HYDROGEN COMPATIBILITY HANDBOOKDP--1643FOR STAINLESS STEELSDE83 017051

GEORGE R. CASKEY, JR.

Approved by

R. L. Folger, Research Manager Hydrogen and Ceramic Technology Division

Publication Date: June 1983

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

> E. I. du Pont de Nemours & Co. Savannah River Laboratory Aiken, SC 29808

PREPARED FOR THE U. S. DEPARTMENT OF ENERGY UNDER CONTRACT DE-AC09-76SR00001

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

- 2 -

3

ABSTRACT

This handbook compiles data on the effects of hydrogen on the mechanical properties of stainless steels and discusses this data within the context of current understanding of hydrogen compatibility of metals. All of the tabulated data derives from continuing studies of hydrogen effects on materials that have been conducted at the Savannah River Laboratory over the past fifteen years. Supplementary data from other sources are included in the discussion. Austenitic, ferritic, martensitic, and precipitation hardenable stainless steels have been studied. Damage caused by helium generated from decay of tritium is a distinctive effect that occurs in addition to the hydrogen damage from tritium which is the same as for the other hydrogen isotopes protium and deuterium. The handbook defines the scope of our current knowledge of hydrogen effects in stainless steels and serves as a guide to selection of stainless steels for service in hydrogen.

DO NOT MICROFILM ı¥.

¢.

٠

٩

R

.

۲ **۱**

- 4 -

CONTENTS

```
INTRODUCTION
                 11
SUMMARY
            13
HYDROGEN DAMAGE
                    16
Mechanical Behavior
                      17
  Material and Processing Variables Affecting Hydrogen Damage
                                                                   18
      Composition
                    18
      Heat Treatment
                        23
      Mechanical Processing
                               26
      Effect of Martensite
                              35
   Environmental Variables Affecting Hydrogen Damage
                                                         37
      Hydrogen Pressure
                           37
      Test Temperature
                          37
      Stress State and Strain Rate
                                      41
                                        ł.
         Notch Tensile Tests
                                46
         J-Integral Analysis
                                46
         Static Loading
                           50
         Strain Rate
                        53
Fractography
               53
                    53
   Fracture Modes
      Microvoid Coalescence
                               54
      Twin-Boundary Parting
                               54
      Transgranular Cleavage
                                56
      Intergranular Separation
                                  56
      Interphase Separation
                               63
   Correlation of Fracture Mode with Composition
                                                    65
Helium Embrittlement
                        67
```

- 5 -

CONTENTS, Contd

CONCLUSIONS 75

ACKNOWLEDGEMENTS 77

ALLOY DATA SHEETS 78

Alloy Index 78

Iron-Chromium-Nickel Alloys 78

Iron-Chromium-Nickel-Manganese Alloys 78

Precipitation Hardenable Alloys 78

High Purity Alloys 78

REFERENCES 124

APPENDIX A. DEFINITIONS 131

APPENDIX B. CONVERSION TABLES 133

Temperature Conversions 133

English/Metric (SI) Stress Conversion Factors 134

English/Metric (SI) Fracture Toughness Conversion Factors 136

English/Metric (SI) Impact Energy Conversion Factors 137

APPENDIX C. MECHANICAL TEST SPECIMENS 138

Smooth Bar Tensile Specimens 138

Notched Bar Tensile Specimens 140

Tensile Tube Specimen 142

Single Edge Notched Specimen 143

C-Shaped Fracture Mechanics Specimen 145

Impact Specimen 147

APPENDIX D. HEAT ANALYSES 148

LIST OF TABLES

1	Ranking of Hydrogen Damage 14					
2	Hydrogen Damage Susceptibility 14					
3	Mechanical Properties of HERF and Annealed Alloys in High-Pressure Gas 31					
4	Effect of Martensite on Subsequent Environmental Hydrogen Damage in Type 304L Stainless Steel 36					
5	Temperatures for Strain-Induced Martensite Formation 43					
6	Effect of Hydrogen Charging on Tensile Properties of Type 304L Stainless Steel 49					
7	Ranking of Hydrogen Compatibility (HERF Stainless Steels) 49					
8	Stress Necessary for Slow Crack Growth in Type 304L Stainless Steel 52					
9	Occurrence of Microcracks in Hydrogen-Saturated Austenitic Stainless Steels 58					
10	Mechanical Properties of HERF Type 304L Stainless Steel 70					
11	Mechanical Properties of HERF Nitronic [®] 40 Stainless Steel					
12	Tritium and Helium Effects on Fracture Toughness of Stainless Steels 73					

.

70

LIST OF FIGURES

1 Environmental Hydrogen Damage in Fe-Cr-Ni Alloys at Room Temperature and 69 MPa Hydrogen 19

٠,

- 2 Stacking Fault Energies in Fe-Cr-Ni Alloys at Room Temperature 21
- 3 Environmental Hydrogen Damage in Fe-Cr-Ni-Mn Alloys at Room Temperature and 69 MPa Hydrogen 22
- 4 Hall-Petch Plot for Tensile-Test Specimens of Type 304L Stainless Steel at a Plastic Strain $\varepsilon = 0.05$ 24
- 5 Hall-Petch Plot of Yield Strength for Type 304L Stainless Steel Tested in High-Pressure Helium or Hydrogen Environments 25
- 6 Effect of Prestrain on Tensile Strength of Type 304L Stainless Steel Tubes in Air or Hydrogen 27
- 7 Effect of Prestrain on Elongation of Type 304L Stainless Steel in Air or Hydrogen 28
- 8 Effect of Prior Cold Work on Hydrogen Damage Susceptibility of Stainless Steels 30
- 9 Effect of Processing on Hydrogen Damage in Nitronic[®] 40 Elongation 32
- 10 Effect of Processing on Hydrogen Damage in Nitronic[®] 40 Strength 33
- 11 Orientation of V-Notch with Respect to Forging Flow Lines in Tensile-Test Specimens Machined from Bars of HERF Stainless Steels 34
- 12 Effect of Hydrogen Pressure on Ductility of Type 304L Stainless Steel Tested to Fracture in Hydrogen at Room Temperature 38
- 13 Dutility Minima in Fe-Cr-Ni Alloys Charged with Deuterium at 69 MPa and 620 K for Three Weeks 39
- 14 Ductility Minima in Fe-Cr-Mn-Mi Alloys Charged with Deuterium at 69 MPa and 620 K for Three Weeks 40

- 8 -

LIST OF FIGURES, CONTD

- 15. Isoductility Diagram for Hydrogen-Charged Fe-Cr-Ni Alloys 42
- 16 Effect of Hydrogen on Strain-Induced Martensite Formation in Type 304L Stainless Steel 44
- 17 Effect of Hydrogen on Strain-Induced Martensite Formation in Tenelon[®] and Nitronic[®] 40 45
- 18 Relative Effect of Hydrogen on Properties of Sensitized Type 304L Stainless Steel 47
- 19 Environmental Hydrogen Damage in Nitronic[®] 40 Stainless Steel at Room Temperature 48
- 20 Hydrogen Effects on Crack Growth in Stainless Steels 51
- 21 Dimpled Fracture of Type 304L Stainless Steel 55
- 22 Twin-Boundary Parting in Type 304L Stainless Steel. High Energy Rate Forged. Tested at 200 K 55
- 23 Microcracks Along Boundaries of Annealing Twins 57
- 24 Variation of Facet Appearance with Test Temperature in Type 304L Stainless Steel 59
- 25 Multiple Crack Nucleation Along Boundaries 60
- 26 Transgranular Cleavage in 17-4 PH Precipitation-Hardenable Stainless Steel 61
- 27 Intergranular Separation in Nickel and Inconel® 718 61
- 28 HERF Nitronic[®] 40, Orientation 1. Intergranular Fracture in Hydrogen 62
- 29 Fracture Along Interphase Interfaces in Austenitic Steels 64
- 30 Composition Regimes for Fracture Modes Observed in HAF of Iron-Chromium-Nickel Alloys 66
- 31 Helium Bubbles in Type 304L Stainless Steel Tritium Charged, Aged, and Annealed at 1273 K 68
- 32 Microstructures in HERF Nitronic[®] 40 71

- 9 - 10

ر ،

1 e

Ç (

HANDBOOK OF DATA ON HYDROGEN COMPATIBILITY OF STAINLESS STEELS

INTRODUCTION

This handbook is based on studies of hydrogen effects in metals that have been conducted at the Savannah River Laboratory (SRL) over the past 15 years. The major part of this continuing study deals with austenitic, martensitic, and precipitation hardenable stainless steels and is the subject of this handbook. The handbook also includes data on high nickel alloys, iron-nickel, iron-chromium alloys and pure nickel. These alloys are similar to the stainless steels and their inclusion provides a more complete coverage of the iron-chromium-nickel ternary alloy system.

Stainless steels have been utilized in structures and equipment for hydrogen storage, rocket engines, and petrochemical processing. Temperatures range from cryogenic to several hundred Kelvin and effective hydrogen pressures often exceed 20 MPa. In addition, hydrogen may be encountered as a corrosion product and may contribute to degradation of equipment in such circumstances. The data presented in this handbook covers the effects of hydrogen on stainless steels at temperatures of 78 to 400 K and at pressures up to 69 MPa. Therefore, the results are applicable to only a portion of all possible industrial applications of stainless steel in hydrogen environments.

There are two principal sections to this handbook: Alloy Data Sheets which tabulate mechanical properties for each alloy and Hydrogen Damage which discusses the hydrogen compatibility of stainless steels. The mechanical property data for each alloy are tabulated separately on one or more data sheets and indexed by alloy number or trade name. The nominal compositions and mechanical properties of the alloys are included in tables immediately following the index. The discussion of hydrogen damage draws upon published information from the technical literature to supplement the SRL data.

The scope of the data accumulated on hydrogen damage varies widely among the alloys that have been studied. In all cases, tensile property measurements have been emphasized and fracture modes examined. Fracture-mechanics-type specimens have been studied in several alloys. Studies of Type 304L stainless steel have been the most extensive. They include bar, cross-rolled plate, and High Energy Rate Forged (HERF) stock. The effects of grain size, heat treating temperatures, and quench rates on susceptibility to hydrogen damage have also been examined. Mechanical behavior, fracture modes, helium embrittlement which may arise by beta decay of tritium, and hydrogen damage mechanisms are discussed. Although a uniform and consistent data base does not exist for each of the alloys, general trends in susceptibility to hydrogen damage have been identified. Changes in mechanical behavior and fracture mode attributable to hydrogen have been correlated with alloy composition, heat treatment, stress state, and test temperature. The data base does provide sufficient information for guidance in alloy selection and development of new alloys tailored to specific service requirements.

During the past decade, several international conferences and symposia have concentrated on hydrogen effects on metals, References 1 through 11. Proceedings of these meetings provide interpretation and evaluation of hydrogen damage studies as well as mechanical and physical property data on a variety of alloys other than stainless steel. <u>Hydrogen Damage</u>, edited by C. D. Beachem, Reference 12, is a selection of papers from the technical literature that provides an overview and insight into hydrogen damage, as does the review paper by Hirth and Johnson, Reference 13.

Many of the publications and presentations at technical meetings by researchers at the Savannah River Laboratory deal with hydrogen effects in stainless steel. Only a few have been referenced directly in the text, the remainder are listed in references 46 through 71. These papers supplement this Handbook and provide more detailed discussion of specific topics.

SUMMARY

The susceptibility of stainless steels to hydrogen damage has been evaluated primarily under rising uniaxial load rather than under static or fatigue loading conditions. Smooth, notched, and fatigue cracked specimens have been tested and hydrogen damage assessed by measuring either fracture strain or the J-integral. As shown in Table 1, stainless steels may be ranked qualitatively according to the severity of damage measured on specimens precharged with hydrogen at hydrogen pressures up to 69 MPa prior to testing.

Ranking of alloys will not in general be the same for static or fatigue loading as for rising load conditions as seen in Table 2. Slow-crack growth under static loading has been reported for A-286, JBK-75, and Nitronic®-40 at stresses substantially below the ultimate tensile strength, but not for Type 304L stainless steel.

The J-integral analysis of tensile data has been applied to tests of smooth and C-shaped specimens. Both J at maximum load and tearing resistance (change of J with crack length) are sensitive to alloy composition, crack orientation relative to deformation texture, and test environment. The susceptibility to hydrogen damage of several alloys was evaluated by the J-integral. Results were similar to evaluation based on reduction- in-area in smooth bar tensile test but more sensitive to orientation. The J-integral is more versatile than a ductility parameter as it is applicable to specimen designs that do not have an easily measured ductility parameter.

Helium embrittlement at ambient temperature has been found in five types of austenitic stainless steel: HERF Type 340L, HERF Type 316, HERF Nitronic[®] 40 (21-6-9 steel), HERF A-286, and annealed JBK-75 (a modified A-286). Helium was generated within the specimens by radioactive decay of tritium which had been diffused into the alloys at 420 K from high pressure (65 MPa) gas. Fracture toughness of the alloys decreased with increasing accumulation of helium. Damage was least in HERF Type 316 and greatest in HERF Nitronic[®] 40 and JBK-75. Sustained load tests indicate that the stress intensity for crack initiation and propagation also decreases with increasing helium concentration. Helium damage appears to be additive to the damage caused by the hydrogen isotopes and on a per atom basis appears to be more severe than hydrogen damage.

Additional observations on hydrogen damage may be derived from the data:

TABLE 1

Ranking of Hydrogen Damage*

Minimal	Moderate	Severe .
316	304N	CG-27
310	304L	17-4
	Inconel® 718	216
309S**	Nitronic®-40	Tenelon®
Nitronic®-50	A-286	18-18 Plus®
Incoloy® 800H	JBK-75	Ni
X18-3 Mn**	AM363**	AM350
Ni-SPAN-C**	18-2 Mn**	
Carpenter 20Cb-	3	

* Based on tensile ductility. Nominal compositions of these alloys are listed in Table AI.
** Ranking of these alloys is tentative.

TABLE 2

Hydrogen Damage Susceptibility

	Property or Relative Property*				
	Туре 316	Type 304L	A-286 (JBK-75)	Nitronic [®] - 40	
Tensile Properties (Rising Load)			<u></u>		
Notch Strength (H ₂ /He)	-	0.74	0.86	0.72	
Notch Ductility (H ₂ /He)	-	0.50	0.38	0.19	
Disc Burst Pressure (H ₂ /He) (Rising Load)	1.00	0.55	0.98	-	
Fatigue Life (H ₂ /He) (Fluctuating Load)	1.00	-	-	-	
Slow Crack Growth (Sustained Load)					
Threshold Stress Intensity	No Crack Growth Detected in HERF 132 MPa √	No Crack Growth Detected 100 MPa V m	44-116** MPa √m m	100 MPa √m	

* Values <1.00 show effect of hydrogen by comparison with data obtained in helium atmospheres.

^{**} Variable depending upon heat treatment and precipitate morphology.

- In Fe-Cr-Ni base alloys environmental hydrogen compatibility at room temperature is maximized for alloys containing 15 to 30% nickel. The role of other alloy elements has not been established, but small additions of molybdenum (2 to 3%) appear beneficial.
- In Fe-Cr-Ni-Mn alloys, hydrogen compatibility improves as nickel content increases. Manganese is not a substitute for nickel for hydrogen compatibility in spite of the fact that manganese like nickel stabilizes austenite.
- There is a ductility minimum in the temperature range 200-300 K where hydrogen damage is most pronounced. This ductility minimum is observed even in alloys which show minimal hydrogen damage and no fracture mode change such as Type 310 and 316 stainless steels.
- Nitrogen contents greater than about 0.3 wt % appear to aggravate hydrogen damage in Fe-Cr-Ni-Mn alloys.
- Impurities normally present in commercial austenitic stainless steels (silicon, manganese, sulfur, and phosphorus) do not appear to influence susceptibility to hydrogen damage relative to pure alloys. Segregation of these elements is potentially harmful, however.
- Increased strength with no loss or a small improvement in hydrogen compatibility is achieved by high energy rate forging (HERF) of austenitic stainless steels.
- The presence of hydrogen often evokes brittle fracture modes under loading and temperature conditions where ductile failure by microvoid coalescence ordinarily occurs. However, fractography by itself is not adequate to diagnose hydrogen assisted fracture in stainless steels because each brittle fracture mode has been observed under other conditions.

HYDROGEN DAMAGE

Hydrogen damage occurs to all structural alloys, including stainless steels.¹²⁻¹³ The widespread occurrence of hydrogen damage is directly connected to the easy absorption of hydrogen into metals and the high mobility of hydrogen in metals. Hydrogen interacts with lattice defects, impurities, and internal boundaries leading to a nonuniform distribution even for the equilibrium state. Consequently, hydrogen is segregated along boundaries and in regions of high stress or strain, thus localizing hydrogen damage in regions which are often favorable sites for microcrack initiation. Hydrogen segregation is more pronounced in ferritic than in austenitic steels because of the larger elastic strain of the hydrogen atom in the lattice of the ferritic steels.¹¹

There is no one physical process that is responsible for hydrogen embrittlement of metals.¹²⁻¹³ At least three distinguishable forms of hydrogen degradation are recognized: hydride embrittlement, hydrogen attack, and hydrogen-assisted fracture (HAF). The first two processes are understood reasonably well, whereas the last process has not yet been rationalized satisfactorily. Hydride embrittlement occurs in metals such as niobium, titanium, and zirconium, which form distinctive hydride phases which are thermodynamically stable under ordinary ambient conditions. These hydrides have a larger specific volume than the base metal from which they form and appear to be inherently brittle. The hydrides form structures with low crystal symmetry. Brittleness arises because of the limited number of slip systems available in these crystal structures.

Hydrogen attack applies to formation of a gaseous product by reaction of dissolved hydrogen with constituents such as oxygen and carbon or with oxides and carbides present in the alloy. At elevated temperature, steam or methane forms and generates microcracks containing the reaction gas under pressure. This form of hydrogen damage has been found in copper (steam embrittlement) and carbon steels (methane formation). The addition of nitrogen to stainless steels strengthens the austenite and creates a situation where reaction between hydrogen and nitrogen could produce ammonia and cause damage in the same way as oxygen or carbon. This form of hydrogen attack has not been reported, however.

Hydrogen-assisted fracture occurs in many metals, including the stainless steels. This form of hydrogen damage is characterized by the occurrence of a ductility minimum, an inverse strain rate sensitivity, and crack propagation under static load at a stress intensity less than the fracture toughness of the alloy. The nature and degree of the damage vary widely, however, depending on alloy composition, temperature, loading mode (static, cyclic, increasing), stress state, and the environment. Only a few valid generalizations can be made for hydrogen-assisted fracture of stainless steels because the above influencing factors have not been systematically investigated.

There is experimental evidence that internal boundaries may be needed for significant hydrogen damage to occur. Investigations of pure iron have demonstrated that the strength and fracture mode of single crystals are unaffected by hydrogen either precharged to the metal cathodically or charged during straining.¹⁴ Likewise, fracture of single crystals of pure nickel is unaffected by hydrogen.¹⁵ It is to be noted, however, that serrated yielding was observed during tensile straining of nickel at temperatures of 150 to 270 K, providing evidence of hydrogen binding to dislocations. In contrast, polycrystalline specimens of iron and nickel are known to be severely embrittled by hydrogen. No hydrogen damage studies have been attempted with single crystals of any stainless steel. However, crystals free of internal boundaries may not be attainable because of the ease of formation of annealing twins in these steels. As noted later in this report, hydrogen-assisted fracture of stainless steel frequently propagates along twin or grain boundaries. Furthermore, ductile fracture processes can be altered by hydrogen accumulation at inclusion-matrix interfaces by diffusion or a dislocation transport mechanism.¹⁶ Hydrogen may alter either nucleation or growth of microvoids, depending upon the nature of the inclusion-matrix or precipitate-matrix interfaces.¹⁷ Consequently, dimple size on fracture surfaces may be either decreased or increased by the presence of hydrogen.

MECHANICAL BEHAVIOR

Hydrogen has a pronounced effect on crack initiation and growth but only a small effect on deformation behavior. Therefore, mechanical properties that are sensitive to crack behavior are suited to hydrogen damage studies. The most severe tests involve high stress or large plastic strain. Fatigue and creep rupture are two such tests. However, tensile tests of smooth and notched round specimens have been the principal methods for evaluating the susceptibility of stainless steels to hydrogen damage because of low cost and simple test procedure. Change in reduction-in-area has been the most commonly used index of hydrogen damage. Generally, if there is a loss in reduction-in-area, other mechanical properties are affected also; however, the converse is not true. Consequently, the tensile test is of limited applicability as a screening test for susceptibility to hydrogen damage. Recently, J-integral techniques have been applied to analysis of tensile data of fatigue precracked specimens, either single-edge notched (SENT) or C-shaped. Impact specimens and internally pressurized tensile tubes have been tested in limited numbers.

Specimens have been tested following exposure to high-pressure (about 1 MPa to 69 MPa) hydrogen (internal hydrogen damage) or in the presence of high-pressure (69 MPa) hydrogen gas (external hydrogen damage). Tests with an external hydrogen source were conducted at room temperature only. In contrast, mechanical testing of hydrogen-charged specimens has been done at 4.2 and 78 K and at temperatures between 200 and 400 K.

Mechanical property data for the stainless steels that have been studied at SRL are collected in the Alloy Data Sheets. The tables are organized by alloy and by type of test for each alloy.

Material and Processing Variables Affecting Hydrogen Damage

There are distinct differences in the degree of hydrogen damage among the stainless steels. Alloy composition provides a simple scheme for classifying steels according to severity of hydrogen damage. Such a criterion does not, however, provide any insight into the reasons for the observed differences in response to hydrogen. Properties such as phase stability, stacking fault energy, or dislocation slip mode are related to composition and are directly related to the processes of crack initiation and propagation. Microstructure as established by heat treatment and mechanical processing modifies hydrogen damage for any given composition of steel. Thermal and mechanical treatments influence severity of hydrogen damage in a steel through changes in grain size, alloy and impurity segregation, precipitate size distribution and coherence, and dislocation substructures. Severity of hydrogen damage may be altered in practice by alloy composition, heat treatment, and mechanical processing. Examples of these effects are cited below.

Composition

Stainless steels considered in this report fall into two broad composition classes: iron-chromium-nickel and iron-chromiumnickel-manganese. The latter class of alloys all contain nitrogen which is added to strengthen the austenite.

Environmental embrittlement of iron-chromium-nickel alloys correlates with nickel content, as seen in Figure 1. These results were obtained from tensile tests in a 69 MPa hydrogen environment at room temperature. This correlation appears valid for both high purity and commercial grades of steel. Consequently, elements

FIGURE 1. Environmental Hydrogen Damage in Fe-Cr-Ni Alloys at Room Temperature and 69 MPa Hydrogen

present as minor alloy constituents such as manganese, silicon, phosphorus, and sulfur are not primary sources of hydrogen damage. As will be shown later, however, segregation of some minor alloying elements can alter the extent of hydrogen damage.

The composition range from 8 to 14% nickel, where the marked improvement in resistance to hydrogen damage occurs, corresponds to increased austenite stability and decreased formation of martensite during plastic deformation. According to the equilibrium diagram calculated by Breedis and Kaufman for pure iron-chromium-nickel alloys, austenite is the stable phase above 19% nickel for a 20% chromium alloy at 300 K.¹⁸ The high-purity alloys tested at SRL indicate that as little as 14% nickel will stabilize austenite with respect to transformation to a -martensite at room temperature. Furthermore, austenite stability with respect to transformation to the epsilon phase increases as the nickel content is increased from 10 to 20%. Figure 2 shows the composition dependence of stacking fault energy, which is a measure of austenite stability with respect to the epsilon phase.¹⁹ Both α -martensite and epsilon phase are detrimental, as resistance to hydrogen damage is rapidly improved over the range of nickel concentrations (10 to 20%) corresponding to increased austenite stability. However, as discussed later, the relation between martensite and hydrogen damage is neither simple nor clearly demonstrated.

Hydrogen damage in the Fe-Cr-Ni-Mn alloys as measured by ductility in high-pressure hydrogen does not correlate uniquely with nickel or with equivalent nickel [Ni + 30 (C + N) + 0.5 Mn]. For several compositions, Figure 3, a range of results may be obtained. This range of behavior is probably caused by variations in nitrogen content as documented for Nitronic[®] 40 (21-6-9 stainless steel).²⁰ The higher nitrogen contents not only strengthen the alloy but also reduce the stacking fault energy, thereby promoting coplanar dislocation arrays and formation of epsilon phase.²¹

The influence of other major elements such as chromium, manganese, and molybdenum on susceptibility to hydrogen damage is not well documented. Most commercial stainless steels contain 15 to 25% chromium with 18-20% being the most common concentration. Variations in hydrogen damage among the stainless steels cannot be linked directly to chromium because the other alloying elements change simultaneously. Chromium stabilizes ferrite, which is more susceptible to hydrogen damage than austenite, therefore, a high chromium content is expected to be detrimental.

Molybdenum appears to alleviate hydrogen damage when present in small amounts, 2-3%, as indicated by comparison of Type 316 with Type 304 stainless steel. However, Type 316 stainless steel also has a nickel content about 2% higher than Type 304 stainless steel. The higher nickel cannot account completely for the reduced

FIGURE 2. Stacking Fault Energies in Fe-Cr-Ni Alloys at Room Temperature (Ref. 19)

FIGURE 3. Environmental Hydrogen Damage in Fe-Cr-Ni-Mn Alloys at Room Temperature and 69 MPa Hydrogen

hydrogen damage because an alloy with 14% nickel with no molybdenum shows greater hydrogen damage than Type 316 stainless steel. Large concentrations of molybdenum (>5%) are expected to aggravate hydrogen damage because molybdenum stabilizes ferrite.

Manganese stabilizes austenite and should improve hydrogen performance of stainless steels. However, alloys with high manganese contents and little or no nickel such as Tenelon[®] (U. S. Steel Corp.) and 18-18 Plus[®] (Carpenter Technology) behave very poorly in hydrogen, Figure 3, indicating that austenite stability in itself is not sufficient to minimize hydrogen damage.

Heat Treatment

Heat treating has been shown to affect susceptibility to hydrogen damage in several ways: change of grain size, segregation or redistribution of impurities and alloying elements, and precipitation of new phases. The general patterns of variation in hydrogen damage with composition can be modified, therefore, by heat treatment.

The only study of the effect of grain size on hydrogen damage has been made with Type 304L stainless steel. As seen in Figure 4, flow stress was increased by finer grain size and the effect was greater in specimens that were saturated with hydrogen. Grain size effect on the yield strength of specimens tested in high-pressure hydrogen, was the same as for tests in helium, Figure 5. Presumably, comparable results would be obtained with the other alloys.

The grain size dependence of the flow stress (σ_f) follows the Hall-Petch relation, $\sigma_f = \sigma_0 + k_f d^{-1/2}$, where σ_0 and k_f are functions of strain and d is grain size. Analysis of the data demonstrates that hydrogen strengthening is associated with the back stress of dislocation pileups against internal boundaries and the increased resistance to dislocation intersection where hydrogen is present.²² Hydrogen causes only a small increase in lattice friction stress in keeping with the relatively small lattice distortion caused by an interstitial hydrogen atom in the face centered cubic lattice.¹¹

Sensitization of austenitic stainless steels occurs during heating to temperatures in the range 720 K to 1150 K, or upon cooling slowly through this range. Chromium-rich carbides of the general form $M_{23}C_6$, where M is chromium or iron, precipitate along the grain boundaries and deplete the boundary region of chromium. In nitrogen strengthened steels, the carbides may contain nitrogen also.

FIGURE 4. Hall-Petch Plot for Tensile-Text Specimens of Type 304L Stainless Steel at a Plastic Strain $\varepsilon = 0.05$

FIGURE 5. Hall-Petch Plot of Yield Strength for Type 304L Stainless Steel Tested in in High-Pressure Helium or Hydrogen Environments

The effects of sensitization anneals at about 920 K on hydrogen damage have been reported for Type 304,²³ 304L, 309S,²⁴ and Nitronic[®] 40 stainless steels. These investigations of hydrogenassisted fracture of sensitized austenitic stainless steel do not present a consistent or uniform set of mechanical property data. Consequently, comparison of relative strength or ductility changes due to sensitization are limited. In those cases where data were collected, sensitization appears to lower the tensile strength of the alloys both for tests in air and in hydrogen. The ductility of sensitized specimens in hydrogen was less than that of the solutionannealed specimens except for Type 309S steel, where no ductility change or intergranular fracture was observed. The anomalous behavior of sensitized Type 309S steel is not attributable to composition effects such as carbon/chromium ratio or carbon + nitrogen/ chromium ratio. Carbide precipitation was observed in all four alloys.

Hydrogen compatibility of precipitation hardenable alloys is sensitive to aging temperature and time. The fracture toughness of single-edge notched specimens of 17-4PH stainless steel varied substantially with aging. The most severe degradation occurred for the peak aged specimens. In the case of A-286, aging times of 4, 8, and 16 hours at 993 K resulted in small changes in fracture toughness and improved hydrogen compatibility for the shorter aging times.

Mechanical Processing

Parts for hydrogen service may be made from annealed or coldworked bar and cross-rolled plate, or HERF stock. Further coldworking may occur during fabrication. The various working processes introduce characteristic microstructural features, affect the mechanical properties, and may change susceptibility to hydrogen damage of the stainless steel.

Suceptibility to hydrogen damage observed in tensile tubes machined from cross-rolled plate was unchanged by prior cold-work of up to 25%, Figures 6 and 7. Specimens were filled with hydrogen at 69 MPa pressure and stored 30 days at 430 K before tensile testing at room temperature. The bore of the specimen contained highpressure hydrogen during testing.

In the case of thin sheet (0.1 mm thick), a progressive decrease in tensile ductility was found as prestrain was increased from 0 to about 12%, Figure 7.

In contrast, properties of annealed and 10% cold-worked sheet of Type 309S stainless steel were comparable. After three and a half months' exposure to hydrogen at 47.5 MPa at 345 K, tensile

FIGURE 6. Effect of Prestrain on Tensile Strength of Type 304L Stainless Steel Tubes in Air or Hydrogen

FIGURE 7. Effect of Prestrain on Elongation of Type 304L Stainless Steel in Air or Hydrogen

strength was 625 MPa for both alloys, and total elongations were 51 to 55% for the annealed sheet and 48 to 57% for the cold-worked sheet. Properties of annealed sheet were a 570 MPa tensile strength and 59 to 64% elongation prior to hydrogen exposure.

A British study on two stainless steel compositions showed that cold work increased susceptibility to hydrogen damage,²⁵ Figure 8. These steels have no counterpart among commercial stainless steels in the United Stated. The results further demonstrate that the effect of cold-working is greater in the 12Cr-12Ni alloy than in the 23Cr-21Ni alloy. Martensite is formed during coldworking of the former alloy, but not the latter alloy, and may account for their difference in behavior.

Tensile test data show that HERF alloys are more resistant to environmental hydrogen damage than either annealed or cold-worked alloys, Table 3. A similar result is observed for thermally charged specimens tested at room temperature. At lower test temperatures, the HERF specimens of Type 304L and Nitronic® 40 stainless steels are only marginally better than annealed specimens in terms of ductility. Yield and tensile strengths are higher in the HERF alloys, therefore, on the basis of retained ductility for a given strength level, the HERF alloys are superior to annealed alloys.

Specimens made of Nitronic[®] 40 cold worked 30% from HERF stock were slightly less ductile than specimens in the HERF condition during tests in high-pressure hydrogen, Figure 9. Tensile data also suggest a slight increase in susceptibility to hydrogen damage, Figure 10.

HERF develops a distinctive deformation pattern in stainless steels which has its origins in segregation in the ingot, and rolling of the plate before HERF. The effect of this pattern on susceptibility to hydrogen damage was evaluated by the J-integral. J_m , the critical force at maximum load (area under load deflection curve), and tearing resistance dJ/da (change in J with crack length, a, at maximum load), were evaluated for V-notch specimens of Type 304L, A-286, Nitronic® 50, and Nitronic® 40 stainless steels machined from HERF bars. Notches were oriented as shown in Figure 11 with respect to the forging pattern and fatigue precracked at a maximum stress intensity of 44 MPa \sqrt{m} . Specimens were tested in high-pressure helium or hydrogen and after prior exposure to deuterium at 69 MPa pressure for seven days at 520 K or three weeks at 620 K.

The deformation pattern caused by HERF processing affected J_m but not dJ/da for tests in high-pressure hydrogen or helium. The lowest values of J_m were for notches parallel to the flow lines, an effect especially pronounced in A-286 and Nitronic[®] 50

FIGURE 8. Effect of Prior Cold Work on Hydrogen Damage Susceptibility of Stainless Steels

TABLE 3

Mechanical Properties of HERF and Annealed Alloys in High-Pressure Gas

		Test*	Strength, MPa**		Ductility %	
Alloy	Condition	Environment	Yield	Ultimate	Elong	Ra
304L	Annealed	Не	186	565	74	81
		H ₂	206	503	48	33
	HERF	Не	490	660	43	77
		H ₂	490	670	41	69
310	Annealed	Не	179	483	67	82
		H ₂	186	486	66	79
	HERF	Не	470	606	21	71
		н ₂	460	620	24	70
Nitronic® 40	Annealed	He	352	689	58	78
		н ₂	358	696	59	77
	HERF	He	570	780	34	75
		H ₂	570	790	30	73
A-286	Annealed	He	724	1117	26	47
		H ₂	710	1131	34	49
	HERF	Air	875	1060	24	29
		H ₂	834	1110	27	32
CG27	Annealed	Не	806	1165	29	26
		н ₂	855	1117	10	12
	HERF	He	1070	1385	12	12
		н ₂	1034	1138	1	3

* He = 69 MPa He; $H_2 = 69$ MPa H_2 ; Air = 0.1 MPa air.

****** Yield = True stress at 5% strain.

Ultimate = True stress at maximum load.

FIGURE 9. Effect of Processing on Hydrogen Damage in Nitronic[®] 40 Elongation

.

FIGURE 10. Effect of Processing on Hydrogen Damage in Nitronic[®] 40 Strength

A. Cross Section of Bar Showing Forging Flow Lines

B. Parallel Orientation of Notch

.C. 45° Orientation of Notch

D. 90° Orientation of Notch

FIGURE 11. Orientation of V-Notch with Respect to Forging Flow Lines in Tensile-Test Specimens Machined from Bass of HERF Stainless Steels
stainless steel. However, hydrogen damage as measured by J_m was greatest for notches 90° to the flow pattern except for Nitronic[®] 40, where damage was greater for 0 and 45° orientations than for the 90° orientation. dJ/da was affected relatively less by hydrogen damage than J_m .

Changes in J_m and dJ/da caused by hydrogen charging prior to testing were alloy and orientation dependent. Hydrogen exposure of A-286 stainless steel decreased J_m and dJ/da. For Type 304L stainless steel, dJ/da was unaltered and J_m was decreased for 45° and 90° orientations. For Nitronic[®] 40, J_m and dJ/da were increased by hydrogen exposure prior to testing, possibly because of microstructural changes that occurred during hydrogen charging.

Effect of Martensite

The above results show that the effect of cold work on hydrogen damage is variable and may be linked to martensite. A study was made of the relation between martensite and hydrogen damage. Martensite was formed in annealed specimens of Type 304L austenitic stainless steel either by thermal or mechanical treatment. Specimen surfaces were electropolished to remove the deformed outer layer that is generated during machining. This layer contains some α' -martensite in Type 304L stainless steel. The volume fracture martensite formed by the various treatments was not measured directly, but the relative quantity of martensite was indicated by the magnetic response of the specimens. The specimens were pulled to failure in a high-pressure (69 MPa) hydrogen atmosphere following thermal or mechanical treatment. Thermal treatment consisted of quenching specimens to 77 K in liquid nitrogen and holding at temperature for 10 minutes. Three mechanical treatments were used: cold reduction of 12 or 26% by cold swaging, torsional strain (70-in. 1b) at room temperature or 77 K, and 10% tensile strain at room temperature or 77 K. Tensile strain at room temperature caused some transformation to ε -phase and α '-martensite formation.

Uniform elongation and plastic strain to failure for each of the treatments are reported in Table 4. Magna-gage® (American Instrument Company) readings following treatment and prior to tensile testing are given. Several important observations are apparent from inspection of the table: ductility is reduced when martensite is present prior to testing; hydrogen embrittlement does not correlate simply with volume fraction martensite, as the highest Magna-gage® readings (B) do not correspond to lowest ductility (F); the presence of an applied stress during the quench to 77 K suppresses transformation to α' -martensite (B, C, and D); the radial distribution of the martensite and possibly its orientation relative to the applied stress affect hydrogen embrittlement (B, C, F).

Treatment		Ductility Uniform Elongation	Fracture Strain	Magna-gage® Reading
Α.	Annealed-electropolished	79	1.31	0
В.	Immersed in liquid nitrogen for 10 min	51	0.45	90 - 100
c.	Applied torque and immersed in liquid nitrogen for 10 min	58	0.38	30
D.	Applied tensile stress and immersed in liquid nitrogen for 10 min	60	0.42	13
E.	10% plastic strain at room temperture	75	1.11	0
F.	7.9 Nm torque at room temperature	26	0.24	30

Effect of Martensite on Subsequent Environmental Hydrogen Damage in Type 304L Stainless Steel

Environmental Variables Affecting Hydrogen Damage

Degradation of mechanical properties by hydrogen depends upon several factors external to the specimen: temperature, hydrogen pressure, stress state, and strain rate. These factors control how much hydrogen enters the material and how rapidly solution and distribution of hydrogen occur within the specimen. Hydrogen redistribution to regions of high stress and the hydrogen diffusion rate relative to any imposed deformation rate directly influence severity of hydrogen damage.

Hydrogen Pressure

The severity of hydrogen damage in any alloy has been shown to relate directly to hydrogen pressure whether for hydrogen-charged specimens or for testing in a hydrogen environment. As seen in Figure 12, tensile ductility of Type 304L stainless steel falls off rapidly as hydrogen pressure is increased up to 14 MPa and then more slowly up to 69 MPa. Tensile strength of notched and fatigue cracked specimens also decreases from 780 to 660 MPa as the hydrogen pressure increases from 0.1 to 6.9 MPa. For most other alloys, testing has been at fixed hydrogen pressure of 69 MPa, and data do not exist for other pressures.

A pressure effect is seen in both tensile and threshold stress intensity data for Inconel[®] 718.²⁶ Tensile strength and reduction-in-area decrease linearly with square root of hydrogen pressure at pressure above about 10 MPa. The stress intensity at crack arrest for wedge opening loaded specimens at room temperature decreased from 90 MPa \sqrt{m} to about 42 MPa \sqrt{m} for hydrogen pressures of 20 MPa and higher.

Hydrogen gas pressures of 69 MPa have no significant effect on the mechanical properties of Type 310 stainless steel. However, severe hydrogen damage can be induced in Type 310 stainless steel by cathodic charging where the effective hydrogen pressure is extremely high (>>200 MPa).²⁷

Test Temperature

Hydrogen damage in stainless steels has been shown to be temperature dependent for alloys where appropriate testing has been done. The most severe damage occurs at 220-280 K. As seen in Figure 13, tensile ductility in several alloys is a minimum in this temperature range. There does not appear to be any significant difference between Fe-Cr-Ni and Fe-Cr-Ni-Mn alloys in this respect, Figure 14. Furthermore, the minimum ductility ratio is observed in this same temperature range even in alloys which are affected very

FIGURE 12. Effect of Hydrogen Pressure on Ductility of Type 304L Stainless Steel Tested to Fracture in Hydrogen at Room Temperature

FIGURE 13. Ductility Minima in Fe-Cr-Ni Alloys Charged with Deuterium at 69 MPa and 620 K for Three Weeks

FIGURE 14. Ductility Minima in Fe-Cr-Mn-Ni Alloys Charged with Deuterium at 69 MPa and 620 K for Three Weeks

little by hydrogen, such as Nitronic[®] 50, Type 310, and Type 316 stainless steels. It is not known yet if the threshold stress intensity for sustained load crack growth in these stainless steels follows a similar temperature dependence. However, the data for Inconel[®] 718 (Huntington Alloys) lead to the inference that K_{th} and tensile ductility have a similar temperature dependence.²⁶

The general trends of both test temperature and nickel content on hydrogen damage are illustrated in Figure 15 for three highpurity alloys of constant chromium content (about 18%). Isoductility lines sketched in this figure outline a region of significant hydrogen damage ($\varepsilon_p \leq 0.5$) at about 200-240 K that extends to 14% nickel.

Although most materials show a hydrogen-induced ductility minimum, the temperature of the minimum is not always around 220-280 K as in stainless steels. Pure nickel displays ductility minima around room temperature, at 220 K and at 150 K, but the 220 K minimum is the only one to persist over a wide range of strain rates $(10^{-1} \text{ to } 10^{-5} \text{ sec}^{-1})$.¹⁵ Maximum hydrogen damage in Inconel® 718 is at room temperature as measured by ductility, notched tensile strength, and threshold stress intensity.²⁶

Strain-induced martensite forms during low-temperature deformation of many austenitic stainless steels which are nominally stable at room temperature. For a given alloy, there is a temperature designated M_d , above which no martensite forms on deformation and below which deformation produces martensite. The amount of transformation per unit strain increases as the temperature is lowered below M_d . Table 5 lists approximate M_d temperatures for several of the austenitic steels that have been investigated. The appearance of brittle fracture and degradation of mechanical properties does not correlate with formation of strain-induced martensite. In particular, Type 316 stainless steel does not show a significant change in fracture strength or fracture mode between 250 K (no martensite) and 200 K (martensite present).

Magnetic measurements on specimens of Type 304L stainless steel strained incrementally at 200 K show that hydrogen suppresses formation of strain-induced martensite, Figure 16. However, hydrogen appears to enhance martensite formation during deformation at 250 and 298 K. Suppression of martensite formation was seen also in Tenelon® at 200 K and Nitronic® 40 at 78 K, Figure 17.

Stress State and Strain Rate

Plastic deformation and fracture characteristics are affected by stress state and strain rate. Severity of hydrogen damage,

FIGURE 15. Isoductility Diagram for Hydrogen-Charged Fe-Cr-Ni Alloys

Temperatures for Strain-Induced Martensite Formation

Alloy*	M _d Temp, K
304L	350
310	<4
316	220
1800H	<78
Tenelon®	200*
Nitronic [®] 40	~100
Nitronic [®] 50	~150
Α	>370
В	250
С	150

* Martensite forms at temperatures near 200 K, but not at either higher or lower temperatures.

FIGURE 16. Effect of Hydrogen on Strain-Induced Martenite Formation in Type 304L Stainless Steel

- 44 -

FIGURE 17. Effect of Hydrogen on Strain-Induced Martenite Formation in Tenelon® and Nitronic® 40

therefore, is also affected by stress state and strain rate. Different test methods may assess hydrogen degradation of mechanical properties differently, depending upon how stress state and strain rate influence hydrogen interactions with the alloys.

A biaxial stress state occurs during burst testing of discs. Hydrogen environment damage may be assessed by pressurizing discs of the same material with helium or hydrogen gas and measuring the burst pressure.²⁸ A ratio of burst pressures of one indicates no hydrogen damage, whereas ratios greater than one indicate hydrogen damage with severity of damage increasing as the ratio increases. Steels such as A-286, Type 310, and Type 316 are relatively immune to hydrogen damage in this test; CG-27 behaves poorly; and Type 304 or 304L are variable, depending upon the treatment prior to testing. The ranking of the alloys in the disc burst test is generally the same as for notch tensile tests in helium and hydrogen for a pressure of 69 MPa.

Notch Tensile Tests. Stress concentration and plastic constraint at the root of a notch can increase the severity of hydrogen damage under some circumstances. Notched specimens of Type 304L and Nitronic[®] 40 stainless steels tested in high-pressure hydrogen at room temperature illustrate the notch effect. The strength and ductility of the notched specimens are degraded more than that of the smooth specimens, Figures 18 and 19. In contrast, ductility loss in notched specimens of hydrogen-charged Type 304L stainless steel was less than in smooth specimens, Table 6. However, absolute ductility of the notched specimens is less than for smooth specimens. Hydrogen charged specimens of Nitronic[®] 40 were more severely damaged when notched than when smooth, as was the case for tests in a hydrogen environment.

J-Integral Analysis. C-shaped and notched specimens were fatigue cracked and then tested in hydrogen or helium at 69 MPa pressure. Susceptibility to environmental and internal hydrogen damage was evaluated by comparing J-integral values at maximum load (J_m) and dJ/da for four stainless steels machined from HERF bar stock. Ranking of the alloys was not consistent and depend on which specimen orientation was chosen for the comparison (Table 7).

Based on plastic strain to failure (reduction in area), HERF Type 304L stainless steel is more susceptible to environmental hydrogen damage than HERF Nitronic[®] 40 stainless steel in direct opposition to the ranking based on J_m . These measures of hydrogen damage are biased differently, however, with respect to deformation and fracture. J_m depends on flow stress and plastic strain up to the point where crack advance is assumed to begin. Plastic strain to failure, on the other hand, is affected strongly by the ability of the alloy to neck down without breaking and is effectively sampling a region of deformation not included in J_m .

a.

۲

.

FIGURE 18. Relative Effect of Hydrogen on Properties of Sensitized Type 304L Stainless Steel

- 47 -

,

FIGURE 19. Environmental Hydrogen Damage in Nitronic[®] 40 Stainless Steel at Room Temperature

Effect of Hydrogen Charging on Tensile Properties of Type 304L Stainless Steel

Condition	Specimen	Nominal Tensile Strength, MPa	Plastic Strain <u>To Failure</u>
As received	Smooth	600	1.50
	Notch	770	0.30
Annealed*	Smooth	600	1.43
	Notch	710	0.24
Hydrogen charged**	Smooth	530	0.37
	Notch	580	0.13

* Annealed 200 days at 380 K in argon.

** Exposed to hydrogen gas at 69 MPa for 200 days at 380 K.

TABLE 7

Ranking of Hydrogen Compatibility (HERF Stainless Steels)

Environmental Hydrogen				
J _m	dJ/da	Tensile* Ductility		
A-286**	A-286 Nitronic [®] 40**	Nitronic [®] 40		
304L Nitronic® 40	Nitronic [®] 50**	304 L		
Nitronic [®] 50**	304 L			

Internal Hydrogen				
	/ .	Tensile*		
J _m **	dJ/da	Ductility		
Nitronic [®] 40				
Nitronic® 50	Nitronic® 50	Nitronic® 40		
	Nitronic [®] 40			
304 L	304 L	304 L		
A-286	A-286			

* Orientation dependence not measured. ** Ranking is orientation dependent. Furthermore, compact tensile specimens such as the C-shaped specimens of this study are not susceptible to unstable plastic tearing, whereas tensile specimens can be driven to tearing instability by internal microcracks in the necked region.

There is agreement in ranking of HERF Type 304L and HERF Nitronic[®] 40 stainless steels between tensile ductility and tearing resistance, dJ/da. In both cases, HERF Nitronic[®] 40 stainless steel is less susceptible to hydrogen damage. In this comparison, both parameters are influenced by the deformation and crack growth processes that succeed the onset of crack growth at load maximum.

Static Loading. Static loading may lead to slow-crack growth in high-pressure hydrogen in some stainless steels, Figure 20.²⁶,²⁹⁻³³ The only alloys where crack growth was not seen had yield strengths below 800 MPa. The specimens were too thin to permit reaching a stress intensity high enough to cause crack growth. In all cases, the threshold stress intensities are substantially less than the fracture toughness. The scatter band for fracture toughness derives from valid J-integral tests made at 4.2 or 77 K. K_{IC} may be higher or lower at room temperature depending upon the steel. 34-35

Crack propagation has been observed in notched specimens of Type 304 stainless steel at stresses equal to 80% of the ultimate tensile strength.²⁹ These tests were in dry hydrogen at one atmosphere pressure at room temperature. A notched tensile specimen of Type 304L stainless steel failed after 41 hours in air under a stress of 490 MPa, or 85 percent of the notch tensile strength. This specimen had been exposed to D/T for 200 days at 69 MPa and 380 K. An unexposed control specimen survived 200 hours at 650 MPa (85% of notch tensile strength) without failure. In another experiment with smooth specimens of Type 304L stainless steel, no crack growth was observed after cathodic charging for stresses close to the ultimate tensile strength.³⁰ As seen in Table 8, a pre-existing crack did not progagate in Type 304L stainless steel tensile tube until the stress reached a very high level. Also, crack growth has not been observed in Type 310 stainless steel at 80% of the ultimate strength.²⁹ In A-286 stainless steel, hydrogen enhanced crack growth was observed at stresses above the yield strength, but tensile properties were unaffected by exposure to 69 MPa hydrogen.³¹ The threshold stress intensity for crack growth in 35 MPa hydrogen was less than 113 MPa \sqrt{m} compared to greater than 154 MPa √m in helium.

Measurements of sustained-load cracking were made on a modified A-286 stainless steel (JBK-75) in hydrogen gas at 100 and 200 MPa pressure.³² Yield strengths varied from 690 to 930 MPa with different thermomechanical treatments. Crack advance was intergranular

FIGURE 20. Hydrogen Effects on Crack Growth in Stainless Steels

Net Section Stress, MN/m ²	Time, l Incremental	Accumulated	Crack Growth
600	325	325	No
641	72	397	No
682	72	469	No
724	72	541	No
765	72	613	No
786	l.4 (failed)	614.4	Yes

Stress Necessary for Slow-Crack Growth in Type 304L* Stainless Steel

* Crack developed during room temperature tensile test in hydrogen environment; net section stress when tensile test was stopped was 772 MN/m². Specimen then loaded in creep frame at indicated stresses without removal from the hydrogen environment.

.

at threshold stress intensities of 110 to 44 MPa \sqrt{m} . The presence of grain-boundary precipitates led to the lowest threshold stress intensities. Slow-crack growth was also seen in Nitronic[®] 40, where the threshold stress intensity was around 100 MPa \sqrt{m} . Sustained load crack growth was not observed in HERF Type 304L, HERF Type 316, or HERF Nitronic[®] 50 stainless steels at either 100 or 200 MPa hydrogen pressure.³²

Inconel® 718 is the only alloy for which hydrogen compatibility has been systematically evaluated by several test methods.²⁶ Mechanical tests included notched- and smooth-bar tensile tests, lowand high-cycle fatigue, fracture mechanics, disc pressure tests, and stress rupture. Ductility of notched tensile specimens and fatigue life were more severely degraded than the other properties. Notched tensile and disc pressure tests were sensitive to hydrogen damage at pressures below about 6.9 MPa. These results and tests on other materials suggest that notched tensile and disc pressure tests are suitable for screening alloys for possible hydrogen service. However, selection of a test method for more detailed investigation depends not only on sensitivity of the method and severity of degradation but also on how well the test duplicates loading conditions and hydrogen pressures for the intended service application and possible material flaws.

Strain Rate. Hydrogen-assisted fracture in Type 304L stainless steel displays an inverse strain rate effect. This effect is common in all metals where hydrogen-assisted fracture is observed. The more usual strain rate effect, observed in lowtemperature brittleness of carbon steels for example, is for higher strain rates to increase brittleness. The inverse strain-rate effect in hydrogen-assisted fracture has been cited as evidence that hydrogen diffusion to high stress regions is necessary for embrittlement.

FRACTOGRAPHY

Detailed examination of fractured specimens has been carried out in recent years by scanning electron microscopy (SEM) which is the basis for the descriptions of fracture modes in this section.

Fracture Modes

Ductile fracture of stainless steels occurs ordinarily by a process of microvoid coalescence. Decohesion at the matrixinclusion interfaces or fracture of brittle inclusions creates microvoids. The material between the voids fails by localized flow or shear. This process originates throughout the individual grains with no preferred fracture path, leading finally to the common cup-cone or slant fracture. Hydrogen-assisted fracture of stainless steels is not associated with a unique fracture mode. On a macroscopic scale, fractures are mixed mode, partly flat, and partly slant or a modified cup-cone fracture. The microscopic fracture modes observed in hydrogen-assisted fracture of stainless steels are microvoid coalescence, cleavage, twin-boundary parting, intergranular separation, and interphase separation. In the following section, these fracture modes are described and related where possible to alloy composition, treatment, and external conditions, such as temperature and stress state.

Microvoid Coalescence

Most hydrogen-assisted fractures of stainless steels are, to some extent, ductile, with areas of dimpled fracture evident even when gross ductility is only 10 to 20%, Figure 21. With some alloys and test conditions, a change in dimple size is evident for the HAF. Dimple diameters were measured for several Type 304L stainless steel specimens, both with and without prior exposure to hydrogen. The average dimple size in HAF was always smaller than that for fracture of hydrogen-free specimens. Loss of tensile ductility has been correlated with change in dimple size for austenitic steels. The larger the change in dimple size, the greater the ductility loss. However, the results from tensile tests of Type 304L steel at 250 and 270 K do not fall on the published curve, which was derived from room temperature tensile tests.¹⁷

Twin-Boundary Parting

Twin-boundary parting, in Figure 22, was the characteristic mode of HAF in Type 304L stainless steel, Tenelon[®], and Nitronic[®] 40. The incidence of this fracture mode was strongly dependent on temperature and composition. For example, twin-boundary parting was observed in Type 304L stainless steel but not in Type 316 stainless steel. The most clearly defined examples of twin-boundary parting occurred at test temperatures of 200 to 250 K in Type 304L stainless steel, at 78 and 200 K in Tenelon[®] and at 200 K in Nitronic[®] 40. Twin-boundary parting is observed in Tenelon[®] at 78 K even when there is no hydrogen present.

Examination of numerous fractures has shown that twin-boundary parting is characterized by the following features:

- A single facet extends over one grain only.
- Facets usually have steps about 5 µm in height.
- Traces of deformation bands in the underlying grain are visible.

FIGURE 21. Dimpled Fracture of Type 304L Stainless Steel

FIGURE 22. Twin-Boundary Parting in Type 304L Stainless Steel. High Energy Rate Forged. Tested at 200 K.

- Opposing halves of the fracture match and interlock.
- Facets are slightly curved because of lattice bending prior to separation along the twin boundary.
- River patterns characteristic of cleavage are never seen.

On a longitudinal section of a tensile specimen, twin-boundary parting shows as microcracks throughout the deformed portion of the specimen. Microcracks form on boundaries oriented roughly transverse to the tensile axis, Figure 23. The frequency of occurrence of microcracks correlates with the temperature of maximum hydrogen damage, Table 9, just as the number of facets on the fracture face varies with temperature, Figure 24. Multiple nucleation of microcracks is seen also, Figure 25, and suggests that twin-boundary parting proceeds by the linking of many cracks which nucleate at intersections of deformation bands with the twin-boundary. Acoustic emission confirms the notion that crack growth is by many small steps rather than one abrupt energy release.

Transgranular Cleavage

Transgranular cleavage was a form of HAF observed in ferritic and martensitic stainless steels. For example, the fracture mode of 17-4PH was predominatly transgranular cleavage as seen in Figure 26. This fracture mode can yield facets similar to those of twin-boundary parting, but the facets are readily distinguished at high magnification by the occurrence of river patterns.

Intergranular Separation

Intergranular separation was characteristic of HAF of alloys containing more than about 30 or 35% nickel but was not limited to these alloys. Commercial grades of nickel displayed the most clearly delineated intergranular separation, Figure 27. However, specific thermal treatment could evoke intergranular separation in most alloys. In the case of nickel, intergranular separation was increased by prolonged heating at 770 K.

Intergranular separation has been observed in C-shaped specimens of HERF Nitronic® 40 and A-286 stainless steel also, Figure 28. Precharging with hydrogen is needed to evoke the intergranular separation. The presence of intergranular fracture in C-shaped specimens and its absence in smooth bar tensile specimens suggests that stress state affects fracture mode in stainless steels. There is a bending moment on the C-shaped specimens which is absent in a tensile test.

Test	Microcrack 1	requency (Number Cracks/cm ²)
Temp, K	Type 304L	<u>Tenelon®</u>	Nitronic [®] 40
380	0	905-	0
348	-	0	
298	-		60
273	90	900	
248	150	48587	230
198	1800	1100	1400
78	0	(4)*	0

Occurrence of Microcracks in Hydrogen-Saturated Austenitic Stainless Steel

* Number of microcracks observed in close proximity to the fracture surface.

All specimens saturated with deuterium at 69 MPa pressure at 570-620 K.

FIGURE 24. Variation of Facet Appearance with Test Temperature in Type 304L Stainless Steel

a) On Twin Boundary

b) On Grain Boundary

FIGURE 26. Transgranular Cleavage in 17-4 PH Precipitation-Hardenable Stainbless Steel

FIGURE 27. Intergranular Separation in Nickel and Inconel® 718

FIGURE 28. HERF Nitronic[®] 40, Orientation 1. Integranular Fracture in Hydrogen.

Intergranular fracture paths were observed after tensile tests in a hydrogen environment in sensitized specimens of Type 304L, 304,²³ and Nitronic[®] 40 stainless steel but not Type 309S.²⁴ Moreover, the presence of an intergranular fracture does not appear to be contingent upon apparent continuity of the carbide phase. Continuous carbides and intergranular fracture were observed in Type 304 and Nitronic® 40 stainless steels, but no intergranular fracture occurred in Type 309S stainless steel in spite of formation of continuous grain-boundary carbides. Furthermore, extensive intergranular fracture took place during failure of Type 304 stainless steel where carbide precipitation was discontinuous. In the case of Type 304L steel, a distinct difference in fracture appearance was noted which depends upon the frequency of occurrence of grain boundary carbides. An intergranular fracture path occurred only when the carbide network was nearly continuous on at least some grain faces. Otherwise, the fracture was mixed void coalescence and partially brittle but not intergranular.

Although continuity of carbide precipitation on grain faces appears to be the dominant factor controlling the fracture path, one or more other factors must be present to explain the above observations. Phosphorus segregation to the grain boundaries and possible formation of an (Fe, Cr) Ni-P surface phase have been demonstrated as the cause of temper embrittlement of Type 304 stainless steel.³⁶ Intergranular fracture at 150 K was observed on notched tensile specimens annealed 2 hours at 920 K. Surface segregation of phosphorus is also found by Auger electron spectroscopy after vacuum annealing at 820 to 1020 K. These studies suggest that phosphorus may be a factor in causing intergranular fracture of sensitized austenitic steels, but experimental data are inadequate to confirm the possibility.

Interphase Separation

HAF in austenitic steels often propagates along interphase interfaces such as austenite-martensite or austenite-ferrite interfaces. Welds in austenitic steels, such as Type 304L, contain several percent of δ -ferrite which forms during solidification of the weld bead. The presence of the δ -ferrite helps prevent hot shortness or weld cracking but is a preferred path for crack propagation in the presence of hydrogen, Figure 29a.

Some stainless steels are unstable when deformed and transform to ε -martensite (a HCP lattice) or α -martensite (a BCC lattice). Again the interfaces between the austenite and either form of strain-induced martensite are likely crack paths. Fracture surfaces in these cases have a crystallographic appearance with many intersecting planar facets, Figure 29b. In Type 304L steel, this fracture path is common around room temperature in specimens that have been precharged with hydrogen prior to deformation.

- 63 -

a) Austenite-Ferrite Interface in Type 304L Weld Metal

b) Austenite-Martensite Interface in Type 304L

FIGURE 29. Fracture Along Interphase Interfaces in Austenitic Steels Fracture along austenite-martensite interfaces in Type 304L stainless steel appears more common around room temperature than at lower temperatures. Twin-boundary parting dominates the fracture at 200-250 K and microvoid coalescence is seen at 78 K. Clearly, the operative fracture path is very sensitive to test temperature.

Correlation of Fracture Mode With Composition

Fracture modes for HAF of iron-chromium-nickel alloys vary with percent of nickel in the alloy, Figure 30. Alloys such as 17-4PH with only 4% nickel fail by transgranular cleavage. As the nickel content increases, the steels become austenitic (metastable), and fracture by twin-boundary parting appears at around 10% nickel. A region of dimpled fracture occurs from 15 to 25 or 30% nickel, which is gradually supplanted by intergranular separation as the nickel content increases. However, there were only a few alloys in which only a single fracture mode was observed. In most instances, two or more fracture modes occurred, one of them being microvoid coalescence.

Alloy composition is a controlling factor in HAF in two ways: 1) the base alloy determines slip character and phase stability during straining, and 2) impurity and trace elements may be strongly segregated and induce intergranular separation either alone or in combination with hydrogen. Planar slip is associated with lownickel austenites and leads to high-stress concentrations at slip barriers, such as inclusion, twin, and grain boundaries. Sites of high-stress concentration may act as microcrack nucleation centers. especially in the presence of hydrogen, which may lower the cohesive strength. Austenite stability under strain is also correlated with nickel content. Formation of deformation twins, ε -phase, and a-martensite occurs more readily with lower nickel concentrations. Both slip planarity and phase stability are related to stackingfault energy. Greater resistance to hydrogen damage in austenitic steels has been correlated with higher stacking-fault energy. The transition from twin-boundary parting to dimpled fracture at around 12 to 14% nickel correlated with an increase in stacking-fault energy to over 30 or 40 mJ/m².

Intergranular separation in all of the stainless steels may be attributable to impurity segregation. Sulfur in high-nickel alloys and phosphorus in austentic steels are known to cause intergranular failures. These impurities are not the only causes of intergranular fracture, however. Sensitization of austenitic steels leads to carbide pecipitation and grain-boundary regions depleted in chromium and causes intergranular fracture in Type 304L stainless steels. These examples illustrate the sensitivity of HAF to relatively small changes in either base alloy composition or impurity content. Control of melting, casting, and mechanical and thermal

FIGURE 30. Composition Regimes for Fracture Modes Observed in HAF of Iron-Chromium-Nickel Alloys

processing becomes more important for hydrogen service than for service in air. Small changes in local composition due to variations in process control can develop conditions for HAF in an otherwise resistant alloy.

HELIUM EMBRITTLEMENT

The hydrogen isotopes are alike in their short-term chemical effect on the properties of stainless steels. Long-term effects differ, however, because tritium decays with a 12.35 year half-life to helium-3 by emission of a low energy (5.7 keV average) beta particle, whereas protium and deuterium are stable. Helium is known to embrittle many metals but normally elevated temperatures are required for an observable effect.³⁷ Exposure of metals to tritium causes "hydrogen damage," which occurs immediately and slowly diminishes as tritium decays, as well as helium embrittlement, which becomes significant after tritium decay has generated sufficient helium. Helium damage is additive to the damage caused by the hydrogen isotopes and has been identified in Armco® (Armco, Inc.) iron - and niobium as well as in several grades of stainless austenitic steel.

The earliest studies of the effects of helium-3 on the mechanical properties of stainless steel were reported in 1975.³⁷,38 Foil specimens (0.025 cm thick) were exposed to 47.5 MPa tritium at 343 K for 17 months; helium build-in was estimated at 6.2 mol $He(STP)/m^3$. Subsequent tests at room temperature indicated that the exposure increased the yield strength, but had little effect on the ductility of the Type 309S steel specimens, although the ductility of Type 304L steel was lowered. Microvoid coalescence was the primary fracture mode. Helium bubbles about 5 nm in size were found in both steels in grains and on grain boundaries.

Transmission electron microscopy of samples charged with tritium showed gas bubbles formed on dislocation networks (Figure 31), and grain boundaries following a 0.5 hour anneal at 973 K. Further a tensile test at 973 K showed that the helium, which had built in , during the charging, agglomerated during the test, which caused the fracture mode to change from ductile rupture to intergranular separation and reduced the strength and ductility of both Type 309S and 304L stainless steels.

Helium damage at ambient temperature was convincingly demonstrated in smooth-bar tensile specimens (2.5-cm gage length and 0.356-cm diameter) of HERF Nitronic[®] 40 stainless steel gas-phase charged with tritium at 64 MPa at 470 K for 1450 hours and aged

1

ł

FIGURE 31. Helium Bubbles in Type 304L Stainless Steel. Tritium Charged, Aged, and Annealed at 1273 K

5.5 years at 250 K. Comparison specimens of Type 304L stainless steel were only affected a small amount by the same treatement.³⁹ Tritium and helium distributions in the specimens are nonuniform for these charging conditions. Some of the charged specimens were tested at 298 K immediately after charging, and others were stored from five to seven years at 250 K before testing, Tables 10 and 11. After 5.5 years' storage, helium concentrations were about 100 mol He(STP)/m³ at the surface of the Type 304L steel specimen and about 174 mol He(STP)/m³ in the Nitronic[®] 40. Average concentrations over the specimen cross section were 31 and 52 mol He(STP)/m³.

These test results show:

- Hydrogen and tritium reduce ductility of both Type 304L and Nitronic[®] 40 stainless steel (Tables 10 and 11).
- 2) There was only a small change in the mechanical properties and no change of fracture mode in Type 304L stainless steel with 100 mol $He(STP)/m^3$.
- 3) A drastic reduction in ductility and a change in fracture mode from microvoid coalescence to intergranular separation occurred in Nitronic[®] 40 stainless steel (Table 11) with 174 mol He(STP)/m³.

There was a high density of small defects in the tritiumcharged and aged Nitronic[®] 40 stainless steel, Figure 32. Contrast analysis of the strain fields produced by these defects indicated that they were helium bubbles approximately 5 nm in size. The size and density of bubbles $(2 \times 10^{16} \text{ bubbles/cm}^3)$ was consistent with the estimated helium content of the specimen. Measurements of the images produced by these defects indicate a misfit strain of about 0.017. Rather than being located at grain boundaries, the bubbles were dispersed throughout the matrix. A few bubbles were found in the Type 304L stainless steel specimens, in keeping with the lower helium content. Helium is known to cause intergranular fracture by the formation of intergranular helium bubbles at high temperatures $(T/T_m = 0.5)$, where helium migration to internal boundaries can occur.³⁷ Data for Types 304L and 309S stainless steel and Armco[®] (Armco, Inc.)⁴⁰ iron charged with tritium have shown helium embrittlement with only 0.2 mol $He(STP)/m^3$ can occur after a high-temperature anneal or testing at a high temperature.

HERF Nitronic[®] 50 and welds in Type 304L stainless steel have shown ductility losses associated with helium-3.⁴¹ Calculated helium concentration profiles in these specimens were similar to those in the HERF Nitronic[®] 40 and HERF Type 304L stainless steels but the surface concentration of tritium was higher. All fractures in the HERF Nitronic[®] 50 and welds of Type 304L stainless steels were ductile.

Mechanical Properties of HERF Type 304L Stainless Steel

Exposure Conditions	Streng Yield	th, MPa Ultimate	Total Elongation, %	Plastic Strain to Fracture
None	630	790	32	1.83
69 MPa H ₂ at 480 K, 55 days	600	840	35	0.87
47 MPa T ₂ at 480 K, 17 months and aged 5.5 years at 250 K	620	745	33	0.73

TABLE 11

Mechanical Properties of HERF Nitronic[®] 40 Stainless Steel

Exposure Conditions	Strengt Yield	th, MPa Ultimate	Total Elogation, %	Plastic Strain to Fracture
None	800	930	29	1.20
30 MPa H ₂ at 480 K, 56 days and aged 7 years at 250K	845	990	28	0.76
65 MPa T ₂ at 480 K, 60 days	830	940	32	0.73
47 MPa T ₂ at 344 K, 17 months and aged 5.5 years at 250 K	870	925	6	0.10
ORNL - Photo 3598-80

a) Hydrogen charged 69 MPa at 470K

and aged 5.5 years

b) Tritium charged 47.5 MPa at 345K and aged 5.5 years

FIGURE 32. Microstructures in HERF Nitronic[®] 40

A new investigation of helium effects was begun and is still in progress.⁴⁶ Notched C-shape specimens 3.8 mm thick and 25 mm outer radius were machined from five stainless steels: Type 304L, Type 316, Nitronic[®] 40, A-286, and a modified A-286. The modified A-286 was in the annealed condition, all others were HERF. Specimens were not fatigue precracked. The specimens were exposed to tritium at 61 MPa pressure at 422 K for six months.

Calculated tritium concentrations in Type 304L stainless steel were 270 mol $T_2(STP)/m^3$ at the surface and 60 mol $T_2(STP)/m^3$ at the center based on the hydrogen solubility equation of Louthan and Derrick.⁴³ Tritium and helium contents average over the cross section were 167 mol $T_2(STP)/m^3$ and 10 mol He(STP)/m³. Following the 15-month ageing, average tritium and helium contents were 160 mol $T_2(STP)/m^3$ and 24 mol He(STP)/m³. Actual concentrations in Nitronic[®] 40 are probably higher since measurements of hydrogen solubility at 470 K have shown that hydrogen solubility is 70% higher than in Type 304L steel.⁴⁴

Tensile tests were run immediately after exposure and following 15 months' storage at 273 K. Control specimens were exposed to air at 422 K for six months and stored at low temperature. Tensile tests were made in air at room temperature and the load-deflection curves were analyzed by the J-integral technique.⁴⁵ J-integral at maximum load (Jm) and deflection at maximum load are given in Table 12 for the several test conditions.

The data demonstrate that helium has degraded the mechanical properties of all five steels. Immediately after the six-month exposure, the difference in Jm between the control and charged specimens was due mostly to the tritium with only a small helium effect. After 15 months' storage at 273 K, the difference between charged and control specimens was due to the additional helium generated during storage. HERF Type 316 and HERF Type 304L stainless steels were affected the least by the helium, and HERF Nitronic[®] 40 and annealed A-286 (modified) were affected the most. The occurrence of a large helium effect in Nitronic[®] 40 was not surprising, as a comparable result was observed earlier.⁴⁰ The difference in response to the presence of helium shown by HERF A-286 and annealed A-286 (modified) appears to be associated with microstructural differences arising from prior thermal or thermo-mechanical treatments. Composition differences between the two varieties of A-286 are small and probably contributed little to the relative helium effect.

Sustained load tests were initiated after 22 months storage on all steels except modified A-286. Loads corresponded to 80 percent of the fracture load that was measured after 15 month's storage. Rapid crack growth occurred in Nitronic[®] 40 and A-286 stainless steels but has not yet been detected in Type 316 or Type 304L after five months under load. The latter tests are continuing.

TABLE 12

Tritium and Helium Effects on Fracture Toughness of Stainless Steel

			Fracture		
		Deflection at	Toughness		
Alloy	<u>History*</u>	Max. Load, mm	Jm, kJ/m ²		
304L	С	3.71	1280		
HERF	Т	1.55	360		
	C + A	3.33	1120		
	T + A	1.32	190		
A-286	С	1.95**	610**		
HERF	Т	1.80	530		
	C + A	1.70	350		
	T + A	1.14	130		
Nitronic® 40	С	2.67	1200		
HERF	т	1.50	480		
	C + A	2.62	960		
	T + A	1.02	75		
316	С	3.51**	1500**		
HERF	Т	2.39	890		
	C + A	2.97	950		
	T + A	2.03	630		
A-286	С	2.86	840		
(modified)	Т	1.50	350		
Annealed	C + A	2.79**	680**		
	T + A	0.84**	70**		

* C - Control

C + A - Control + Aged

T - Tritium Charged

T + A = Tritium Charged + Aged.

** Single Specimen. All others in duplicate.

The fracture mode tended to change from void coalescence to intergranular in all alloys except HERF Type 316. Fracture of annealed A-286 (modified) was partly intergranular after tritium charging and entirely intergranular after subsequent aging. Intergranular fracture was evident in isolated areas of the Nitronic® 40 after tritium charging and became dominant after aging. Both Type 304L and Type A-286 stainless steels failed by mixed fracture (void coalescence and intergranular) after charging and aging, whereas only void coalescence was observed in the tritium charged specimens of these alloys.

Helium and hydrogen (tritium) damage occurred simultaneously, and no attempt was made to factor the measured damage between the two causes. The magnitudes of the two effects will change with time, as the tritium decays to helium. The data accumulated so far suggest however, that helium damage is more potent than hydrogen (tritium) damage for equal atomic concentrations of the two elements. There were decreases in Jm of 50 to 90% as a consequence of the 15-month aging during which time the average helium content increased by a factor of 2 and the average tritium content decreased by 4%.

Distribution of the helium within the specimens has not been established as yet. In the Nitronic®-40, helium is presumably distributed in fine bubbles throughout the matrix as in the earlier specimens. There is no reason to believe that this same helium distribution should apply to the other alloys, particularly when their widely differing microstructures are taken into account. For example, fine carbo-nitride particles occur more commonly in Nitronic[®] 40 than in Type 304L or Type 316 stainless steels, and both varieties of A-286 may contain gamma prime (Ni3[A1, Ti], eta (Ni₃Ti) and TiC phases in varying quantities and distributions. All of these phases could act as traps for tritium and thus create localized high helium concentrations or bubbles which would be distributed within the alloy in the same manner as the phases. Severity of helium damage would be related then to trap characteristics such as, quantity of trapped tritium at the interface, interface coherency and whether the trap were reversible or irreversible. However, the relation between helium damage and the trap characteristics need not be the same as between hydrogen damage and trap characteristics because the strain fields of helium and hydrogen differ and hydrogen is chemically reactive.

CONCLUSIONS

Substantial progress has been made in identifying important material and processing variables which influence hydrogen compatibility of stainless steels. The results provide guidance in alloy selection and thermomechanical processing for a limited range of hydrogen pressures (to 69 MPa), operating temperatures (78-400 K), and mechanical loading conditions (constant or rising load). However, there are service conditions for which data are inadequate to allow selection of a reliable alloy or prediction of its service life.

Several unresolved issues remain that are important to utilization of stainless steel in environments where hydrogen isotopes are present:

- The relative importance of base alloy composition, precipitate structure and morphology, and mechanical processing in attaining high strength (>900 MPa yield strength) with good hydrogen compatibility (K_{TH} >80 MPa√m) is not certain.
- Selection of alloys for low hydrogen pressure (0.01 to 10 MPa) applications has not been systematically examined. Pressure limits and acceptable temperature ranges have not been correlated with service life and stress states for low pressure service, particularly at elevated temperatures (T >400 K) where hydrogen attacks occur and creep conditions are encountered.
- Segregation of alloy elements, impurities, and hydrogen can adversely affect hydrogen compatibility in an alloy otherwise acceptable for a given service. The relationships of segregation to hydrogen compatibility on the one hand and to processing variables and control on the other have not been examined in detail.
- Mechanical test techniques need to be analyzed and compared to permit selection of those methods which best relate to and predict hydrogen compatibility for given service conditions (loading, hydrogen pressure, and temperature). J-integral methods were investigated to characterize ductile fracture and hydrogen degradation of tough alloys such as austentic stainless steels. Initial results were encouraging and suggest continued development of experimental and analytical procedures.

- Mechanisms of hydrogen-assisted fracture and low temperature helium embrittlement are not known. Several hypotheses have been advanced to account for each form of degradation, but there are as yet no generally accepted explanations for these phenomena.
- Material, processing, and environmental conditions controlling helium embrittlement are not well known. Experiments have begun to examine systematically the phenomenon of low temperature helium embrittlement.

Investigation of hydrogen effects on the mechanical behavior of stainless steels is continuing at the Savannah River Laboratory. The issues identified above serve in part to guide the research activity.

ACKNOWLEDGEMENTS

This report includes work by several investigators in the Savannah River Laboratory whose contributions are acknowledged: T. L. Capaletti, M. R. Dietrich, J. A. Donovan, C. W. Krapp, M. R. Louthan, Jr., D. A. Mezzanotte, L. P. McCabe, D. E. Rawl, Jr., and P. E. Zapp. The high-purity stainless steels were supplied by N. F. Fiore, Notre Dame University. Transmission microscopy of Nitronic[®] 40 stainless steel, Figure 32, was performed by P. S. Sklad, Oak Ridge National Laboratory.

ALLOY DATA SHEETS

С

ALLOY INDEX

Nominal compositions of alloys are shown in Table A-1. Nominal tensile properties are shown in Table A-2. Measured properties under various experimental conditions are summarized in the data sheets listed below.

I.	Iron-Chromium-Nickel Alloys	Data Sheet
	304L	IA-1 to IA-16
	304N	IB-1
	3095	10-1
	310	ID-1 to ID-2
	316	IE-1
	Carpenter 20 Cb-3	IF-1
	Incolov [®] 800H (Huntington Allovs, Inc)	IG-1
	Nickel 200	IH-1 to IH-2
	Nickel 301	IJ-1 to IJ-2
	440 C	IK-1
11.	Iron-Chromium-Nickel-Manganese Alloys	
	Tenelon [®] (U.S. Steel Corp)	IIA-1 to IIA-3
	Nitronic [®] -40 (21-6-9)(Armco, Inc)	IIB-1 to IIB-12
	Nitronic [®] -50 (22-13-5)(Armco, Inc)	IIC-1 to IIC-3
	18-18 Plus® (Carpenter Technology)	IID-1
	X18-3 Mn	IIE-1
	18-2 Mn	IIF-1
	216	IIG-1
III.	Precipitation Hardenable Alloys	
	A-286	IIIA-1 to IIIA-5
	JBK-75	IIIB-1 to IIIB-2
	17–4PH	IIIC-1 to IIIC-2
	AM-350	IIID-1
	AM-363	IIIE-1
	CG-27	IIIF-1
	Ni-SPAN-C (Alloy 902)	IIIG-1
IV.	High Purity Alloys	
	A - 18Cr-10Ni	IVA-1
	B - 18Cr-14Ni	IVB-1

-	18Cr-14Ni	IVB-1
-	- 18Cr-19Ni	IVC-1

TABLE A-1

Nominal Alloy Composition, wt %

Alloy	Cr	<u>Ni</u>	Mn	Mo	Other
Fe-Cr-Ni-Alloys					
304 L	19	10	-	-	
304N	19	9	-	-	0.13 N
309S	23	13	-	-	
310	25	20	-		0.25 C
316	17	12	-	2.5	
440C	19	-	-	0.75	0.95 to 1.20 C
Carpenter 20 Cb-3	20	34	-	2.5	3.5 Cu, 06 Nb
1800H	21	32	-		0.75 Cu, 0.3 A1, 0.3 Ti
1718	19	52		13	5 (Nb + Ta), 1 Ti, 0.5 A
Ni200	-	99+	-	-	
Ni301		bal	-	-	l Si, 4.5 Al, 0.6 Ti
Fe-Cr-Ni-Mn-N Allo	ys				
216	20	6	8	2	0.32 N
Tenelon®	18	-	15	-	
Nitronic®-40	21	6	9	-	0.15 to 0.4 N
Nitronic®-50	22	13	5	2	0.2 to 0.4 N
18-18 Plus®	18	0.5	18	1	0.4 N, 1 Cu, 0.1 Co
X 18-3 Mn	18	3	12	-	0.3 N
18-2 Mn	18	2	13	-	
Precipitation-Hard	enable .	Alloys		I	
17-4 рн	16.5	4	-	-	4 Cu. 0.3 Nb
A-286	15	26	_	1.25	2 Ti, 0.25 Al, 0.3 V
.IBK 75	15	30	_	1.25	2 Ti, 0.25 Al,
				2023	0.001 B, 0.25 V
AM 363	11.5	4.5	_	-	0.5 Ti
CG27	13	38	_	6	2.5 Ti. 1.6 A1. 0.6 Nb
AM 350	16.5	4.3	_	2.8	0.1 N
Ni-SPAN-C					
Alloy 902	5	42	-	-	0.5 Al. 2.5 Ti
	-				,
High-Purity Alloys					
Α	18	10	-	-	N <0.01 in all
В	18	14	-	-	three alloys
С	18	19		-	

TABLE A-2

Nominal Tensile Properties (Annealed Material Unless Otherwise Noted)

	Strength, 1		
Alloy	Yield*	Tensile	Elongation, %
304L	230-270	540-560	55-60
304N	290-330	620	50-55
309S	275-310	620-650	45
310	310	650	45-50
316	207-290	550-585	45-50
440C	450-1890	760-1965	2-14
Carpenter 20 Cb-3	250	600	50
1800H	140-345	450-650	30-50
1718	1180-1250	1350-1400	16
Ni 200	103-207	380-550	40-55
Ni 301	210-1200	620-1450	15-55
216	428	745	50
Tenelon®	570	930	56
Nitronic®-40	414	690	40
Nitronic®-50	448	828	45
18-18 Plus®	520	900	60
X 18-3 Mn	580	810	45
18-2 Mn	730	1000	51
17-4 PH	940	980	5
A-286	760	1100	25
JBK-75**	800	1090	14
AM 350	420	1160	70
AM 363	890	890	7
CG 27	810	1160	29
Ni-SPAN-C	760-870	900-1200	6-25

Alloy 902

* 0.2% offset.

** HERF & Age.

IRON-CHROMIUM-NICKEL ALLOYS

DATA SHEET IA-1

Type 304L Stainless Steel Bar Stock, As Received*

Test Condition		Hydrogen**	Streng	Strength, MPa		Elongation, %	
Temp, K	Environ.	Exposure	Yield	Ultimate	Uniform	Total	Strain
380	AIR	NONE 69 MPa	240 260	680 730	58 60	69 70	1.78 1.27
273	AIR	NONE 69 MPa	310 330	1160 870	80 44	89 44	1.56 0.45
200	AIR	NONE 69 MPa	360 390	1500 1210	61 44	70 44	1.27 0.25
78	LN	NONE 69 MPa	390 430	2200 2100	60 59	64 65	1.27 1.27

* Heat Analysis, Appendix D-1; Tensile B, Appendix C-2.

** Exposure conditions: 69 MPa at 470 K for 1449 days.

DATA SHEET IA-2

Type 304L Stainless Steel, As Received

Test Conditions		Hydrogen	Impact	
Temp, K	Environ.	Exposure	Energy, J	
298	AIR	NONE	194	
		17.9 MPa*	185	
78	AIR	NONE	165	
		17.9 MPa*	110	

* 17.9 MPa hydrogen pressure at 470 K for 1000 hours.

Effect of Test Environment on Tensile Properties of Type 304L Stainless Steel Tubes*

Exposure Conditions		ons	Tensile Properties				
Gas	Temp, K	Time, days	σ_y , MN/m ²	σ _{ult} , MN/m ²	% Elong.		
He	425	32	270	560	59		
H ₂	425	32	320	480	19		
T ₂	425	32	300	490	22		
H ₂	425	8	260	490	26		
T ₂	425	8	250	490	22		

* All tensile tubes tested at room temperature with 69 MPa gas; data reported are averages of at least two samples.

DATA SHEET IA-4

Tensile Properties of Type 304L Stainless Steels Containing Hydrogen and Helium

Test Condition		Hydrogen	Strengt	Strength, MPa		
Temp, K	Environment	Exposure	Yield	Ultimate	%	
300	Air	none	327	734	49-56	
300*	Air	**	400	733	28-32	
300*	Air	**	. 434	744	28	
973†	Air	none	152	237	31	
973†	Air	**	179	190	1.5	

* Specimens contained tritium and Helium-3.

****** 328 mol hydrogen isotopes and 6.2 mol helium per m^3 metal.

† 146 mol hydrogen isotopes and 25 mol helium per m^3 metal. Held 1/2 hour at 973 K before testing.

Type 304L Stainless Steel, Nigh Energy Rate Forged*

Test Condition		Hydrogen	Strength, MPa		Elongation, %		Fracture
Temp, K	Environ.	Exposure**	Yield	Ultimate	Uniform	Total	Strain
380	Air	None	440	630	32	44	1.72
		69 MPa	440	650	32	43	1.63
298	Air	None	480	930	57	68	2.00
		69 MPa	510	990	55	62	0.95
250	Air	None	490	1100	52	61	1.65
		69 MPa	610	1120	41	41	0.40
200	Air	None	660	1390	46	55	1.37
		69 MPa	620	1300	43	44	0.38

* Tensile B, Appendix C-2.

** Exposed at 620 K for 3 weeks.

DATA SHEET IA-6

Type 304L Stainless Steel, High Energy Rate Forged*

Test Condition		Hydrogen	Impact		
Temp, K	Environ.	Exposure	Energy, J		
298	Air	None	199		
298	Air	29.6 MPa H ₂ **	152		
77	Air	None	160		
77	Air	29.6 MPa H ₂ **	95		

* Impact, Appendix C-8.

** Exposure of 56 days at 470 K.

Fracture Parameters for Type 304L Stainless Steel, High Energy Rate Forged*

^{*} C-shaped tensile, Appendix C-7. Test in 69 MPa He or H_2 . Deuterium charge at 69 MPa at 620 K for 3 weeks.

Fracture Parameters for Type 304L Stainless Steel*

^{*} C-shaped tensile, Appendix C-7. Test in 69 MPa He or H₂. Deuterium charge at 69 MPa at 620 K for 3 weeks.

Effect of Heat Treatment on Mechanical Properties of Type 304L Stainless Steel*

Heat Treatment	Test Environment	Strengt Yield	th, MPa Ultimate	Elongatio Uniform	on, % Total	Fracture Strain
As-received	69 MPa He	390	930	62	71	2.21
GS = 9.5 μm	69 MPa H ₂	390	910	56	62	1.43
1170 K-24 hrs	69 MPa He	260	970	82	89	2.30
$GS = 30 \ \mu m$	69 MPa H ₂	240	970	88	94	1.71
1270 K-24 hrs	69 MPa He	250	970	90	99	2.30
$GS = 55 \ \mu m$.	69 MPa H ₂	240	930	86	91	1.17
1470 K-24 hrs	69 MPa He	190	830	81	88	2.21
GS = 340 µm	69 MPa H ₂	180	830	84	88	1.05

* Heat analysis; Appendix D-1; Tensile B, Appendix C-2.

DATA SHEET IA-10

Grain Size Dependence of Mechanical Properties - Test at 220 K*

Hydrogen Exposure	Grain Size,μm	<u>Streng</u> Yield	th, MPa Ultimate	Elonga Unit	tion, % Total	Fracture Strain
None	6.4	520	1310	56	63	1.71
	42.0	340	1210	<u>,</u> 60	72	1.70
	290	250	1130	55	63	1.64
69 MPa**	6.1	630	1040	35	35	0.27
	26	400	1020	47	47	1.10
	50	370	860	37	37	0.40
	260	270	690	31	31	0.39

* Heat analysis, Appendix D-1; Tensile B, Appendix C-2.

** Average deuterium contents measured on samples from the tensile specimens were 4.7 ccD₂/cc (69 MPa).

Effect of Deformation Rate on Hydrogen Damage*

TYPE 304L Stainless Steel T = 220 K Grain Size: 6 m

Hydrogen	Cross Headspeed,	Strength, MPa		Elongati	Fracture	
Exposure**	mm/min	Yield	Ultimate	Uniform	Total	<u>Strain</u>
None	51	570	1170	50	60	1.68
	0.51	5.20	1310	56	63	1.70
69 MPa	51	675	1210	52	52	0.92
	0.51	630	1040	35	35	0.27

* Heat analysis, Appendix D-1; Tensile B, Appendix C-2. ** Exposed at 620 K for 3 weeks.

DATA SHEET IA-12

Mechanical Properties of Sensitized Type 304L Stainless Steel* (Smooth Bar Tensile Specimens)

	Test	Streng	Strength, MPa			
Treatment	Environment**	Yield	Ultimate	Strain		
Solution	Air	380	630	2.00		
Anneal	Helium	375	600	2.20		
	Hydrogen	370	580	1.38		
Sensitized	Air	300	560	1.78		
	Helium	350	670	1.90		
	Hydrogen†	330	660	0.70		
	Hydrogen††	350	660	0.80		

* Heat analysis, Appendix D-1; Tensile B, Appendix C-2.
** 69 MPa gas pressure.

† Nearly continuous carbide network on some grain boundaries.

tt Isolated carbides.

Mechanical Properties of Notch Bar Tensile Specimens of Type 304L Stainless Steel*

Treatment	Test Environment**	Streng Yield	th, MPa <u>Ultimate</u>	Fracture Strain
Solution Anneal	Airt	700	750	0.41
Sensitized	Airtt	350	590	1.26
	Helium††	410	740	1.10
	Hydrogen††,¶ Hydrogen ¶¶	430 480	590 620	0.35 0.38
	Airt	510	680	1.17
	Helium†	540	790	1.00
	Hydrogent,¶ Hydrogen ¶¶	730 -	750 690	0.30 0.20

* Heat analysis, Appendix D-1 and Appendix C-2.

** He and H₂ at 69 MPa. Air at 0.1 MPa.

† Deep notch.

tf Shallow notch.

¶ Nearly continuous carbide network on some grain boundaries.

¶ Isolated carbides.

Effect of Hydrogen Charging on Notch Bar Tensile Properties of Type 304L Stainless Steel*

Condition	Specimen	Nominal Tensile Strength, MPa	Fracture Strain
As received	Smooth	600	1.50
	Notch	770	0.30
Annealed**	Smooth	600	1.43
	Notch	710	0.24
Hydrogen charged†	Smooth	530	0.37
	Notch	580	0.13

* Tensile C, Appendix C-4.

** Annealed 200 days at 380 K in argon.

† Exposed to hydrogen gas at 69 MPa for 200 days at 380 K.

DATA SHEET IA-15

Type 304L Stainless Steel Notch Tensile Strength*

Test Environment	Notch Tensile Strength, MPa
Air	896
H ₂ , 0.1 MPa	786
H ₂ , 1.03 MPa	703
H ₂ , 6.89 MPa	662

* Tensile C, Appendix C-4.

Stress Necessary for Slow Crack Growth in Type 304L Stainless Steel*

Net Section	Time, hrs		Crack	
Stress, MN/m ²	Incremental	Accumulated	Growth	
600	325	325	No	
641	72	397	No	
682	72	469	No	
724	72	541	No	
765	72	613	No	
786	l.4 (failed)	614.4	Yes	

* Crack developed during room temperature tensile test in hydrogen environment; net section stress when tensile test was stopped was 772 MN/m². Specimen then loaded in creep frame at indicated stresses without removal from the hydrogen environment.

Tensile E, Appendix C-5.

DATA SHEET IB-1 Type 304N Stainless Steel*

Test Con	dition	Hydrogen	Strengt	h, MPa	Elongati	lon, %	Fracture
Temp, K	Environment	Exposure	Yield†	Tensile	Uniform	Total	<u>Strain</u>
							,
298	Air	none	760	880	-	33	1.24
	Air	69 MPa H2 **	740	830	-	31	1.05
	69 MPa H ₂	none	640	840	-	36	0.78
	69 MPa H ₂	69 MPa H ₂ **	550	790	-	37	0.62
	69 MPa He	none	630	850	-	43	1.35
375	Air	none	820	950	11	26	1.31
		69 MPa D ₂ ††	820	970	11	22	1.20
298	Air	none	906	1110	16	28	1.47
		69 MPa D ₂ ††	950	1185	16	28	0.95
245	Air	none	975	1340	27	37	1.82
		69 MPa D ₂ tt	1063	1420	22	27	0.49
				1			
220	Air	none	1026	1450	26	35	1.67
		69 MPa D ₂ ††	1093	1480	21	24	0.33
		_					
200	Air	none	1096	1810	47	56	1.44
		69 MPa D ₂ ††	1160	1510	19	23	0.38

* Tensile A, Appendix C-1; Heat Analysis, Appendix D-10.

** 69 MPa $\rm H_2$ at 430 K for 1000 hours.

† 0.2% offset.

 $\dagger\dagger$ 69 MPa D_2 at 620 K for 3 weeks.

Type 309S Stainless Steel*

Test Condition		Hydrogen	Strength	, MPa	Elongation, %		Fracture
Temp, K	Environment	Exposure	Yield**	Tensile	Uniform	n Total	Strain
298	Air	none	290	600	-	54	1.27
	69 MPa He	none	276	580	-	60	1.24
	69 MPa H2	none	260	586	-	63	1.35
	Air	69 MPa H ₂ -430K 14d	255	615	-	43	0.92
	Air	28 MPa H ₂ -470K 100 hr	330	615	-	57	1.17

* Tensile A, Appendix C-1.

** 0.2% offset.

DATA SHEET IC-2

Tensile Properties of Type 309S Stainless Steels Containing Hydrogen and Helium

Test Condition		Hydrogen	Strength	n, MPa	Elongation,	
Temp, K	Environment	Exposure	Yield	Ultimate	%	
300	Air	none	243	612	56	
300*	Air	**	301	618	48-57	
300*	Air	†	382	658	45-53	
973††	Air	none	131	296	27	
973††	Air	†	227	196	<1	

* Specimens contained tritium and Helium-3.

** 328 mol hydrogen isotopes and 6.2 mol helium per m^3 metal.

† 146 mol hydrogen isotopes and 2.5 mol helium per m³ metal.

tf Held 1/2 hour at 973 K before testing.

Type 310 Stainless Steel Bar Stock, As Received*

Test Condition		Hydrogen	Streng	th, MPa	Elongation, %		Fracture	
Temp, K	Environment	Exposure**	Yield	Ultimate	Uniform	Total	Strain	
380	Air	none 69 MPa	440 440	670 700	25 27	36 40	1.35 1.71	
273	Air	none 69 MPa	510 510	860 900	44 46	53 53	1.71 1.47	
200	Air	none 69 MPa	560 590	1200 1280	60 62	66 73	1.20 1.24	
78	LN	none 69 MPa	570 570	1720 1790	74 71	78 76	1.05 1.35	

* Tensile B, Appendix C-2.

** Exposed at 470 K for 1449 days.

DATA SHEET ID-2

Type 310 Stainless Steel*

Test Condition		Hydrogen	Streng	Strength, MPa		ation, %	Fracture
Temp, K	Environment	Exposure	Yield*	* Tensile	Unifor	m Total	Strain
298	Air	none	210	540	-	61	1.56
	Air	69 MPa H ₂ †	200	500	-	63	1.42
	69 MPa H ₂	none	186	, 490	-	67	1.72
	69 MPa H ₂	69 MPa H ₂ †	180	440	-	66	1.56
	69 MPa He	none	180	480		70	1.61

* Tensile A, Appendix C-1.

** 0.2% offset.

 \dagger 69 MPa H_2 at 430 K for 1000 hours.

Type 316 Stainless Steel; Bar Stock, As Received*

Test Condition		Hydrogen	Strength, MPa		Elongation, %		Fracture
Temp, K	Environment	Exposure**	Yield	Ultimate	Uniform	n Total	Strain
380	Air	none	810	830	7	20	1.61
		69 MPa	880	930	11	22	1.19
273	Air	none	890	1040	21	33	1.47
		69 MPa	990	1160	20	32	1.13
250	Air	none	900	1150	27	40	1.51
		69 MPa	1030	1280	24	35	1.07
200	Air	none	960	1210	24	43	1.56
		69 MPa	1100	1410	26	37	1.06

* Tensile B, Appendix C-2.

** Exposed at 620 K for 3 weeks.

Carpenter 20 Cb-3[®] Stainless Steel As-Received*

Test Condition		Hydrogen	Stren	gth, MPa	Elongation, %		Fracture
Temp, K	Environment	Exposure**	Yield	† Ultimate	Unifo	rm Total	Strain
298	Air	none	236	600	-	48	1.14
	69 MPa H ₂	none	230	590	-	48	1.14
	69 MPa H ₂	69 MPa D ₂	262	610	-	48	1.14
200	Air	none	320	1100	60	66	1.01
	Air	69 MPa D ₂	348	1177	55	62	1.08

* Tensile B, Appendix C-2; heat analysis, Appendix D-11.

** Exposed at 620 K for 3 weeks.

† 0.2% offset.

DATA SHEET IG-1

Incoloy® Alloy 800H, Hot Rolled Plate, Solution Annealed*

Test Cor	dition	Hydrogen	Streng	Strength, MPa		ation, %	Fracture	
Temp, K	Environment	Exposure**	Yield	Yield Ultimate		rm Total	Strain	
380	Air	none	270	750	47	52	0.92	
		69 MPa	290	770	48	53	0.82	
298	Air	none	310	820	48	55	0.97	
		69 MPa	330	840	48	53	0.78	
250	Air	none	340	8 ⁷ 0	48	56	1.20	
		69 MPa	360	900	49	55	0.92	
200	Air	none	360	930	49	56	1.11	
		69 MPa	380	990	54	63	0.94	
78	LN	none	530	1520	80	84	0.78	
		69 MPa	540	1490	74	76	0.69	

* Tensile B, Appendix C-2; heat analysis, Appendix D-3. ** Exposed at 620 K for 3 weeks.

DARATASISTERETIENI-1

T ellerts tC clau	hidition	Hyldychagagen	Streens	Strength, MRe		etiton, %	Fresture
Telhapnp,KK	Edinizionament	E Epoperane e*	Yiedhd	Ultimates	Umfr	run Thusel	Stream
38098	Ainir**	n ombe ne	8810	58060	-7	5250	2 1 301
	69 MPa He**	69 MPa none	120 ⁸⁸⁰	490	_11	5 22	21412
273	А б9 МРа Н ₂ **	nonome 69 MPa	1 895 0 990	4170040 1160	21 20	5 33 32	0 1,7467 1,1 3
298	Air†	none	135	480		50	2.21
250	Air 69 MPa Het	none none 69 MPa	1900 1222 1030	41150 450 1280	_27 _24	480 485 35	$2^{1}_{10}^{1051}_{107}$
	69 MPa H ₂ †	none	156	460	-	45	0.69
200	Air	none 69 MPa	960 1100	1210 1410	24 26	43 37	1.56 1.06
* Tens	ile A, Append	lix C-1.					

Typickbl6 200#inless Steel; Bar Stock, As Received*

**Temsnebeles, 1099e Kdilz Grizutes and furnace cooled.

** TExprosient ** t, follows Kafrane alle de e W3. K for 64 hours and air cooled.

DATA SHEET IH-2

Nickel 200, Notch-Bar Tensile Properties*

Test Condition		Hydrogen	Streng	Strength, MPa		Elongation, %		
Temp, K	Environment	Exposure	Yield	Ultimate	Uniform	Total	<u>Strain</u>	
298	Air**	none	-	660	-	-	0.35	
	69MPa He**	none	-	810	-	-	0.37	
	69 MPa H ₂ **	none	-	560 [′]	-	-	0.11	
	Air†	none		635	-	-	0.44	
	69 MPa Het	none	-	710	-	-	0.34	
	69 MPa H ₂ †	none	-	580	-		0.20	

* Tensile A, Appendix C-1 with notch.

** Annealed 1090 K 15 minutes and furnace cooled.

† As in **, plus annealed 773 K for 64 hours and air cooled.

Nickel 301*

Test Condition		Hydrogen	Strength, MPa		Elongation, %		Fracture
Temp, K	Environment	Exposure	Yield	Ultimate	Uniform	n Total	<u>Strain</u>
298	Air**	none	451	778	-	39	1.89
	69 MPa He**	none	486	791	-	34	1.35
	69 MPa H2**	none	532	618	-	12	0.22
298	Air†	none	1008	1380	-	23	0.49
	69 MPa Het	none	1009	1350	-	22	0.42
	69 MPa H ₂ †	none	-	850	-	4	0

* Tensile A, Appendix C-1.

** Annealed 1170 K for 5 min and quenched.

† Annealed as in **, plus annealed 860 K for 16 hours, 810 K for 5 hours and 755 K for 5 hours and furnace cooled.

DATA SHEET IJ-2

Nickel 301, Notch Bar Tensile Properties*

Test Condition		Hydrogen	Strength, MPa		Elongation, %		Fracture
Temp, K	Environment	Exposure	Yield	Ultimate	Uniform	Total	<u>Strain</u>
298	Air**	none	-	985	-	-	0.30
	69 MPa He**	none	-	995 [,]	-	-	0.30
	69 MPa H2**	none	-	690		-	0.01
	Air†	none	-	1630	-	-	0.19
	69 MPa Het	none		1600	-	-	0.10
	69 MPa H2†	none	-	840		-	0.04

* Tensile A, Appendix C-1 plus notch.

** Annealed 1170 K for 5 min and quenched.

† Annealed as in **, plus annealed 860 K for 16 hours, 810 K for 5 hours and 755 K for 5 hours and furnace cooled.

Type 440C Stainless Steel*

Test Condition		Hydrogen	Strength, MPa		Elongation, %		Fracture
Temp, K	Environment	Exposure**	Yield	Ultimate	Uniform	Total	Strain
298	Air	none	377	620	-	7.1	0.010
		69 MPa D ₂	377	575	-	4.6	0.006
200	Air	none	406	670	-	7.7	0.013
		69 MPa D ₂	450	570	-	4.2	0.009

* Tensile B, Appendix C-2.

** Exposure at 620 K for 3 weeks.

IRON-CHROMIUM-NICKEL-MANGANESE ALLOYS

DATA SHEET IIA-1

Tenelon[®] Plate, As Received*

Test Con	dition	Hydrogen	Strength, MPa		Elongation, %		Fracture
Temp, K	Environment	Exposure**	Yield	Ultimate	Unifor	m Total	<u>Strain</u>
350	Air	none	675	1270	48	59	1.43
		69 MPa	700	1300	53	60	0.94
273	Air	none	830	1480	50	58	1.14
		69 MPa	920	1540	48	50	0.51
200	Air	none	1050	1960	59	66	0.69
		69 MPa	1020	1620	40	40	0.36
78	LN	none	1740	1780	19	19	0.08
		none†	1730	2040	22	22	0.07
		nonett	1670	2120	25	25	0.13
		none¶	1450	1730	21	21	0.14
		69 MPa	1720	1780	20	20	0.06

* Tensile B, Appendix C-2; heat analysis, Appendix D-4

** Exposed at 620 K for 3 weeks.

† Electropolished.

tt Annealed 1170 K for 24 hours.

¶ Annealed 1270 K for 24 hours.

Tenelon®*

Test Condition		Hydrogen	Strength	ı, MPa	Elongation, %		Fracture
Temp, K	Environment	Exposure	Yield**	Tensile	Unifo	orm Total	<u>Strain</u>
298	Air	none	570	930	-	56	1.05
	69 MPa He	none	500	875	-	65	1.14
	69 MPa H ₂	none	500	900	-	55	0.63
	Air	69 MPa H ₂ †	550	840	-	41	0.45
	69 MPa H ₂	69 MPa H ₂ †	470	760		24	0.26

* Tensile A, Appendix C-1.

** 0.2% offset.

 \dagger 69 MPa H₂ for 1000 hours at 423 K.

DATA SHEET IIA-3

Fracture Toughness of Tenelon^{®*}

Test Temp, K	Specimen Condition	Fracture Toughness, MPa√m
78	As received	68.6
	Anneal 1170 K	36.5
	Anneal 1270 K	71.4
200	As received	127.8
	Anneal 1170 K	99.6
	Anneal 1270 K	120.5

* Heat analysis, Appendix D-4; single edge notched, Appendix C-6.

Nitronic[®] 40 Stainless Steel Bar Stock, As Received*

Test Con	dition	Hydrogen Exposure**	Strength, MPa		Elongat	Fracture	
Temp, K	Environment		Yield	Ultimate	Uniform	Total	Strain
380	Air	none	680	940	30	39	1.66
		69 MPa	690	1020	36	46	1.02
298	Air	none	770	1170	41	51	1.61
		69 MPa	800	1270	46	56	0.92
250	Air	none	860	1360	46	57	1.51
		69 MPa	-	1380	41	46	0.45
200	Air	none	970	1550	48	58	1.56
		69 MPa	1060	1650	44	48	0.65
78	LN	none	1580	2140	45	49	0.64
		69 MPa	1600	2060	36	36	0.38

i.

* Tensile B, Appendix C-2; heat analysis, Appendix D-5.

** Exposed at 620 K for 3 weeks.

Test Temp, K**	Treatment	Specimen	Strengt Yield	th, MPa Ultimate	Elongatio Uniform	on, % Total	Fracture <u>Strain</u>
300	Solution Anneal	Smooth bar	700	1170	41	51	1.59
		Notch bar	800	1160	24	27	0.74
	Sensitize	Notch bar	750	1070	18	18	0.53
200	Solution	Smooth bar	880	1550	48	58	1.57
		Notch bar	1130	1500	19	19	0.72
	Sensitize	Smooth bar	720	1490	51	60	1.03
		Notch bar	1120	1250	10	10	0.17

Mechanical Properties of Nitronic[®] 40 Alloy: Heat Treatment and Notch Effects*

* Heat analysis, Appendix D-5; Tensile B, Appendix C-2.

** Air environment.

Mech	anical	Properti	les of S	Sensitized	Nitroni	c [®] 40	Stainless	Steel	Tested
in e	High-l	Pressure	Hydroge	en Environ	ment at	Room 7	Cemperature	*	

Specimen	Test	Streng	th, MPa	Elongati	.on, %	Fracture
Condition	Atmosphere	Yield	Ultimate	Uniform	Total	Strain
Solution Annealed	69 MPa He	650	1050	42	52	1.11
	69 MPa H ₂	670	1060	41	50	1.22
920 K-2 hr	69 MPa He	640	1100	43	50	1.51
	69 MPa H ₂	640	1080	42	49	1.50
920 K-24 hr	69 MPa He	625	1110	46	53	1.38
	69 MPa H ₂	620	1100	46	52	1.10
920 K-24 hr	69 MPa He**	760	1060	16	16	0.32
	60 MPa H ₂ **	700	760	9	9	0.06

* Heat analysis, Appendix D-5; Tensile B, Appendix C-2. ** Notch bar specimen.

DATA SHEET IIB-4

Mechanical Properties of Sensitized Nitronic[®] 40 Stainless Steel Saturated with Hydrogen*

Temp, K	Treatment**	Hydrogen Exposure	Streng Yield	th, MPa Ultimate	Elongat Uniform	ion, % Total	Fracture Strain
200	Solution Anneal	none	9 70	1550	48	58	1.57
	Solution Anneal	69 MPa H ₂ †	1060	1650	44	48	0.66
	920 K-24 hr	none	790	1490	51	60	1.03
	920 K-24 hr	69 MPa H ₂	920	1470	37	37	0.33
	920 K-24 hr	69 MPa H ₂ ††	900	1350	35	40	0.45

* Heat analysis, Appendix D-5; Tensile B, Appendix C-2.

** Smooth bar tensile specimens.

† Exposed at 620 K for 3 weeks.

tt Crosshead speed, 5 mm/sec; all others, 0.5 mm/sec.

Nitronic[®] 40*

Test Condition		Hydrogen	Strength	Strength, MPa		Elongation, %	
Temp, K	Environment	Exposure	Yield**	Tensile	Unifor	m Total	<u>Strain</u>
298	Air	none	400	670	-	58	1.51
	69 MPa He	none	350	700	-	59	1.47
	69 MPa H ₂	none	360	700	-	61	1.43

* Tensile A, Appendix C-1.

** 0.2% offset.

DATA SHEET IIB-6

Nitronic[®] 40; Cold Worked 307*

Test Con	dition	Hydrogen	Strength	, MPa	Elongat	ion, %	Fracture
Temp, K	Environment	Exposure	Yield**	Tensile	Uniform	n Total	Strain
298	Air	none 30 MPa H ₂	1240 1075	1290 1150		26 32	0.87 0.43
	69 MPa He	none	1010	1050	-	26	0.99
	69 MPa H ₂	none	980	1100	-	26	1.02
	69 MPa H ₂	30 MPa H ₂	1060	1130	-	36	0.44

* Tensile A, Appendix C-1.

** 0.2% offset.

Nitronic[®] 40 Stainless Steel, High Energy Rate Forged*

Test Con	dition	Hydrogen	Streng	th, MPa	Elong	ation, %	Fracture
Temp, K	Environment	Exposure	Yield	Ultimate	Unifo	rm Total	<u>Strain</u>
380	Air	none 69 MPa**	540 570	1040 1070	47 50	59 68	1.81 1.26
		none 69 MPa†	780 690	970 930	21 26	31 33	1.17 0.67
298	Air	none 69 MPa†	780 890	1140 1220	32 30	44 42	1.24 0.96
273	Air	none 69 MPa**	640 690	1300 1430	57 67	69 78	1.81 1.06
220	Air	none 69 MPa†	900 960	1320 1420	33 37	45 47	1.31 0.80
200	Air	none 69 MPa**	930 1050	1700 1830	51 49	59 54	1.26 0.90
		none 69 MPa†	1020 990	1610 1740	42 53	54 60	1.26 0.66
78	LN	none 69 MPa**	1450 1400	2840 2600	46 46	56 46	0.83 0.53

* Tensile B, Appendix C-2.

** 69 MPa at 470 K for 1449 days.

† 69 MPa at 620 K for 21 days.

DATA SHEET IIB-8

Nitronic[®] 40 Stainless Steel, High Energy Rate Forged*

Test Con	dition	Hydrogen	Strength	, MPa	Elongat	ion, %	Fracture
Temp, K	Environment	Exposure	Yield**	Tensile	Uniform	Total	<u>Strain</u>
298	Air	none	610	790	-	34	1.35
		28 MPa H ₂	660	820	-	31	0.89
	69 MPa He	none	570	780	-	34	1.39
	69 MPa H ₂	none	570	790	-	30	1.31
	_	28 MPa H ₂	630	830	-	31	0.78

* Tensile A, Appendix C-1.

** 0.2% offset.

Nitronic[®] 40 Stainless Steel, High Energy Rate Forged*

Test Cond	dition	Hydrogen	Impact	
Temp, K	Environment	Exposure	Energy, J	
298	Air	none 29.6 MPa H ₂ **	110 91	
77	LN	none 29.6 MPa H ₂ **	37 35	

* Impact, Appendix C-8.

** 470 K - 56 days.

DATA SHEET IIB-10

Nitronic[®] 40 Stainless Steel, High Energy Rate Forged*

Test Con	dition	Hydrogen	Fracture Toughness, MPa√m		
Temp, K	Environment	Exposure	Long	Trans	
298	69 MPa He	none	79	74	
	69 MPa H ₂	none	81	68	
	69 MPa H ₂	0.6 MPa H ₂	76	62	

* C-shaped tensile, Appendix C-7.
Fracture Parameters for Nitronic[®] 40 Stainless Steel*

^{*} C-shaped tensile, Appendix C-7. Test in 69 MPa He or H_2 . Deuterium exposed at 69 MPa at 620 K for 3 weeks.

Fracture Parameters for Nitronic[®] 40 Stainless Steel*

^{*} C-shaped tensile, Appendix C-7. Test in 69 MPa He or H₂. Deuterium charged at 69 MPa at 620 K for 3 weeks.

Nitronic[®] 50 Stainless Steel Bar Stock, As Received*

Test Condition		Hydrogen	Strength, MPa		Elongation, %		Fracture
Temp, K	Environment	Exposure**	Yield	Ultimate	Unifor	m Total	Strain
380	Air	none	700	990	26	34	1.23
		69 MPa	720	1060	29	37	1.16
298 A	Air	none	800	1190	32	41	1.17
		69 MPa	820	1240	33	44	1.05
248	Air	none	870	1310	34	43	1.23
		69 MPa	900	1390	35	43	1.00
200	Air	none	1030	1550	35	44	1.08
		69 MPa	1020	1620	37	44	0.97
78	LN	none	1590	2310	38	44	0.91
		69 MPa	1590	2350	38	44	0.90

* Tensile B, Appendix C-2.

** Exposed at 620 K for 3 weeks.

DATA SHEET IIC-2

Nitronic[®] 50 Stainless Steel Bar Stock, As Received.*

Test Condition Temp, K Environment		Hydrogen Exposure	ogen <u>Strength, MPa</u> sure Yield** Tensile		Elongation, %	Fracture Strain	
298	Air	none	440	710	43	1.27	
	69 MPa He	none	400	680	47	1.35	
	69 MPa H ₂	none	400	680	45	1.31	

* Tensile A, Appendix C-1; heat analysis, Appendix D-6. ** 0.2% offset.

Nitronic[®] 50 Stainless Steel, High-Energy-Rate-Forged*

Test Condition		Hydrogen	Deflection J _m	Jm	dJ/da	
Temp, K	Environment	Exposure	<u>mm</u>	kJ/m^2	MPa	
298	69 MPa Het	none	-	32	176	
	69 MPa H ₂	none	-	23	137	
	69 MPa H_2^{\sim}	D ₂	-	33	211	
	69 MPa Hett	none	-	936	360	
	69 MPa H ₂ ††	none	-	107	209	
	69 MPa H ₂ ††	D ₂	-	181	264	

* C-Shaped tensile, Appendix C-7.

** Exposed at 620 K for 3 weeks.

† Crack parallel to forging pattern

tf Crack perpendicular to forging patterns.

DATA SHEET IID-1

18-18 Plus[®] Stainless Steel*

Test Condition		Hydrogen	Strength, MPa Elongation, %		ion, %	Fracture	
Temp, K	Environment	Exposure	Yield**	Tensile	Uniform	Total	<u>Strain</u>
298	69 MPa He	none	520	910	-	63	1.51
	69 MPa H ₂	none	506	880	-	42	0.42

* Tensile A, Appendix C-1; heat analysis, Appendix D-9. ** 0.2% offset.

X18-3 Mn Stainless Steel*

Test Condition		Hydrogen	Strength, MPa		Elongation, %		Fracture
Temp, K	Environment	Exposure	Yield**	Tensile	Uniform	Total	Strain
298	Air	none	580	810	-	45	1.24
	69 MPa He	none	530	790	-	50	1.35
	69 MPa H ₂	none	520	790	-	46	1.31

* Tensile A, Appendix C-1; heat analysis, Appendix D-8. ** 0.2% offset.

DATA SHEET IIF-1

18-2 Mn Stainless Steel*

Test Condition		Hydrogen	Strength, MPa Elongation, %		ion, %	Fracture	
Temp, K	Environment	Exposure	Yield**	Tensile	Uniform	Total	Strain
298	Air	none	730	1007	-	51	0.87
	69 MPa H ₂	none	660	924	-	33	0.31

* Tensile A, Appendix C-1.

** 0.2% offset.

Type 216 Stainless Steel*

Test Condition		Hydrogen	Strength, MPa		Elongation, %		Fracture	
<u>Temp, K</u>	Environment	Exposure	Yield**	Tensile	Uniform	Total	Strain	
298	Air	none	640	810	-	40	1.10	
298	Air	69 MPa H ₂ †	630	790	-	36	1.05	
298	69 MPa H ₂	none	590	780	-	44	1.17	
298	69 MPa H ₂	69 MPa H ₂ †	560	760	-	45	1.02	
298	69 MPa He	none	590	790	-	45	1.20	

* Tensile A, Appendix C-1; heat analysis, Appendix D-7.

** 0.2% offset.

 \dagger 69 MPa H_2 at 430 K for 1000 hours.

PRECIPITATION HARDENABLE ALLOYS

DATA SHEET IIIA-1

A-286 Stainless Steel*

Test Condition		Hydrogen	Strength, MPa		Elongation, %		Fracture
Temp, K	Environment	Exposure	Yield	Tensile	Unifor	n <u>Total</u>	Strain
298	Air	none	765	1098	-	25	0.77
		2.1 MPa Argon	776	1089	-	24	0.79
		69 MPa D/T**	750	1041	-	13	0.34
		none¶	-	1500	-	4	0.15
		2.1 MPa Argon¶	-	1380	-	3.6	0.11
		69 MPa D/T**,¶	-	1310	-	3	0.06
		none	1010†	1350††	23	28	0.50
		69 MPa D ₂ ¶¶	1070†	1380††	23	24	0.24
220	Air	none	1100†	1520††	28	34	0.49
		69 MPa D ₂ ¶¶	1130†	1530††	27	27	0.25

* Tensile A, Appendix C-1.

** 69 MPa D/T at 370 K for 200 days.

† True stress at 5% strain.

tf True stress at maximum load.

¶ Notched-bar tensile specimens, all others smooth-bar specimens.

¶¶ 69 MPa D_2 at 620 K for 3 weeks.

A-286 Stainless Steel High Energy, Rate Forged*

Test Condition Temp, K Environment		Hydrogen Exposure	Fracture Toughness, MPa√m	
298	69 MPa He	none	76**	
	69 MPa H ₂		89**	
	69 MPa He	none	71***	
	69 MPa H ₂		90***	
	69 MPa He	none	81†	
	69 MPa H ₂		82†	
	69 MPa He	none	93††	
	69 MPa H ₂		89††	
	69 MPa He	1.6 MPa D ₂	88††	
	69 MPa H ₂	1.6 MPa D ₂	97††	
	69 MPa He	none	52¶	
	69 MPa H ₂	none	56¶	
	69 MPa H ₂	l.5 MPa D ₂	59¶	
	69 MPa He	none	93¶¶	
	69 MPa H ₂	none	90¶¶	
	69 MPa H ₂	l.5 MPa D ₂	97¶¶	

* Single edge notched, Appendix C-6.
** Aged 4 hours at 990 K (Heat 1).
*** Aged 8 hours at 990 K (Heat 1).
† Aged 16 hours at 990 K (Heat 1).
†† Aged 8 hours at 990 K (Heat 2).
¶ HERF only not aged. R_C-11.
¶ Aged 8 hours at 990 K. R_C-11.

A-286 Stainless Steel Notch Impact Test*

Test Con	dition	Hydrogen	Impact		
Temp, K	Environment	Exposure	Energy, J		
298	Air	Base Metal As Received	6.10		
		Argon**	5.08		
		D/T†	4.74		
298	Air	Weld Metal	/ 18		
		As Received	4.10		
		Argon**	3.40		
		D/T†	4.51		

* Impact Appendix C-8.

** 0.21 MPa at 370 K for 200 days.

† 69 MPa D/T at 370 K for 200 days.

Fracture Parameters for A-286 Stainless Steel*

^{*} C-shaped tensile, Appendix C-7. Tested in 69 MPa H₂ or He. Deuterium charged at 69 MPa at 620 K for 3 weeks.

Fracture Parameters for A-286 Stainless Steel*

^{*} C-shaped Tensile, Appendix C-7. Tested in 69 MPa He or H₂. Deuterium charged at 69 MPa at 620 K for 3 weeks.

JBK-75 HERF and Age*

Test Condition		Hydrogen	Strength, MPa Elongation,	ion, %	🕻 Fracture		
Temp, K	Environment	Exposure	Yield**	Tensile	Uniform	Total	<u>Strain</u>
298	69 MPa He	none	800	1090	10	14	0.63
	69 MPa H ₂	none	890	1160	10	13	0.40

* Tensile, Appendix C-3.

** 0.2% offset.

DATA SHEET IIIB-2

JBK-75 HERF and Age*

Test Condition		Hydrogen	Stress Intensity,	Fracture Energy,
Temp, K	Environment	Exposure	MPa √m	MJ/m ²
298	69 MPa He	none	80	0.350
	69 MPa H ₂	none	80	0.333
	69 MPa H ₂	0.7 MPa D ₂ at 625 K	81	0.294

* C-shaped tensile, Appendix C-7.

17-4 Stainless Steel, Tensile Tubes*

Test Con	dition	Hydrogen	Strength	, MPa	Elongat	Fracture		
Temp, K	Environment	Exposure	Yield**	Tensile	Uniform	Strain		
298	Air	none	940	980	- 4.7		-	
	69 MPa He	69 MPa He	1076	1145		6.4	-	
	35 MPa D/T	35 MPa D/T†	1000	1000	-	0.7	-	
	69 MPa D/T	69 MPa D/T††	1062	1096	-	1.2	-	

* Tensile E, Appendix C-5.

** 0.2% offset.

† 8 hours at 315 K.

tt 2 hours at 370 K.

DATA SHEET IIIC-2

Fracture Toughness 17-4 PH Stainless Steel*

Fracture Toughness, MPa√m

Material	Test Envir	onment	
Condition	69 MPa He	3.5 MPa H ₂	69 MPa H ₂
Underaged	104 🔪	31	20
Peak Aged	97 `	29	13
Overaged	-	57	34
Solution Annealed	97	71	· 31

Heat Treatments

Material Condition	Aging Temp, K	Hardness Rc
	<u> </u>	<u>-u</u>
Underaged	709	38
Peak Aged	783	42
Overaged	866	35
Solution Annealed	-	28

* C-shaped tensile, Appendix C-7.

All specimens were solution annealed 2 hours at

1339 K and aged 1 hour at indicated temperatures.

AM-350 Stainless Steel*

Test Con	dition	Hydrogen	Strength	Elonga	Fracture			
Temp, K	Environment	Exposure	Yield**	Yield** Tensile		Uniform Total		
298	Air	none	420	1160		70		
		69 MPat	455	580	-	3/4	-	
	69 MPa He	none	420	1240	-	55		
	6.9 MPa D ₂	none	345	430	-	4	-	
	69 MPa D ₂	none	430	520	-	2.6	-	
	0.69 MPa D ₂	none	410	455	-	3	-	

* Condition H - annealed at 1310 to 1350 K air cool or water quench. ** 0.2% offset.

† 26 days at 570 K.

DATA SHEET IIIE-1

AM-363 Stainless Steel

Test Con	dition	Hydrogen	Strengt	Elongat	Fracture		
Temp, K	Environment	Exposure	Yield*	Tensile	Unifor	<u>Strain</u>	
298	Air	none	890	890	-	7	-
	Air	0.21 MPa H ₂ **	900	900	-	8.6	-
	Air	none	1340†	1480	-	3	
	Air	0.21 MPa H ₂ **	1400†	1500	-	3	-

* 0.21 MPa D_2 at 630 K for 5 days.

** 0.2% offset.

 \dagger Notched - 45° notch. Notch diameter = 0.5X outer diameter.

CG-27 Stainless Steel*

Test Con	dition	Hydrogen	Strength	, MPa	Elongat	Fracture	
Temp, K	Environment	Exposure	Yield**	Tensile	Uniform	<u>Strain</u>	
298	69 MPa He	none	806	1165	-	29	0.30
	69 MPa H ₂	none	855	1117	-	10	0.13
298	69 MPa H ₂	69 MPa H2 at 425 K-72 hrs	855	1020	-	4	0.03
298	69 MPa Het	none	1070	1385	-	12	0.13
	69 MPa H ₂ †	none	1034	1138	-	1	0.03

* Tensile A, Appendix C-1.

** 0.2% offset.

† HERF specimens.

DATA SHEET IIIG-1

Ni-SPAN-C* (Alloy 902)

Test Con	dition	Hydrogen	Strength	Elongat	ion, %	Fracture	
Temp, K	Environment	Exposure	Yield**	Tensile	Uniform	Strain	
298	Air	none	676	1186	-	10	-
	69 MPa He	none	750	1160	-	16	-
	6.9 MPa H ₂	none		1170		14	-
	69 MPa H ₂	none	650	1130		15	-

* Sheet specimens 0.25 mm and 19 mm gauge length.

** 0.2% offset.

HIGH PURITY ALLOYS

DATA SHEET IVA-1

Mechanical Properties (Alloy A)*

Test Condition		Hydrogen	Streng	th, MPa	Elonga	Fracture		
Temp, K	Environment	Exposure**	Yield	Ultimate	Uniform Total		Strain	
370	Air	none 69 MPa	230 270	610 660	45 50	52 59	1.57 1.65	
298	Air	none 69 MPa	350 290	1270 1030	62 60	73 60	1.66 0.50	
235	Air	69 MPa	390	1110	38	38	0.27	
200	Air	none 69 MPa	540 420	1320 1190	36 33	46 33	1.42 0.31	
78	LN	none 69 MPa	-	- 1060	- 42	- 48	1.44 1.13	

* Tensile B, Appendix C-2.

** Exposed at 620 K for 3 weeks.

DATA SHEET IVB-1

Mechanical Properties (Alloy B)*

Test Cor	ndition	Hydrogen	Streng	th, MPa	Elong	ation, %	Fracture
Temp, K	Environment	Exposure**	Yield Ultimate		Unifo	rm Total	Strain
370	Air	none	240	630	45	56	1.58
		69 MPa	260	660	46	56	1.40
298	Air	none	340	1020	61	69	1.56
		69 MPa	290	870	65	72	1.50
235	Air	69 MPa	320	1170	72	79	0.44
200	Air	none	340	1170	64	74	1.57
		69 MPa	380	1250	66	71	0.89
78	LN	none	260	870	63	67	1.37
		69 MPa	270	900	66	72	1.41

* Tensile B, Appendix C-2.

** Exposed at 620 K for 3 weeks.

DATA SHEET IVC-1

Mechanical Properties (Alloy C)*

Test Cond	dition	Hydrogen	Strengt	th, MPa	Elongati	ion, %	Fracture	
Temp, K	Environment	Exposure**	Yield	Ultimate	Uniform	<u>Strain</u>		
370	Air	none 69 MPa	250 260	630 660	44 45	52 53	1.62 1.45	
298	Air	none 69 MPa	330 290	910 770	49 52	58 62	1.65 1.55	
200	Air	none 69 MPa	300 330	1100 1170	78 78	87 86	1.52 1.50	
78	LN	none 69 MPa	250 280	850 890	82 80	89 86	1.53 1.43	

* Tensile B, Appendix C-2.

** Exposed at 620 K for 3 weeks.

- 1. I. M. Bernstein and A. W. Thompson. <u>Hydrogen in Metals</u>, ed., American Society for Metals, Metals Park, Ohio (1974).
- A. W. Thompson and I. M. Bernstein. Effect of Hydrogen on Behavior of Materials, ed., Metallurgical Society of AIME, New York, NY (1976).
- 3. A. W. Thompson and I. M. Bernstein. Effect of Hydrogen on Behavior of Materials, ed., Metallurgical Society of AIME, Warrendale, PA (1981).
- 4. M. R. Louthan, Jr. and R. P. McNitt. <u>Environmental Degradation</u> of Engineering Materials, ed., Virginia Polytechnic Institute, Blacksburg, VA (1977).
- M. R. Louthan, Jr., R. P. McNitt, and R. D. Sisson, Jr. <u>Environmental Degradation of Engineering Materials - II</u>, ed., <u>Virginia Polytechnic Institute, Blacksburg, VA (1981).</u>
- 6. MM J. P. Fidelle et. M. Papin. <u>L'Hydrogen Dans Les Metaux</u>, Colloque - Valduc (27-28, September 1967).
- "L'Hydrogen Dans Les Metaux-2." Congress International, Paris (29 Mai-2 Juin, 1972).
- "Hydrogen in Metals." Proceedings of the 2nd International Congress, Paris, 6-10 June 1977. Pergamon Press, New York, (1977).
- 9. "Hydrogen in Metals," Proceedings of the 3rd International Congress, Paris, 7-2 June 1982.
- "Hydrogen Embrittlement Testing." ASTM Special Technical Publication 543, American Society for Testing and Materials, Philadelphia, PA (1974).
- 11. Advanced Techniques for Characterizing Hydrogen in Metals, TMS-AIME, Warrendale, PA (1982).
- C. D. Beachem, ed. Hydrogen Damage, American Society for Metals, Metals Park, OH (1979).

- 13. J. P. Hirth and H. H. Johnson. "Hydrogen Problems in Energy Related Technology." Corrosion 32, 3 (1976).
- J. J. Au and H. K. Birnbaum. "Hydrogen Effects on the Deformation of Iron Whiskers." Scripta Met 12, 457 (1978).
- G. C. Smith. "Effect of Hydrogen on Nickel and Nickel-Base Alloys." <u>Hydrogen in Metals</u>. p. 485, American Society for Metals, Metals Park, Ohio (1974).
- J. K. Tien, A. W. Thompson, I. M. Bernstein, and Rebecca J. Richards. "Hydrogen Transport by Dislocations." <u>Met. Trans.</u> 7A, 821 (1976).
- A. W. Thompson, "The Mechanism of Hydrogen Participation in Ductile Fracture." <u>Effect of Hydrogen on Behavior of</u> <u>Materials.</u> p. 467, <u>Metallurgical Society of AIME</u>, Warrendale, <u>PA (1976)</u>.
- J. F. Breedis and L. Kaufmann. "Formation of HCP and BCC Phases in Austenitic Iron Alloys." Met. Trans. 2, 2359 (1971).
- D. V. Neff, T. E. Mitchell, and A. R. Troiano. "The Influence of Temperature, Transformation, and Strain-Rate on the Ductility Properties of Austenitic Stainless Steels." <u>Trans.</u> ASM 62, 858 (1969).
- B. C. Odegard, J. A. Brooks, and A. J. West. "The Effect of Hydrogen on the Mechanical Behavior of Nitrogen Strengthened Stainless Steel." p. 116 in Effect of Hydrogen on Behavior of Materials. Metallurical Society of AIME, Warrendale, PA (1976).
- 21. R. E. Stoltz and J. B. Vander Sande. "The Effect of Nitrogen on Stacking Fault Energy of Fe-Cr-Ni-Mn Steels." <u>Met. Trans.</u> 11A, 1033 (1980).
- 22. H. Mecking. "Deformation of Polycrystals." p. 1573 in Strength of Metals and Alloys, Vol. 3, Pergamon Press, New York (1980).
- 23. C. L. Briant. "Hydrogen Assisted Cracking of Sensitized 304 Stainless Steel." <u>Met. Sci. 9A</u>, 731 (1978).
- 24. A. W. Thompson. "The Behavior of Sensitized 309S Stainless Steel in Hydrogen." Mat. Sci. and Eng. 14, 253 (1974).
- J. D. Hobson and J. Hewitt. "The Effect of Hydrogen on the Tensile Properties of Steel." Journal <u>Iron and Steel</u> Institute 172, 131 (1953).

- 26. H. R. Gray. "Testing for Hydrogen Environment Embrittlement: Experimental Variables." p. 133 in <u>Hydrogen Embrittlement</u> <u>Testing</u>. ASTM STP 543, American Society for Testing and Materials, Philadelphia, PA (1974).
- 27. M. B. Whiteman and A. R. Troiano. "Hydrogen Embrittlement of Austenitic Stainless Steels." <u>Corrosion 21</u>, 53 (1965).
- 28. J. P. Fidelle, et al. "Disk Pressure Testing of Hydrogen Environment Embrittlement." p. 221 in <u>Hydrogen Embrittlement</u> <u>Testing</u>. ASTM STP 543, American Society for Testing and Materials, Philadelphia, PA (1974).
- 29. D. Eliezer, D. G. Chakrapani, C. J. Alstetter, and E. N. Pugh. "The Influence of Austenite Stability on the Hydrogen Embrittlement and Stress Corrosion Cracking of Stainless Steel." Met. Trans. 10A, 935 (1979).
- 30. D. Eliezer. <u>Hydrogen Assisted Cracking in Type 304L and 316L</u> <u>Stainless Steel</u>. Third International Conference on Effect of Hydrogen on Behavior of Materials, August 1980.
- 31. R. J. Walter and W. T. Chandler, p. 104 discussion to paper by A. W. Thompson. "Ductility Losses in Stainless Steel." <u>Hydrogen in Metals</u>. American Society for Metals, Metals Park, Ohio (1974).
- 32. M. W. Perra. "Sustained-Load Cracking of Austenitic Steels in Gaseous Hydrogen." <u>Environmental Degradation of Engineering</u> <u>Materials</u>. ed., M. R. Louthan, Jr., R. P. McNitt, and R. D. Sisson, Jr., VPI, Blacksburg, VA 321-333 (1981).
- 33. A. W. Loginow and E. H. Phelps "Steels for Seamless Hydrogen Pressure Vessels" Corrosion 31 404 (1975).
- 34. R. L. Tobler and R. P. Reed. "Tensile and Fracture Behavior of a Nitrogen Strengthened Chromium-Nickel-Manganese Stainless Steel at Cryogenic Temperatures", p. 537 in Special Technical Publication, ASTM STP 668. American Society for Testing and Materials, Philadelphia, PA (1979).
- 35. R. L. Tobler, D. T. Read, and R. P. Reed. "Strength/Toughness Relationship for Interstitially Strengthened AISI 304 Stainless Steel at 4 K Temperature," p. 250 in Special Technical Publication ASTM STP 743, American Society for Testing and Materials, Philadelphia, PA (1982).
- W. Losch and I. Andreoni. "Grain Boundary Surface Phases Observed in Temper Embrittled High-Alloy Steels." <u>Scripta</u> <u>Met. 12</u>, 277 (1978).

- 37. A. W. Thompson. "Mechanical Behavior of Face-Centered Cubic Metals Containing Helium." <u>Mater. Sci. and Eng.</u> 21, 41-48 (1975).
- 38. M. R. Louthan, Jr., G. R. Caskey, D. E. Rawl, Jr., and C. W. Krapp. "Tritium Effects in Austenitic Steels." p. 117 in Proceedings of International Conference on Radiation Effects and Tritium Technology for Fusion Reactors IV. CONF-752026-13 (1976).
- 39. D. E. Rawl, Jr., G. R. Caskey, Jr., and J. A. Donovan. "Low Temperature Helium Embrittlement of Tritium Charged Stainless Steel." 109th Annual AIME Meeting, Las Vegas, Nevada, February 24-28, 1980.
- 40. J. A. Donovan. "Effects of Helium on Mechanical Properties of Armco Iron." Fall TMS-AIME Meeting, Niagara Falls, New York, September 20-23, 1976.
- 41. A. J. West and D. E. Rawl, Jr. "Hydrogen in Stainless Steel: Isotopic Effects on Mechanical Properties." <u>Proceedings of</u> <u>Conference in Tritium Technology in Fusion, Fusion and</u> <u>Isotopic Applications.</u> Conference 800427 (1980).
- 42. M. R. Louthan and R. G. Derrick, "Hydrogen Transport in Austenitic Stainless Steel." Corros. Sci. 15 565 (1975).
- 43. G. R. Caskey, Jr., and R. D. Sisson, Jr. "Hydrogen Solubility in Austenitic Stainless Steel." Scripta Met 15, 1187 (1981).
- 44. M. R. Dietrich, G. R. Caskey, Jr., and J. A. Donovan. J-Controlled Crack Growth as an Indicator of Hydrogen-Stainless Steel Compatibility, <u>Hydrogen Effects in Metals</u>, ed.
 I. M. Bernstein and A. W. Thompson, Metallurgical Society of AIME, Warrendale, PA, p. 637 (1981).
- 45. G. R. Caskey, Jr., D. A. Mezzanotte, Jr., and D. E. Rawl, Jr.
 "Helium Embrittlement Stainless Steels at Ambient Temperature." <u>Scripta Met</u> 16, 969 (1982).
- 46. T. L. Capeletti and M. R. Louthan, Jr. "The Tensile Ductility of Austenitic Steels in Air and Hydrogen." Journal of Engineering Materials and Technology, 99, 153-158 (1977).
- 47. T. L. Capeletti. "Effect of Hydrogen Exposure or the Fracture Toughness of 17-4 pH Stainless Steel." <u>Int. Conference on</u> <u>Mechanical Behavior of Materials</u>, Boston, August 16-20 (1976). <u>Conference 760819-12.</u>

- 48. G. R. Caskey, Jr. "The Role of Twinning and Transformation in Hydrogen Embrittlement of Austenitic Stainless Steels" in <u>Environmental Degradation of Engineering Materials</u>, ed. by M. R. Louthan and R. P. McNitt, Virginia Polytechnic Institute, Blacksburg, VA, pp. 437-449 (1977).
- 49. G. R. Caskey, Jr. "Fractography of Hydrogen Embrittled Stainless Steel." Scripta Met 11, 1077-1083 (1977).
- 50. G. R. Caskey, Jr. "A Mechanism for Hydrogen-Induced Brittle Fracture of Austenitic Stainless Steel." DP-MS-77-86,
 E. I. du Pont de Nemours & Co., Savannah River Laboratory, Aiken, SC, 107th Annual AIME Meeting, Denver, CO, February 26 -March 2, 1978.
- 51. G. R. Caskey, Jr. "Fracture of Fe-Cr-Mn Austenitic Steel." DP-MS-78-68, E. I. du Pont de Nemours & Co., Savannah River Laboratory, Aiken, SC, 108th Annual AIME Meeting, New Orleans, LA, February 18-20, 1979.
- 52. G. R. Caskey, Jr. and J. A. Donovan. "Effect of Heat Treatment on Fracture of Type 304L Stainless Steel in a Hydrogen Environment." DP-MS-79-18, E. I. du Pont de Nemours & Co., Savannah River Laboratory, Aiken, SC, 1979, TMS-AIME Fall Meeting, Milwaukee, WI, September 16-20, 1979.
- 53. G. R. Caskey, Jr. "Notch and Hydrogen Effects on Sensitized 21-6-9 Stainless Steel." DP-MS-79-22, E. I. du Pont de Nemours & Co., Savannah River Laboratory, Aiken, SC, 1979 TMS-AIME Fall Meeting, Milwaukee, WI, September 16-20, 1979.
- 54. G. R. Caskey, Jr. "Hydrogen Effects on Flow Localization and Fracture in Type 304L Stainless Steel." DP-MS-79-57,
 E. I. du Pont de Nemours & Co., Savannah River Laboratory, Aiken, SC, Gordon Research Conference, Andover, NH, July 9-13, 1979.
- 55. G. R. Caskey, Jr. "Acoustic Emission from Hydrogen Saturated Type 304L Stainless Steel." Scripta Met 13 583-587 (1979).
- 56. G. R. Caskey, Jr. "Hydrogen Assisted Fracture of Sensitized Type 304L Austenitic Stainless Steel." DP-MS-79-62,
 E. I. du Pont de Nemours & Co., Savannah River Laboratory, Aiken, SC, 109th Annual AIME Meeting, Las Vegas, NV, February 24-28, 1980.
- 57. G. R. Caskey, Jr. "Fractography of Hydrogen-Embrittled Iron Chromium-Nickel Alloys." <u>Microstructural Science</u> 9, 413-419 (1981).

- G. R. Caskey, Jr. "Hydrogen Induced Brittle Fracture of Type 304L Austenitic Stainless Steel." American Society for Testing and Materials, STP 733, 86-97 (1981).
- 59. G. R. Caskey, Jr. "Effect of Hydrogen on Work Hardening of Type 304L Austenitic Stainless Steel." <u>Scripta Met 15</u>, 1183-1186 (1981).
- 60. G. R. Caskey, Jr. "Hydrogen Damage in Stainless Steel." <u>Environmental Degradation of Engineering Materials</u>. Edited by M. R. Louthan, Jr., R. P. McNitt, and R. D. Sisson, Virginia Polytechnic Institute, Blacksburg, VA, pp. 283-302 (1981).
- G. R. Caskey, Jr. "Hydrogen Effects in High Purity Stainless Steels." Third International Congress on Hydrogen and Materials, Paris, France, June 7-11, 1982.
- J. A. Donovan. "Accelerated Evolution of Hydrogen from Metals During Plastic Deformation." <u>Met. Trans.</u> 7A, 1677-1683 (1977).
- 63. M. L. Holzworth and M. R. Louthan, Jr. "Hydrogen Induced Phase Transformations on Type 304L Stainless Steels." <u>Corrosion 24</u>, 110-124 (1968).
- 64. M. L. Holzworth. "Hydrogen Embrittlement of Type 304L Stainless Steel." <u>Corrosion</u> 25, 107-115 (1969).
- 65. M. R. Louthan, Jr., G. R. Caskey, Jr., J. A. Donovan, and D. E. Rawl, Jr. "Hydrogen Embrittlement of Metals." <u>Mater.</u> <u>Sci. and Eng.</u> 10 357 (1972).
- 66. M. R. Louthan, Jr., J. A. Donovan, and D. E. Rawl, Jr. "Effect of High Dislocation Density on Stress Corrosion Cracking and Hydrogen Embrittlement of Type 304L Stainless Steel." Corrosion 29, 108-111 (1973).
- 67. M. R. Louthan, Jr., J. A. Donovan, and G. R. Caskey, Jr. "Tritium Absorption in Type 304L Stainless Steel." <u>Nuclear</u> <u>Technology</u> 26, 192-200 (1975).
- M. R. Louthan, Jr., D. E. Rawl, Jr., J. A. Donovan, and
 W. G. Holmes. "Hydrogen Embrittlement of Austenitic Stainless Steels." <u>Trans. Am. Nuc. Soc.</u> 21, 158 (1975).
- 69. M. R. Louthan, Jr. and G. R. Caskey, Jr. "Hydrogen Transport and Embrittlement in Structural Metals." <u>1st World Hydrogen</u> Energy Conference (1976).

- 70. M. R. Louthan, Jr. and R. P. McNitt. "The Role of Test Technique in Evaluating Hydrogen Embrittlement Mechanism." <u>Effect of Hydrogen in Behavior of Materials</u>, ed. A. W. Thompson and I. M. Bernstein, Metallurgical Society of AIME, Warrendale, PA, p. 496 (1976).
- 71. M. R. Louthan, Jr. "Effect of Hydrogen on the Mechanical Properties of Low Carbon and Austenitic Steels." <u>Hydrogen in</u> <u>Metals</u>, ed. T. M. Bernstein and A. W. Thompson, American Society for Metals, Metals Park, Ohio, pp. 53-77 (1974).

APPENDIX A. DEFINITIONS

ELONGATION

Percentage increase of a gauge length, usually one inch, during plastic strain in tension. In the data presented here, crosshead motion was taken as the measure of change in length.

Total elongation is length increase at fracture.

Uniform elongation is length increase to the point where drop in load is detected which signals beginning of observable strain localization or necking.

HEAT TREATMENTS

Aging is a process of heating a previously solution-treated alloy to an intermediate temperature to cause precipitation of a finely dispersed phase which hardens the alloy.

Sensitization is a heat treatment that causes precipitation of carbides of the form M₂₃ C₆ along grain boundaries and simultaneously reduces the chromium content of the grain boundary regions.

Solution annealing is a process of heating to elevated temperature to dissolve all precipitates and produce a homogeneous solid solution and quenching to retain the solid solution.

MECHANICAL PROCESSING

Ingots of stainless steel are formed into plate or bar by mechanical processes of rolling and forging.

Cross-rolled plate refers to turning plate 90° between passes through the rolling mills to minimize preferred orientation that arises during the rolling process.

High energy rate forged (HERF) alloys are hot forged at a very rapid rate and immediately quenched in water to retain deformation introduced during forging.

PLASTIC STRAIN

Irreversible or permanent strain of the test specimen measured by subtracting elastic or recoverable strain from total strain. This was usually done graphically on the load-deformation record obtained during a tensile test.

Plastic strain to failure ($_p$) is calculated from the measured change in cross sectional area from the original (A_0) to the final area (A_f) at the fracture.

 $\epsilon_{\rm p} = \ln A_0 / A_{\rm f}$

Reduction in area (RA) is a measure of plasticity calculated from the original (A_0) and final (A_f) cross sectional areas.

$$RA = 100 \quad \frac{A_0 - A_f}{A_0}$$

STRESS

Stress or force per unit area may be defined with respect to an initial area (engineering stress) or the instantaneous area (true stress). Both definitions have been utilized in data presented here and are distinguished in each table.

Yield strength is the stress corresponding to a plastic strain of 5% unless otherwise noted.

Ultimate strength is the true stress corresponding at maximum load.

Tensile strength is the engineering stress at maximum load.

STRESS INTENSITY

The stress intensity factor (K) relates the stress field (σ_{ij}) around a crack tip to the crack dimensions (a) and specimen dimensions (width = w), where the function f(a,W) depends on specimen shape, crack location and loading mode.

The stress intensity corresponding to the critical value for crack extension is the Fracture Toughness (K_c). Fracture toughness is a measure of the ability of a material to resist crack propagation.

Under sustained load, cracks will propagate in hydrogen at stress intensities greater than a threshold or $K_{\rm TH}$.

TEMPERATURE CONVERSIONS

Conversions Temperature Albert Sauveur type of table. Look up reading in middle column; column; if in degrees Fahrenheit, read Centigrade equivalent in

	It in degrees Centigrade, read Fabrennen				ennen eq	uivai		n rign	t•nan		cit-ila	and column. Values as printed in Betmen				thienem Alloy Steels .									
	-459.4 to (0 to 1	00			-	100 t	io 1000]			1000	to 2000					2000 ta	o 3000		
C		F	с	·	F		F	Ċ		Ŧ	C,		F	c		F	c		F	<u> </u>	<u> </u>	F	С		F
273 268 262 257 251	459.4 450 440 430 420		- 17.8 - 17.2 - 16.7 - 16.1 - 15.6	0 1 2 3 4	32 33.8 35.6 37.4 39.2	10.0 10.6 11.1 11.7 12.2	50 122.0 51 123.8 52 125.6 53 127.4 54 129.2	38 43 49 54 60	100 110 120 130 140	212 230 248 266 284	260 266 271 277 282	500 510 520 530 540	932 950 968 986 1004	538 543 549 554 560	1000 1010 1020 1030 1040	1832 1850 1868 1886 1904	816 821 827 832 838	1500 1510 1520 1530 1540	2732 2750 2768 2786 2804	1093 1099 1104 1110 1116	2000 2010 2020 2030 2040	3632 3650 3668 3686 3704	1371 1377 1382 1388 1393	2500 2510 2520 2530 2540	4532 4550 4568 4586 4604
246 240 234 229 223	410 400 390 380 370		-15.0 -14.4 -13.9 -13.3 -12.8	5 6 7 8 9	41.0 42.8 44.6 46.4 48.2	12.8 13.3 13.9 14.4 15.0	55 131.0 56 132.8 57 134.6 58 136.4 59 138.2	66 71 77 82 88	150 160 170 180 190	302 320 338 356 374	288 293 299 304 310	550 560 570 580 590	1022 1040 1058 1076 1094	566 571 577 582 588	1050 1060 1070 1080 1090	1922 1940 1958 1976 1994	843 849 854 860 866	1550 1560 1570 1580 1590	2822 2840 2858 2876 2894	1121 1127 1132 1138 1143	2050 2060 2070 2080 2090	3722 3740 3758 3776 3794	1399 1404 1410 1416 1421	2550 2560 2570 2580 2590	4622 4640 4658 4676 4694
218 212 - 207 -201 -196	-360 -350 -340 330 -320		$-12.2 \\ -11.7 \\ -11.1 \\ -10.6 \\ -10.0$	10 11 12 13 14	50.0 51.8 53.6 55.4 57.2	15.6 16.1 16.7 17.2 17.8	60 140.0 61 141.8 62 143.6 63 145.4 64 147.2	93 99 100 104 110	200 210 212 220 230	392 410 413.6 428 446	316 321 327 332 338	600 610 620 630 640	1112 1130 1148 1166 1184	593 599 604 610 616	1100 1110 1120 1130 1140	2012 2030 2048 2066 2084	871 877 882 888 893	1600 1610 1620 1630 1640	2912 2930 2948 2966 2984	1149 1154 1160 1166 1171	2100 2110 2120 2130 2140	3812 3830 3848 3866 3884	1427 1432 1438 1443 1449	2600 2610 2620 2630 2640	4712 4730 4748 4766 4784
-190 -184 179 -173 -169	-310 -300 -290 -280 273	459.4	- 9.4 8.9 - 8.3 7.8 7.2	15 16 17 18 19	59.0 60.8 62.6 64.4 66.2	18.3 18.9 19.4 20.0 20.6	65 149.0 66 150.8 67 152.6 68 154.4 69 156.2	116 121 127 132 138	240 250 260 270 280	464 482 500 518 536	343 349 354 360 366	650 660 670 680 690	1202 1220 1238 1256 1274	621 627 632 638 643	1150 1160 1170 1180 1190	2102 2120 2138 2156 2174	899 904 910 916 921	1650 1660 1670 1680 1690	3002 3020 3038 3056 3074	1177 1182 1188 1193 1199	2150 2160 2170 2180 2190	3902 3920 3938 3956 3974	1454 1460 1466 1471 1477	2650 2660 2670 2680 2690	4802 4820 4838 4856 4874
-168 -162 -157 -151 -146	270 260 250 240 230	-454 436 418 400 382	- 6.7 - 6.1 - 5.6 - 5.0 - 4.4	20 21 22 23 24	68.0 69.8 71.6 73.4 75.2	21.1 21.7 22.2 22.8 23.3	70 158.0 71 159.8 72 161.6 73 163.4 74 165.2	143 149 154 160 166	290 300 310 320 330	554 572 590 608 626	371 377 382 388 393	700 710 720 730 740	1292 1310 1328 1346 1364	649 654 660 666 671	1200 1210 1220 1230 1240	2192 2210 2228 2246 2264	927 932 938 943 949	1700 1710 1720 1730 1740	3092 3110 3128 3146 3164	1204 1210 1216 1221 1227	2200 2210 2220 2230 2240	3992 4010 4028 4046 4064	1482 1488 1493 1499 1504	2700 2710 2720 2730 2740	4892 4910 4928 4946 4964
-140 -134 -129 -123 -118	-220 -210 -200 -190 -180	364 346 328 310 292	3.9 3.3 2.8 2.2 1.7	25 26 27 28 29	77.0 78.8 80.6 82.4 84.2	23.9 24.4 25.0 25.6 26.1	75 167.0 76 168.8 77 170.6 78 172.4 79 174.2	171 177 182 188 193	340 350 360 370 380	644 662 680 698 716	399 404 410 416 421	750 760 770 780 79 0	1382 1400 1418 1436 1454	677 682 688 693 699	1250 1260 1270 1280 1290	2282 2300 2318 2336 2354	954 960 966 971 977	1750 1760 1770 1780 1790	3182 3200 3218 3236 3254	1232 1238 1243 1249 1254	2250 2260 2270 2280 2290	4082 4100 4118 4136 4154	1510 1516 1521 1527 1532	2750 2760 2770 2780 2790	4982 5000 5018 5036 5054
112 107 101 96 90		-274 -256 -238 -220 -202	1.1 - 0.6 0.0 0.6 1.1	30 31 32 33 34	86.0 87.8 89 6 91.4 93.2	26.7 27.2 27.8 28.3 28.9	80 176.0 81 177.8 82 179.6 83 181.4 84 183.2	199 204 210 216 221	390 400 410 420 430	734 752 770 788 806	427 432 438 443 449	800 810 820 830 840	1472 1490 1508 1526 1544	704 710 716 721 727	1300 1310 1320 1330 1340	2372 2390 2408 2426 2444	982 988 993 999 1004	1800 1810 1820 1830 1840	3272 3290 3308 3326 3344	1260 1266 1271 1277 1282	2300 2310 2320 2330 2340	4172 4190 4208 4226 4244	1538 1543 1549 1554 1560	2800 2810 2820 2830 2840	5072 5090 5108 5126 5144
- 84 - 79 - 73 - 68 - 62		184 166 148 130 112	1.7 2.2 2.8 3.3 3.9	35 36 37 38 39	95.0 96.8 98.6 100.4 102.2	29.4 30.0 30.6 31.1 31.7	85 185.0 86 186.8 87 188.6 88 190.4 89 192.2	227 232 238 243 249	440 450 460 470 480	824 842 860 878 896	454 460 466 471 477	850 860 870 880 890	1562 1580 1598 1616 1634	732 738 743 749 754	1350 1360 1370 1380 1390	2462 2480 2498 2516 2534	1010 1016 1021 1027 1032	1850 1860 1870 1880 1890	3362 3380 3398 3416 3434	1288 1293 1299 1304 1310	2350 2360 2370 2380 2390	4262 4280 4298 4316 4334	1566 1571 1577 1582 1588	2850 2860 2870 2880 2890	5162 5180 5198 5216 5234
- 57 - 51 - 46 - 40 - 34	70 60 50 40 30	94 76 58 40 22	4.4 5.0 5.6 6.1 6.7	40 41 42 43 44	104.0 105.8 107 6 109.4 111.2	32.2 32.8 33.3 33.9 34.4	90 194.0 91 195.8 92 197.6 93 199.4 94 201.2	254	490	914	482 488 493 499 504	900 910 920 930 940	1652 1670 1688 1706 1724	760 766 771 777 782	1400 1410 1420 1430 1440	2552 2570 2588 2606 2624	1038 1043 1049 1054 1060	1900 1910 1920 1930 1940	3452 3470 3488 3506 3524	1316 1321 1327 1332 1338	2400 2410 2420 2430 2440	4352 4370 4388 4406 4424	1593 1599 1604 1610 1616	2900 2910 2920 2930 2940	5252 5270 5288 5306 5324
- 29 - 23 - 17.0	$\begin{vmatrix} -20 \\ -10 \\ 0 \end{vmatrix}$	- 4 14 32	7.2 7.8 8.3 8.9 9.4	45 46 47 48 49	113.0 114.8 116.6 118.4 120.2	35.0 35.6 36.1 36.7 37.2 37.8	95 203.0 96 204.8 97 206.6 98 208.4 99 210.2 100 212.0				510 516 521 527 532 538	950 960 970 980 990 1000	1742 1760 1778 1796 1814 1832	788 793 799 804 810	1450 1460 1470 1480 1490	2642 2660 2678 2696 2714	1066 1071 1077 1082 1088 1093	1950 1960 1970 1980 1990 2000	3542 3560 3578 3596 3614 3632	1343 1349 1354 1360 1366	2450 2460 2470 2480 2490	4442 4460 4478 4496 4514	1621 1627 1632 1638 1643 1643	2950 2960 2970 2980 2990 3000	5342 5360 5378 5396 5414 5432

Reproduced from METAL PROGRESS DATA SHEET No. 18 (1954) by permission from American Society for Metals, Metals Park, Ohio 44073.

•

English / Metric (SI) Stress Conversion Factors

Look up stress to be converted in the **boldface** column. If in ksi (10³ psi), read MPa in right hand column. If in MPa read ksi in lefthand column Conversion factors 1 MPa = 1 MN/m² (meganewton per square metre) or 1 N mm² (newton per square millimetre). 1 MPa = 0.1450377 ksi and 1 ksi = 6.894759 MPa

	0 to	100			100 to	100 to 200 MPa ksi MPa 100 689 5 21 76 150 1 034 101 696 4 21 90 151 1 041 02 703 3 22 05 152 1 048 103 710 2 22 19 153 1 054 104 717 1 22 34 154 1 062 105 724 0 22 48 155 1 069 106 730 8 22 63 156 1 076 107 737 7 22 77 157 1 082 108 744 6 22 92 158 1 089 109 751 5 23 06 159 1 096					
ksi	MPa	ksi	MPa	ksi	MPa	ksi	MPa				
ksi 0 15 0 29 0 44 0 58 0 73 0 87 1 02 1 16 1 31 1 45 1 60 1 74 1 89 2 03 2 18 2 32 2 47 2 61 2 76 2 90 3 05 3 19 3 34 3 48 3 63 3 77 3 92 4 06 4 21 4 35 4 50 4 64 4 79 4 93 5 08 5 22 5 51	MPa 0 — 1 6 89 2 13 79 3 20 68 4 27 57 5 34 47 6 41 37 7 48 26 8 55 16 9 62 05 10 68 95 11 75 84 12 82 74 13 89 63 14 96 53 15 103 4 16 110 3 17 117 2 18 124 1 19 131 0 20 137 9 21 144 8 22 151 7 23 158 6 24 165 5 25 172 4 26 179 3 27 186 2 28 193 1 29 199 9 30 206 8 31 213 7 32 220 6 33 227 5 34 234 4 35 241 3 36 248 2 37 255 1 38 262 0	ksi 7 25 50 7 40 51 7 54 52 7 69 53 7 83 54 7 98 55 8 12 56 8 27 57 8 41 58 8 56 59 8 70 60 8 85 61 8 99 62 9 14 63 9 28 64 9 43 65 9 57 66 9 72 67 9 86 68 10 01 59 10 59 73 10 73 74 10 88 75 11 02 76 11 17 77 11 60 80 11 75 81 11 89 82 12 04 83 12 18 84 12 33 85 12 147 86 12 76	MPa 344 7 351 6 358 5 365 4 372 3 379 2 386 1 393 0 399 9 406 8 413 7 420 6 427 5 434 4 441 3 448 2 455 1 462 0 468 8 475 7 482 6 489 5 496 4 503 3 510 2 517 1 524 0 530 9 537 8 544 7 551 6 558 5 565 4 572 3 579 2 586 1 593 0 599 8 606 7	ksi 14 50 14 65 14 79 14 94 15 08 15 23 15 37 15 52 15 66 15 81 15 95 16 10 16 24 16 39 16 53 16 68 16 68 16 82 16 97 17 11 17 26 17 40 17 55 17 69 17 84 17 98 18 13 18 27 18 42 18 56 18 71 18 85 19 00 19 14 19 29 19 44 19 58 19 73 19 87 20 02	MPa 100 689 5 101 696 4 102 703 3 103 710 2 104 717 1 105 724 0 106 730 8 107 737 7 108 744 6 109 751 5 110 758 4 111 765 3 112 772 2 113 779 1 114 786 0 115 792 9 116 799 8 117 806 7 118 813 6 119 820 5 120 827 4 121 834 3 122 841 2 123 848 1 124 855 0 125 861 8 131 903 2 132 910 1 133 917 0 134 923 9 135 930 8 136 937 7 <th>ksi 21 76 21 76 21 90 22 05 22 19 22 34 22 43 22 77 22 92 23 06 73 21 23 35 23 64 23 79 23 93 24 08 24 24 37 24 51 24 66 24 80 24 95 25 09 25 24 25 38 25 53 25 67 25 82 25 96 26 11 26 64 26 69 26 83 26 69 26 83 26 69 26 83 26 91 26 83 26 92 26 83 26 92 26 83 26 92 26 83 26 92</th> <th>MPa 150 1 034 151 1 041 152 1 048 153 1 054 153 1 054 154 1 062 155 1 069 156 1 076 157 1 082 158 1 089 159 1 096 160 1 103 161 1 110 162 1 117 163 1 124 164 1 131 165 1 138 166 1 145 167 1 151 168 1 158 169 1 165 170 1 172 171 1 179 172 1 186 173 1 193 174 1 200 175 1 207 176 1 213 177 1 220 178 1 227 179 1 234 180 1 241 181 1 248 182 1 255 183 1 262 183 1 262 184 1 269 185 1 276</th>	ksi 21 76 21 76 21 90 22 05 22 19 22 34 22 43 22 77 22 92 23 06 73 21 23 35 23 64 23 79 23 93 24 08 24 24 37 24 51 24 66 24 80 24 95 25 09 25 24 25 38 25 53 25 67 25 82 25 96 26 11 26 64 26 69 26 83 26 69 26 83 26 69 26 83 26 91 26 83 26 92 26 83 26 92 26 83 26 92 26 83 26 92	MPa 150 1 034 151 1 041 152 1 048 153 1 054 153 1 054 154 1 062 155 1 069 156 1 076 157 1 082 158 1 089 159 1 096 160 1 103 161 1 110 162 1 117 163 1 124 164 1 131 165 1 138 166 1 145 167 1 151 168 1 158 169 1 165 170 1 172 171 1 179 172 1 186 173 1 193 174 1 200 175 1 207 176 1 213 177 1 220 178 1 227 179 1 234 180 1 241 181 1 248 182 1 255 183 1 262 183 1 262 184 1 269 185 1 276				
5 66 5 80 5 95 6 09 6 24 6 38 6 53 6 67 6 82 6 96 7 11 7 25	39 268 9 40 275 8 41 282 7 42 289 6 43 296 5 44 303 4 45 310 3 46 317 2 47 324 1 48 331 0 49 337 8 50 344 71	12 91 89 13 05 90 13 20 91 13 34 92 13 49 93 13 63 94 13 78 95 13 92 96 14 07 97 14 21 98 14 36 99 14 50 100	613 6 620 5 627 4 634 3 641 2 648 1 655 0 661 9 668 8 675 7 682 6 689 5	20 16 20 31 20 45 20 60 20 74 20 89 21 03 21 18 21 32 21 47 21 61 21 76	139 958 4 140 965 3 141 972 2 142 979 1 143 986 0 144 992 9 145 999 7 146 1007 147 1014 148 1020 149 1027 150 1034	27 41 27 56 27 70 27 85 27 99 28 14 28 28 28 43 28 57 28 72 28 86 29 01	189 1 303 190 1 310 191 1 317 192 1 324 193 1 331 194 1 338 195 1 344 196 1 351 197 1 358 198 1 365 199 1 372 200 1 379				

Reproduced from the Mid-June 1980 METAL PROGRESS DATABOOK by permission from American Society for Metals, Metals Park, Ohio 44073.

ENGLISH/METRIC (SI) STRESS CONVERSION FACTORS (Continued)

To convert ksi or MPa values above 400 use the supplemental table Example Convert 1320 MPa to ksi Solution 1000 MPa 145 04 ksi (from the small table) and 320 MPa 46 41 ksi (from the large table) Then, 145 04 46 41 191 45 ksi

200 to 300							
ksi	MPa		ksi		MPa		ksi
ksi 29 01 29 15 29 30 29 42 29 59 29 73 29 88 30 02 30 17 30 31 30 46 30 60 30 75 30 89 31 04 31 33 31 47 31 62 31 76 31 91 32 05 32 20 32 34 32 78 32 92 33 36 33 50 33 65 33 74 34 08 34 08 34 07 34 56 34 81 34 95	2000 2011 2022 2033 2044 2055 2066 2077 2088 2099 2100 2111 2122 213 2144 2155 216 2217 2212 2223 2224 2225 2226 2227 2228 2229 2300 2311 2322 2224 2225 2226 2231 2227 2238 2299 2300 2311 232 233 234 235 236 237 238 239 230 231 232 234 235 236 237 238 239 230 231 232 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 233 234 235 236 237 238 239 230 231 232 232 233 234 235 236 237 238 239 230 231 232 232 233 234 233 234 235 236 237 238 239 230 231 232 232 233 234 235 236 237 238 237 238 239 230 231 232 232 232 232 232 232 232 232 232	200 t MPa 1 379 1 386 1 393 1 400 1 407 1 413 1 420 1 427 1 413 1 420 1 427 1 434 1 455 1 462 1 469 1 475 1 462 1 469 1 475 1 489 1 496 1 503 1 510 1 517 1 538 1 544 1 551 1 538 1 544 1 551 1 555 1 572 1 579 1 586 1 593 1 606 1 613 1 620 1 634 1 641 1 655 1 655 1 655 1 655	a) 300 ksi 36 26 36 40 36 55 36 69 37 13 37 27 37 42 37 71 37 85 38 00 38 14 38 29 38 87 39 02 39 16 39 45 39 60 39 74 39 89 40 03 40 76 40 90 41 19 41 34 41 63 41 77 42 206 42 21	250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291	MPa 1 724 1 731 1 737 1 744 1 751 1 758 1 755 1 772 1 779 1 786 1 793 1 800 1 806 1 813 1 820 1 806 1 813 1 820 1 827 1 834 1 841 1 848 1 841 1 848 1 845 1 862 1 862 1 889 1 896 1 903 1 917 1 924 1 931 1 917 1 924 1 931 1 937 1 945 1 955 1 972 1 979 1 986 1 993 1 999 2 006		ksi 43 51 43 66 43 80 43 95 44 09 44 24 44 38 44 53 44 67 44 82 44 96 45 11 45 25 45 40 45 54 45 69 45 54 46 27 46 41 46 56 46 85 46 99 47 14 46 70 46 85 46 99 47 14 47 28 47 43 47 57 47 72 47 86 48 01 48 15 48 02 49 17 49 31 49 346
34 95 35 10 35 24 35 39 35 53 35 68 35 82 35 97 26 11	241 242 243 244 245 246 247 248 240	1 662 1 669 1 675 1 682 1 689 1 696 1 703 1 710	42 21 42 35 42 50 42 64 42 79 42 93 43 07 43 22	291 292 293 294 295 296 297 298 209	2 006 2 013 2 020 2 027 2 034 2 041 2 048 2 055 2 062		49 46 49 60 49 75 49 89 50 04 50 18 50 33 50 47
36 11 36 26	249 250	1 717 1 72 4	43 37 43 51	299 300	2 062 2 068		50 62 50 76

300 to 400								
	MPa	ksi		MPa				
300 301	2 068 2 075 2 082	50 76 50 91	350 351 252	2 413 2 420 2 427				
302	2 082	51 20	353	2 427				
304	2 096	51 34	354	2 441				
305	2 103	51 49	355	2 448				
306	2 110	51 63	356	2 455				
308	2 124	51 92	358	2 468				
309	2 1 3 0	52 07	359	2 475				
310	2 137	52 21	360	2 482				
311	2 144	52 36 52 50	361	2 489				
312	2 151 2 158	52 65	302 363	2 490				
314	2 165	52 79	364	2 510				
315	2 172	52 94	365	2 517				
316	2 179	53 08	366	2 523				
317	2 186	53 23	367	2 530				
319	2 199	53 52	369	2 544				
320	2 206	53 66	370	2 551				
321	2 213	53 81	371	2 558				
322	2 220	53 95	372	2 565				
323	2 227	54 10	374	2 572				
325	2 241	54 39	375	2 585				
326	2 248	54 53	376	2 592				
327	2 255	54 68	377	2 599				
328	2 261	54 82	3/8 379	2 606				
330	2 275	55 11	380	2 620				
331	2 282	55 26	381	2 627				
332	2 289	55 40	382	2 634				
333	2 296	55 55	383 384	2,641				
325	2 310	55.84	385	2 654		_		
336	2 317	55 98	386	2 661				
337	2 324	56 13	387	2 668		ksi	500 10 5000	MPa
338	2 330 2 337	56 27	388 389	2 675		72.52	500	3447
335	2 344	56 56	390	2 689		87.02	600	4137
341	2 351	56 71	391	2 696		101 53	700	4826
342	2 358	56 85	392	2 703		116.03	800	5516
34.3 34.4	2 305	57 00	393	2 /10 2 717		130 53	900	6205
345	2 379	57 29	395	2 723		145.04	1000	6895
346	2 386	57 43	396	2 730		200.08	2000	13 790
347	2 392	57 58	397	2 737		435.11	2000	20 684
348 349	2 399 2 406	57 72	398 300	2 744		580.15	4000	27 579
350	2 413	58 02	400	2 758		725 10	5000	34 474
						12319		7 7 7
		So	Jrce A	nton deS	Bra	asunas U	niversity of Mis	souri Rolla

ksı√in.	* 0	1	2	3	4	5	6	7	8	9
					MPa	\sqrt{m}				
0	_	11	22	33	44	55	66	77	88	9
10	11 0	12 1	13 2	14 3	15 4	16 5	17 6	18 7	198	20
20	22 0	23 1	24 2	25 3	26 4	275	28 6	29 7	30 8	31
30	33 0	34 1	35 2	36 3	374	38 5	39 6	40 7	418	42
40	44 0	45 1	46 2	473	48 4	49 5	50 6	517	52 8	53
50	54 9	56 0	57 1	58 2	59 3	60 4	61 5	62 6	63 7	64
60	65 9	67 0	68 1	69 2	70 3	714	72 5	73 6	74 7	75
70	76 9	78 0	79 1	80 2	81 3	82 4	83 5	84 6	85.7	86
80	87 9	89.0	90.1	91.2	92.3	93.4	94.5	95.6	96 7	97
90	98 9	100	101	102	103	104	105	107	108	109
100	110 121	111 122	112	113 124	114	115	116 127	118	119	120
120	132	122	134	125	136	137	138	140	141	1.4
130	143	144	1/15	146	147	1/12	1/0	151	160	142
140	154	155	156	157	150	150	149	160	162	100
150	165	100	167	169	160	170	171	172	174	104
160	176	100	170	170	109	101	100	104	1/4	1/3
170	1/0	1//	100	100	100	101	102	104	180	180
100	107	100	109	190	191	192	193	194	196	197
100	200	199	200	201	202	203	204	205	207	208
190	209	210	211	212	213	214	215	210	218	219
200	220	221	222	223	224	225	226	227	229	230
210	231	232	233	234	235	236	237	238	240	241
220	242	243	244	245	246	247	248	249	251	252
230	253	254	255	256	257	25 8	259	260	262	263
240	264	265	266	267	268	269	270	271	273	274
250	275	276	277	278	279	280	281	282	284	285
260	286	287	288	289	290	291	292	293	294	296
270	297	298	299	300	301	302	303	304	305	307
280	308	309	310	311	312	313	314	315	316	318
290	319	320	321	322	323	324	325	326	327	329
300	330	331	332	333	334	335	336	337	338	340
310	341	342	343	344	345	346	347	348	349	351
320	352	353	354	355	356	357	358	359	360	362
330	363	364	365	366	367	368	369	370	371	373
340	374	375	376	377	378	379	380	381	382	384
350	385	386	387	388	389	390	391	392	393	394
360	396	397	398	399	400	401	402	403	404	405
370	407	408	409	410	411	412	413	414	415	416
380	418	419	420	421	422	423	424	425	426	427
390	429	430	431	432	433	434	435	436	437	438
400	440									

Reproduced from the Mid-June 1980 METAL PROGRESS DATABOOK by permission from American Society for Metals, Metals Park, Ohio 44073.

Look up impact energy to be converted in boldface column. If in ft-lb, read joules (J) in lefthand column. If in joules (J), read ft-lb in righthand column Decimal energy values above 10 and all values above 130 can be calculated by addition. For example, 25.5 ft-lb = 33.9 (25.0) + 0.68 (0.5) or 34.58 J Also, 165 J = 73.8 (100.0) + 47.9 (65) or 121.7 ft-lb

Note. Values for conversions are rounded off to simplify calculations. Actual conversion factors (1 ft-lb = 1.355818 joules and 1 joule = 0.737562 ft-lb) can be used if more accuracy is desired. (Reviewed February 1980)

ft-lb 56.1 56.8 57.5 58.3 59.0 59.7 60.5 61.2 62.0 62.7 63.4 64.2 64.9 65.6 66.4 67.1 67.9 68.6 69.3 70.1 70.8 71.5 72.3 73.0 73.8 74.5 75.2 76.0 76.7 77.4 78.2 78.9 79.7 80.4 81.1 81.9 82.6 83.3 84.1 84.8 85.6 86.3 87.0 87.8 88.5 89.2 90.0 90.7 91.5 92.2 92.9 93.7 94.4 95.1 95.9

0.1 to 20						21 to 130				
jouie (J)		ft-lb	joule (J)		ft-lb	joule (J)		ft-lb	joule (J))
0.14	0.1	0.07	7.59	5.6	4.13	28.5	21.0	15.5	103.0	76.0
0.27	0.2	0.15	7.73	5.7	4.20	29.8	22.0	16.2	104.4	77.0
0.41	0.3	0.22	7.86	5.8	4.28	31.2	23.0	17.0	105.8	78.0
0.54	0.4	0.30	8.00	5.9	4.35	32.5	24.0	17.7	107.1	79.0
0.68	0.5	0.37	8.13	6.0	4.43	33.9	25.0	18.4	108.4	80.0
0.81	0.6	0.44	8.27	6.1	4.50	35.3	26.0	19.1	109.8	81.0
0.95	0.7	0.52	8.41	6.2	4.57	36.6	27.0	19.9	111.2	82.0
1.08	0.8	0.59	8.54	6.3	4.65	38.0	28.0	20.7	112.6	83.0
1.22	0.9	0.66	8.68	6.4	4.72	39.3	29.0	21.4	113.9	84.0
1.36	1.0	0.74	8.81	6.5	4./9	40.7	30.0	22.1	115.2	85.0
1.49	1.1	0.81	8.95	6.6	4.87	42.0	31.0	22. 9	116.6	86.0
1.63	1.2	0.89	9.08	6.7	4.94	43.4	32.0	23.6	118.0	87.0
1.76	1.3	0.96	9.22	6.8	5.02	44.7	33.0	24.3	119.3	88.0
1.90	1.4	1.03	9.30	5.9 7.0	5.09	46.1	34.0	25.1	120.7	89.0
2.03	1.5	1.11	9.49	7.0	5.10	4/.5	35.0	25.8	122.0	90.0
2.17	1.6	1.18	9.63	7.1	5.24	48.8	36.0	26.6	123.4	91.0
2.30	1.7	1.25	9.76	7.Z	5.31	50.2	37.0	27.3	124.7	92.0
2.44	1.8	1.33	9.90	7.3	5.38	51.5	38.0	28.0	126.1	93.0
2.00	1.9	1.40	10.0	7.4	J.40 5.52	52.9	39.0	28.8	12/.4	94.0
2.71	2.0	1.40	10.2	7.0	5.55	54.2	40.0	29.5	120.0	55.0
2.85	2.1	1.55	10.3	/.0	5.61 5.69	55.6	41.0	30.2	130.2	96.0
2.98	2.2	1.62	10.4	7.9	J.00 5 75	56.9	42.0	31.0	131.5	37.0
3.12	2.3	1.70	10.0	7.0	5.83	50.3	43.0	31.7	132.9	30.0
3 39	25	1.77	10.8	8.0	5.00	55./ 61.0	44.0	32.3	135.6	100.0
2.53	2.5	1.07	11.0	8 1	5.07	01.0	40.0	33.2	135.0	101.0
3.66	2.0	1.92	111	8.2	6.05	62.4	40.0	33.9	138.3	101.0
3.80	2.7	2.07	11.3	8.3	6.12	65.1	47.0	35 4	139.6	103.0
3.93	2.9	2.14	11.4	8.4	6.20	66.4	49.0	36.1	141.0	104.0
4.07	3.0	2.21	11.5	8.5	6.27	67.8	50.0	36.9	142.4	105.0
4.20	3.1	2 29	11.7	8.6	6.34	69.1	51.0	37.6	143.7	106.0
4.34	3.2	2.36	11.8	8.7	6.42	70.5	52.0	38.4	145.1	107.0
4.47	3.3	2.43	11.9	8.8	6.49	71.9	53.0	39.1	146.4	108.0
4.61	3.4	2.51	12.1	8.9	6.56	73.2	54.0	39.8	147.8	109.0
4.75	3.5	2.58	12.2	9.0	6.64	74.6	55.0	40.6	149.1	110.0
4.88	3.6	2.66	12.3	9.1	6.71	75.9	56.0	41.3	150.5	111.0
5.02	3.7	2.73	12.5	9.2	6.79	77.3	57.0	42.0	151.9	112.0
5.15	3.8	2.80	12.6	9.3	6.86	7 8 .6	58.0	42.8	153.2	113.0
5.29	3.9	2.88	12.7	94	6.93	80.0	59.0	43.5	154.6	114.0
5.42	4.0	2.95	12.9	9.5	7.01	81.3	60.0	44.3	155.9	115.0
5.56	4.1	3.02	13.0	9.6	7.08	82.7	61.0	45.0	157.3	116.0
5.69	4.2	3.10	13.2	9.7	7.15	84.1	62.0	45.7	158.6	117.0
5.83	4.3	3.17	13.3	9.8	7.23	85.4	63.0	46.5	160.0	118.0
5.97	4.4	3.25	13.4	9.9	7.30	86.8	64.0	47.2	161.3	119.0
6.10	4.5	3.32	13.0	10.0	7.30	88.1	65.0	4/.9	162.7	120.0
6.24	4.6	3.39	14.9	11.0	8.11	89.5	66.0	48.7	164.1	121.0
6.37	4.7	3.4/	10.3	12.0	0.0J 0 50	90.8	67.0	49.4	165.4	122.0
6.51	4.8	3.54 2.61	1/.0	14.0	9.09 10 2	92.2	68.0	50.2 50.0	100.8	123.0
0.0 4 £ 70	4.J 5 A	3.01	20.3	14.0	11.1	93.0	70.0	эо.у 51 с	7 001	125.0
0.70	5.0	3.03	20.0	16 0	11.9	34.3	70.0	51.0	100.0	196 0
6.91	J.I	3./0	22.0	17.0	125	96.3	/1.0	52.4 52 1	170.8	127.0
7.05	7.Z	3.84 2.01	23.0	18 0	13.3	9/.6	72.0	00.1 52 P	172.6	128.0
7 3 2	J.J 5 A	3 08	25.8	19.0	14.0	35.0	73.0	53.0 54 6	174 0	129.0
7.32 7 AR	55	4.06	27.1	20.0	14.8	100.5	75.0	55.3	176.3	130.0
7.40	4.0	4.00	1			101.0			1,0.0	

Reproduced from the Mid-June 1980 METAL PROGRESS DATABOOK by permission from American Society for Metals, Metals Park, Ohio 44073.

Smooth Bar Tensile Test Specimen A

Smooth Bar Tensile Test Specimen B

* Increase diameter from center of gage (.188) to the ends by 0.002"

Smooth Bar Tensile Test Specimen C

Circumferential Notch at Center of Specimen for Notched Tensile Specimens

APPENDIX C-6

Single Edge Notched Tensile Specimen

APPENDIX C-6a

Detail of Notch in Single Edge Notched Tensile Specimen

Notes: 1) All demensions $\pm 0.001^{"}$

- 2) Notch root radius = 0.005"
 3) To prevent excessive hardening in notch area, machine final 0.040" of notch in five cuts (0.010" on first cut, 0.010" on 2nd cut, 0.010" on 3rd cut, 0.005" on 4th cut and 0.005" on 5th cut),

APPENDIX C--7

C-Shaped Fracture Mechanics Specimen

APPENDIX C-7a

Detail of Notch in C-Shaped Fracture Mechanics Specimen

Notes: 1) All demensions ± 0.001" 2) Notch root radius = 0.005"

APPENDIX C-8

These analyses are for the specific heats of steel actually tested.

DATA SHEET D-1

Heat Analysis Type 304L Stainless Steel

Element	Weight Percent
С	0.03
Mn	1.57
Р	0.015
S	0.008
Si	0.43
Cr	18.35
Ni	10.29
Мо	0.17
N	-
A1	-
Ti	-
Nb	-
Cu	-

Heat Analysis Type 330 Stainless Steel

<u>Element</u>	Weight Percent
-	
С	0.049
Mn	1.40
Р	-
S	0.005
Si	1.46
Cr	18.40
Ni	35.00
Мо	0.18
Ν	-
A1	-
Ti	0.45
Nb	-
Cu	0.20

DATA SHEET D-3

2

Heat Analysis Incoloy® 800H

Element	Weight Percent
С	0.08
Mn	0.84
Р	-
S	0.002
Si	0.51
Cr	19.19
Ni	34.04
Мо	-
N	-
A1	0.36
Ti	0.41
Nb	-
Cu	0.52

Heat Analysis Tenelon®

Element	Weight Percent
С	-
Mn	15.3
Р	-
S	-
Si	0.53
Cr	17.4
Ni	0.22
Мо	-
N	0.4-0.6
A1	
Ti	-
Nb	-
Cu	-

DATA SHEET D-5

Heat Analysis Nitronic[®] 40 Stainless Steel

Element	Weight Percent
C	0.015
C	0.013
Mn	9.01
Р	0.018
S	0.016
Si	0.24
Cr	20.32
Ni	6.71
Мо	-
N	0.35
A1	-
Ti	
Nb	-
Cu	-

٠

Heat Analysis Nitronic[®] 50 Stainless Steel

Element	Weight Percent
C	0.05
Mn	5.44
Р	0.015
S	0.010
Si	0.42
Cr	21.48
Ni	12.36
Мо	2.12
N	0.25
A1	-
Ti	-
Nb	0.19
Cu	-
v	0.2

DATA SHEET D-7

Heat Analysis Type 316 Stainless Steel

Element	Weight Percent
С	0.07
Mn	8.08
P	0.015
S	0.023
Si	0.69
Cr	19.57
Ni	5.67
Мо	2.13
N	0.32
A1	-
Ti	-
NЪ	-
Cu	-

,

Heat Analysis X18-3 Mn Stainless Steel

Element	Weight Percent
С	0.067
Mn	12.4
P	0.013
S	0.013
Si	0.43
Cr	18.55
Ni	3.17
Мо	-
N	0.33
A1	-
Ti	-
Nb	-
Cu	-
В	0.0015

DATA SHEET D-9

Heat Analysis 18-18 Plus®

Element	Weight Percent
С	0.11
Mn	17.80
Р	0.020
S	0.004
Si	0.56
Cr	17.78
Ni	0.46
Мо	1.09
N	0.45
A1	-
Ti	-
Nb	-
Cu	0.95
Со	0.01

Heat Analysis 304N

Weight Percent
0.00
0.06
1.66
0.30
0.025
0.19
18.37
8.43
0.10
0.250
-
-
-
0.15

DATA SHEET D-11

Heat Analysis Carpenter 20 Cb-3®

Element	Weight Percent
С	0.018
Mn	1.60
Р	0.028
S	0.007
Si	0.44
Cr	20.60
Ni	34.90
Мо	4.33
N	-
A1	-
Ti	-
Nb	0.39
Cu	0.20

