Hydrogen and Fuel Cells

Emerging technologies and applications

Other books by the author:

A History of Energy. Northern Europe from the Stone Age to the Present Day, 2011 Life-Cycle Analysis of Energy Systems: From Methodology to Applications, 2011. Renewable Energy Reference Book Set (ed., 4 volumes of reprints), 2010 Renewable Energy -physics, engineering, environmental impacts, economics and planning, 4th edition, 2010 (Previous editions 1979, 2000 and 2004) Renewable Energy Focus Handbook (with Breeze, Storvick, Yang, Rosa, Gupta, Doble, Maegaard, Pistoia and Kalogirou), 2009 Renewable Energy Conversion, Transmission and Storage, 2007 *Hydrogen and Fuel Cells*, 1st ed., 2005 Life-cycle analysis of energy systems (with Kuemmel and Nielsen), 1997 Blegdamsvej 17, 1989 Superstrenge, 1987 Fred og frihed, 1985 Fundamentals of Energy Storage (with Jensen), 1984 Energi for fremtiden (with Hvelplund, Illum, Jensen, Meyer and Nørgård), 1983 Energikriser og Udviklingsperspektiver (with Danielsen), 1983 Skitse til alternativ energiplan for Danmark (with Blegaa, Hvelplund, Jensen, Josephsen, Linderoth, Meyer and Balling), 1976 *Music across times and fences*–a book project in progress

More information on the author's work is available at http://energy.ruc.dk

Hydrogen and Fuel Cells

Emerging technologies and applications

Second Edition

Bent Sørensen Roskilde University Institute of Environmental, Social and Spatial Change

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier The Boulevard, Langford Lane, Kidlington, Oxford, OX5 1GB, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

© 2012 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: *www.elsevier.com/permissions*.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Sørensen, Bent, 1941-Hydrogen and fuel cells: emerging technologies and applications hydrogen and fuel cells emerging technologies and applications / Bent Sørensen. -- 2nd ed. p. cm.
ISBN: 978-0-12-387709-3
1. Hydrogen as fuel. 2. Fuel cells. I. Title.
TP359.H8S68 2011
621.31'2429--dc23

2011038769

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

For information on all Academic Press publications visit our website at *www.elsevierdirect.com*.

Typeset by author.

 Printed in the United States of America

 11
 12
 13
 14
 9
 8
 7
 6
 5
 4
 3
 2
 1

Working together to grow libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOK AID International Sabre Foundation

Preface

When the first edition of this book was written, there was an enthusiastic belief in the fuel cell and automobile industry that hydrogen vehicles would start to penetrate the market already in the first decade of the 21st century. This did not happen-for several reasons. The target specifications of 5-year fuel cell life and a cost under US\$10 000 for an array with 1 kW average production were not too ambitious but still proved unreachable in the short term. A 5-year fuel cell lifetime is really on the low side, as cars currently approach operational lifetimes of 20 years, spurred by concerns for environmental impact during manufacture and resource stewardship. The 5-year fuel cell would have to be replaced three times during the lifetime of the vehicle, greatly augmenting the real cost, considering both equipment and replacement work. Another factor in the present market evaluation is the strength of the competition, offered by electric cars, hybrids combining batteries with oil-based fuels, and new generations of biofuels for the transportation sector. A careful appraisal of the merits of these alternatives relative to a hydrogen-fuelled transportation sector is undertaken in this new edition, along with a similar assessment of other areas of fuel cell uses.

For the researchers and manufacturers of fuel cells and related equipment, the temporal setback is not uniquely negative, as it provides an opportunity for rethinking the basic design concepts and developing several new ideas that perhaps were left unprocessed during the feverish rush to reach the early goals. Fortunately, the relative absence of hydrogen-vehicle stories from the news headlines has not slowed down the pace of science and engineering efforts, and this edition has many new, exciting advances to present and discuss. This goes both for the basic understanding of electrochemical processes inside the cell structures, and for the development of vehicle and system concepts, with a promise to overcome the many challenges posed by the introduction of new technology that in several ways is departing from the traditional operational behaviour and existing infrastructure layout.

This edition has expanded the coverage of hybrid systems, considering the advantages of combining battery and fuel cell technologies, rather than seeing them as mutually exclusive competitors. It is demonstrated that suitable combinations of either plug-in hybrids between fuel cell and advanced battery use, or stand-alone concepts, can achieve performance and economic viability not obtainable for pure fuel cell or pure battery vehicles. The fuel cell R&D community has attracted some of the most skilled scientists and engineers, and it is those people I hope to inspire further by this volume.

Bent Sørensen Gilleleje, June 2011 boson@ruc.dk

Preface to first edition

These years, many scientists and engineers move into the field of hydrogen and fuel cells because it is exciting and well funded. The aim is to transform the way energy is delivered and used over the coming years, with major changes in technologies for production, distribution and conversion, as a response to political instability of many oil-producing countries, uncertainty about resources and increasing concerns over environmental effects.

This book is written to the many newcomers to the field, to students at the increasing number of courses given in the subject and to well-established scientists and developers who already have in-depth knowledge in certain sub-fields but like to keep informed about the entire field from technology to policy considerations, economical and environmental assessment. I aim to provide an introduction to people with general science background, but no special hydrogen and fuel cell experience, and also to give an up-to-date account of the frontiers of research and development to readers who need to be able to connect the emerging terminology to the concepts of conventional fields of science.

At the end of each chapter are problems and discussion topics, several of which can be used for problem-oriented mini-projects.

In fact, the pace of knowledge development in the field of hydrogen and fuel cells is so rapid that about half the content of this book is based on material less than a year old (as of the time of writing) and often not even published or found in the "in press" basket of the scientific journal publishers. It has been a pleasure to work with this extremely fresh material from the desks of my colleagues. New techniques have enabled specific investigations to be performed along with the book writing that would have been impossible 5-10 years ago.

To achieve the aim stated above I try to avoid specialist jargon or, if it is important, to define and explain the special terminology that the reader will meet in the latest scientific journals, providing the connection back to the concepts familiar to people with a physics, chemistry or biology background. The policy planner and assessor will similarly find the newest ideas and methods in these fields linked back to conventional economy and to environmental and planning sciences.

First of all, I want to convey the richness of the hydrogen and fuel cell fields and to present the challenges calling for a dedicated effort by the cream of human ingenuity, which is you, dear reader.

Bent Sørensen Gilleleje, October 2004 boson@ruc.dk

Contents

Preface	υ
Contents	vii
Units and conversion factors	xii
1. Introduction	1
1.1 Possible role of fuel cells and hydrogen	1
2. Hydrogen	5
2.1 Production of hydrogen	5
2.1.1 Steam reforming	6
2.1.2 Partial oxidation, autothermal and dry reforming	10
2.1.3 Water electrolysis: reverse fuel cell operation	11
2.1.4 Gasification and woody biomass conversion	21
2.1.5 Biological hydrogen production	26
Photosynthesis, Bio-hydrogen production pathways,	
Hydrogen production by purple bacteria, Fermentation	
and other processes in the dark, Industrial-scale produc-	
tion of bio-hydrogen	
2.1.6 Photodissociation	43
2.1.7 Direct thermal or catalytic splitting of water	50
2.2 Issues related to scale of production	51
2.2.1 Centralised hydrogen production	51
2.2.2 Distributed hydrogen production	52
2.2.3 Vehicle on-board fuel reforming	52
Production of methanol, Methanol-to-hydrogen conversion	
2.3 Hydrogen conversion overview	59
2.3.1 Uses as an energy carrier	59
2.3.2 Uses as an energy storage medium	60
2.3.3 Combustion uses	60
2.3.4 Stationary fuel cell uses	64
2.3.5 Fuel cell uses for transportation	64
2.3.6 Direct uses	64
2.4 Hydrogen storage options	65
2.4.1 Compressed gas storage	66
2.4.2 Liquid hydrogen storage	70
2.4.3 Hydride storage	71

Chemical thermodynamics, Metal hydrides, Complex	
hydrides, Modelling metal hydrides	00
2.4.4 Cryo-adsorbed gas storage in carbon materials 2.4.5 Other chemical storage options	89
2.4.6 Comparing storage options	90
2.4.0 Comparing storage options	90
2.5 Hydrogen transmission	92
2.5.1 Container transport	92
2.5.2 Pipeline transport	93
2.6 Problems and discussion topics	94
Fuel cells	95
3.1 Basic concepts	95
3.1.1 Electrochemistry and thermodynamics of fuel cells	95
Electrochemical device definitions, Fuel cells	
3.1.2 Modelling aspects	106
3.1.3 Quantum chemistry approaches	111
Hartree-Fock approximation, Basis sets and molecular	
orbitals, Higher interactions and excited states: Møller-	
Plesset perturbation theory or density function phenome-	
nological approach?	
3.1.4 Application to water splitting or fuel cell	
performance at a metal surface	122
3.1.5 Flow and diffusion modelling	135
3.1.6 The temperature factor	139
3.2 Molten carbonate cells	140
3.3 Solid oxide cells	143
3.4 Acid and alkaline cells	158
3.5 Proton exchange membrane cells	163
3.5.1 Current collectors and gas delivery system	165
3.5.2 Gas diffusion layers	169
3.5.3 Membrane layer	175
3.5.4 Catalyst action	181
3.5.5 Overall performance	186
3.5.6 High-temperature and reverse operation	187
3.5.7 Degradation and lifetime	190
č	=: 0

3.

Contents	íx
3.6 Direct methanol and other non-hydrogen cells	191
3.7 Biofuel cells	197
3.8 Problems and discussion topics	200
4. Systems	201
4.1 Passenger cars	201
4.1.1 Overall system options for passenger cars	201
4.1.2 PEM fuel cell cars	204
4.1.3 Performance simulation	207
4.2 Other road vehicles	225
4.3 Ships, trains and airplanes	228
4.4 Power plants and stand-alone systems	233
4.5 Building-integrated systems	236
4.6 Portable and other small-scale systems	240
4.7 Problems and discussion topics	244
5. Implementation scenarios	245
5.1 Infrastructure requirements	245
5.1.1 Storage infrastructure	245 245
5.1.2 Transmission infrastructure	248
5.1.3 Local distribution	249
5.1.4 Filling stations	250
5.1.5 Building-integrated concepts	251
5.2 Safety and norm issues	252
5.2.1 Safety concerns	252
5.2.2 Safety requirements	255
5.2.3 National and international standards	259
5.3 Scenarios based on fossil energy	260
5.3.1 Scenario techniques and demand modelling	260
5.3.2 Global clean fossil scenario	270
Clean fossil technologies, Fossil resource considerations, The fossil economic Evaluation of the clean fossil economic	
The fossil scenario, Evaluation of the clean fossil scenario	

 5.4 Scenarios based on nuclear energy 5.4.1 History and present concerns 5.4.2 Safe nuclear technologies Inherently safe designs, Technical details of energy amplifier, Nuclear resources assessment, Safe nuclear scenario construction, Evaluation of the safe nuclear scenario	294 294 297
 5.5 Scenarios based on renewable energy 5.5.1 Global renewable energy scenarios 5.5.2 Detailed national renewable energy scenario Danish energy demand in 2050, Available renewable resources, Construction of 2050 scenarios for Denmark, Centralised scenario, Decentralised scenario, Assessment of renewable energy scenarios 	317 318 323
5.5.3 New regional scenarios	353
5.6 Problems and discussion topics	359
6. Social implications	361
6.1 Cost expectations	361
6.1.1 Hydrogen production costs	361
6.1.2 Fuel cell costs	362
6.1.3 Hydrogen storage costs	368
6.1.4 Infrastructure costs	368
6.1.5 System costs	369
6.2 Life-cycle analysis of environmental and social impacts	372
6.2.1 Purpose and methodology of life-cycle analysis	373
6.2.2 Life-cycle analysis of hydrogen production	375
Conventional production by steam reforming, Production	
by electrolysis, Direct bio-production of hydrogen from	
cyanobacteria or algae, Impacts from use of genetically	
engineered organisms, Hydrogen from fermentation of	
biomass	
6.2.3 Life-cycle analysis of fuel cells	381
SOFCs and MCFCs, PEM fuel cells	
6.2.4 Life-cycle comparison of conventional passenger	
car and passenger car with fuel cells	384
Environmental impact analysis, Social and economic	
impact analysis, Overall assessment	

Contents	хí
6.2.5 Life-cycle assessment of other vehicles for	
transportation	396
6.2.6 Life-cycle assessment of hydrogen storage and	
infrastructure	398
6.2.7 Life-cycle assessment of hydrogen systems	399
6.3 Uncertainties	400
6.4 Problems and discussion topics	401
7. Conclusion: a conditional outcome	403
7.1 Opportunities	403
7.2 Obstacles	405
7.3 The competition	407
7.4 The way forward	417
7.4.1 Hydrogen storage in renewable energy systems	417 417
7.4.2 Fuel cell vehicles	418
7.4.3 Building-integrated fuel cells	420
7.4.4 Fuel cells in portable equipment	421
7.4.5 Fuel cells in centralised power production	422
7.4.6 Efficiency considerations	423
7.4 How much time do we have?	428
7.5 The end, and a beginning	432
References	435
Index	483

Units and conversion factors

Powers of 10[°]

Prefix	Symbol	Value	Prefix	Symbol	Value
atto	а	10 ⁻¹⁸	kilo	k	10^{3}
femto	f	10 ⁻¹⁵	mega	Μ	10^{6}
pico	р	10 ⁻¹²	giga	G	10^{9}
nano	n	10-9	tera	Т	10^{12}
micro	μ	10-6	peta	Р	10^{15}
milli	m	10-3	exa	E	10^{18}

SI units

Basic unit	Name	Symbol	
length	metre	m	
mass	kilogram	kg	
time	second	s	
electric current	ampere	А	
temperature	Kelvin	Κ	
luminous intensity	candela	cd	
plane angle	radian	rad	
solid angle	steradian	sr	
amount [#]	mole	mol	
Derived unit	Name	Symbol	Definition
energy	joule	J	$\mathrm{kg}\mathrm{m}^2\mathrm{s}^{-2}$
power	watt	W	J s ⁻¹
force	newton	Ν	J m⁻¹
electric charge	coulomb	С	As
potential difference	volt	V	J A ⁻¹ s ⁻¹
pressure	pascal	Pa	N m ⁻²
electric resistance	ohm	Ω	V A ⁻¹
electric capacitance	farad	F	A s V ⁻¹
magnetic flux	weber	Wb	V s
inductance	henry	Н	V s A ⁻¹
magnetic flux density	tesla	Т	V s m ⁻²
luminous flux	lumen	lm	cd sr
illumination	lux	lx	cd sr m ⁻²
frequency	hertz	Hz	cycle s ⁻¹
1 2			5

[#] G, T, P, E are called milliard, billion, billiard, trillion in Europe, but billion, trillion, quadrillion, quintillion in the USA. M as million is universal. [#] The amount containing as many particles as there are atoms in 0.012 kg ¹²C.

Conversion factors

Туре	Name	Symbol	Approximate value
energy	electon volt	eV	$1.6021 \times 10^{-19} \text{ J}$
energy	erg	erg	10 ⁻⁷ J (exact)
energy	calorie (thermochemical)	cal	4.184 J
energy	British thermal unit	Btu	1055.06 J
energy	Q	Q	10^{18} Btu (exact)
energy	quad	q	10^{15} Btu (exact)
energy	tons oil equivalent	toe	$4.19 \times 10^{10} \text{ J}$
energy	barrels oil equivalent	bbl	$5.74 \times 10^{9} \text{ J}$
energy	tons coal equivalent	tce	$2.93 \times 10^{10} \text{ J}$
energy	m ³ of natural gas		$3.4 \times 10^7 \text{ J}$
energy	kg of methane		$6.13 \times 10^7 \text{ J}$
energy	m ³ of biogas		$2.3 \times 10^7 \text{ J}$
energy	litre of gasoline		$3.29 \times 10^7 \text{ J}$
energy	kg of gasoline		$4.38 \times 10^7 \text{ J}$
energy	litre of diesel oil		$3.59 \times 10^7 \text{ J}$
energy	kg of diesel oil/gasoil		$4.27 \times 10^7 \text{ J}$
energy	m ³ of hydrogen at 1 atm		$1.0 \times 10^7 \mathrm{J}$
energy	kg of hydrogen		$1.2 \times 10^8 \text{ J}$
energy	kilowatthour	kWh	$3.6 \times 10^6 \mathrm{J}$
power	horsepower	hp	745.7 W
power	kWh per year	kWh/y	0.114 W
radioactivity	curie	Ci	$3.7 \times 10^8 \text{ s}^{-1}$
radioactivity	becqerel	Bq	1 s ⁻¹
radiation dose	rad	rad	10 ⁻² J kg ⁻¹
radiation dose	gray	Gy	J kg ⁻¹
dose equivalent	rem	rem	10 ⁻² J kg ⁻¹
dose equivalent	sievert	Sv	J kg ⁻¹
temperature	degree Celsius	°C	K – 273.15
temperature	degree Fahrenheit	°F	9/5 C+32
time	minute	min	60 s (exact)
time	hour	h	3600 s (exact)
time	year	у	8760 h

continued next page

Туре	Name	Symbol	Approximate value
pressure	atmosphere	atm	$1.013 \times 10^5 \mathrm{Pa}$
pressure	bar	bar	10 ⁵ Pa
pressure	pounds per square inch	psi	6890 Pa
mass	ton (metric)	t	10 ³ kg
mass	pound	lb	0.4536 kg
mass	ounce	OZ	0.02835 kg
length	Ångström	Å	10 ⁻¹⁰ m
length	inch	in	0.0254 m
length	foot	ft	0.3048 m
length	mile (statute)	mi	1609 m
volume	litre	1	10^{-3} m^3
volume	gallon (US)		$3.785 \times 10^{-3} \text{ m}^3$