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Abstract: Hydrogels are crosslinked polymer chains with three-dimensional (3D) network structures,
which can absorb relatively large amounts of fluid. Because of the high water content, soft structure,
and porosity of hydrogels, they closely resemble living tissues. Research in recent years shows
that hydrogels have been applied in various fields, such as agriculture, biomaterials, the food
industry, drug delivery, tissue engineering, and regenerative medicine. Along with the underlying
technology improvements of hydrogel development, hydrogels can be expected to be applied in
more fields. Although not all hydrogels have good biodegradability and biocompatibility, such as
synthetic hydrogels (polyvinyl alcohol, polyacrylamide, polyethylene glycol hydrogels, etc.), their
biodegradability and biocompatibility can be adjusted by modification of their functional group or
incorporation of natural polymers. Hence, scientists are still interested in the biomedical applications
of hydrogels due to their creative adjustability for different uses. In this review, we first introduce
the basic information of hydrogels, such as structure, classification, and synthesis. Then, we further
describe the recent applications of hydrogels in 3D cell cultures, drug delivery, wound dressing, and
tissue engineering.

Keywords: hydrogel; medical application; 3D cell culture; drug delivery; wound dressing; tissue
engineering

1. Introduction

Hydrogels comprise a three-dimensional (3D) network which can absorb a large
amount of water and swell in the water due to their hydrophilic groups, such as -NH2,
-COOH, -OH, -CONH2, -CONH, and -SO3H [1–9]. Its network is usually constructed by
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crosslinked polymer chains that sometimes can be formed through crosslinked colloidal
clusters [10–17]. They can be flexible and soft, which are results of their water absorption
ability [18]. Chemical or physical crosslinking of natural or synthetic polymer chains
can be used to design the hydrogels [19–23]. Because of the high water content, soft
structure, and porosity of hydrogels, they closely resemble living tissue. Wichterle and
Lim first developed hydrogels for biomaterials in 1960. They produced a synthetic poly-
2-hydroxyethyl methacrylate (PHEMA) hydrogel, which was then used as a filler for eye
enucleation and contact lenses [24]. Since then, the expense of hydrogels in drug delivery
and bioactive compound release has been elevated in several early studies from the 1970s
to the 1990s [25–29]. In the 1990s, hydrogels were applied in tissue engineering [30–33].
The application of hydrogels was restricted to only the surface environment from the 1970s
to the 1990s, for applications in the eye or open wounds, for example. The properties
(e.g., swelling–deswelling rate, stiffness, degradability, mech size) of hydrogels can be
adjusted by changing the hydrophilic and hydrophobic ratios, the initiator or polymer
concentrations, and the reaction conditions (time, temperature, container, etc.) [34–37]. The
biomedical application of hydrogels is not limited to the surface environment due to in situ
gelation after infection and the stimuli responsiveness of the hydrogel [38,39].

Over the past 60 years, hydrogels have been engineered to be implantable, injectable,
and sprayable for many organs and tissues [38,39]. Recently, hydrogels have gained
attention in the field of environmental engineering [40], soft robotics [41], and wastewater
treatment [42]. With the underlying technological improvement of hydrogel generation,
hydrogels can be expected to be used in more fields. However, scientists are still interested
in biomedical applications of hydrogels, as evidenced by 25,000 references to hydrogels for
biomedical applications in the past five years (Figure 1). In this review, we first introduce
the basic information on hydrogels, such as their structures, classification, and synthesis.
Then, we further describe the recent biomedical applications of hydrogels. We mainly
emphasize the biomedical applications of hydrogels in 3D cell cultures, drug delivery,
wound dressings, and tissue engineering.
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Figure 1. The number of publications related to hydrogels in the biomedical field in the past five years.
The data was obtained from the biomedical database PubMed, using the search term “hydrogel”.

2. Classification and Structure of Hydrogels

The classification of hydrogels depends on their source, composition, environmental
stimuli, crosslinking, property, configuration, and ionic charge [43–64], as briefly shown
in Figure 2. Hydrogels are formed by the crosslinking of polymer chains. The sources
of hydrogels can be divided into natural, synthetic, or semi-synthetic polymers. Within
the polymer source, hydrogels can be termed natural, synthetic, or semi-polymer hydro-



Molecules 2022, 27, 2902 3 of 29

gels. Naturally derived hydrogels (natural hydrogels) include cellulose, chitosan, collagen,
alginate, agarose, hyaluronic acid, gelatin, and fibrin, etc. [43,44]. They have inherent
biocompatibility, bioactivity, and biodegradability, but relatively weak stability and me-
chanical strength. Although natural hydrogels are safe for the majority of the population,
some materials of natural hydrogels are allergens in rare cases [65–70]. Thus, natural
hydrogels have potential immunological risks if they are used in the treatment of sensitive
individuals. Synthetic hydrogels are constructed by synthetic polymers. Those polymers
are human-made polymers, which are prepared through the polymerization of a monomer,
such as polyvinyl alcohol (PVA), polyethylene glycol (PEG), polyethylene oxide (PEO),
poly-2-hydroxyethyl methacrylate (PHEMA), poly-N-isopropyl acrylamide (PNIPAM),
polyacrylic acid (PAA), and polyacrylamide (PAAM) [43–45]. Although a few of them
are biocompatible, such as PAAM, they are stable and have mechanical strength. Semi-
synthetic polymers are chemically modified natural polymers or a combination of natural
and synthetic polymers as materials for the preparation of semi-hydrogels. An example
of chemically modified natural polymers is methacryloyl-modified gelatin (GelMA) [71],
or acrylate-modified hyaluronic acid (AcHyA) [72]. Additionally, it can be a combination
of natural and synthetic polymers, such as PEG-conjugated fibrinogen, or gelatin and
albumin [73]. These hydrogels not only present the bioactivity features of natural hydrogels
but also have multi-tunable properties through their diverse chemical parameters [74].
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Figure 2. Classification of hydrogels.

The polymers in the hydrogels can be homopolymers, copolymers, semi-interpenetrating
networks (semi-IPNs), or IPN hydrogels, which are dependent on their composition. The
simple diagrams of homopolymer hydrogels, copolymer hydrogels, semi-IPNs, and IPN
hydrogels are shown in Figure 3. The polymer chains of homopolymer hydrogels are
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derived from one species of monomer, whereas copolymer hydrogels are derived from two
or more species of monomer [46,47]. The copolymer can be further classified as block, alter-
nate, or random copolymer, based on their composition order of monomer (Figure 3). The
active side of copolymers can be linked with another monomer or copolymer. Both homo-
and copolymer hydrogels contain one type of polymer chain. In contrast, both semi-IPNs
and IPN hydrogels have two or more types of polymer chains. Semi-IPN hydrogels are
a polymer network embedded in the linear polymer chains. The linear polymer chains
are embedded without a crosslinking agent. IPN hydrogels are formed by two or more
polymer networks that are crosslinked with each other by using a crosslinking agent [48,75].
In comparison with the homo- and copolymer hydrogels, the semi-IPN and IPN hydrogels
present higher mechanical strength and swelling properties [76–79].
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Hydrogels can be amorphous, crystalline, or semi-crystalline based on their configu-
ration. The amorphous hydrogels are random network structures at the molecular level.
Crystalline hydrogels consist of a tightly packed polymer network structure with the order
of crystallization. Semi-crystalline hydrogels were developed by chemical crosslinking



Molecules 2022, 27, 2902 5 of 29

in 1994, which contains the amorphous and crystalline regions [49–52]. After this time,
physical crosslinked semi-crystalline hydrogels have been prepared through bulk and
micellar polymerization [80–83]. Semi-crystalline physical hydrogels rapidly change from
a solid-like state to a liquid-like state and are reversible compared with semi-crystalline
chemical hydrogels, which are extensively applied in preparing injectable hydrogels and
shape memory hydrogels [82,83].

Based on the crosslinking method, the hydrogels can be classified into chemical hydro-
gels and physical hydrogels. Chemical hydrogels have permanent junctions composed of
covalent crosslinking and polymerizing end-functionalized macromeres. Physical hydro-
gels have a transient junction comprising physical interactions, such as ionic interactions,
hydrogen bonding, and crystallization [53]. Thus, the mechanical properties of physical
hydrogels are poorer than chemical hydrogels due to weak physical interaction. Relatively,
physical hydrogels are soft and have reversibility from liquid to solid [84].

Chemical hydrogels have permanent junctions composed of covalent crosslinking and
polymerizing end-functionalized macromeres of polymer chains. Thus, hydrogels can be
divided into four groups, namely nonionic, anionic, cationic, and ampholytic, based on
their ionic charge. Apart from nonionic hydrogels, the remaining hydrogels contain electric
charges in their polymer chain and are pH-sensitive due to their ionic groups. The anionic
hydrogels usually have negative electric charges in their polymer chain, whereas cationic
hydrogels have positive electric charges. The ampholytic hydrogels contain both negative
and positive electric charges through copolymerization of anionic and cationic monomers
or incorporation of zwitterionic monomers into the polymer network [54–56]. These ionic
hydrogels can form a complex with other molecules having electronic charges and become
applicable in drug delivery for treatment of disease [85,86].

The response of hydrogels can be physical, chemical, or biomedical. It has been re-
vealed that physical, chemical, or biomedical stimulations adjust the physical properties
of hydrogels, such as deformation (a transformation between the swollen hydrogel and
shrunken hydrogel) and self-assembly [57–64]. Those stimulations exist in external sol-
vents or environments. The physical stimulations include temperature, pressure, light,
electric field, and magnetic fields [58,59]. Chemical stimulations contain pH, ionic strength,
solvent composition, and molecular species [58,60–62]. Biomedical stimulations involve
the response of antigen, ligand, and enzyme [61–64]. Along with the responsive extent
of physical properties, the hydrogels are divided into conventional hydrogels and smart
hydrogels based on their properties. Conventional hydrogels have only a small alteration
consisting of swelling with external environmental conditions and low mechanical strength,
whereas smart hydrogels are sensitive to the small changes of external environmental
conditions, and immediately adjust their physical properties (such as mechanical strength,
swellability, and stimuli-sensitivity) [57–64].

The solid portion of a hydrogel is a 3D network structure of crosslinked polymer
chains [87–90]. It is usually referred to as a mesh at the molecular level, containing mesh size
and crosslinking of polymer chains (Figure 4). The crosslinking of hydrogels can be formed
by the covalent (chemical) or physical (junction/entanglement) linking. Supramolecular
polymers are a new category of polymers that can potentially be used for biomaterial
applications beyond the limitations of conventional polymers. The molecular weight of
supramolecular hydrogels may not be infinite, because their crosslinking is a series of
specific but nonpermanent interactions [91–94]. They are polymeric arrays of monomeric
units held together by reversible and highly directed secondary interactions, which are
noncovalent bonds, such as the hydrogen bonding interaction, π-π stacking, and the host–
guest interaction. Thus, the resulting materials retain their polymeric properties in solution.

As seen in Figure 4, the covalent bond can be linked between two functional groups
of polymers with or without covalent agents (under enzyme catalysis). The physical
junction can be formed by the electronic interactions between the opposite charges in the
polymer. It also can be linked with hydrogen bonds or ionic interactions with the ions in
solution [87,88]. The hydrogel mesh holds the water and has the elastic force that can be
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caused by the swelling and release of water [89]. Therefore, the meshes can maintain the
solidity of hydrogels [89]. They are important for the exchange of fluids across the polymer
network and carrying the cell or drug [90]. The size of the mesh holes is referred to as
mesh size, which is associated with the release time of drug delivery [95] and correlated
with the linear distance between two crosslinking points (ξ) [95,96]. Demeter M et al.
used the rheological analysis to demonstrate that the average molecular weight between
crosslinking points (Mc) and crosslink density (Ve) affects the ξ of mesh size. There is a
positive correlation between Mc and mesh size [97]. Steinman NY et al. demonstrated that
4 kDa and 8 kDa PEG can form 11 kDa and 16 kDa hydrogels at the same concentration of a
crosslinking agent [98]. Thus, the molecular weight of hydrogels is basically dependent on
the content of polymers, which can be infinite due to their 3D network structure [98,99].
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3. Synthesis of Hydrogels

Hydrogels are crosslinked polymer chains with a three-dimensional (3D) network
structure. The crosslinking in the hydrogels can happen not only after the polymer chain is
synthesized, but also with the growth of the polymer chain. Thus, the synthetization of
hydrogels begins with monomers, prepolymers, and polymers [87]. Regardless of material
type, crosslinking in hydrogels can be physical or chemical. Methods of crosslinking hy-
drogels are shown in Figure 5. The physical crosslinking in hydrogels includes hydrogen
bonding, amphiphilic graft, block polymers formation, crystallization, ionic interactions,
and protein interactions. [100–112]. The hydrogen bonding is present between molecules
containing N-H, O-H, or F-H functional groups. Thus, the polymer with the functional
groups as above can form the hydrogels through hydrogen bonding. The amphiphilic graft
and block polymer formation means that polymers can self-assemble in hydrophobic or
hydrophilic solvent due to their amphiphilic affinity. With crystallization, the polymer
chains can synthesize the hydrogels through adjustment of their crystallized temperature.
The freeze–thaw and heating process is one of the common methods of crystallization. The
ionic interactions occur in crosslinking via ionic group attraction. Protein interaction occurs
in the polymers, which are added or modified with protein by molecular medical technol-
ogy, such as protein and genetic engineering. Those polymers can synthesize the hydrogels
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through antibody–antigen interactions or the properties of the protein (crystallization,
functional groups, or hydrogen bonding) [113–116].
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Methods of chemical crosslinking include chemical reaction, high-energy radiation,
free-radical polymerization, and enzymes (Figure 5). The chemical reaction occurs in
complementary or pendant groups or polymers with a crosslinking agent. Both high-
energy radiation and free-radical polymerization for hydrogel preparation occur through
free-radical crosslinking. Free-radical production for high-energy radiation occurs via
gamma ray or an electronic beam; free-radical polymerization occurs via enzyme catalysts
or UV excitation.

Enzymes catalyzed by crosslinking happen in those polymers which are modified
or incorporated with enzyme-sensitive molecules. Recently, some new methods have
been used to prepare hydrogels. For example, the photon–Fenton method uses sunlight
for hydrogel production, which can be achieved without any crosslinking agents for the
preparation of biodegradable polyethyleneimine nanogels. Another self-assembly method
can form hydrogels through specific and local interactions of polymers.

4. Biomedical Applications of Hydrogels
4.1. 3D Cell Cultures

Three-dimensional cell cultures provide a useful platform for the cell to grow in vitro
in all directions. Compared with the 2D culture system, it is easier to understand the
in vivo cell behavior, since cells form a 3D structure in living tissue. The 3D cell culture is
achieved by culturing the cells on a 3D scaffold. In the in vivo 3D cell structures, the cells
are embedded in the extracellular matrix (ECM) and form a 3D structure. ECM is known to
play an important role in regulating the cell behavior [117]. Hydrogels have a 3D structure
and a hydrophilic polymer network capable of absorbing water in addition to biological
fluid [1–9,118,119]. Thus, they can construct the soft and wet 3D structure which is like the
extracellular matrix (ECM), which is available to encapsulate the cells. This results in those
hydrogels which have gained increasing attention in the application of scaffolds for 3D cell
cultures [120,121].
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Hydrogels can comprise natural, synthetic, and semi-synthetic polymers. These
hydrogels provide distinct biochemical, physical, and mechanical properties for the 3D
cell culture [117]. Table 1 describes the recent application of these hydrogels for 3D cell
culture. Natural hydrogels have good biocompatibility, endogenous factors, and the similar
viscoelasticity and fibrils of the ECM. These hydrogels can support cell activity for 3D
cell cultures.

Collagen hydrogels are natural hydrogels. Collagen is the most abundant fibrous
protein in the human body. It is also one of the major structural elements of the ECM, which
responds by providing elastic strength and regulating cell adhesion, chemotaxis, migration,
and tissue development [122,123]. In addition, it plays a major role in the function of
articular and bone tissue [120]. Due to the biofunction of collagen in human body, the
collagen hydrogels can mimic the properties and characteristics of organisms [124]. Previ-
ous studies have shown that collagen can improve cell growth, adhesion, differentiation
of neural cells [124], and form tissue-like structures of chondrocyte for co-culturing cells,
such as neural cells and chondrocytes [125]. Both in vivo and in vitro systems indicate
that collagen can be significant in maintaining the chondrocyte phenotype and sustaining
chondrogenesis [126]. It attracts the attention of collagen hydrogels in the 3D cell culture of
the chondrocyte. Jin G.Z. and Kim H.W. have demonstrated that type I collagen maintains
the chondrogenic phenotype, by 3D culturing the rat chondrocyte in type I collagen hy-
drogel scaffolds [127]. Other studies further demonstrate that, when the type II collagen
hydrogel scaffold is compared to type I collagen, the type II collagen can significantly
enhance the chondrogenic differentiation of human mesenchymal stem cells (hMSCs) [128].
Although the type I and type II collagen support the chondrogenic phenotype via differ-
ent mechanisms, the collagen hydrogel scaffold presents a potential ability for cartilage
tissue engineering [128,129]. Kilmer C. E et al. found that the rat mesenchymal stem cells
(rMSCs)-encapsulated collagen type I/II hydrogels scaffold facilitates the chondrogenic
differentiation of rMSCs and presents a statistically higher cartilage repair ability in the
cartilage defective rat model. This result indicates the clinical value of collagen hydrogels
in cartilage repair [130].

The denseness of capillary networks can facilitate the nutrition of cells, which is im-
portant for generating the natural tissue in vitro. Many studies have attempted to use a
combination of endothelial cells (ECs) and natural or synthetic materials to reconstruct the
microvasculature of natural tissue in vitro [131,132]. The shortcoming of this construction
is that the interference of fetal bovine serum (FBS) cannot be avoided for future in vivo
applications [133]. Andree B et al. demonstrate that the collage hydrogel scaffold, under
serum-free conditions, can promote human umbilical vein endothelial cells (HUVECs) to de-
velop more of the EC network when combined with human-adipose-tissue-derived stromal
cells (hASCs) [134]. Nonetheless, long-term performance of type I collage may be affected
by significant shrinkage and weak mechanical properties [135,136]. Buitrago O. J. et al. im-
proved the poor mechanical properties and cell-mediated shrinkage of collagen hydrogel by
hybrid silk fibroin with collagen. This collagen–silk fibroin hydrogel scaffold can promote
cell viability and cell growth of hMSCs in long-term 3D cultures [136].

Hyaluronic acid (HA) is a source of natural hydrogels. It is also a major structural
element of ECM and is widely distributed in many tissues, such as skin and cartilage [137].
HA can facilitate cellular survival, migration, angiogenesis, differentiation, and neural
regeneration via transducing the intracellular signals [138–140]. Wu S et al. found that HA
hydrogel scaffolds can promote the neural differentiation of human-induced, pluripotent-
stem-cells-derived neural progenitor cells (hiPSC-NPCs) [141]. Another study used a
microencapsulation approach to encapsulate the hiPSCs in the HA-rich core–shell hydrogel
microcapsules. This 3D culture system improves the cell quality and efficient cardiac
differentiation of hiPSCs [142]. Ren Y et al. has synthesized the stiffness of adjustable HA
hydrogels for 3D culturing of rMSCs. This HA hydrogel scaffold can maintain the stem
characteristics of rMSCs and induce direct cartilage differentiation [143]. These studies



Molecules 2022, 27, 2902 9 of 29

show the potential effects of HA hydrogel in application of stem cell therapy and tissue
repair and regeneration.

In addition, HA is overexpressed in different types of cancers. The higher content
of HA in the cancer microenvironment supports tumor progression and anticancer drug
resistance [144,145]. Suo A et al. prepared an HA hydrogel scaffold through a hydrazone
and photo dual crosslinking process. This HA hydrogel scaffold had similar topography
and mechanical properties to the ECM of breast cancer tumors in vivo. Breast cancer
MCF-7 cells were 3D cultured in this scaffold, and the migration/invasion abilities and
tumorgenicity of these cells are greater than in 2D culture cells [146]. Other researchers
report that HA hydrogel scaffolds promote the adhesion and proliferation of the human
hepatocellular carcinoma cell line HepG2. Their results also show that the HA hydrogel
scaffold enhances the activity of multidrug resistance proteins of HepG2 cells and reduces
the therapeutic effectiveness in comparison to the 2D cultured cells [147]. These studies
reveal the value of HA hydrogels in cancer research.

Another interesting application of HA hydrogel is to improve the efficacy of 3D cell
cultures by mixing these materials with various substances [117]. An example is the
microbial-transglutaminase-crosslinked HA semi-IPN with chondroitin, which enhances
the osteogenic potential of dental pulp stem cells [148]. A cell-adhesive, peptide-RGD-
modified HA hydrogel scaffold with high cell adhesion ability can increase the differen-
tiation of human neural stem/progenitor cells (hNS/PC) toward oligodendrocytes and
neurons in 3D cell cultures. This also shows that RGD-peptide-modified HA hydrogels
support the long-term cell viability of hNS/PC with minimal growth factors [149]. Lou J
et al. has reported that HA–collagen hydrogels will mimic the viscoelasticity and fibrillary
of ECM. This hydrogel promotes the cell spreading, fiber remodeling, and focal adhesion
of hMSCs in 3D cell culture [150].

Fibrin is also a major protein in constructing ECM, in addition to collagen and HA,
which are formed by fibrinogens [151]. Fibrin hydrogel presents bioactivities, such as
angiogenesis and a cell–matrix interaction through fibrin clotting, which have been used for
3D cell culture of adipose-derived stem cells and cardiomyocytes [152,153]. Recent studies
of fibrin hydrogels are associated with mimicking a native ECM matrix and evaluating its
effect on 3D cell cultures. Heo D.N et al. mimicked a native ECM matrix by incorporating
the collagen in fibrin hydrogels. The collagen/fibrin hydrogels can induce the prevascular
formation of HUVECs, which further improves the cell viability and proliferation of hMSCs
and promotes their osteogenic differentiation and bone mineral deposition [154]. Gorczyca
G et al. employed an alginate/fibrin IPN hydrogel which can form a gas and nutrition
exchange space as a native ECM. They found that this hydrogel can encapsulate the porcine
cumulus–oocyte complexes (COCs) and maintain the functional relationship between
oocytes and follicular cells. They provided a novel culture platform for in vitro maturation
of oocytes, which is important in reproductive biotechnology [155]. Bachmann B et al.
adjusted the stiffness of fibrin hydrogels toward the elasticity of native chondrocyte ECM
by using different concentrations of fibrin. Their study showed that the fibrin hydrogel
under 30 kPa Young’s best modulus can induce the production of glycosaminoglycans
and collagen type II from 3D-cultured primary human chondrocytes; it is best to trigger
chondrocyte redifferentiation [156]. Another study also used a similar method to mimic the
elasticity of the bone marrow niche. Their results show that fibrin hydrogel prepared under
lower pressure as a 3D scaffold is the best option for enhancing the murine hematopoietic
stem/progenitor cells’ (mHPSCs) expansion and differentiation [157]. However, the fast
biodegradability of fibrin hydrogels results in an unstable 3D cell culture environment.
Jarrell D. K. et al. found that hydrogels in high salt conditions can slow the degradation
rate compared with that of fibrin hydrogels in physiologic-salt conditions. This hydrogel
did not affect the viability and prevascular formation of encapsulated cells, such as human
dermal fibroblasts, hiPSCs, and HUVECs [158].

Alginate is present in the cell wall of brown algae. Monomers of brown-algae-derived
alginate can crosslink to form natural hydrogels [159]. Recent studies focus to improve



Molecules 2022, 27, 2902 10 of 29

the interaction of alginate for mammalian cells by modifying the alginate with cellular
molecules [160,161]. Hunt C. N et al. utilized RGD modified alginate hydrogel to a 3D
culture of the human embryonic stem cells to induce pluripotent stem cells (hESCs/hiPSCs).
Their result indicates that RGD-modified alginate hydrogel can enhance the generation
of retinal pigmented epithelium and neural retina from 3D-cultured hESCs/hiPSCs [162].
Moxon R. S et al. report that alginate–collagen hydrogels can enhance the cell adhesion
of hiPSCs-derived neurons and promote the formation of complex neuron networks in
a 3D culture model [163]. These results suggest that cellular-molecule-modified alginate
hydrogels have a good cell adhesion property for the application of 3D cell cultures.

Synthetic hydrogels have good mechanical strength to provide structural support
for various cell types in 3D cell cultures. These PVA and PEG hydrogels are widely used
for the 3D scaffold due to its biocompatibility (adaptability and nontoxicity for living
tissue), absence of immunogenicity, and adjustable stiffness [164,165]. Wilkinson et al.
report that PVA hydrogels can replace the albumin to enhance the expansion of murine
hematopoietic stem cells (mHSCs) [166]. PVA hydrogels with growth factors can promote
the differentiation rate of mouse spermatogonia stem cells (mSCCs) into meiotic and post-
meiotic cells [167]. In addition, several human glioma cell lines (LN299, U87MG, and Gli36)
can form the tumor spheroids in 3D cultures with PVA-hydrogels-coated cell plates [168].
A similar result was also found in the 3D culture of human breast cancer Hs578T cells
and human pancreatic cancer cell lines (Sui67 and Sui72) with PVA hydrogels. This result
further indicates that PVA hydrogels can reduce cancer cell apoptosis and promote cancer
cellular proliferation [169].

PEG hydrogels have been applied to the formation of multicellular tumor spheroids
by 3D cell cultures for anticancer drug screening [170]. PEG hydrogels are also used for 3D
cultures with stem cells to evaluate their efficacy in hiPSCs differentiation and the behavior
of mMSCs at similar stiffness of myocardial infarction microenvironments in vivo [171,172].
In addition, PEG, by itself or combined with polycaprolactone, has good potential to
encapsulate diverse bioactive molecules for lowering complicating factors derived from
hydrogels [173,174]. Another increasing application of PEG hydrogels is to encapsulate
the bioactive factors to promote cellular functions for 3D cultured cells. Research of de
Sousa Araújo E et al. describes synthesis of the in situ chondroitin-sulfate-crosslinked
PEG hydrogels through the Diels–Alder click reaction. This hydrogel can prolong the
oxygen release of chondrocytes under 3D cultures. It may maintain the oxygen level
in the articular cartilage and support the differentiation, viability, and proliferation of
chondrocytes [175]. Jansen L. E et al. developed PEG hydrogels, which are separately
incorporated with different combinations of bone-marrow-specific and cell-instructive
peptides. This hydrogel also mimics the stiffness of the ECM in the bone marrow. The
results show that this hydrogel can be used to evaluate the effect of different commotions
in cell behaviors of hMSCs in the bone marrow microenvironment in vitro [176]. Overall,
synthesis of hydrogels may have a potential value in the medical application of stem cells,
restoration of infertility, anticancer drug screening, and repair of articular cartilage.
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Table 1. Natural, synthetic, and semi-synthetic hydrogels for 3D cell cultures.

Source of Hydrogels Properties Materials Cell Applications

Natural

Provide comparable viscoelasticity and
fibrils to the ECM; having good
biocompatibility; endogenous factors
can support cellular activity

Collagen Rat chondrocyte [127], hMSCs [128,136],
rMSC [129], HUVECs/hASCs [133]

Maintain the chondrocyte phenotype [127];
facilitate chondrogenic differentiation of
hBMSCs [128] and rBMSCs [129]; form stable
EC networks [133]; promote cell viability;
promote growth of hMSCs [136].

HA

hiPSC-NPCs [141], hiPSCs [142], rMSCs [143],
human breast cancer MCF-7 cells [146], HepG2
cells [147], human dental pulp stem cells [148],
hNS/PC [149], and hMSCs [150]

Promote the neural differentiation of
hiPSC-NPCs [141]; cardiac differentiation of
hiPSCs [142]; osteogenic differentiation of
human dental pulp stem cells [148]; the
adhesion and proliferation of HepG2 cells [147];
cell spreading, fiber remodeling, and focal
adhesion of hMSCs [150]; maintain the
stemness of rMSCs and induce the direct
cartilage differentiation [153]; enhance the
tumorigenic capability of MCF-7 cells [146];
increase the oligodendrocytes and neural
differentiation of hNS/PC and support
long-term cell viability [149].

Fibrin

HUVECs/hMSCs [154], porcine cumulus–oocyte
complexes (COCs) [155], primary human
chondrocytes [156], mHPSCs [157], and
hiPSCs/HUVECs/human dermal fibroblast [158]

Prevascular formation of HUVECs, improve
cell viability and proliferation of hMSCs and
enhance their osteogenic differentiation and
bone mineral deposition [154]; maintain the
functional relationship between oocytes and
follicular cells [155]; induce the production of
glycosaminoglycans and collagen type II of
primary human chondrocytes [156]; enhance
the murine hematopoietic stem/progenitor
cells (mHPSCs) expansion and
differentiation [157]; no effect viability and
prevascular formation of encapsulated
cells [158].

Alginate hESCs/hiPSCs [162], hiPSCs-derived
neurons [163]

Enhance the generation of retinal pigmented
epithelium and neural retina of
hESCs/hiPSCs [162]; form complex neural
networks [163].
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Table 1. Cont.

Source of Hydrogels Properties Materials Cell Applications

Synthetic
Have the good mechanical strength to
provide structural support for various
cell types in 3D cell culture

PVA

mHSCs [166], mSCCs [167], human glioma cell
lines LN299, U87MG and Gli36 [168], human
breast cancer Hs578T cells, and human
pancreatic cancer cell lines Sui67 and Sui72 [169]

Enhance the expansion of murine
hematopoietic stem cells (mHSCs) [166];
promote the meiotic and post-meiotic
differentiation rate of mSCCs [167]; form tumor
spheroids [168,169].

PEG hiPSCs [171], mMSCs [172], chondrocyte [174],
and hMSCs [176]

Enhance the hematopoietic differentiation of
hiPSCs [171]; evaluate the behavior of mMSCs
[172] and hMSCs at the specific condition [176];
prolong the oxygen release of
chondrocytes [174].

Semi-synthetic
Have a feature of ECM
microenvironment and faster stress
relaxation

HA–PEG hiPS-HEPs [177] and HUVECs [178]
Enhance viability and functionality of
hiPS-HEPs [177]; promote the capillary-like
sprouts formation of HUVECs spheroids [178].

RGD–alginate–PEG Fibroblasts and mMSCs [179]
Increase the spread and proliferation of
fibroblasts and the osteogenic differentiation of
mMSCs [179].
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Although both natural and synthetic hydrogels have widely displayed their advan-
tages in the 3D cell cultures, there are some disadvantages to those hydrogels. Fast degra-
dation, weak stability, and poor mechanical strength are the disadvantages of natural
hydrogels; while synthetic hydrogels are biologically inert and lack endogenous factors.
Semi-synthetic hydrogels comprise a combination of natural and synthetic polymers [71].
The combination improves the individual disadvantages of natural and synthetic hydrogels
in 3D cell cultures. For example, HA-PEG is a semi-synthetic hydrogel. It expresses a
similar microenvironment to in vivo ECM, which promotes viability and functionality
of hepatocytes derived from hiPS [177]. It also can promote the human umbilical vein
endothelial cell (HUVECs) spheroids to form the capillary-like sprouts [178]. Nam S et al.
have increased the stress–relaxation rate of RGD–alginate hydrogels by crosslinking with
PEG. This hydrogel promotes fibroblasts to proliferate and distribute in addition to en-
hancing osteogenic differentiation of mMSCs [179]. Compared with natural and synthetic
hydrogels, semi-synthetic hydrogels create a cellular environment that is closer to those
in vivo. Further evaluation is needed to determine whether semi-synthetic hydrogels can
mimic tissue performance.

4.2. Drug Delivery

Polymers are one of the most promising substances for the preparation of drug deliv-
ery systems. Polymers can be prepared for various nanostructures, including polymeric
micelles, polymeric vesicles, and hydrogels. Those nanostructures are great for drug deliv-
ery [180]. Increased interest in hydrogels is focused on smart hydrogels due to the stimuli-
responsive properties of polymeric moieties. Stimuli-responsive properties can enable the
formulation of novel targeted drugs and control drug release through non-intravenous
administration. It can also delay the effect of opsonization by low blood contact.

The basic advantage is the ability of a smart hydrogel to change its properties (such
as mechanical properties, swelling capacity, hydrophilicity, or permeability of bioactive
molecules) under the effect of surroundings, including temperature, pH, electromagnetic
radiation, magnetic field, and biological factors. Smart hydrogels can be prepared by the
natural or synthetic polymers. There is a problem with natural hydrogels, which is that its
mechanical properties make it difficult to maintain consistency.

Although this problem with natural hydrogel can be overcome by extensive chemical
modification for natural polymers, it is very difficult to process [181]. In contrast, synthetic
polymers are easy to alter their chemical or physical properties. The biodegradable and
hydrophilic synthetic polymers are the most competitive substances for the synthesis of
smart hydrogels for drug delivery. Those synthetic polymers endow smart hydrogels with
low toxicity, low side effects, and low blood material adhesion. Of these, the low blood
material adhesion can slow the effect of opsonization and reduce the phagocyte elimination.
Table 2 shows the application of those synthetic smart hydrogels for drug delivery.

Under temperature changes, the matrix volume of thermo-responsive hydrogels
(TRHs) can be changed due to expansion or contraction, and the solubility, conforma-
tion, and phase transition of the polymer may change. The character of this hydrogel
can be maintained in the form of gel at a range of temperatures. Zhao G et al. found
that a prodrug, N-2-hydroxypropyl methacrylamide (HPMA)-copolymer-based dexam-
ethasone, can change its shape from a liquid form at 4 ◦C to a hydrogel form at 30 ◦C
or over through increasing the content level of Dex. This HPMA-Dex can become a hy-
drogel (ProGel-Dex) after intraarticular administration in rodent models of inflammatory
arthritis and osteoarthritis. ProGel-Dex can stay in the joint for more than 30 days and
release the water-soluble polymetric prodrug. Free-Dex is released through phagocytic
synoviocytes. It can persistently improve joint inflammation and pain in rodents with
inflammatory arthritis and osteoarthritis. Their results also show that the molecular weight
of a water-soluble polymetric prodrug is very low (6.8 kDa), which ensures rapid renal
clearance. It avoids the risk of the potential side effects of glucocorticoids [182]. Xing R et al.
prepared topotecan (chemotherapeutic-drug-loaded) lipid nanoparticles (TPT-SLNs), and
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then incorporated TPT-SLNs into poloxamer 407 and poloxamer 188 solutions to form
TPT-SLNs-TRHs. The gelation temperature of TPT-SLNs-TRHs is over 31 ◦C. They further
evaluated the anticancer efficacy of TPT-SLNs-TRHs in the colorectal tumor xenograft
rat model. Their results show that TPT-SLNs-TRHs can enhance antitumor efficacy and
reduce the toxicity effect in comparison with the administration of pure TPT and TPT-SLNs.
In addition, the antitumor effect of TPT-SLNs-TRHs can be stationary for 28 days. The
stability tests show that particle size and incorporation efficiency of TPT-SLNs-TRHs are
not changed over a period of six months. Whether the antitumor effect of TPT-SLNs-TRHs
can exceed 28 days needs to be studied further [183].

Scientists are trying to apply the TRHs to deliver drugs for infectious diseases. Lamivu-
dine (3TC) and zidovudine (AZT) are two compounds used for HIV treatment and pre-
vention of AIDS progression. Patients require frequent dosing of these two compounds
to achieve successful therapy for AIDS. Excessively frequent doses can reduce adherence,
which may result in treatment failure. Witika B. A et al. used the Pluronic® F-127 THSs to
embed the nano co-crystal 3TC and AZT drug (NCC-3TC-AZT). The in vitro release data
show that the release time of 3TC and AZT from the NCC-3TC-AZT-THSs is over 168 h.
Cell toxicity results show that this hydrogel does not affect cell viability in comparison
with the treatment of AZT and 3TC alone. Although the antiviral effect of NCC-3TC-AZT
requires further examination, their results suggest that THRs have the potential of drug
carriers for AIDS treatment [184].

Sustained release is being explored to increase the plasma and tissue residence time
of polymer–protein therapeutics, thereby improving efficacy. Huynh V et al. have used
hydrophilic polyethylene glycol methyl ether methacrylate (PEGMA) polymers to replace
the PEG for preparation of the antibody-conjugated THRs. This hydrogel can control the
release rate of proteins by adjustment of the content level of PEGMA. These THRs in the
gel at room temperature can slowly dissolve over 37 ◦C to release the antibody. An in vitro
assay shows that this hydrogel can completely release the protein within 13 days. The
results suggest that PEGMA THRs can persistently release antibodies as carriers [185].

pH-responsive hydrogels can swell depending on the change of pH value in the
environment. During the swelling period, the interior structure of pH-responsive hydrogels
contains the absorbed water, resulting in the embedded drugs being released. This hydrogel
can be used to release the drug in the stomach or intestine through oral administration [186].
Due to the fact that tumor environments are acidic, the pH-responsive hydrogels can be
a drug carrier for antitumor therapy [187]. Qing W et al. replaced the OTs of methoxy
PEG (mPEG)-OTs with luteolin (LUL) to obtain the mPEG-LUL. Bortezomib (BTZ), a new
chemotherapy drug for colorectal cancer, is conjugated with LUL in mPEG-LUL by a borate
ester bond to form mPEG-LUL-BZT. This hydrogel can sustain and release BTZ at pH
5.5 for up to 50 h. In vivo tumor elimination shows that intravenous administration of
mPEG-LUL-BZT significantly reduces the tumor size in the colorectal tumor xenograft
mouse model and is not toxic for normal mice. In addition, they also incorporate the
indocyanine green (ICG) (a photothermal agent) into mPEG-LUL-BZT to prepare the pH–
photo dual responsive hydrogel for colorectal cancer treatment with a combination of
photothermal (PTT)/photodynamic (PDT) therapy. The result shows that the antitumor
efficacy of mPEG-LUL-BZT-ICG is higher than mPEG-LUL-BZT. Their results suggest that
mPEG-LUL is suitable to deliver BZT and enhance the specific killing of BZT for colorectal
tumors. This hydrogel can also enhance its tumor therapeutic ability with a combination of
photothermal agents [188].

Lin X et al. has developed a pH-responsive hydrogel, based on methacrylic acid
copolymer (MAC) and polycaprolactone (PCL), by esterification reaction. MAC-g-PCL
becomes gelatinous at pH 1.2 and dissolves at pH 7.4. They further embed the radio-
protective agent, amifostine (S-2(3-aminopropylamino) ethyl phosphorothioate (Ami), to
prepare the drug-carried hydrogel (MAC-g-PCL-Ami). An in vitro cell assay shows that
MAC-g-PCL-Ami is out of the cytotoxicity range. The release profile of MAC-g-PCL-Ami
shows that a small amount of Ami is released by stimulation with gastric fluid (pH 1.2),
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but a burst is released by stimulation with intestinal fluid (pH 7.4). Oral administration
of MAC-g-PCL-Ami can protect the irradiated mice from hematopoietic acute radiation
syndrome and extend their survival. Their results suggest the MAC-g-PCL pH-responsive
hydrogel can prevent the degradation of Ami at the stomach and enhance effective de-
livery in the intestine. This hydrogel may be a potential carrier for drug with poor oral
activity [189].

Photoresponsive hydrogels can alter their properties by using light energy. The alter-
ation can be controlled easily by switching the light on and off, in a wavelength-specific
manner, and regulating times of light stimulation [190,191]. Ghani M et al. developed a
photoresponsive hydrogel by using the carboxylated spiropyran (SPCOOH)-modified sili-
cone (poly(HEMA-co-PEGMEA)) IPNs. The light-induced drug release mechanism relies
on the isoform switching of SPCOOH in the SPCOOH-modified silicone (poly(HEMA-co-
PEGMEA)) IPNs. Their results show that doxycycline release from this hydrogel can be
controlled by the UV light, which is compared to the hydrogels without SPCOOH modifi-
cation. In addition, this hydrogel also reduces the early burst release of doxycycline. This
hydrogel also can slowly release doxycycline up to 42 h during the UV stimulation [192].
However, there is a lack of cell or animal experiments to confirm the release profile and
safety of this hydrogel in vivo.

Table 2. Smart hydrogels for drug delivery.

Hydrogels Drug Materials Sustained-Release
Time Proposed Applications Ref.

Thermoresponsive
hydrogel

Dexamethasone HPMA More than 30 days Osteoarthritis and
rheumatoid arthritis [181]

Topotecan Poloxamer 407 and
poloxamer 188 28 days Colorectal cancer [183]

Lamivudine and
zidovudine Pluronic® F-127 168 h AIDS [184]

Antibody PEGMA 13 days Enhance the efficacy of
antibody treatment [185]

pH-responsive
hydrogel

Bortezomib mPEG-LUT 50 h Colorectal cancer [188]

Amifostine (S-2(3-
aminopropylamino)
ethyl
phosphorothioate

MAC-g-PCL 6 h Acute radiation
syndrome [189]

Photoresponsive
hydrogel

Doxycycline

SPCOOH
modified-silicone-hydrogel
(poly(HEMA-co-
PEGMEA))

42 h Inflammation disease [192]

Insulin BP, pNIPAM, PEG, and
ETPTA Not detected Diabetic disease [193]

Daul-responsive
hydrogel

pH/thermo
Doxorubicin
chemosensitizer
curcumin

poly
(NIPAAm-co-DMAEMA) 168 h Colon cancer [194]

Methotrexate 50 h Breast cancer [195]

pH/redox Magnesium ions
poly
(NIPAAm-co-DMAEMA)
PLP-CDE

6 h Ionic therapeutics [196]

Diabetic patients present low medication adherence, since they need to administer a
self-subcutaneous injection of insulin. However, the microcarrier for subcutaneous drug
delivery rarely achieves even distribution of the drug. It further restricts drug release
and absorption. Fan L et al. has loaded the photoresponsive hydrogel microsphere into
microcarrier-integrated microneedles to develop photoresponsive hydrogel microcarrier-
integrated microneedles. The photoresponsive hydrogel microsphere contains the black
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phosphorus (BP) and poly (N-isopropylacrylamide) (pNIPAM), which are generated by
using a flexible capillary microfluidic method. This photoresponsive hydrogel microsphere
has the ability for photothermal energy conversion and maintains the bioactivity of en-
capsulated drugs. The microneedle is prepared by the mixture of porous ethoxylated
trimethylolpropane triacrylate (ETPTA) and PEG. This microneedle can provide the me-
chanical strength to support the skin penetration and to deliver drugs uniformly under the
skin. Their results show that photoresponsive hydrogel microcarrier-integrated micronee-
dles can control the insulin release to manipulate the level of blood glucose in streptozotocin
(STZ)-induced diabetic mice [193]. Their study suggests that photoresponsive hydrogel-
microcarrier-integrated microneedles may increase the medication adherence and promote
the uniform distribution of drug.

Apart from responsive hydrogel with a single stimulation, recent studies have devel-
oped dual-responsive hydrogels for drug delivery. Abedi F et al. prepared a noncytotoxic
pH-/thermo-responsive hydrogel by free-radical crosslinking of N-Isopropylacrylamide
(NIPAAm, thermo-responsive polymer) and N,N-dimethyl-aminoethyl methacrylate
(DMAEMA, pH-responsive polymer). This poly (NIPAAm-co-DMAEMA) pH-/thermo-
responsive hydrogel can persistently and simultaneously release the doxorubicin (DOX)
and chemo-sensitizer curcumin (CUR) at pH 5.8/40 ◦C for 168 h. Their data also show that
the DOX/CUR-poly (NIPAAm-co-DMAEMA) pH-/thermo-responsive hydrogel signifi-
cantly induces the cell apoptosis of the HT-29 colon cancer cell line in comparison to the free
DOX and CUR alone [194]. The poly (NIPAAm-co-DMAEMA) pH-/thermo-responsive
hydrogel is also used to encapsulate the anticancer drug methotrexate (MTX). The MTX can
be released up to 50 h at pH 5.5/40 ◦C. This MTX-loaded poly (NIPAAm-co-DMAEMA)
pH-/thermo-responsive hydrogel can reduce the cell viability of MCF-7 breast cells in
comparison with free-MTX treatment [195]. Huang Y et al. synthesized a noncytotoxic
pH-/redox-responsive hydrogel by crosslinking the poly(l-lysine isophthalamide) (PLP)
and l-cystine dimethyl ester dihydrochloride (CDE). Within this, the PLP can be swollen
by stimulation with acid environments or with a reducing agent. Their results suggest
that PLP-CDE pH/redox hydrogels may be carriers to provide efficient oral delivery and
controlled ion release in intestinal tissue. The stimulated intestinal fluid buffer at pH 6.8
was compared to stimulated gastric fluid (pH 1.2).

The magnesium ions can be released for up to 6 h. In addition, the magnesium ion
release can be enhanced in the stimulated intestinal fluid buffer with 1,4-dithiothreitol
(DTT). Their results suggest that PLP-CDE pH/redox hydrogels are potential drug carriers
to provide efficient oral delivery and control ion release in intestinal tissue [196].

Reactive hydrogel aside, drug delivery can be controlled and released for several
hours or days. Among them, thermo-responsive hydrogels have the longest drug release
time, but may cause systemic side effects due to their low specificity, especially 37 ◦C
thermo-responsive hydrogels. Although the drug delivery of pH-responsive hydrogels can
be adjusted, they are only suitable for specific organs or diseases with unique pH values.
Photoresponsive hydrogels can be easily tuned by switching the light energy on or off,
resulting in low side effects and adjustable drug concentrations. However, this process
requires an external device to provide the light energy. Dual-responsive hydrogels can
combine the advantages of both responsive hydrogels. The in vivo effect of dual-responsive
hydrogels needs further evaluation. Overall, photoresponsive hydrogels have excellent
properties for drug delivery under the available stimulated light energy.

4.3. Wound Dressings

The skin is the largest human organ and consists of epidermis, endothelium, and
subcutaneous tissue from outside to inside. Skin is attacked by physical, chemical, or
thermal damage, which results in wounding. Wounds lead to the destruction of skin
structure and function [197]. The creation of a wound will trigger a series of physiological
responses that promote wound repair, known as wound healing [198]. Wounds can be
categorized by the nature of the repair as acute and chronic wounds. Acute wounds are
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mainly caused by mechanical injuries, such as abrasions, cuts, burns, scalds, or surgical
incisions, and can heal completely in about 8–12 weeks [199]. Chronic wounds are wounds
with delayed healing, 12 weeks after the initial injury [194]. These wounds are mainly
caused by repeated tissue damage, underlying physiological factors (such as diabetes,
impaired angiogenesis, innervation, or cell migration), or acquired physiological factors
(such as malignancy or infection) [200,201]. Once a chronic wound forms, it can eventually
lead to amputations or even mortality [202]. The wound healing process is dynamic
and complicated. It involves four phases: hemostasis, inflammation, proliferation, and
remodeling [203]. The hemostasis phase occurs within minutes of the injury. During
this period, platelets stick to the wound site, engage with collagen, and release thrombin,
which activates fibrin to form a network that stops blood loss. The inflammation phase
occurs when immune cells (especially neutrophils and macrophages) are recruited to the
wound site by platelets. Immune cells engulf damaged cells, dead cells, bacteria, and other
pathogens at the wound site. At the same time, various peptide growth factors are released
by platelets and inflammatory cells, which promote the migration of fibroblasts to the
wound site.

During the proliferation phase, fibroblasts proliferate at the wound site and rebuild
the dermal tissue, employing granulation tissue formation and extracellular matrix protein
deposition. Within the granulation tissue, blood vessel networks will be formed, providing
sufficient oxygen and nutrients to improve cell survival. Epithelial cells then migrate from
the wound edge to the center to cover the defect: this process is termed re-epithelialization.
During the remodeling phase, excess collagen fibers are degraded in the dermis, and the
wound shrinks and heals rapidly. Therefore, the use of wound dressings to quickly stop
bleeding, prevent infection, and promote repair can speed up wound healing and reduce
unnecessary mortality.

Characteristics of an ideal wound dressing should (1) provide and maintain a moist
environment, (2) permit the easy transmission of gases, (3) remove exudates and ab-
sorb blood from the wound, (4) have low adherence to skin, (5) reduce wound necrosis,
(6) prevent infection, (7) allow heat insulation, (8) enhance epidermal migration, (9) pro-
mote angiogenesis, (10) have low toxicity and be biocompatible and biodegradable [203].
Several studies have shown that hydrogels can form a physical barrier and remove excess
exudate. They also provide a moist environment to promote the process of wound heal-
ing. In addition, hydrogels can be applied as a sprayable or injectable wound dressing,
which may fill irregularly shaped wounds [204–206]. They also present with similar prop-
erties as the natural extracellular matrix (ECM), biocompatibility, biodegradability, and
tunable properties (such as shape, gel state, and mechanical strength). These advantages
of hydrogels can simulate the development of hydrogels for different dressings for differ-
ent types of wounds. Recently, functional hydrogels have received a lot of attention in
wound dressing research. These hydrogels can exhibit high-performance biological activ-
ities, such as antibacterial properties, promoting blood coagulation, or promoting blood
regeneration, etc. [207]. In this section, we focus on the recent application of functional
hydrogels for wound dressings.

Wound dressings with hemostasis, angiogenesis, antibacterial infection, and anti-
inflammation characteristic have a good impact on wound healing. Natural polymers,
such as cellulose, chitosan, collagen, and HA, contain endogenous bioactivation factors.
These natural hydrogels are a good wound dressing for wound healing. For example,
an in-situ-formed collagen–HA hydrogel was adapted to promote spontaneous wound
healing. In addition, this hydrogel inhibited the growth of planktonic Escherichia coli
(E. coli) and Staphylococcus aureus (S. aureus) [208]. PEG-modified collagen–chitosan hy-
drogels further reduce the zone diameters of E. coli and S. aureus biofilms. This hydrogel
also exhibits hemostatic ability, which can enhance wound healing [209]. Zhu L. and
Chen L. developed CF-encapsulated graphene–silk fibroin macromolecular hydrogel dress-
ings, which have functions of antibacterial (both planktonic and biofilm S. aureus and
Pseudomonas aeruginosa (P. aeruginosa)) and enhanced fibroblasts growth. These have
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a great healing ability for burn wounds [210]. Khaliq T et al. used the chitosan HCl,
κ-carrageenan, and PVA-based, physically crosslinked hydrogel to load cefotaxime sodium
(CTX), which displays a high oxygen permeability and antibacterial capacity for inhibit-
ing the biofilm size of S. aureus, P. aeruginosa, and E. coli. This hydrogel provided higher
re-epithelialization and good granulation tissue formation for healing burn wounds in
a diabetic rat model [211]. In addition, the silver-nanoparticle-loaded pH hydrogel also
showed the effective elimination of P. aeruginosa and Staphylococcus epidermidis (S. epider-
midis) in in vitro antibacterial biofilm studies. This hydrogel provides a promising strategy
to enhance the healing of drug-resistant-bacteria-infected wounds [212]. The in vivo effect
of this hydrogel needs further investigation. Collagen–PEG injectable hydrogels containing
umbilical cord stem cell factor (SCF) can induce neovascularization and skew toward M2
macrophages in diabetic wounds. They can promote diabetic wound repair based on their
angiogenesis and anti-inflammation abilities [213]. It is unknown whether this hydrogel
has functions in the inhibition of bacterial growth due to the lack of antibacterial activity
assay studies. A 3-carboxy-phenylboronic-acid-grafted gelatin–PVA hydrogel exhibits
excellent hemostasis properties enhancing cell adhesion. This hydrogel further encapsu-
lates the vancomycin-conjugated silver nanoclusters (VAN-AgNCs) and nimesulide (NIM),
endowing an anti-inflammatory effect. It also has the capacity to inhibit the planktonic S.
aureus and P. aeruginosa growth in a VAN-AgNCs dose-dependent manner. In an in vivo
experiment, this VAN-AgNCs- and NIM-loaded 3-carboxy-phenylboronic-acid-grafted
gelatin–PVA hydrogel can induce the sequential healing processes to promote the healing
of chronically infected diabetic wounds [214]. Plasma-exosomes-loaded, pH-responsive
carboxymethylcellulose (P-Exos-loaded CMC) hydrogel stimulates the activation of the
vascular endothelial growth factor (VEGF) signaling pathway. This pathway further en-
hances angiogenesis and re-epithelialization to promote the wound healing process in
diabetic type 1 mice [215]. Another study uses the umbilical-cord-derived mesenchymal
stem cell exosomes combined with Pluronic F127 hydrogel to demonstrate that this hy-
drogel can induce the expression of transforming growth factor beta-1 (TGFβ-1) and cell
proliferation in addition to VEGF production. Based on the above ability, it can enhance the
regeneration of granular tissue and angiogenesis in chronic diabetic wound healing [216].
However, the antibacterial activity of exosomes-loaded hydrogels is unclear in these two
studies [215,216].

Oxidative stress is one of the factors which leads to impairment of wound heal-
ing. Hydrogels with antioxidant capacity have also been developed as wound dressings.
Xu J et al. prepared a thermo-responsive hydrogel using a combination of PEG, polypropy-
lene glycol (PPG), and polydimethylsiloxane (PDMS), which then incorporates the lignin
(an antioxidant material). This hydrogel increases cell proliferation to promote the healing
of burn wounds [217]. Lignin have been reported to inhibit growth of Gram-positive
bacteria (Listeria monocytogenes (L. monocytogenes) and S. aureus) and yeast (Candida lipolytica
(C. lipolytica)) [218]. This may reveal that lignin thermo-responsive hydrogels have an
inhibitory effect on bacterial growth. Zhang J et al. have developed an antibiofouling
hydrogel, which is composed of, and involves the balancing of, oppositely charged alginate,
hyaluronic acid (HA), and polylysine (PLL). This antibiofouling hydrogel can resist protein
adhesion to avoid the immune response. It can also resist the adhesion of E. Coli and S. au-
reus, which reduces the occurrence of bacterial infection. In addition, this hydrogel presents
anti-inflammation, ROS elimination, and angiogenesis promotion abilities via incorporating
curcumin (Cur) and epigallocatechin gallate (EGCG). This Cur-EGCG antibiofouling has a
good effect in the treatment of ionizing-radiation-induced skin injury [219]. Another study
utilities polydopamine to endow hydrogels with antioxidant ability. These hydrogels can
reduce AgNO3 into Ag nanoparticles (AgNPs) and then show an antibacterial activity on
planktonic E. coli and S. aureus growth [220]. However, there is a need to further determine
the in vivo effect of polydopamine hydrogels in wound healing.

Scientists have developed functional hydrogels using different polymers and bioactive
factors, demonstrating their potential application as wound dressings. Thus, the question
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of how to adjust and expand the functions of hydrogels will be a direction to consider in
the future.

4.4. Tissue Engineering

Tissue engineering is a promising and challenging strategy to treat patients who suffer
functional failure and irreparable tissue destruction [221]. The aim of tissue engineering is to
develop a scaffold mimicking an in vivo extracellular matrix to support tissue regeneration.
Hydrogels have gained great interest in tissue engineering due to their mechanical strength,
biocompatibility, biodegradability, and the resemblance to in vivo extracellular matrix [222].

A hydrogel scaffold can be useful in tissue regeneration of nerves, cardiac tissue,
cartilage, and bone. For example, the 3D printing of collagen–chitosan is beneficial in
decreasing scar and cavity formation and can improve the regeneration of nerve fibers, as
well as functional recovery, when tested in an animal model [223]. Another example is HA
combined with alginate and fibrin. This was applied as an ink ingredient of 3D printing
in peripheral nerve tissue regeneration [224]. In addition, the HA–cellulose hydrogels
can repair the central nerves [225]. Li J et al. used horseradish peroxidase (HRP) and
choline oxidase (ChOx) crosslinked gelation hydrogel to encapsulate the mMSCs. This
hydrogel displays a high capacity to promote cellular viability, neural differentiation,
and neurotrophic secretion of loaded mMSCs. Based on that capacity, it can enhance the
survival and proliferation of endogenous neural cells and neurological function recovery
of traumatic-brain-injured mice [226].

Previous studies indicated that hydrogels may promote the differentiation of hBMSC
to nucleus pulposus cells [227]. Finklea FB et al. have developed the hiPSCs-encapsulated
PEG–fibrinogen microsphere hydrogel, which can support efficient cardiac differentiation
and produce cardiomyocytes. This hydrogel model displays a potential role in injection-
based regenerative therapies [228]. Long G et al. has used the alginate (A)-/silk sericin
(SS)-lamellar-coated antioxidant system (ASS@L) to encapsulate the adipose-derived stem
cells (ADSCs). ADSCs-ASS@L is an injectable hydrogel. In their study, ADSCs- ASS@L
has favorable effects in cardiac damage therapy in acute myocardial infarction. Kim KS
et al. has precisely adjusted the 3D environment of encapsulated cells to increase graft
survival. They constitute a porous mesh structure loaded with human cardiomyocytes,
human cardiac fibroblasts, and a gelatin–methacryloyl–collagen hydrogel. This 3D cardiac
mesh (cMesh) tissue has a high ability to maintain the cell viability of encapsulated cells
and improve the cardiac function of rats with acute myocardial infarction [229]. From the
in vitro cardiac study, silk-fibroin can also induce pacemaker cells to have functional and
morphological characteristics of genuine sinoatrial-node cardiomyocytes. In addition, these
pacemaker cells generated by injection of silk fibroin in the left ventricles of rats acted as a
in situ sinoatrial node [230].

Wang G et al. have reported that chondro-spheroid gelatin methacrylate (GelMA),
crosslinked with hyaluronic acid methacrylate (HAMA) hydrogel, can enhance the cell
proliferation, aggregation, and morphology in vivo. Their results suggest that this 3D
cell-laden tissue may have a potential role in cartilage tissue engineering [231]. The gelation
can also be combined with carboxymethyl cellulose (CMC) and alginate as bioinks to
generate the human knee meniscal scaffold by 3D printing. This scaffold can increase
collagen secretion and cellular proliferation of MG-63-osteosarcoma cells. It indicates that
this scaffold is suitable for cartilage tissue engineering [232]. Yan J et al. indicate that the
rMSCs-laden hydroxyapatite–collagen type I (HAC) and PLGA-PEG-PLGA thermogel can
repair the femoral condyle defect in rabbit [233]. Shi W et al. show that dynamic hyaluronic
acid hydrogel with covalent-linked gelatin can reduce the reactive oxygen species for
influence of cartilage tissue regeneration [234].

Bordini EAF et al. report that the Dex-loaded nanotube-modified gelatin hydrogel can
induce bone regeneration in an inflammatory microenvironment [235]. These 3D-printed
gelatin/sodium alginate hydrogel scaffolds, doped with nano-attapulgite, can provide the
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high structural complexity of bone. This scaffold can facilitate the osteogenesis of mMSCs
and repair the rabbit tibia plateau defect [236].

Many natural, synthetic, or semi-synthetic hydrogel scaffolds can effectively repair
nerves, heart, and soft and hard tissues through animal experiments. However, these
studies are limited to preclinical trials, and their clinical value may require further research.

5. Conclusions

This review introduces the classification, structure, and recent applications of hydro-
gels in biomedical fields such as 3D cell cultures, drug delivery, wound dressings, and
tissue engineering. Semi-synthetic hydrogels can simultaneously optimize the disadvan-
tages of natural and synthetic hydrogels in 3D cell cultures and mimic the extracellular
matrix of living tissue. These hydrogels have an excellent ability to comprise 3D cell culture
scaffolds. In addition, combined with 3D printing technology, these 3D scaffolds have re-
cently been applied in tissue engineering. However, the clinical value of these 3D scaffolds
in tissue engineering should be further evaluated. In drug delivery, the photoresponsive
hydrogel has excellent properties for drug delivery under the available stimulated light
energy. However, utilization of other materials or other devices may lift the restriction of
other responsive hydrogels. Functional hydrogels rapidly contribute the wound healing
due to their bioactive properties in healing processing. The multifunctional hydrogel may
be a promising strategy due to the complex and dynamic progression of wound healing.
However, very few hydrogels are commercially available to be applied in clinical treatment
in 3D scaffolds, drug delivery, and tissue engineering [237]. Thus, understanding the
extracellular matrix mechanical strength, elasticity, and biological composition of each cell
and tissue will broaden those medical applications of hydrogels and expand the use of
hydrogels for clinical treatment.
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