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ydrogen peroxide (H

 

2

 

O

 

2

 

) has established itself as
a key player in stress and programmed cell death
responses, but little is known about the signaling

pathways leading from H

 

2

 

O

 

2

 

 to programmed cell death
in plants. Recently, identification of key regulatory mutants
and near-full genome coverage microarray analysis of
H

 

2

 

O

 

2

 

-induced cell death have begun to unravel the com-
plexity of the H

 

2

 

O

 

2

 

 network. This review also describes a
novel link between H

 

2

 

O

 

2

 

 and sphingolipids, two signals
that can interplay and regulate plant cell death.

H

 

Introduction

 

Hydrogen peroxide (H

 

2

 

O

 

2

 

), generated by various environmental
and developmental stimuli, can act as a signaling molecule that
regulates plant development, stress adaptation, and programmed
cell death (PCD) (Apel and Hirt, 2004). H

 

2

 

O

 

2

 

-induced PCD
itself is essential for a number of developmental processes and
environmental responses, including aleurone cell death, the
hypersensitive response to pathogens, and allelopathic plant–
plant interactions (Bethke and Jones, 2001; Bais et al., 2003;
Apel and Hirt, 2004). The mechanisms of H

 

2

 

O

 

2

 

 generation and
detoxification are well studied, but little is known as to how the
H

 

2

 

O

 

2

 

 signal is perceived and then channeled downstream the
signaling network in order to achieve the regulation of these
processes (Apel and Hirt, 2004). Recently, mutants in the H

 

2

 

O

 

2

 

signaling pathway were identified, providing a breakthrough in
our understanding of how the signaling network functions
(Nakagami et al., 2004; Rentel et al., 2004). In addition, mutants
that are more tolerant to both reactive oxygen species and to
perturbations in sphingolipid metabolism were obtained, thus
revealing a new link between redox and sphingolipid signaling
leading to plant PCD (Danon, A., and K. Apel, personal com-
munication; unpublished data). These genetic studies were fur-
ther substantiated by molecular and biochemical data bringing
new insights into the interplay between H

 

2

 

O

 

2

 

 and sphingolipids
during PCD (Gechev et al., 2004). Complementing these find-
ings, recently published transcriptional analyses highlighted

biochemical pathways and discovered new H

 

2

 

O

 

2

 

-responsive
genes (Vandenabeele et al., 2003, 2004).

 

The H

 

2

 

O

 

2

 

 signaling network is emerging: 
mutants in the H

 

2

 

O

 

2

 

 pathway

 

As H

 

2

 

O

 

2

 

 is both an important signaling molecule and a toxic
byproduct of cell metabolism, its cellular levels are under tight
control, and their maintenance has hallmarks of homeostatic
regulation. The cell can sense sublethal doses of H

 

2

 

O

 

2

 

 and acti-
vate peroxide-detoxifying mechanisms; alternatively, upon dif-
ferent cell death stimuli various H

 

2

 

O

 

2

 

-producing mechanisms
can be activated, and as a result of this deliberate H

 

2

 

O

 

2

 

 produc-
tion a self-destructive PCD is triggered (Gechev et al., 2002;
Bais et al., 2003; Apel and Hirt, 2004). H

 

2

 

O

 

2

 

 produced by
NADPH oxidases, for example, has multiple effects ranging
from growth promotion or ABA signaling to cell death (Torres
et al., 2002; Foreman et al., 2003; Kwak et al., 2003). Studies
with exogenously applied H

 

2

 

O

 

2

 

 confirm the role of H

 

2

 

O

 

2

 

 as a
cell death trigger and show that high concentrations can cause
necrosis instead of PCD (Yao et al., 2001). In agreement with
these observations, overexpression of the H

 

2

 

O

 

2

 

-detoxifying
enzyme ascorbate peroxidase can suppress the cell death induced
by H

 

2

 

O

 

2

 

 or nitric oxide (Murgia et al., 2004). Biochemical
evidence indicated that a plant MAPK cascade is responsible
for relaying the H

 

2

 

O

 

2

 

 signal, much alike in other eukaryotes
(Kovtun et al., 2000). However, plants possess an unusually
high number of MAPKs, and the kinase network can be a con-
vergence as well as a divergence point for different stress fac-
tors (Ichimura, 2002). The recent identification of the serine/
threonine kinase, oxidative signal-inducible1 (OXI1), as an
essential component in H

 

2

 

O

 

2

 

 signaling in 

 

Arabidopsis

 

 provided
new insights into the complexity and specificity of the H

 

2

 

O

 

2

 

-
relaying kinase network (Rentel et al., 2004). The 

 

Arabidospis

 

oxi1-null mutant showed enhanced susceptibility to pathogen
infection, data consistent with a role of H

 

2

 

O

 

2

 

 in PCD during
pathogen responses, and abnormal root hair growth, a process
that is also mediated by H

 

2

 

O

 

2

 

 (Rentel et al., 2004). The pleio-
tropic role of OXI1 in plant stress response(s) and development
is consistent with its activation not only by H

 

2

 

O

 

2

 

, but also by
other signals, including cellulose and various abiotic stresses.
OXI1 is needed for full activation of two stress MAPKs,
AtMPK3 and AtMPK6 (Rentel et al., 2004). Interestingly, the
two MAPKs are involved in both abiotic and biotic stress re-
sponses and they are also activated by the H

 

2

 

O

 

2

 

-regulated
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MAPK kinase kinase ANP1 (Kovtun et al., 2000; Menke et al.,
2004). Oxidative stress-activated MAP triple-kinase 1 (OMTK1)
is a more specific MAPK kinase kinase that can be activated
only by H

 

2

 

O

 

2

 

 and not by abiotic stresses or hormones in alfalfa
(Nakagami et al., 2004). OMTK1 can specifically activate the
downstream MAP kinase MMK3, which results in cell death.
MMK3 can be activated also by ethylene and elicitors, thus
serving as a convergence point of the cell death network (Nak-
agami et al., 2004).

 

Other components of the H

 

2

 

O

 

2

 

 signaling 
network

 

In addition to the MAPK cascade network, the H

 

2

 

O

 

2

 

 signal can
also be transmitted through alterations in calcium ion fluxes
and cellular redox state (Fig. 1). Both Ca

 

2

 

�

 

 and redox alter-
ations are very early events that follow the rises in H

 

2

 

O

 

2

 

 levels
(Rentel and Knight, 2004). A specific calcium signature in turn
can lead to various downstream effects, including cell death,
through the numerous Ca

 

2

 

�

 

-interacting proteins, including cal-
modulins and the big family of calcium-dependent protein ki-
nases (Harper et al., 2004). Plants possess a unique set of Ca

 

2

 

�

 

/
calmodulin-regulated proteins with different biological func-
tions. Although some of these proteins like NAD kinase aid to
the production of H

 

2

 

O

 

2

 

 and enhance cell death (Harding et al.,
1997), others like catalase have the opposite effect (Yang and
Poovaiah, 2002). Catalase is of paramount importance for reg-
ulating H

 

2

 

O

 

2

 

 homeostasis, as it can function as a cellular sink
for H

 

2

 

O

 

2

 

. Catalase deficiency leads to elevation of H

 

2

 

O

 

2

 

 levels
and triggering PCD (Gechev et al., 2004; Vandenabeele et al.,
2004). Calcium is therefore not only essential for PCD, but also
for maintaining H

 

2

 

O

 

2

 

 levels that ensure cell survival (Yang and
Poovaiah, 2002). In addition to Ca

 

2

 

�

 

/calmodulin, catalase ac-
tivity may also be modulated by nucleoside diphosphate kinase
(NDK). This notion is suggested by the observations that
AtNDK1 interacts with the three 

 

Arabidopsis

 

 catalases in a
yeast two-hybrid system and that transgenic plants overex-
pressing AtNDK1 exhibited enhanced ability to detoxify H

 

2

 

O

 

2

 

(Fukamatsu et al., 2003).

 

Novel link between redox and 
sphingolipid signaling during plant PCD

 

The fungal toxins fumonisin and AAL toxin inhibit ceramide
synthase, which causes disruptions in sphingolipid metabolism
and subsequent PCD (Spassieva et al., 2002). In tomato, the
PCD can be prevented by a disease resistance gene called Asc.
Recently, a knockout of the 

 

Arabidopsis

 

 homologue of Asc
rendered plants sensitive to AAL toxin–induced PCD (Gechev
et al., 2004). A fine balance of sphingolipids is crucial for
maintaining cell survival, as not only depletion but also accu-
mulation of ceramides can trigger PCD (Spassieva et al., 2002;
Liang et al., 2003). The connection between sphingolipid me-
tabolism and PCD was also indicated with the earlier cloning
of the accelerated cell death 11 (acd11) mutant in 

 

Arabidopsis

 

,
a putative sphingosine transfer protein (Brodersen et al., 2002).
Biochemical and molecular data demonstrated that PCD trig-
gered by AAL toxin is associated with H

 

2

 

O

 

2

 

 (Gechev et al.,
2004). The novel link between sphingolipid and redox signal-
ing was further substantiated by isolating mutants that are more
tolerant to both the fungal toxins that cause such perturbations
in sphingolipid metabolism and to reactive oxygen species (un-
published data; Danon, A., and K. Apel, personal communica-
tion). One of these mutants, called EXECUTER1 (AT4G33630),
has recently been identified as a nuclear-encoded chloroplast
protein with no apparent homology to any other proteins (Wag-
ner et al., 2004). Atr1 mutant, initially isolated in our group as
AAL toxin resistant (unpublished data), was also more tolerant
to H

 

2

 

O

 

2

 

-induced PCD (Fig. 2). Thus, sphingolipids have emerged
as important signals whose interactions with ROS can regulate
plant PCD.

 

Comprehensive analysis of gene 
expression during H

 

2

 

O

 

2

 

-induced cell 
death

 

H

 

2

 

O

 

2

 

-derived signals initiate global changes in gene expression
through regulation of a specific subset of transcription factors
and, as a result of those changes, different genetic programs in-
cluding PCD are executed. The first noninvasive in planta sys-

Figure 1. Biological processes leading to and regulated by H2O2. Various developmental or environmental signals (plant hormones, abiotic or biotic stress)
can lead to H2O2 accumulation, which in turn triggers a variety of biological responses as developmental processes, stress acclimation, or PCD. The H2O2

signal is mediated through alterations in Ca2� fluxes, redox changes, activation of MAPK cascades, and interactions with other signaling molecules like
salicylic acid and nitric oxide.
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tem to study H

 

2

 

O

 

2

 

-induced cell death was based on gene silenc-
ing of catalase, which resulted in elevation of endogenous H

 

2

 

O

 

2

 

levels and triggering of PCD under photorespiratory conditions
(Vandenabeele et al., 2003). Initially applied to tobacco, the
system was then used to trigger PCD in 

 

Arabidopsis

 

 and the ex-
pression during H

 

2

 

O

 

2

 

-induced cell death was profiled with a
DNA chip representing 6,000 genes (Vandenabeele et al.,
2004). This approach was developed further by using a catalase
inhibitor, which allowed not only transcriptional profiling but
also screening for mutants compromised in H

 

2

 

O

 

2

 

-induced cell
death, and for rapid functional testing of knockout mutants (un-
published data). Microarray profiling using a DNA chip with
near-full genome coverage performed in our group resulted in
identification of many new H

 

2

 

O

 

2

 

-responsive genes and out-
lining of pathways that are likely to participate in the cell death
process. The dataset with the H

 

2

 

O

 

2

 

-responsive genes is
available at our web site (http://www.rug.nl/biologie/onderzoek/
onderzoekGroepen/MolecularBiologyofPlants/onderzoek/
copyofSupplementalTable1_H2O2.xls). Comparison of this
dataset with the transcriptional analysis during AAL toxin–
induced cell death revealed a group of genes regulated in a
common fashion and a role for the proteasome and the ethylene
pathways in the regulation of cell death, notions supported by
functional studies with proteasome and ethylene biosynthesis
inhibitors (Gechev et al., 2004; unpublished data). Among the
identified genes were a number of transcription factors as
well as genes encoding for putative or unknown proteins. Three
transcription factors were noted in particular: WRKY75
(AT5G13080.1), which is very strongly induced also during se-
nescence (Guo et al., 2004); the C2H2 zinc finger Zat11
(AT2G37430.1), which is induced also by singlet oxygen and
the superoxide radical-generating herbicide paraquat (op den
Camp et al., 2003); and a NAM protein (AT2G43000.1). Some
other genes highly regulated by the two cell death triggers and

presumably acting downstream from the transcription factors
were a FAD-linked oxidoreductase (AT1G26380.1), an oxoglu-
tarate-dependent dioxygenase (AT3G13610.1), and a frnE gene
(AT5G38900.1). The large number of regulated genes with un-
known function in these studies provides us with novel leads to
search for plant-specific PCD key regulatory molecules.

 

Concluding remarks

 

Despite the recent progress in our understanding of the signal-
ing role of H

 

2

 

O

 

2

 

 in plants, there are still many unanswered
questions. The H2O2 sensor(s) in plants are still elusive. A re-
cent report implicates the eukaryotic antioxidant enzymes,
2-Cys peroxiredoxins, as primary sensors for H2O2 (Wood et
al., 2003). Plant, animal, and yeast 2-Cys peroxiredoxins, in
contrast with bacterial ones, are much more sensitive to H2O2

inhibition (Wood et al., 2003). Their ubiquity ensures that in a
resting cell, H2O2 is kept at constant low levels to prevent any
signaling. However, upon an H2O2 burst the sensitive 2-Cys
peroxiredoxins are rapidly inactivated and then the unscav-
enged H2O2 can react as a messenger with other components
of the signaling network like the yeast Orp1-Yap1 sensor
(Toledano et al., 2004). Crucial for the outcome of the initial
H2O2 signal could be the ability of other antioxidant enzymes,
including catalase and ascorbate peroxidases, to detoxify the
excess H2O2. Failure to do so may lead to switching PCD in-
stead of stress acclimation. Recent evidence demonstrates that
the inactivation of the peroxiredoxins, initially thought to be
irreversible, is actually reversible, thus providing a way to
regulate the action of 2-Cys peroxiredoxins as floodgates for
H2O2 (Woo et al., 2003). Other molecules like two-compo-
nent histidine kinases may also serve as H2O2 sensors, but ex-
perimental evidence for their role in plants is still lacking
(Apel and Hirt, 2004).

Regardless of the way of sensing, it is still unclear how
this small molecule is able to trigger such different responses
as stress acclimation or PCD and to initiate distinct develop-
mental programs. The answer to H2O2 multifunctionality and
the complexity of the responses can be in the H2O2 interaction
with calcium, nitric oxide, lipid, and plant hormone signaling
pathways (Thoma et al., 2003; Zhang et al., 2003; Rentel and
Knight, 2004). For example, interactions between H2O2 and ni-
tric oxide are essential for PCD during the hypersensitive re-
sponse and the defense against pathogens, where a fine balance
between the two signals modulates cell death (Delledone et al.,
1998, 2001). Moreover, often several types of reactive oxygen
species are produced, some of which can interact with each
other. For example, superoxide radicals can be rapidly dismu-
tated into H2O2; the two reactive oxygen species can form
highly destructive hydrogen radicals (Dat et al., 2000). Also,
the particular location of H2O2 and other reactive oxygen spe-
cies produced in the cell may determine different physiological
or developmental responses. Equally as important for H2O2 sig-
naling can be the cellular redox state (Mou et al., 2003). The
H2O2 network itself, although emerging, is far from being un-
derstood. There are still many unknown players that modulate
the cellular responses to H2O2-derived signals. The outcome of
H2O2 signaling depends on those interactions, which in turn are

Figure 2. AAL toxin–resistant mutant atr1 is also more tolerant to the
catalase inhibitor aminotriazole, which triggers H2O2-induced PCD. On the
left, control plants (Arabidopsis thaliana ecotype Wassilewskija, AAL
toxin–sensitive background; Gechev et al., 2004) were germinated on
media supplemented with 40 nM AAL toxin or 7 �M aminotriazole (AT).
The plant seedlings are very small and dying on the AAL toxin–containing
media or dead (yellow) on media with AT. On the right, the AAL toxin–
resistant mutant atr1, which is in the same background, grows normally
on both AAL toxin and AT-supplemented media.
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determined by the particular cell type, cell compartments, and
interacting proteins present at that particular time.

Microarrays with full genome coverage may be a useful
tool for identification of genes and other components of the cell
death machinery. However, many of the signaling molecules,
including the potential sensors, are low-abundant proteins. The
best way to identify such proteins can be genetic screening for
mutants compromised in H2O2-induced PCD. Further func-
tional studies will then be needed to establish the precise role
of each played in the cell death network.

The authors thank A. Danon and K. Apel for sharing unpublished data and
helpful discussion.
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