conformation to irregular cavities, and result in excellent
integration and retention rates in the injection sites [102,103]. For example, entrapping
effervescently generated CO2 bubbles can help to form highly interconnected porous
networks in injectable hydrogels in vivo, which is conducive to cellular attachment,
infiltration, proliferation, and ECM deposition [104].

2. Polymers and exosomes are incorporated before the addition of crosslinkers for
gelation. Exosomes are combined with polymers followed by crosslinkers for gelation.
For example, Qin utilized a composite matrix (thiolated hyaluronic acid, heparin, and
gelatin) to encapsulate bone marrow stem cell (BMSC)-derived exosomes, followed by
the addition of poly(ethylene glycol) diacrylate (PEGDA) as a crosslinker [105]. The
combination based on covalent crosslinking improves the retention and release rates
for the exosomes embedded in the polymers. A problem that cannot be ignored is
that residual unreacted crosslinkers can be cytotoxic, drawing attention to optimizing
the reaction conditions, such as the gelling temperature, and choosing alternative
nontoxic crosslinkers such as genipin [37,106].

3. Polymers and crosslinkers are gelated before their physical combination with exo-
somes. This method involves dehydrating the already-swollen hydrogel and soaking
it in a solution containing exosomes. Due to the super-water-absorbent and swelling
properties of the hydrogel, the exosomes are absorbed into the porous structure [107].
On account of the weak physical incorporation of exosomes, the pore size is pivotal;
exosomes may easily leak from large pores or have difficulty in entering through
small pores.

5. Biomedical Exploitation of Exosomes Delivered in Hydrogels

Exosomes functioning in the delivery of functional cargos are currently an active
research hotspot. The biological features of exosomes make them suitable as potential
therapeutics for the diagnosis and treatment of several diseases. There are generally three
approaches to obtaining exosomes with therapeutic and diagnostic potential. (1) Naturally
derived exosomes (e.g., MSC-Exos) have been verified to be therapeutic by themselves [108].
(2) Engineering exosomes by transferring molecules such as microRNAs has achieved
targeted applications [109]. (3) Exosome mimetics have been exploited as promising
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biomaterials [67,110]. Below, the emerging roles of exosomes in tissue repair, immune
modulation, and the study of pathogenesis are discussed.

5.1. Tissue Repair

Of the many classes of biomaterials that have been used in tissue repair, hydrogels
have been regarded as one of the most prominent and versatile for supporting most cellular
behaviors and nutrient transport. Protected by them, cellular secretions can maintain their
biological activity and undergo controlled release in pathological environments (Table 1).

Table 1. Advances in tissue regeneration via the hydrogel encapsulation of EVs.

Composite Hydrogel Type Exosome Source Release Kinetics Therapeutic Application Reference

GelMA/nanoclay hydrogel hUCMSCs 90% in a month Cartilage regeneration [31]
HA hydrogel ECs 80% in a week Fracture repair [109]

GMOCS hydrogel BMSCs 80% in 2 weeks Repair of growth plate injuries [111]
PEO–PPO–PEO hydrogel PRP 80% in 20 days Subtalar osteoarthritis [112]
Pluronic F-127 hydrogel Melanoma cells Release peaked at 24 h Chronic wound repair [68]

HA@MnO hydrogel M2 Over 80% in 21 days Repair of chronic diabetic wounds [113]
Methylcellulose–chitosan hydrogel PMSCs Not mentioned Severe wound healing [114]

HA hydrogel iPS-CPCs and iPS-MSCs Lasting over 2 weeks Cardiac remodeling after MI [115]
AT-EHBPE/HA-SH/CP05 hydrogel hUCMSCs Not mentioned MI and reperfusion injury [116]

Gelatin–laponite nanocomposite
hydrogel hADSCs Not mentioned Repair of peri-infarct myocardium [117]

PDNP–PELA hydrogel ADSCs 92.5 ± 5.7% in 2 weeks Erectile dysfunction treatment [118]
Peptide-modified HA hydrogel hPAMMSCs 80% in a week Recovery from spinal cord injury [119]

Chitosan hydrogel DPSCs 80% in a week Periodontitis [108]
Fibrin hydrogel Rat BMSCs Left over 2 weeks Tendon regeneration [120]

hUCMSC (human umbilical cord mesenchymal stem cell); EC (endothelial cell); BMSC (bone marrow mes-
enchymal stem cell); OCS (chondroitin sulfate); GM (gelatin macryloyl); PRP (platelet-rich plasma); M2 (M2
macrophage); PMSC (placental mesenchymal stem cell); iPS (induced pluripotent stem cell); CPC (cardiac progeni-
tor cell); MI (myocardial infarction); AT (aniline tetramer); EHBPE (epoxy macromer); HA-SH (thiolated hyaluronic
acid); hADSC (human adipose-derived stem cell); PDNP (polydopamine nanoparticle); PELA (poly(ethylene
glycol)poly(ε-caprolactone-co-lactide)); hPAMMSC (human placenta amniotic membrane mesenchymal stem cell);
DPSC (dental pulp stem cell).

5.1.1. Bone and Cartilage Defects

Overwhelming evidence shows that the exogenous transport of miRNAs by exosomes
can regulate osteogenic and angiogenic differentiation. An example of this is a study
carried out by Mi et al., who created a cocktail therapy by transferring miR-26a-5p into
endothelial cell-derived exosomes (EC-Exos) in an HA hydrogel. The EC-ExosmiR−26a−5p

promoted osteogenic and osteoclast differentiation in mice with femoral fractures [109].
In another study, Hu et al. found that human umbilical cord MSC-derived small EVs
(hUCMSC-sEVs) activated the PTEN/AKT signaling pathway by transferring miR-23a-3p
when investigating the role and mechanism of cartilage regeneration [31]. Compared to
increasing the specific miRNA in the target cells, the inhibition of miR-29a was verified
to stimulate endogenous BMP/Smad signaling, which triggers subsequent osteogenic
differentiation [67]. Therefore, the overexpression of miRNA can be an attractive method
for improving the therapeutic effects. For example, miR-375 could be enriched in hu-
man adipose MSC (hASC)-derived exosomes by overexpressing the miRNA cargo in the
parent cells [121].

Extensive research has shown that the essential properties of a bone and cartilage
engineering scaffold are mechanical strength and a porous structure, to support the at-
tachment and infiltration of osteogenic cells [122]. Hu et al. recently utilized an injectable
and UV-crosslinked gelatin methacrylate (GelMA) to fabricate with nanoclay and achieved
the sustained release of small EVs with the degradation of the hydrogel (Figure 2). The
addition of laponite nanoclay significantly enhanced its ultimate strength for local adminis-
tration in cartilage defects [31]. In addition to additives, 3D technology can also be applied
to customize the shapes and sizes of porous scaffolds in accordance with bone defects.
Fan et al. encapsulated umbilical MSC-derived exosomes (UMSC-Exos) in an HA hydrogel
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and combined them with 3D-printed nanohydroxyapatite/poly-ε-caprolactone (nHP) scaf-
folds [123]. Taken together, hydrogels can regulate extracellular matrix (ECM) formation,
which provides a three-dimensional (3D) culture system for exosome secretion [89,124].

Gels 2022, 8, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 2. Schematic illustration of therapeutic sEVs released from a GelMA/nanoclay hydrogel for 
cartilage regeneration. (a) Preparation of a GelMA/nanoclay/sEV hydrogel and cartilage defect im-
plantation. (b) Sustained release of sEVs with the degradation of the hydrogel. (c) Internalization of 
therapeutic sEVs by chondrocytes and hBMSCs. (d) The effect of the EVs on chondrocytes and hBM-
SCs. (e) Regeneration of a cartilage defect by the composite hydrogel. Copyright 2020, with permis-
sion from John Wiley and Sons [31]. 

5.1.2. Wound Repair 
As a complicated biological process, wound healing consists of inflammation, prolif-

eration, and remodeling [125]. The conventional treatment of chronic wounds includes 
regular wound debridement for stimulating skin regeneration and the protection of the 
wound using a specific dressing [126]. Recent interventions inspired by cell therapy ap-
proaches involve exosomes derived from MSCs, plasma, and cancer cells, while stem cell-
derived exosomes are being developed for tissue recovery [68,127,128]. In a diabetes-im-
paired wound model, a wound dressing biomaterial was applied by combining antioxi-
dant polyurethane (PUAO) for attenuating oxidative stress and adipose-derived stem cell 
(ADSC) exosomes for tissue remodeling [128]. Similarly, immobilizing ADSC-derived ex-
osomes in a composite hydrogel that includes poly-ε-L-lysine (EPL), a natural cationic 
polypeptide from Streptomyces albulus, can help to realize antibacterial activity and ad-
hesive ability [129]. Another study explored the feasibility of a composite hydrogel 
formed from silk fibroin (SF) and silk sericin (SS) due to the excellent mechanical proper-
ties of SF, and the cell-adhesion and biocompatibility properties of SS. After encapsulating 
and delivering UMSC-Exos, SF–SS hydrogels promoted wound healing and angiogenesis 
[130]. Additionally, the delivery of platelet-rich plasma exosomes in a composite chitosan–
silk hydrogel sponge was found to upregulate collagen synthesis and deposition, as well 
as angiogenesis, at the wound site in diabetic rat models [127]. In addition, exosomes were 
enriched in miR-21, miR-23a, miR-125b, and miR-14, which can be blocked to reduce scar 
formation when they are laden in hydrogels [131]. Chitosan hydrogels functionalized with 
exosomes from synovium MSCs transduced to overexpress miR-126 promoted healing 
and angiogenesis in skin wounds [132]. 

  

Figure 2. Schematic illustration of therapeutic sEVs released from a GelMA/nanoclay hydrogel for
cartilage regeneration. (a) Preparation of a GelMA/nanoclay/sEV hydrogel and cartilage defect
implantation. (b) Sustained release of sEVs with the degradation of the hydrogel. (c) Internalization
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5.1.2. Wound Repair

As a complicated biological process, wound healing consists of inflammation, prolifera-
tion, and remodeling [125]. The conventional treatment of chronic wounds includes regular
wound debridement for stimulating skin regeneration and the protection of the wound
using a specific dressing [126]. Recent interventions inspired by cell therapy approaches
involve exosomes derived from MSCs, plasma, and cancer cells, while stem cell-derived ex-
osomes are being developed for tissue recovery [68,127,128]. In a diabetes-impaired wound
model, a wound dressing biomaterial was applied by combining antioxidant polyurethane
(PUAO) for attenuating oxidative stress and adipose-derived stem cell (ADSC) exosomes
for tissue remodeling [128]. Similarly, immobilizing ADSC-derived exosomes in a com-
posite hydrogel that includes poly-ε-L-lysine (EPL), a natural cationic polypeptide from
Streptomyces albulus, can help to realize antibacterial activity and adhesive ability [129].
Another study explored the feasibility of a composite hydrogel formed from silk fibroin (SF)
and silk sericin (SS) due to the excellent mechanical properties of SF, and the cell-adhesion
and biocompatibility properties of SS. After encapsulating and delivering UMSC-Exos,
SF–SS hydrogels promoted wound healing and angiogenesis [130]. Additionally, the deliv-
ery of platelet-rich plasma exosomes in a composite chitosan–silk hydrogel sponge was
found to upregulate collagen synthesis and deposition, as well as angiogenesis, at the
wound site in diabetic rat models [127]. In addition, exosomes were enriched in miR-21,
miR-23a, miR-125b, and miR-14, which can be blocked to reduce scar formation when
they are laden in hydrogels [131]. Chitosan hydrogels functionalized with exosomes from
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synovium MSCs transduced to overexpress miR-126 promoted healing and angiogenesis in
skin wounds [132].

5.1.3. Cardiovascular Diseases

Ischemic myocardial infarction (MI) results from the severe blockage of blood arteries,
which, in turn, interrupts nutrient supply. However, clinical treatments may lead to further
myocardial ischemia/reperfusion injury [133]. New findings have triggered studies inves-
tigating the potential of utilizing MSC-derived EVs after MI to promote angiogenesis and
restore cardiac function [117,134–136]. For example, Zou at al. elaborated an exo-anchoring
conductive hydrogel enabling electrical conduction within the myocardial fibrotic area and
promoting the synchronous contraction of the myocardium. In this study, an aniline tetramer
(AT) was employed as a crosslinker, and the researchers endowed it with electroconductibility.
The CP05 peptide was applied for its capability of binding to CD63 on the exosomal surface,
to anchor and capture exosomes from human UC-MSCs [116]. Based on the intended applica-
tion, hydrogels can be synthesized with different preparations. A notable application is to
encapsulate EVs from induced pluripotent stem cells in a hydrogel patch and apply them
directly onto the rat myocardium. The hydrogel patch enabled sustainable release, which
protected the acutely injured heart against pathological hypertrophy [89].

5.1.4. Spinal Cord Injury

Spinal cord injury (SCI) is among the most fatal diseases of the central nervous
system, resulting in a temporary or permanent loss of sensation, movement, strength,
and body functions [137]. To overcome the low cell survival resulting from the inhibitory
environment at the lesion site, the local injection of exosomes protected by hydrogels is
a promising therapeutic strategy. Li et al. improved the affinity of HA hydrogels and
MSC-derived exosomes by a laminin modification, and successfully promoted spinal cord
regeneration and the recovery of hindlimb motor function in vivo [119]. Surprisingly, plant
(e.g., ginseng)-derived exosomes that can stimulate the neural differentiation of BMSCs
have been demonstrated, and can be loaded in GelMA to fit the irregular shapes of injury
defects [138]. The promotion of angiogenesis is beneficial for the regeneration of neuronal
networks after SCI. Inspired by this, Luo et al. utilized a hybrid hydrogel system comprising
GelMA, HA-NB, and a photoinitiator (LAP) to immobile exosomes from M2 macrophages.
The hydrogel-mediated release system protected the exosomes from severe oxidative stress
and inflammation [129].

5.1.5. Other Diseases

In addition to the aforementioned applications, exosomes have also played important
roles in periodontal, endometrial, and corneal repairs. In the context of periodontitis, the in-
corporation of dental pulp stem cell-derived exosomes and chitosan hydrogels repolarized
macrophages and accelerated periodontal regeneration [108]. The dynamic coordination of
adipose stem cell-derived exosomes and PEG hydrogels via Ag+–S resulted in outstanding
injectable, self-healing, and antibacterial properties for endometrial and fertility restora-
tion [113]. To effectively promote the repair of corneal damage, exosomes derived from
MSCs were loaded in thermosensitive chitosan-based hydrogels [95].

5.2. Immune Regulation

Commonly, the adaptive immune response is regulated by antigen-presenting cells
(APCs), such as dendritic cells (DCs), B cells, and macrophages, directly interacting with
T cells and natural killer (NK) cells through cell-surface proteins [90]. Exosomes produced
by APCs play an important role in the regulation of immunity, mediating immune stim-
ulation or suppression, and driving inflammatory, autoimmune, and infectious disease
pathology [96]. Inspired by dendritic cell-derived exosomes (DEXs), which improve car-
diac function by activating CD4+ T cells in the spleen and lymph nodes [139], Zhang
et al. encapsulated DEXs in a simple alginate hydrogel and injected the DEX-Gel into
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the MI model. The DEXs significantly upregulated the infiltration of Treg cells and M2
macrophages, which resulted in better wound remodeling, and preserved systolic function
after MI. Furthermore, the combined application of the hydrogel provides physical support
to the infarcted area [140].

MSCs confer regenerative effects in different tissue injuries, while in some cases, MSCs
have been confirmed to secrete immunosuppressive cytokines and other factors, resulting in
anti-inflammatory effects from stem cells [141]. Notably, the analysis of MSC-derived EVs
revealed that they also have immunosuppressive therapeutic effects [142]. To harness EVs’
immunosuppressive properties, Fuhrmann et al. innovatively incorporated enzyme-loaded
vesicles from MSCs into PVA hydrogels and applied this bioactive material for enzyme
prodrug therapy. Once vesicles are released into the desired site, the injected nontoxic
prodrugs are converted to anti-inflammatory drugs by enzymes [143]. The polarization
of M2 macrophages, which can inhibit inflammation and induce tissue regeneration, has
recently drawn great attention [108,109,144]. A classic cue is osteoimmunology, in which
exosomes overexpressing miR-181 from human bone marrow-derived MSCs (hBM-MSCs)
combined with a hydrogel were verified to significantly enhance osseointegration [144].

Tumor-derived EVs have been revealed to suppress tumor-specific and non-specific
immune responses [96]. Metastatic melanoma releases a high level of exosomes carrying
PD-L1 on their surfaces, which help in the evasion of immune surveillance. Based on how
tumor cells suppress the immune system, Su et al. isolated exosomes from melanoma
cells overexpressing PD-L1 to decrease T cell proliferation in a wound-healing model. The
application of the thermoresponsive Pluronic F-127 hydrogel ensured that exosomes were
released in a sustained manner [68].

5.3. Pathogenesis Study

Along with mediating physiological intercellular communication, exosomes also
spread pathogenetic cargoes in diseases. Identifying the proteins and RNAs of exosomes
can provide therapeutic targets. However, exosomal behavior can be dictated by the
environment [4]. Therefore, hydrogels providing certain mechanical, structural, and com-
positional cues in the extracellular microenvironment are adopted as a novel strategy to
recapitulate numerous physiologically relevant cell behaviors [145].

Tumor-derived exosomes can assist tumor growth and promote metastasis. To demon-
strate the role of exosomes in ECM stiffness-triggered breast cancer invasiveness, Patward-
han et al. fabricated stiffness-tunable polyacrylamide (PA) gels as ECM mimics (Figure 3).
Interestingly, stiff ECM cultures fostered exosome secretion by a series of changes in cell
morphology, adhesion, and protrusion dynamics, which resulted in the invasion of breast
cancer cells [146]. Aberrant cell behaviors can be induced by in vitro 2D culture, and the
heterogeneity of exosomal behaviors also depends on the culture conditions [147]. There-
fore, Millan et al. created 3D-engineered microtissues using the polysaccharides alginate
and chitosan for the study of prostate cancer-derived EVs. Proteomics and RNA sequencing
comparing 2D- and 3D-cultured cells revealed significantly differential expression of EV
biomarkers. Some proteins known to be drivers of prostate cancer progression that were
not detectable in the 2D conditions were enriched in the 3D cultures [148].

Exosomes from different cells such as endothelial cells and smooth muscle cells can con-
tribute to atherosclerosis and cardiovascular disease when circulating in the blood [149,150].
In atherosclerosis-prone areas, EVs from smooth muscle cells (SMCs) and valvular inter-
stitial cells (VICs) can cause a phospholipidic imbalance and, consequently, vascular and
valvular calcification. Three-dimensional collagen hydrogels were utilized to produce a
cardiovascular calcification model with which to observe the aggregation and microcalcifica-
tion at the EV level [91]. Moreover, lesion macrophages can deliver exosomes that regulate
vascular SMCs during the progression of atherosclerosis. In a study investigating the
potential role of exosomes from nicotine-treated macrophages, Zhu et al. incorporated the
above exosomes with chitosan hydrogels to stimulate release at the abdominal aorta [151].
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6. Conclusions and Outlook

The recent development of hydrogels as biomaterials has been aided by progress in
material science, polymer physics, preparation techniques, and biomimetic characteristics.
Despite these advances, there remain many challenges and clinical needs for biological and
biomedical applications. Secreted from parent cells, exosomes can become components
of the ECM. Therefore, hydrogels, as loading and release systems for maintaining the
bioactivity of exosomes, need to mimic the matrix. Conventional forms of optimization
such as the tuning of the pore size, degradability, and compatibility may greatly improve
the retention and release profiles of exosomes in vivo. For instance, 3D printing has been
applied to improve the functional porosities, pore shapes, and geometries of hydrogel
scaffolds [152]. Tunable release and prolonged delivery can also be achieved by introducing
materials such as integrins into synthetic hydrogels [153].

Compared to enhancing biomaterial characteristics, how to deliver exosomes to tar-
get cells is more challenging because the interaction between biomaterials and cellular
behaviors on a relevant timescale needs to be considered. Recent advances in prolonging
the half-lives and increasing the purity of exosomes could be exploited in order to over-
come this hurdle. Design strategies for composite gels that combine different types of
polymeric components to obtain unique properties are, therefore, common. Further study
needs to be undertaken regarding smart hydrogels, such as CRISPR gel, which can be tai-
lored and render programmable gels from traditional materials, thus capable of providing
spatiotemporally defined interactions with exosomes for clinical translation [154,155].
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