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Hydrogen peroxide (H2O2), as a reactive oxygen species, is widely generated in many

biological systems. It has been considered as an important signaling molecule that

mediates various physiological and biochemical processes in plants. Normal metabolism

in plant cells results in H2O2 generation, from a variety of sources. Also, it is now clear

that nitric oxide (NO) and calcium (Ca2+) function as signaling molecules in plants. Both

H2O2 and NO are involved in plant development and abiotic responses. A wide range of

evidences suggest that NO could be generated under similar stress conditions and with

similar kinetics as H2O2. The interplay between H2O2 and NO has important functional

implications to modulate transduction processes in plants. Moreover, close interaction

also exists between H2O2 and Ca2+ in response to development and abiotic stresses

in plants. Cellular responses to H 2+
2O2 and Ca signaling systems are complex. There is

quite a bit of interaction between H2O2 and Ca2+ signaling in responses to several stimuli.

This review aims to introduce these evidences in our understanding of the crosstalk

among H2O2, NO, and Ca2+ signaling which regulates plant growth and development,

and other cellular and physiological responses to abiotic stresses.

Keywords: hydrogen peroxide (H2O2), nitric oxide (NO), calcium (Ca2+), signal molecule, crosstalk

INTRODUCTION

Hydrogen peroxide (H2O2), a form of reactive oxygen species, is regarded as a common cellular
metabolite. H2O2 is continually synthesized through various sources including enzyme and non-
enzyme pathways in plants. To date, it has become accepted that H2O2 plays important roles in
plant developmental and physiological processes including seed germination (Barba-Espín et al.,
2011), programmed cell death (PCD; Cheng et al., 2015; Vavilala et al., 2015), senescence (Liao
et al., 2012b), flowering (Liu et al., 2013), root system development (Liao et al., 2009; Ma et al., 2014;
Hernández-Barrera et al., 2015), stomatal aperture regulation (Ge et al., 2015) and many others. It
is now clear that H2O2 functions as a signaling molecule which may respond to various stimuli
in plant cells. These results suggest that H2O2 may be involved in cellular signaling transduction
pathways and gene expression modulations in plants.

Nitric oxide (NO), as a small signaling molecule, appears to be involved in plant developmental
and physiological processes such as seed germination (Wang et al., 2015), ripening and senescence
(Shi Y. et al., 2015) as well as stomatal closure (Shi K. et al., 2015) and pollen tube growth
(Wang et al., 2009). Meanwhile, NO signaling may have a vital role in the disease resistance
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(Kovacs et al., 2015) and response to abiotic stresses such as cold
(Fan et al., 2015), salt (Liu W. et al., 2015) and drought (Shan
et al., 2015). Calcium ion (Ca2+) signaling is also a core regulator
of plant physiological process and stress adaption such as cell
polarity regulation (Zhou et al., 2014), leaf de-etiolation (Huang
et al., 2012), stomatal closure (Zou et al., 2015). Additionally,
Ca2+ signaling is also involved in various responses to abiotic
stimuli, including light (Hu et al., 2015) and heavy metal (Li et al.,
2016).

A large amount of research show that H2O2, NO and Ca2+

as signaling are involved in plant growth and development as
well as response to abiotic stresses. In this review, we focus on
H2O2 signaling activities and its cross-talk with Ca2+ and NO
in plants.

H2O2 HOMEOSTASIS

H2O2 Generation
H2O2 is a byproduct of aerobic metabolism in plants
(Mittler, 2002). Figure 1 shows that H2O2 in plants can be
synthesized either enzymatically or non-enzymatically. There

FIGURE 1 | The various routes of hydrogen perioxide (H2O2) production and H2O2 removal in plant cells. Enzymatic production of H2O2 in plants requires

several enzymes including cell wall peroxidases (Francoz et al., 2015), oxalate (Hu et al., 2003), amine oxidases and flavin-containing enzymes (Cona et al., 2006),

glucose oxidases, glycolate oxidases (Chang and Tang, 2014), and sulfite oxidases (Brychkova et al., 2012). In these enzymes, some of them may convert O−

2 to

H2O2 and O2. And others may oxidize their each substrates to generate H2O2 in biocatalysis processes. Several non-enzymatic reactions are also known to produce

H2O2. In peroxisome, H2O2 synthesis is associated with glycolate oxidation during photosynthetic carbon oxidation cycle (Foyer and Noctor, 2003). In chloroplasts,

H2O2 production can be produced by the reduction of O−

2 by photosynthetic electron transport (PET) chain. H2O2 in chloroplast also may be detected at the

manganese-containing, oxygen evolving complex which is the donor site of photosystem II. Moreover, H2O2 could be generated in mitochondria through aerobic

respiration because O−

2 is produced from complexes I and III in the electron transport chain. H2O2-scavenging enzymes include catalase (CAT; Willekens et al., 1997),

peroxidase (POX; Fan and Huang, 2012), ascorbate peroxidase (APX) and glutathione reductase (GR; Jahan and Anis, 2014). In non-enzymatic pathway, Ascorbate

(AsA) and glutathione (GSH) are responsible for decreasing H2O2 level (Kapoor et al., 2015).

are numerous routes of H2O2 production in plant cells, such as
photorespiration, electron transport chains (ETC), and redox
reaction.

There is evidence for H2O2 production in plants through
several enzymes includingcell wall peroxidases (Francoz et al.,
2015), oxalate (Hu et al., 2003), amine oxidases and flavin-
containing enzymes (Cona et al., 2006; Figure 1). Moreover,
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidases may also increase H2O2 level through generating
superoxide which could be converted to H2O2 by superoxide
dismutases (SOD; Grivennikova and Vinogradov, 2013;
Brewer et al., 2015). Remans et al. (2010) observed that ROS
accumulation, especially H2O2 formation, is mostly related
with the stimulation of NADPH oxidase in plants under heavy
metal stresses. Moreover, H2O2 produced by NADPH oxidases
may significantly increase proline accumulation in Arabidopsis
thaliana under salt or mannitol stress (Ben Rejeb et al., 2015).
Additionally, some other oxidases such as glucose oxidases,
glycolate oxidases (Chang and Tang, 2014), and sulfite oxidases
(Brychkova et al., 2012) may oxidize their own substrates to
produce H2O2 (Figure 1).
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Several non-enzymatic reactions are also known to produce
H2O2. For example, many reactions involved in photosynthesis
and respiration are responsible for H2O2 production. It is
generated continually via electron transport reactions both in
mitochondria and chloroplasts (Figure 1).

Peroxisomes
Peroxisome is considered to be the site of photorespiration in
plant cell, which needs light-dependent uptake of O2 and releases
CO2 accompanying with the generation of H2O2. It is suggested
that H2O2 synthesis is associated with the oxidation of glycolate
during the photosynthetic carbon oxidation cycle (Foyer and
Noctor, 2003; Figure 1).

Chloroplasts
Chloroplast is the source of photosynthesis in plants.
Chloroplasts are the crucial sites for H2O2 production during
photosynthesis. H2O2 generation is associated with oxygen
reduction in chloroplast (Figure 1). Mehler (1951) discovered
that reduction of O2 lead to the formation of H2O2 in the
presence of light in chloroplast. Moreover, H2O2 production

can also be produced by the reduction of O−̇

2 by photosynthetic
electron transport (PET) chain components such as Fe–S
centers, reduced thioredoxin (TRX), ferredoxin and reduced
plastoquinone in the chloroplast (Dat et al., 2000). In addition,
non-enzymatic production of H2O2 in chloroplast may be
detected at the manganese-containing, oxygen evolving complex
which is the donor site of photosystem II (Figure 1). But
this process, in most cases, may probably be ignored under
physiological conditions.

Mitochondria
One important source of endogenously produced H2O2 in plant
cell is mitochondria (Dickinson and Chang, 2011). H2O2 is
generated in mitochondria during aerobic respiration when O−

2
is produced from complexes I and III in the electron transport
chain, which is then rapidly converted to H2O2 by the enzyme
superoxide dismutase (Figure 1).

H2O2 Removal
The antioxidant systems that regulate H2O2 levels consist of
both non-enzymatic and enzymatic H2O2 scavengers (Figure 1).
H2O2-scavenging enzymes include catalase (CAT; Willekens
et al., 1997), peroxidase (POX; Fan and Huang, 2012), ascorbate
peroxidase (APX) and glutathione reductase (GR; Jahan and
Anis, 2014). Some studies revealed that APX was found in the
cytosol (Begara-Morales et al., 2013), chloroplasts (Asada, 2006),
and mitochondria (Navrot et al., 2007). Meanwhile, CAT can
decompose H2O2 in peroxisome (Nyathi and Baker, 2006). It is
quite clear that these enzymes exist in different organelles and
they might decrease H2O2 content efficiently and maintain the
stability of membranes.

Ascorbate (AsA) and glutathione (GSH), as non-enzymatic
compounds, are constantly participated in regulating ROS level
(Kapoor et al., 2015). AsA, a key antioxidant for elimination
of H2O2, can react with H2O2 directly. GSH is a crucial
antioxidant which may be associated with regenerating AsA, and

rapidly oxidizes excess H2O2. Therefore, GSH is also involved in
regulating H2O2 level and redox balance in plant cells (Krifka
et al., 2012). In fact, H2O2 homeostasis seems to result in some
biological effects on plant cells which may be as a signaling sign
in signaling transduction pathway.

Responses to H2O2
Growth and Development
Table 1 shows that H2O2 mediates various developmental
and physiological processes in plants. These findings indicate
that H2O2 may affect different parts of plants by increasing
endogenous H2O2 level or by regulating relative gene expression.
Also, the change of H2O2 level may impact metabolic and
antioxidant enzyme activity in favor of plant growth and
development (Barba-Espín et al., 2011; Liu et al., 2013). However,
the mechanisms that allow different H2O2 function in plants still
require examination.

Stress Condition
Recent studies have demonstrated that H2O2 is a key signaling
molecule in the signaling pathway, which associated with abiotic
stress response. A number of discussions showed that H2O2

could respond to abiotic stresses such as drought (Hameed
and Iqbal, 2014; Ashraf et al., 2015), salinity (Sathiyaraj et al.,
2014; Mohamed et al., 2015), cold (Orabi et al., 2015), high
temperatures (Wang Y. et al., 2014; Wu et al., 2015), UV
radiation (He et al., 2005), ozone (Oksanen et al., 2004), and
heavy metal (Wen et al., 2013; Table 2). It is clear from these
studies that H2O2 could enhance abiotic stress resistance through
protecting organelle structure under abiotic stress conditions. For
instance, H2O2 may protect chloroplast ultrastructure to preserve
photosynthesis under abiotic stress. Similarly, to improve plant
abiotic stress tolerance, H2O2 may modulate the expression of
resistance genes and antioxidant enzyme activities during abiotic
stress response.

H2O2 as a Signaling Molecule in Plant
Among ROS, H2O2 has comparatively long life span and small
size, which permit it to traverse through cellular membranes
to different cellular compartments. García-Mata and Lamattina
(2013) found that H2O2 may move between cells through
aquaporin channels for signaling transduction. Increasing
evidences point out that H2O2 signaling may regulate various
plant physiological processes. For example, H2O2 as signaling
molecule may participate in nitrosative stress-triggered cell death
in kimchi cabbage (Brassica rapa var. glabra Regel) seedlings
(Kim et al., 2015). Also, Li et al. (2015) suggested that H2O2

is involved in signaling crosstalk between NO and hydrogen
sulfide (H2S) to induce thermotolerance in maize seedlings.
Moreover, the interaction among H2O2, NO and Ca2+ could
relieve copper stress in Ulva compressa (González et al., 2012).
H2O2 signaling was also demonstrated to play a salient role
in brassinosteroid-regulated stomatal movement (Shi C. et al.,
2015). As stated above, H2O2 as an important signaling molecule
may play a significant role at every stage of plant life and
under various abiotic stress conditions. H2O2 signaling appears
to crosstalk with many different signaling molecules such as
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TABLE 1 | The developmental and physiological effects of H2O2 in plants.

Developmental and

physiological effect

Species Tissue H2O2

production

H2O2-mediated effect References

Seed germination Pisum sativum L.

cv. Alaska

Seed + Caused carbonylation of proteins and metabolic

enzyme

Up-regulated PsMAPK2

PsMAPK3 expression

Barba-Espín et al., 2011

PCD Triticum aestivum L. Seedling + Increased antioxidant enzyme activities and gene

expression

Cheng et al., 2015

Vavilala et al., 2015

Chlamydomo-nas

reinhardtii

+ Induced cell death

Increased intracellular H2O2 content

Increased antioxidant enzyme activities and analyses

of transcripts

Senescence Lilium Leaf + Increased vase life and flower diameter

Reduced the degradation of RWC, total chlorophyll

content and water-soluble carbohydrate

Liao et al., 2012b

Flowering Monilinia fructicola Petal + Increased H2O2 concentration

Enhanced protein carbonylation (carbonyl content)and

lipid

peroxidation (MDA content)

Liu et al., 2013

Root system development Tagetes erecta L. Root + Increased root length

Increased root number explant−1
Liao et al., 2009

Arabidopsis

thaliana

Accelerated lateral root formation

Increased endogenous H2O2 production

Up-regulated relative expression levels of HY1

Ma et al., 2014

Increased sensitivity of the root elongation zone Hernández-Barrera et al.,

2015

Stomatal closure Arabidopsis

thaliana

Leaf + Induced stomatal closure Ge et al., 2015

hormones (Shi C. et al., 2015), protein kinase (González et al.,
2012) and many other small signaling molecules (Li et al., 2015).
H2O2 and these signaling molecules may influence each other
through various positive and negative feedback loops. Thus, they
co-regulate cell division and differentiation, antioxidant system
as well as gene expression involved in plant development and
defense.

CROSSTALK BETWEEN H2O2 AND NO

NO is a diatomic free radical gas. Previous studies suggested
that NO could take part in a wide range of physiological
processes such as vasorelaxation, nervous system, defense against
pathogens in animals (Mayer andHemmens, 1998). Inmammals,
NO is synthesized via three different isoforms of NO synthase
(NOS) including inducible NOS (iNOS; Nathan and Hibbs,
1991), endothelial NOS (eNOS) and neuronal NOS (nNOS;
Förstermann et al., 1994). In plants, NO could be synthesized
through enzymatic and non-enzymatic pathways (Figure 2).
The enzymatic pathway includes nitrate reductase (NR; Rockel
et al., 2002), nitric oxide-like (NOS-like) synthase (Guo et al.,
2003), Nitrite-NO reductase (Ni-NOR; Stöhr et al., 2001)
and xanthine oxidase (XOR; Corpas et al., 2004) pathways.

The non-enzymatic generation of NO includes nitrification or
de-nitrification processes (Skiba et al., 1993, Figure 2).

A plethora of evidences suggest that NO, as a versatile
signaling molecule, is involved in regulating every aspect of plant
growth and developmental processes such as seed germination
(Fan et al., 2013; Wang et al., 2015), flowering (Liu W. W. et al.,
2015), root growth and development (Liao et al., 2011; Wu et al.,
2014; Xiang et al., 2015), ripening and senescence (Liao et al.,
2013; Shi Y. et al., 2015). Meanwhile, as a physiological regulator,
NO signaling is involved in mediating stomatal closure (Noelia
et al., 2015; Shi K. et al., 2015; Chen et al., 2016), pollen tube
growth (Wang et al., 2009). Also, NO plays an essential role in
plant disease resistance (Rasul et al., 2012; Kovacs et al., 2015)
and responses to various abiotic stresses such as cold (Fan et al.,
2015), heat (Yu et al., 2015), salt (Liu W. et al., 2015), drought
(Shan et al., 2015), UV-B (Esringu et al., 2015) and heavy metal
(Alemayehu et al., 2015; Chen et al., 2015; Kaur et al., 2015).These
studies have paved the way to understand the signaling roles
of NO which may affect cell metabolism, cellular redox balance
and gene expression in plants. The relative target receptor may
receive signaling activated by various stimuli. As a result, NO
may activate regulatory mechanism to promote developmental
and physiological processes and regulate abiotic stress response
in plants.
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TABLE 2 | Report on H2O2-mediated effect during stresses in plants.

Stress Plant species Tissue H2O2-mediated effect References

Drought Triticum aestivum L. Leaf Increased SOD, POD, CAT activities

Raised total phenolic and reducing sugars content

Hameed and Iqbal,

2014

Zea mays L. Leaf Reduced degradation of chlorophyll increased endogenous H2O2, MDA

contents

Increased antioxidant enzymes activities

Increased ascorbic acid content and ion contents

Ashraf et al., 2015

Salt Panax ginseng Leaf Increased chlorophyll and carotenoid content

Increased Relative water content

Increased growth height and dry-weight

Increased antioxidant activity

Up-regulated relative gene expression of defense related genes

Sathiyaraj et al., 2014

Lycopersicon esculentum L. Decreased electrolyte leakage

Increased endogenous H2O2 and MDA content

Increased antioxidant enzymes activities

Affect protein pattern and peroxidase enzymes

Mohamed et al., 2015

Cold Lycopersicon esculentum L. Seedling Increased antioxidant enzymes activities

Increased MDA content Decreased electrolyte leakage

Increased total soluble solids

Orabi et al., 2015

Heat Festuca arundinaceaLolium perenne Leaf Decreased the GSH/GSSG ratio

Increased POD, CAT, APC, GR, and GPX activities

Wang Y. et al., 2014

Arabidopsis thaliana Seedling Increased thermotolerance

Enhanced antioxidant enzyme activities

Increased endogenous NO content

Increased HSFs activity and HSP21

accumulation

Wu et al., 2015

UV-B Vicia faba L. Leaf Increased endogenous H2O2 production

Induced Stomatal closure

He et al., 2005

Ozone Betula papyrifera Leaf Induced proliferation of peroxisomes

Increased Level of gene expression for catalase (Cat)

Oksanen et al., 2004

Heavy metal Zea mays var. rugosa Bonaf Seedling Decreased the activities of proline dehydrogenase

Increased the activities of Arginase and OAT, P5CS and GDH

Up-regulated the expression levels of P5CS, GDH, Arginase, OAT and

ProDH genes

Wen et al., 2013

Interaction in Growth and Development
To date, the interaction between H2O2 and NO has been
demonstrated clearly in plants. The signaling crosstalk between
H2O2 and NO has been considered to be an essential factor to
influence plant developmental and physiological processes such
as leaf cell death (Lin et al., 2012), delay senescence (Iakimova and
Woltering, 2015), root growth and development (Liao et al., 2010,
2011), stomatal closure (Huang et al., 2015; Shi K. et al., 2015),
and pollen tube growth (Serrano et al., 2012). Table 3 shows the
interaction of H2O2 and NO at different levels in a great number
of developmental and physiological processes in plants. On the
one side, H2O2 may act as a cofactor to promote endogenous
NO synthesis. For example, Lin et al. (2012) implied that H2O2

may stimulate NO production through increasing NR activity
in leaves of noe1 plants under high light. Shi C. et al. (2015)
reported that Gα-activated H2O2 production may induce NO
synthesis. The research found that NO could modulate stomatal
closure in H2O2 mutants AtrbohF and AtrbohD AtrbohF and

in the wild type treated with H2O2 scavenger and inhibitor.
However, H2O2 did not close or reduce the stomatal closure in
mutants Nia1-2 and Nia2-5 Nia1-2, and in the wild type treated
c-PTIO or tungstate (Shi C. et al., 2015). These results clearly
show that H2O2 might induce NO synthesis in stomatal closure.
On the other side, NO may induce H2O2 generation in plants.
Liao et al. (2011) reported cPTIO or L-NAME could inhibit the
endogenous H2O2 generation implying that NO was required for
the production of H2O2 during adventitious rooting. Meanwhile,
NO could mediate antioxidant enzyme activities to influence the
H2O2 level (Zhang et al., 2007). Thus, the interaction of H2O2

and NO may trigger a serious of physiological and biological
response in plant cells.

Interaction during Abiotic Stress
Recently, the roles of H2O2and NO signaling and their crosstalk
in mediating plant response to abiotic stresses have been largely
established (Table 4).
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FIGURE 2 | Summary of the main NO systhetic pathways and NO functions in plant growth, development and defense processes. NO may be

synthesized by enzymatically and non-enzymatically pathways. In enzymatic pathway, nitrate reductase (NR; Rockel et al., 2002), Nitrite-NO reductase (Ni-NOR; Stöhr

et al., 2001) and xanthine oxidase (XOR; Corpas et al., 2004) could convert NO−

3 and NO−

2 to NO. Meanwhile, because of NOS-like enzyme (Guo et al., 2003),

L-Arginine may be catalyzed to NO. In non-enzymatic pathway, N−

2 could be transformed to NO through nitrification and denitrification (Skiba et al., 1993). NO plays

an important signaling molecule in plant. It could regulate developmental and physiological processes such as seed germination (Wang et al., 2015), root development

(Liao et al., 2011) and stomatal closure (Shi C. et al., 2015). Also, it may be involved in response to abiotic stresses such as cold (Fan et al., 2015), salt (Liu W. et al.,

2015) and drought (Shan et al., 2015).

TABLE 3 | The developmental and physiological effects of crosstalk between H2O2 and NO in plants.

Developmental and

physiological effect

Species Tissue Crosstalk between H2O2 and NO mediated effects References

Cell death Oryza sativa Leaf H2O2 induced NR-dependent NO generation

NO Is required for H2O2-induced leaf cell death increased NR enzyme

Lin et al., 2012

Senescence Lactuca sativa L. Leaf NO decreased endogenous H2O2 content

Delay senescence

Iakimova and

Woltering, 2015

Root growth Dendranthema

morifolium

Tagetes erecta L.

Root Increase the activities of PPO, IAAO and the content of WSC and total nitrogen

Decrease the total polyphenol content

NO and H2O2 may act synergistically to mediate adventitious

root generation and development

NO may be involved as an upstream signaling molecule for H2O2 production

Liao et al., 2010

Liao et al., 2011

Pollen tube growth Olea europaea L. Flower Decreased cell death

Increased nitrated proteins

Serrano et al., 2012

Stomatal movement Arabidopsis

Vicia faba

Leaf H2O2 production was required for NO synthesis

Regulated stomatal closure

Regulated stomatal closure

H2O2 induced NO production

Shi C. et al., 2015

Huang et al., 2015

Drought
Drought stress is a major environmental factor that affects plant
growth and development. As reported by Liao et al. (2012a),
both H2O2 and NO could protect mesophyll cells ultrastructure
and improve the photosynthetic level of leaves under drought
stress during adventitious rooting inmarigold explants. Similarly,
the interplay between H2O2 and NO signaling may increase the

activity of myo-inositol phosphate synthase to alleviate drought
stress (Tan et al., 2013). Additionally, Lu et al. (2009) suggested
that endogenous NO andH2O2 may be involved in ABA-induced
drought tolerance of bermudagrass by increasing antioxidant
enzyme activities. NO may be considered to be upstream or
downstream signaling molecule of H2O2 (Lu et al., 2009; Liao
et al., 2012a). Thus, the interaction between H2O2 and NO
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TABLE 4 | Reports on interaction between H2O2 and NO involved in abiotic stresses in plants.

Stress Plant species Tissue Crosstalk between H2O2 and NO mediated effects Reference

Salt Citrus aurantium L. Leaf Alleviated salinity-induced protein carbonylation

Shifted the accumulation levels of leaf S-nitrosylated proteins

acclimation to salinity

Identified a number of proteins which were modulated by both H2O2 and NO treatments

Tanou et al., 2009

Tanou et al., 2010

Populus euphratica

Medicago falcata

shoot

Seedling

Increased K/Na ratio

Stimulated expression of PM H+-ATPase Induced MfMIPSI transcript

Increased the level of myo-inositol

Zhang et al., 2007

Tan et al., 2013

Drought Tagetes erecta L. Root Alleviated the destruction of mesophyll cell ultrastructure

Increased leaf chlorophyll content

Mediated chlorophyll fluorescence parameters

Enhanced carbohydrate accumulation

Decreased starch content

H2O2 generation may be affected by NO

Liao et al., 2012a

Tagetes erecta L. Leaf Increased RWC

Decrease ion leakage

Increased antioxidant enzyme, PEPCase, HK activities and MDA content

NO acted downstream of H2O2

Lu et al., 2009

UV-B Arabidopsis Leaf NO production depends on H2O2

Mediated stomatal closure

He et al., 2013

The UV-B Photoreceptor UVR8 was mediated by H2O2 and NO Tossi et al., 2014

Heat Zea may L. seedling Improved survival percentage of maize seedlings

H2O2 increased endogenous NO content

H2O2 may be involved in downstream signal of NO

Li et al., 2015

Arabidopsis NO is involved in H2O2 signaling as a downstream factor.

Increased HS factor activity and HS protein accumulation.

Wang L. et al., 2014

Triticum aestivum L. Increased seedling resistance

Increased H2O2 and NO content

Increased survival percentage of seedlings

Karpets et al., 2015

Cold Medicago sativa

subsp. falcata

Leaf Mediated cold-induced MfSAMS1 expression Guo et al., 2014

Medicago falcate

Medicago sativa

Seedling Up-regulated MfMIPSI expression

Increased myo-inositol content

Tan et al., 2013

Heavy

metal

Ulva compressa Cell Increased PDH,IDH,OGDH activity and increased relative transcript levels González et al., 2012

Triticum aestivum Root Decreased lipid peroxidation

Increased NOS activity

Increased antioxidative enzyme activities

Duan et al., 2015

may alleviate drought stress through up-regulating antioxidant
defense system to protect cell membrane and maintain ion
homeostasis in plants.

Salt
The interaction between H2O2 and NO plays an important
role in plant tolerance to salt stress (Zhang et al., 2007;
Tan et al., 2013). Tanou et al. (2009) suggested that H2O2

and NO pre-treatments could alleviate salinity-induced protein
carbonylation in citrus. The authors suggested an interaction
between H2O2 and NO during salt stress response. Furthermore,
H2O2- and NO-responsive proteins have been identified which
may further reveal a protein interaction network between
H2O2 and NO signaling under salt stress (Tanou et al.,
2010).

UV-B
UV-B, a key environmental signal, initiates diverse responses
in plants (Jansen and Bornman, 2012).UV-B radiation can also
influence plant growth, development, and productivity. It has
been shown that the crosstalk between H2O2 and NO could
be involved in the response to UV-B stress. There was an
interrelationship among Gα protein, H2O2, and NO during UV-
B-induced stomatal closure inArabidopsis leaves (He et al., 2013).
This study found that there was a significant increase in H2O2

or NO levels which associated with stomatal closure in the wild
type by UV-B stress. However, these effects were abolished by
double mutants of AtrbohD and AtrbohF or Nia1 mutants. These
results strongly suggested that the crosstalk between H2O2 and
NO signaling might play an essential role during UV-B-induced
stomatal closure in guard cells. Recently, Tossi et al. (2014) also
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FIGURE 3 | Schematic model of the interaction among H2O2, NO, Ca2+

in different plant physiological and defense processes. H2O2, NO and

Ca2+ may receive various stimuli through signaling sensors. They might

interact via cross-regulation and transduce signaling to downstream molecules

by activating phosphokinase like MAPKs, or relative enzyme activity in order to

regulate plant development and growth and abiotic stress responses.

showed a mechanism involving both H2O2 and NO generation
in response to UV-B exposure. Therefore, the crosstalk between
H2O2 and NO can regulate stomatal movement to reduce UV-B
stress damage to plant cells.

Cold
Cold stress adversely influences plant growth and development.
Guo et al. (2014) reported that the interaction of H2O2 and
NO may affect cold-induced S-adenosylmethionine synthetase
and increase cold tolerance through up-regulating polyamine
oxidation in Medicago sativa subsp. falcate. Moreover, signaling
interplay of H2O2 and NO was essential for cold-induced gene
expression of falcata myo-inositol phosphate synthase (MfMIPS),
which improved tolerance to cold stress (Tan et al., 2013). Thus,
the interaction between H2O2 and NO may initiate different
mechanisms to response to cold stresses.

Heat
Recently, many studies have been conducted to investigate the
relationship between H2O2 and NO under heat stress. Li et al.
(2015) reported that a signaling crosstalk between H2O2 and
NO may be involved in inducing thermotolerance in maize
seedlings. Moreover, H2O2 may be upstream signaling of NO
in the heat shock pathway in Arabidopsis seedlings (Wang L.
et al., 2014). In addition, treatment with low level of H2O2

or NO could increase seedling viability under heat resistance
(Karpets et al., 2015). These studies support the existence
of crosstalk between H2O2 and NO in heat responses in
plants.

Heavy Metal Stress
Alberto et al. (2012) suggested that the signaling interaction
between H2O2 and NO was involved in alleviating copper
stress of Ulva compressa through mediating antioxidant enzyme
activities and activating relative gene expression. Besides, the
interplay of NO and H2O2 in wheat seedlings participated
in regulating root growth under zinc stress and alleviated
zinc stress through increasing antioxidant system, decreasing
lipid peroxidation as well as up-regulating resistance gene
expression (Duan et al., 2015). Obviously, the crosstalk of
H2O2 and NO has been found under heavy metal stress
condition, which may trigger a variety of antioxidant responses
in plants.

As stated above, the physiological effect of H2O2 and NO
is similar and synergetic. In different cases, these forms of
interaction are various. However, the form of H2O2 and NO
crosstalk depend on plant species and environmental stresses.
H2O2 and NO could modulate each other through regulating
antioxidant enzymes activities and relative gene expression in
plants. Meanwhile, H2O2 and NO may synergistically regulate
many common target genes which were related to signaling
transduction, defense reaction, plant hormone interactions,
protein transport and metabolism. Therefore, it has a significant
meaning to elaborate the mechanism of the interaction between
H2O2 and NO in plant developmental processes and response to
abiotic stresses.

CROSSTALK BETWEEN H2O2 AND CA2+

Ca2+ is a widespread signaling molecule in plants. When plants
receive stimuli, the change of intracellular Ca2+ concentration
may transfer signaling to regulate a series of cellular processes
in plants (Kong et al., 2015; Tang et al., 2015). There are
various types of Ca2+ receptors and channels in plants such as
Ca2+-ATPases (Pászty et al., 2015), Ca2+-binding sensor protein
(Wagner et al., 2015), inositol-1,4,5-trisphosphate (IP3; Serrano
et al., 2015) and cyclic ADP-ribose (cADPR, Gerasimenko et al.,
2015). It is well known that Ca2+ is involved in plant growth
and development such as seed germination (Kong et al., 2015),
pollen tube growth (Zhou et al., 2014), leaf de-etiolation (Huang
et al., 2012), root growth and development (Liao et al., 2012a;
Han et al., 2015) and other physiological processes including
cell polarity regulation (Zhou et al., 2014; Himschoot et al.,
2015), stomatal closure (Zou et al., 2015) and immune response
(Seybold et al., 2014). Furthermore, variations in cytosolic free
Ca2+ concentration have been demonstrated to response to a
wide range of environmental stresses such as heat shock (Urao
et al., 1994), drought (Zou et al., 2015), light (Hu et al., 2015),
salt (Tepe and Aydemir, 2015), and heavy metal (Li et al., 2016).
Because of Ca2+ has various receptors and channels in plants, it
may receive different upstream signaling molecules quickly and
then respond to abiotic stress.
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Interaction in Growth and Development
Crosstalk between H2O2 and Ca2+ occurs in plant cells
(Table 5). For example, exogenous H2O2 caused transiently
dose-dependent increase in Ca2+ influx in Arabidopsis thaliana
root epidermis (Demidchik et al., 2007). Two Ca2+ channels
could be regulated by H2O2 level in root elongation zone. Han
et al. (2015) demonstrated that H2O2 signaling could induce root
elongation by mediating Ca2+ influx in the plasma membrane
of root cells in Arabidopsis seedlings. Richards et al. (2014) also
suggested that Annexin 1, a Ca2+ transport protein, may regulate
H2O2-induced Ca2+ signature in Arabidopsis thaliana roots
to promote root growth and development. Additionally, Ca2+

signaling was involved in H2O2-induced adventitious rooting in
marigold because removal of Ca2+ could inhibit H2O2-induced
adventitious root development (Liao et al., 2012a). Interestingly,
Wu et al. (2010)’s findings strongly suggested that spermidine
oxidase (Spd)-derived H2O2 signaling may mediate Ca2+ influx.
Spd was probably related to downstream induction of H2O2

signaling and then H2O2 activated Ca2+-permeable channels
during pollen tube growth (Wu et al., 2010). Cross talk between
Ca2+–Calmodulin (CaM) and H2O2 also played a significant
role in antioxidant defense in ABA signaling in maize leaves
(Hu et al., 2007; Table 5). Thus, the signaling crosstalk between
H2O2 and Ca2+ may affect every stage of plant development
by modulating cell elongation and division, antioxidant enzyme
activity and gene expression. H2O2 may activate Ca2+ receptors
and target proteins to increase [Ca2+]cyt level and Ca2+ may
induce endogenous H2O2 generation during plant growth and
development.

Interaction in Abiotic Stress
Clearly, correlations also exist between H2O2 and Ca2+ in
response to abiotic stresses in plants (Table 6). Shoresh et al.
(2011) investigated that supplemental Ca2+ had a significant
effect on H2O2 metabolism and regulating leaves and roots
growth in maize under salt stress. The authors indicated
that extracellular Ca2+ may modulate endogenous H2O2

levels through activating polyamine oxidase activity. Also, salt
stress may induce H2O2 accumulation in Ca2+-dependent salt
resistance pathway in Arabidopsis thaliana roots (Li et al.,
2011). Moreover, Lu et al. (2013) suggested that exogenous
H2O2 and Ca2+ may mediate root ion fluxes in mangrove
species under NaCl stress. Obviously, H2O2 may interact with
Ca2+ under salt stress in plants through mediating root ion
balance, increasing antioxidant enzymatic activity and up-
regulating the expression of related genes. Moreover, H2O2

and Ca2+ signaling were also involved in ABA responses to
drought stress in Arabidopsis thaliana through Ca2+-dependent
protein kinase8 (CPK8) which could regulate catalase3 (CAT3)
activity mediating stomatal movement (Zou et al., 2015). In
addition, Qiao et al. (2015) reported that a Ca2+-binding
protein (rice annexin OsANN1) could enhance heat stress
tolerance by modulating H2O2 production. Over production
of H2O2 induced by heat stress increased OsANN1 expression
and up-regulated the level of SOD and CAT expression, which
constructed a signaling mechanism for stress defense in plants
(Qiao et al., 2015). Until now, the signaling crosstalk between

H2O2 and Ca2+ may regulate various responses to abiotic
stresses in plants. It may be connected with the regulation of
antioxidant system. Thus, the interaction between H2O2 and
Ca2+ may increase antioxidant enzyme activities such as APX,
SOD, and GR. These antioxidant enzymes may alleviate stress
damages in plants. In addition, the crosstalk between H2O2 and
Ca2+ could regulate gene expression level and induce protein
interactions.

It appears that the interrelationship between H2O2 and
Ca2+ may be involved in various aspects of plant growth and
development processes and abiotic stress responses. In fact, the
change of Ca2+ concentration is closely related to H2O2 burst
in plant cells. The combination of H2O2 and Ca2+ may play
crucial roles in plants. Different plants even different parts of the
same plant may have different modulation mechanisms. Thus,
relationship between H2O2 and Ca2+ signaling in plants is very
complex. The interplay of H2O2, Ca2+ and its mechanism need
to be illustrated clearly in the future.

CROSSTALK AMONG H2O2, NO AND CA2+

It has been suggested that there is a connection among H2O2,
NO,and Ca2+ in plants. H2O2, NO, and Ca2+ may act as essential
signaling molecules which may form a complex signaling
network to regulate different developmental and physiological
processes in plants (Figure 3). For instance, during adventitious
rooting of mung bean, Ca2+ signaling played a pivotal role
and functioned as a downstream molecule of H2O2 and NO
signal pathway (Li and Xue, 2010; Figure 3). Similarly, there is
a possible relationship among H2O2,NO and Ca2+/CaM during
adventitious rooting in marigold explants (Liao et al., 2012a).
The authors found that exogenous NO and H2O2 promoted
adventitious root development in marigold explants through
increasing endogenous Ca2+ and CaM levels. Moreover, H2O2,
NO and Ca2+ were also involved in oligochitosan-induced
programmed cell death in tobacco suspension cells (Zhang et al.,
2012). Pharmacological experiments revealed that Ca2+ signaling
induced NO accumulation through inducing H2O2 generation
during stomatal closure in Arabidopsis guard cells (Li et al.,
2009). Furthermore, Wang et al. (2011) suggested a functional
correlationship among H2O2, calcium-sensing receptor (CAS)
and NO in Ca2+-dependent guard cell signaling. It was shown
that CAS may transduce Ca2+ signaling through activating its
downstream target NO and H2O2 signaling pathway (Wang
et al., 2011). Therefore, it is thus clear that the interplay of
H2O2, NO, and Ca2+ may have an significant effect on plant
growth and physiological processes through promoting cell
proliferation, controlling cell metabolism, meanwhile, regulating
modes of cell death. Moreover, Vandelle et al. (2006) has
reported that NO and H2O2 synthesis could also act upstream
to increase cytosolic Ca2+ concentration during hypersensitive
response (HR) through activating plasma membrane- and
intracellular membrane-associated Ca2+ channels. Besides, the
interaction among H2O2, NO, and Ca2+ signaling may regulate
ABA-induced antioxidant defense in maize (Ma et al., 2012).
Obviously, the mutual effect among H2O2, NO and Ca2+
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TABLE 5 | The developmental and physiological effects of crosstalk between H2O2 and Ca2+ in plants.

Developmental and

physiological effect

Species Tissue Crosstalk between H2O2 and Ca2+ mediated effects References

Root growth and

elongation

Arabidopsis Root H2O2 induce Ca2+ influx

Increased root elongation

Endogenous H2O2 resulted in Ca2+ flux

Enhanced root growth

Han et al., 2015

Demidchik et al., 2007

Adventitious root

development

Arabidopsis Root Extracellular H2O2 induced a sustained increase in cytosolic free Ca2+

Exogenous H2O2 induced expression of AtANN1

Richards et al., 2014

Liao et al., 2012a

Tagetes erecta L. Endogenous H2O2 increased Cytosolic free Ca2+ and CaM content

Induced adventitious root development

Pollen growth P.Dyrifolia Nakai

cv.Hosui

Imamuraaki

Flower H2O2 activates Ca2+ currents

Induced pollen tube growth

Wu et al., 2010

Antioxidant defense Zea may L. Leaf H2O2 increased the concentration of cytosolic Ca2+ in the protoplasts of

mesophyll cells and the expression of the calmodulin 1 (CaM1) gene and

CaM content in leaves

Enhanced the expression of the antioxidant genes

Hu et al., 2007

TABLE 6 | Reports on interaction between H2O2 and Ca2+ involved in abiotic stresses in plants.

Stress Plant species Tissue Crosstalk between H2O2 and Ca2+ mediated effects References

Salt Bruguiera gymnorrhiza L.

Kandelia candel L.

RootLeaf Mediated root ion flux

Increased K+ flux and Na+/H+ antiport

Lu et al., 2013

Arabidopsis Root Increased NADPH/NADP+,G6PDH activity

Up-regulated expression of PM H+-ATPase gene

Li et al., 2011

Drought Zea may L. Root Increased root viability

Decreased membrane leakage

Increased chlorophyll content

Increased peroxidase activity

Shoresh et al., 2011

Arabidopsis Seedling Induced stomatal closure

Mediated protein interaction between CPK8 and CAT3

Zou et al., 2015

Heat Oryza sativa subsp.

japonica

Seedling Up-regulated OsANN1 expression

Enhanced the level of SOD, CAT expression

Qiao et al., 2015

may increase antioxidant system and induce disease defense in
plants.

Furthermore, the interplay among H2O2, NO, and Ca2+

also have an effect on abiotic stress response in plants. For
example, Lang et al. (2014) reported that NO likely interacted
with Ca2+ and H2O2 in Aegiceras corniculatum to up-regulate
Na+/H+ antiport system of plasma membrane under salt stress.
There were species-specific interactions between H2O2, Ca2+,
NO, and ATP in salt-induced reduction of K+ efflux (Lang
et al., 2014). Moreover, there was a crosstalk among H2O2,
NO, and Ca2+ when Ulva compressa exposed to copper excess
and the interaction had a significant effect on transcriptional
activation of target genes (Alberto et al., 2012). The H2O2-
induced NO generation could be inhibited by Ca2+ channel
blockers, implicating that Ca2+ may mediate the effect of H2O2

on NO production. Furthermore, Ca2+ release through different
type of Ca2+ channels was also shown to be activated by NO

and H2O2 (Alberto et al., 2012; Figure 3). The interrelationship
between H2O2, NO and Ca2+ may provide additional layers of
responses to abiotic stresses through controlling ion transport,
increasing antioxidant enzyme activities and affecting expression
of resistance genes, indicating a feedback mechanism between
H2O2, NO and Ca2+ under abiotic stresses. In a word, the
combination of these findings strongly supports the view that
there has an interaction among H2O2, NO, and Ca2+ signaling
pathway in plant growth, development and abiotic stress
responses. During signaling transduction, Ca2+ signaling could
be activated by H2O2 and NO; it could also regulate H2O2 and
NO signaling. Ca2+ may act as a point of signaling convergence
between H2O2 and NO signaling pathways in plants. However,
the network of H2O2, NO, and Ca2+ seems to be intricate and
multidimensional. Therefore, considerably more work will need
to be done to determine the interaction among H2O2, NO and
Ca2+ signaling in plants.
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CONCLUSION

H2O2 was once considered as a poisonous molecule in plants.
Based on current studies, H2O2 may be a vital signaling molecule
which controls plant growth and development. Interestingly, NO
and Ca2+ which also act as the key component of signaling
transduction in plants seem to be as upstream or downstream
signaling molecules of H2O2. Meanwhile, H2O2 modulates NO
and Ca2+ signaling pathways. There is a complex interactive
network among H2O2, NO, and Ca2+ in plants. Moreover, the
interplay among them has functional implications for regulating
developmental and physiological processes which may increase
the possibility of signal reception and transduction in plants.
Future work will need to focus on the molecular mechanism
of the interplay among H2O2, NO, and Ca2+ during signaling
transduction in plants.
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