

University of Pennsylvania ScholarlyCommons

Publicly Accessible Penn Dissertations

Spring 2010

# Hydrogen Release From Ammonia Borane

Daniel W. Himmelberger University of Pennsylvania, hidaniel@sas.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/edissertations

Part of the Inorganic Chemistry Commons, Oil, Gas, and Energy Commons, and the Sustainability Commons

### **Recommended Citation**

Himmelberger, Daniel W., "Hydrogen Release From Ammonia Borane" (2010). *Publicly Accessible Penn Dissertations*. 158. https://repository.upenn.edu/edissertations/158

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/158 For more information, please contact repository@pobox.upenn.edu.

### Hydrogen Release From Ammonia Borane

### Abstract

Development of a safe and efficient storage medium for hydrogen is integral to its use as an alternative energy source. The overall goal of the studies described in this dissertation was to investigate the use of a chemical hydride, ammonia borane (AB (19.6 wt% H2)), as a potentially efficient material for hydrogen storage. The specific goals of this study were both to develop new efficient methods for increasing the rate and extent of H2-release from AB and to elucidate the important mechanistic pathways and intermediates in these reactions. Significant achievements that resulted from this work are that AB H2-release is activated in the presence of either ionic liquids or bases. For example, an AB H2-release reaction carried out at 110 °C in 50 wt% ionic liquid liberated over 2 equivalents H2 in 15 minutes. Reducing ionic liquid loading to 20 wt% at 110 oC yielded a higher materials weight percent (11.4 mat wt%), while still having fast release rates: 2 equivalents in ~2.5 hours. The addition of the strong nitrogen base 1,8-bis(dimethylamino)naphthalene, Proton Sponge™, to ionic liquid solutions of AB increased the AB H2release rate at 85 °C, with over 2 equivalents of H2 achieved within 3 h. Additional Proton Sponge increased the rate of release; however, the mat wt% of H2 decreased since the Proton Sponge added significant weight to the system. Solid state and solution 11B NMR and DSC studies of reactions in progress allowed the identification of initial and final products in the H2-release reactions and helped elucidate the overall reaction pathway. The initial formation of diammoniate of diborane, the key intermediate in dehydropolymerization of ammonia borane, was promoted by the addition of ionic liquids. Subsequent H2-release resulted in the formation of polyaminoborane then polyborazylene. Proton Sponge increased the release rate of the second equivalent of H2 by a newly proposed anionic polymerization mechanism. The final product was identified by solid-state 11B NMR and proved to be a sp2-framework of polyborazylene which formed regardless of base additive or amount/type of ionic liquid.

Degree Type Dissertation

Degree Name Doctor of Philosophy (PhD)

Graduate Group Chemistry

First Advisor Dr. Larry G. Sneddon

Keywords ammonia borane, hydrogen, energy, fuel cell

Subject Categories Inorganic Chemistry | Oil, Gas, and Energy | Sustainability

### HYDROGEN RELEASE FROM AMMONIA BORANE

Daniel W. Himmelberger

### A DISSERTATION

in

Chemistry

### Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

### Degree of Doctor of Philosophy

2010

Supervisor of Dissertation

Professor Larry G. Sneddon, Blanchard Professor of Chemistry

Graduate Group Chairperson

Professor Gary A. Molander, Hirschmann-Makineni Professor of Chemistry

**Dissertation Committee** 

Professor Christopher B. Murray, Richard Perry University Professor of Chemistry

Professor So-Jung Park, Assistant Professor of Chemistry

Professor Bradford B. Wayland, Professor of Chemistry, Temple University

### ABSTRACT

### HYDROGEN RELEASE FROM AMMONIA BORANE

#### **Daniel W. Himmelberger**

Supervisor: Professor Larry G. Sneddon

Development of a safe and efficient storage medium for hydrogen is integral to its use as an alternative energy source. The overall goal of the studies described in this dissertation was to investigate the use of a chemical hydride, ammonia borane (AB (19.6 wt $(\% H_2)$ ), as a potentially efficient material for hydrogen storage. The specific goals of this study were both to develop new efficient methods for increasing the rate and extent of H<sub>2</sub>-release from AB and to elucidate the important mechanistic pathways and intermediates in these reactions. Significant achievements that resulted from this work are that AB H<sub>2</sub>-release is activated in the presence of either ionic liquids or bases. For example, an AB H<sub>2</sub>-release reaction carried out at 110 °C in 50 wt% ionic liquid liberated over 2 equivalents H<sub>2</sub> in 15 minutes. Reducing ionic liquid loading to 20 wt% at 110 °C yielded a higher materials weight percent (11.4 mat-wt%), while still having fast release rates: 2 equivalents in ~2.5 hours. The addition of the strong nitrogen base 1,8bis(dimethylamino)naphthalene, Proton Sponge<sup>™</sup>, to ionic liquid solutions of AB increased the AB H<sub>2</sub>-release rate at 85 °C, with over 2 equivalents of H<sub>2</sub> achieved within 3 h. Additional Proton Sponge increased the rate of release; however, the mat-wt% of  $H_2$ decreased since the Proton Sponge added significant weight to the system. Solid state

and solution <sup>11</sup>B NMR and DSC studies of reactions in progress allowed the identification of initial and final products in the H<sub>2</sub>-release reactions and helped elucidate the overall reaction pathway. The initial formation of diammoniate of diborane, the key intermediate in dehydropolymerization of ammonia borane, was promoted by the addition of ionic liquids. Subsequent H<sub>2</sub>-release resulted in the formation of polyaminoborane then polyborazylene. Proton Sponge increased the release rate of the second equivalent of H<sub>2</sub> by a newly proposed anionic polymerization mechanism. The final product was identified by solid-state <sup>11</sup>B NMR and proved to be a sp<sup>2</sup>-framework of polyborazylene which formed regardless of base additive or amount/type of ionic liquid.

# Table of Contents

| Title Page        | i   |
|-------------------|-----|
| Abstract          | ii  |
| Table of Contents | iv  |
| List of Tables    | ix  |
| List of Figures   | xi  |
| List of Equations | xvi |

| Chapter 1. The Hydrogen Economy: Benefits, Problems, and Possible Solutions |    |
|-----------------------------------------------------------------------------|----|
| Summary                                                                     | 1  |
| <b>1.1</b> We Use More than We Make!                                        | 2  |
| <b>1.2</b> Push for a Hydrogen Economy                                      | 4  |
| <b>1.2.1</b> Why Do We Need a Hydrogen Economy?                             | 4  |
| <b>1.2.2</b> What are the Barriers to a Hydrogen Economy?                   | 5  |
| 1.2.2.1 Hydrogen Production                                                 | 6  |
| <b>1.2.2.2</b> Hydrogen Delivery                                            | 6  |
| 1.2.2.3 Hydrogen Storage                                                    | 7  |
| <b>1.2.3</b> The Chemical Hydrogen Storage Center of Excellence             | 9  |
| <b>1.3</b> What is Ammonia Borane?                                          | 11 |
| <b>1.3.1</b> How to Release Hydrogen from Ammonia Borane?                   | 17 |
| <b>1.3.1.1</b> Utilizing Hydrolysis to Release Hydrogen.                    | 18 |

| <b>1.3.1.2</b> The Better Hydrogen Release Method: Thermolysis.         | 18 |
|-------------------------------------------------------------------------|----|
| <b>1.3.2</b> Ammonia Borane Solid-State H <sub>2</sub> -Release         | 19 |
| <b>1.3.3</b> Activated AB H <sub>2</sub> -Release from AB               | 23 |
| 1.3.3.1 Mesoporous Scaffolds Aid in Solid-State H <sub>2</sub> -Release | 23 |
| 1.3.3.2 Acid Catalyzed Hydrogen Release Reactions                       | 24 |
| <b>1.3.3.3</b> Using Transition-Metal Catalysis to Enhance              | 26 |
| Release Rate and Extent.                                                |    |
| 1.3.3.3.1 Heterogeneous Transition-Metal Catalysts                      | 26 |
| 1.3.3.3.2 Homogeneous Transition-Metal Catalysts                        | 28 |
| 1.3.3.3.2.1 Iridium Pincer Catalyst                                     | 28 |
| 1.3.3.3.2.2 Nickel Carbene Catalyst                                     | 31 |
| 1.3.3.3.2.3 Titanocene Catalyst                                         | 35 |
| 1.3.3.3.2.4 Transition-Metal Catalysis in                               | 37 |
| Hydrolysis/Methanolysis                                                 |    |
| <b>1.3.4</b> Large Scale Preparations of Ammonia Borane.                | 38 |
| <b>1.3.5</b> Recycling the AB Fuel Source.                              | 39 |
| <b>1.3.6</b> Hybrid Materials Try to Bridge the Gap Between AB and      | 40 |
| Metal Hydrides.                                                         |    |
| 1.4 Conclusions                                                         | 42 |
| 1.5 References                                                          | 43 |

| Р | - A A A A A A A A A A A A A A A A A A A                                              |     |
|---|--------------------------------------------------------------------------------------|-----|
|   | Summary                                                                              | 51  |
|   | 2.1 Introduction                                                                     | 52  |
|   | 2.2 Experimental Section                                                             | 53  |
|   | 2.2.1 Materials                                                                      | 53  |
|   | 2.2.2 Physical Measurements                                                          | 53  |
|   | <b>2.2.2.1</b> H <sub>2</sub> -Release Measured On a Toepler Pump                    | 53  |
|   | 2.2.2.2 H <sub>2</sub> -Release Measured On an Automated Gas Burette                 | 54  |
|   | <b>2.2.2.3</b> Procedures for <sup>11</sup> B NMR Studies of Reaction                | 76  |
|   | Products                                                                             |     |
|   | 2.3 Results and Discussion                                                           | 77  |
|   | 2.3.1 Why Use Ionic Liquids?                                                         | 77  |
|   | <b>2.3.2</b> Procedures for AB H <sub>2</sub> -release reactions                     | 80  |
|   | 2.3.3 Solid-State vs. Ionic Liquid H <sub>2</sub> -Release                           | 81  |
|   | <b>2.3.4</b> <sup>11</sup> B NMR Characterization of Reaction Products and           | 93  |
|   | Pathways                                                                             |     |
|   | <b>2.3.4.1</b> <sup>11</sup> B NMR of Pyridine Extracts from Reaction                | 93  |
|   | Products                                                                             |     |
|   | <b>2.3.4.2</b> Solid-State <sup>11</sup> B NMR Studies                               | 96  |
|   | 2.3.4.3 In Situ <sup>11</sup> B NMR Studies in Ionic Liquids                         | 96  |
|   | <b>2.3.6</b> Why do Ionic Liquids Accelerate AB H <sub>2</sub> -release? What is the | 103 |
|   | Role of DADB?                                                                        |     |

### Chapter 2. Ammonia Borane Hydrogen Release in Ionic Liquids

| <b>2.3.7</b> H <sub>2</sub> -Release Reactions in Tetraglyme                    | 108 |
|---------------------------------------------------------------------------------|-----|
| 2.4 Conclusions                                                                 | 111 |
| 2.5 References                                                                  | 112 |
|                                                                                 |     |
| Chapter 3. Base Promoted Ammonia Borane Hydrogen Release                        |     |
| Summary                                                                         | 116 |
| 3.1 Introduction                                                                | 117 |
| <b>3.2</b> Experimental Section                                                 | 119 |
| 3.2.1 Materials                                                                 | 119 |
| 3.2.2 Physical Measurements                                                     | 119 |
| <b>3.2.3</b> Procedures for AB H <sub>2</sub> -Release Reactions                | 121 |
| 3.2.4 Computational Methods                                                     | 122 |
| <b>3.3</b> Results and Discussion                                               | 126 |
| <b>3.3.1</b> H <sub>2</sub> -Release from AB/PS Solid-State Reactions           | 126 |
| <b>3.3.2</b> H <sub>2</sub> -Release from AB/PS Solution Reactions              | 132 |
| <b>3.3.2.1</b> Initial Reactions Measured with the Toepler Pump                 | 132 |
| <b>3.3.2.2</b> H <sub>2</sub> -Release Reactions Measured with the Automated    |     |
| Gas Burette                                                                     | 136 |
| <b>3.3.3</b> <sup>11</sup> B NMR Studies of Reaction Pathways and Intermediates | 141 |
| <b>3.3.3.1</b> Solid-State <sup>11</sup> B NMR Studies                          | 141 |
| <b>3.3.3.2</b> In Situ <sup>11</sup> B NMR Studies of Reaction Progress in      | 144 |
| Ionic Liquids                                                                   |     |

| <b>3.3.4</b> Proton Sponge Reduces Foaming During AB Thermolysis            | 146 |
|-----------------------------------------------------------------------------|-----|
| <b>3.3.5</b> H <sub>2</sub> -Release in Other Ionic Liquids and Tetraglyme  | 147 |
| <b>3.3.6</b> Why Does Proton Sponge Induce H <sub>2</sub> -Release from AB? | 151 |
| 3.4 Conclusions                                                             | 158 |
| <b>3.5</b> References                                                       | 159 |

# List of Tables

| Chapter 2                                                                                 |     |
|-------------------------------------------------------------------------------------------|-----|
| Table 2.1 AB H <sub>2</sub> -Release Data Collected on the Automated Gas Burette from the | 57  |
| $H_2$ -Release Reaction of a Solid-State AB Sample at 85 $^{\circ}C$                      |     |
| Table 2.2 Times to Selected Equivalent Points of H2-Release (Gas Burette) of              | 83  |
| Ionic Liquid and Solid-State Reactions at 85 °C                                           |     |
| Table 2.3 Times to Selected Equivalent Points of H2-Release (Gas Burette) of              | 85  |
| 50-wt% AB (150 mg) in BmimCl (150 mg) at Different Temperatures                           |     |
| Table 2.4 Times to Selected Equivalent Points of H2-Release (Gas Burette) of AB           | 87  |
| (150 mg) in 20.2-wt% BmimCl (38 mg) at Different Temperatures                             |     |
| Table 2.5       H <sub>2</sub> -Release Data (Toepler pump) for AB/Ionic-Liquid (50-wt%)  | 88  |
| Reactions at 85 °C                                                                        |     |
| Table 2.6       H <sub>2</sub> -Release Data (Toepler pump) for AB/Ionic-Liquid (50-wt%)  | 91  |
| Reactions at 65 and 45 °C                                                                 |     |
| Table 2.7 Times to Selected Equivalent Points of H2-Release (Gas Burette) of              | 105 |
| bmimOTf (450 mg) and 10-wt% (50 mg) each of: (A) DADB and (B) AB at 85 $^{\circ}$ C       |     |
| Table 2.8 Times to Selected Equivalent Points of H2-Release (Gas Burette) of              | 109 |
| 50-wt% AB (150 mg) in Tetraglyme (150 mg) at Different Temperatures                       |     |
| Chapter 3                                                                                 |     |
| <b>Table 3.1</b> Cartesian Coordinates for $[H_3BNH_2]^-$                                 | 123 |
| Table 3.2 Cartesian Coordinates for Straight Chain                                        | 123 |
| $[H_3BNH_2BH_2NH_2BH_2NH_2BH_2NH_2]^-$                                                    |     |

| Table 3.3 Cartesian Coordinates for Branched Chain                                                                                   | 124 |
|--------------------------------------------------------------------------------------------------------------------------------------|-----|
| $[HB(NH_2BH_3)_2NH_2BH_2NH_2]^-$                                                                                                     |     |
| Table 3.4 Cartesian Coordinates for Branched Chain                                                                                   | 125 |
| $[H_3BNH_2BH_2(BH_2NH_3)NHBH_2NH_2]^-$                                                                                               |     |
| Table 3.5 Cartesian Coordinates for [H <sub>3</sub> BNH <sub>2</sub> BH <sub>2</sub> NH <sub>2</sub> BEt <sub>3</sub> ] <sup>-</sup> | 125 |
| Table 3.6       H <sub>2</sub> -Release Data (Toepler pump) for AB/PS Solid-State Reactions at 85                                    | 129 |
| °C                                                                                                                                   |     |
| Table 3.7       H <sub>2</sub> -Release Data (gas burette) for AB/PS Solid-State Reactions at 85 °C                                  | 129 |
| Table 3.8 H <sub>2</sub> -Release Data (Toepler pump) for AB/BmimCl/PS Reactions at 85 °C                                            | 133 |
| Table 3.9       H <sub>2</sub> -Release Data (gas burette) for AB/bmimCl/PS Reactions                                                | 137 |
| Table 3.10 H <sub>2</sub> -Release (Toepler pump) Data for Partially Dehydrogenated AB                                               | 140 |
| Table 3.11       H <sub>2</sub> -Release Data (Toepler pump) for AB/Ionic-Liquid/PS Reactions at                                     | 148 |
| 85 °C                                                                                                                                |     |
| Table 3.12       H <sub>2</sub> -Release Data (gas burette) for AB/Tetraglyme/PS Reactions at 85                                     | 149 |

# List of Figures

| Chapter 1                                                                                                  |    |
|------------------------------------------------------------------------------------------------------------|----|
| Figure 1.1 Energy demand by sector and supply by source for 2008.                                          | 3  |
| Figure 1.2 Simple schematic diagram of a PEM fuel cell.                                                    | 4  |
| Figure 1.3 Total system targets from DOE Center of Excellence.                                             | 9  |
| Figure 1.4 Select amine boranes discussed in the following Chapters.                                       | 11 |
| Figure 1.5 Low temperature (orthorhombic) crystal structure of AB. Nitrogen,                               | 12 |
| boron, and hydrogen atoms are depicted in blue, purple, and gray, respectively.                            |    |
| Figure 1.6 Schematic energy profile of the conversion of 2 AB to DADB.                                     | 15 |
| Figure 1.7 Schematic energy profile of the dehydrogenation of DADB.                                        | 17 |
| Figure 1.8 Comparison of thermogravimetric and volumetric data at 5 K/min of                               | 20 |
| AB thermolysis.                                                                                            |    |
| Figure 1.9 Solid-State hydrogen release data for AB at 85 and 95 °C.                                       | 20 |
| Figure 1.10 <sup>11</sup> B NMR (128.4 MHz) spectra recorded at 20 °C. Pyridine extract of                 | 22 |
| a solid-state AB reaction at 85 $^{\circ}$ C after 19 h with 0.83 equivalents of H <sub>2</sub> -released. |    |
| Figure 1.11 DFT/GIAO calculated <sup>11</sup> B NMR shifts for possible                                    | 23 |
| dehydropolymerization products.                                                                            |    |
| Figure 1.12 Baker's nickel carbene catalyst with <sup>11</sup> B NMR showing final                         | 32 |
| products.                                                                                                  |    |
| Figure 1.13 Schematic energy profile of the nickel carbene catalyst using the                              | 33 |
| carbene as a proton abstractor.                                                                            |    |
| Figure 1.14 Schematic energy profile for free carbene abstracting H <sub>2</sub> from AB.                  | 34 |

## Chapter 2

| Figure 2.1 Toepler pump system used for H <sub>2</sub> -release measurements.                  | 54 |
|------------------------------------------------------------------------------------------------|----|
| Figure 2.2 Automated gas burette used for H <sub>2</sub> -release measurements.                | 55 |
| Figure 2.3 Structures of ionic liquids used in these studies.                                  | 80 |
| Figure 2.4 $H_2$ -release measurements (gas burette) at 85 °C of: (A) 50-wt% AB                | 82 |
| (150 mg) in bmimCl (150 mg,) and (B) solid-state AB (150 mg).                                  |    |
| Figure 2.5 $H_2$ -release measurements (gas burette) of 50-wt% AB (150 mg) in                  | 85 |
| bmimCl (150 mg) at various temperatures.                                                       |    |
| Figure 2.6 H <sub>2</sub> -release measurements (gas burette) of AB (150 mg) in 20.2-wt%       | 86 |
| bmimCl (38 mg) at various temperatures.                                                        |    |
| Figure 2.7 $H_2$ -release measurements (Toepler pump) of the reaction of 50-wt%                | 88 |
| AB (250 mg) at 85 °C in 250 mg of with various ionic liquids.                                  |    |
| Figure 2.8 $H_2$ -release measurements (Toepler pump) of the reaction of 50-wt%                | 90 |
| AB (250 mg) in 250 mg of various ionic liquids at (a) 65 $^{\circ}$ C and (b) 45 $^{\circ}$ C. |    |
| Figure 2.9 Above: Solution <sup>11</sup> B NMR (128.4 MHz) spectra of the residues             | 94 |
| (extracted in pyridine) of the 85 $^{\circ}$ C reaction of solid-state and ionic liquids with  |    |
| AB.                                                                                            |    |
| Figure 2.10 Solid-state <sup>11</sup> B NMR (240 MHz) spectra recorded at 25 °C of the         | 95 |
| reaction of 50-wt% AB (150 mg) in bmimCl (150 mg) at 110 °C.                                   |    |
| Figure 2.11 Solution <sup>11</sup> B NMR (128.4 MHz) spectra recorded at 25 °C of the          | 98 |
| reaction of 10-wt% AB (50 mg) in bmimOTf (450 mg) at 85 °C.                                    |    |

| Figure 2.12 1,3-dimethylimidazolium hexafluorophosphate with 0.5 mol benzene                                        | 99  |
|---------------------------------------------------------------------------------------------------------------------|-----|
| included as a clathrate.                                                                                            |     |
| Figure 2.13 Solution <sup>11</sup> B NMR (128.4 MHz) of the reaction of 10-wt% AB (50                               | 101 |
| mg) in bmimOTf (450 mg) at 85 °C for 6 h at various temperatures                                                    |     |
| Figure 2.14 Solution <sup>11</sup> B NMR (128.4 MHz) spectra recorded at 25 °C of 10-wt%                            | 102 |
| borazine (50 mg) in bmimI (450 mg) after at various times.                                                          |     |
| Figure 2.15 $H_2$ -release measurements (gas burette) of bmimOTf (450 mg) and                                       | 105 |
| 10-wt% (50 mg) of DADB and AB.                                                                                      |     |
| Figure 2.16 Solution <sup>11</sup> B NMR (128.4 MHz) spectra recorded at 25 °C of the                               | 106 |
| reaction of 10-wt% DADB (50 mg) in bmimOTf (450 mg) at 85 °C.                                                       |     |
| <b>Figure 2.17</b> Possible pathway for ionic-liquid promoted H <sub>2</sub> -release from AB.                      | 107 |
| Figure 2.18 H <sub>2</sub> -release measurements (gas burette) of 50-wt% AB (150 mg) in                             | 109 |
| tetraglyme (150 mg) at various temperatures.                                                                        |     |
| Figure 2.19 Solution ${}^{11}B{}^{1}H{}$ NMR (128 MHz) spectra recorded at 80 °C of the                             | 110 |
| reaction of 10-wt% AB (50 mg) in tetraglyme (450 mg) at 85 °C.                                                      |     |
| Chapter 3                                                                                                           |     |
| Figure 3.1 H <sub>2</sub> -release measurements for solid state AB reactions with Proton                            | 128 |
| Sponge at 85 °C using the Toepler pump and gas burette.                                                             |     |
| <b>Figure 3.2</b> <sup>11</sup> B{ <sup>1</sup> H} NMR (128.4 MHz) spectra recorded at 25 $^{\circ}$ C of the glyme | 130 |

extract of the reaction of solid-state AB with and without Proton Sponge.

Figure 3.3 Solid-state <sup>11</sup>B NMR (240 MHz) spectra recorded at 25 °C of the131reaction of solid-state AB reactions with and without Proton Sponge after 1equivalent was released.

**Figure 3.4**  $H_2$ -release measurements (Toepler pump) of the reaction of AB in 132 bmimCl with Proton Sponge at 85 °C.

Figure 3.5 Differential Scanning Calorimetry analyses of the reactions of AB in135bmimCl with Proton Sponge at various temperatures.

Figure 3.6  $H_2$ -release measurements (gas burette) of the reaction of AB in bmimCl 138 with Proton Sponge at various temperatures.

Figure 3.7  $H_2$ -release measurements (gas burette) of partially dehydrogenated AB 139 where 1  $H_2$ -equivalent was initially released at 85 °C, then bmimCl and

bmimCl/Proton Sponge were added to separate samples and heating resumed at 85 °C.

Figure 3.8Solid-state <sup>11</sup>B NMR (240 MHz) spectra recorded at 25 °C of the142reaction of AB and Proton Sponge in bmimCl at 85 °C.

**Figure 3.9** DFT optimized geometries (B3LYP/6-31G(d)) and GIAO calculated 143 (B3LYP/6-311G(d)) <sup>11</sup>B NMR chemical shifts.

Figure 3.10Solid-state <sup>11</sup>B NMR (240 MHz) spectrum recorded at 25 °C of the144reaction of AB and Proton Sponge in bmimCl at 85 °C for 23 h.

Figure 3.11Solution  $^{11}$ B NMR (128 MHz) spectra recorded at 25 °C of the145reaction of AB in mmimMeSO4 at 85 °C with and without Proton Sponge.

| Figure 3.12 Foaming resulting from the reaction of 250 mg AB in 250 mg                                                                                         | 146 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| bmimCl after 1 h at 100 °C with and without Proton Sponge.                                                                                                     |     |
| Figure 3.13 H <sub>2</sub> -release measurements (Toepler pump) of the reaction of AB in                                                                       | 147 |
| ionic liquids or tetraglyme with Proton Sponge at 85 °C.                                                                                                       |     |
| Figure 3.14 Solution ${}^{11}B{}^{1}H$ NMR (128 MHz) spectra recorded at 80 °C of the                                                                          | 150 |
| reaction of AB and Proton Sponge in tetraglyme at 85 °C.                                                                                                       |     |
| <b>Figure 3.15</b> Selected bond distances (Å) and angles (°) for $[Et_3BNH_2BH_3]^-$                                                                          | 153 |
| K <sup>+</sup> •18-crown-6.                                                                                                                                    |     |
| Figure 3.16 Possible anionic polymerization pathway for PS-promoted H <sub>2</sub> -release                                                                    | 155 |
| from AB.                                                                                                                                                       |     |
| Figure 3.17 DFT (B3LYP/6-31G(d)) optimized geometry and GIAO                                                                                                   | 157 |
| (B3LYP/6-311G(d)) calculated <sup>11</sup> B NMR shifts for [Et <sub>3</sub> BNH <sub>2</sub> BH <sub>2</sub> NH <sub>2</sub> BH <sub>3</sub> ] <sup>-</sup> . |     |

# List of Equations

## Chapter 1

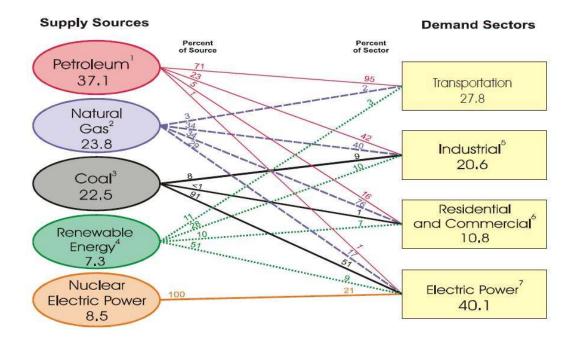
| <b>1.1</b> Fuel cell half reactions                                                              | 5   |
|--------------------------------------------------------------------------------------------------|-----|
| <b>1.2</b> Methane reforming for H <sub>2</sub> production                                       | 6   |
| <b>1.3</b> Ammonia borane hydrolysis                                                             | 18  |
| <b>1.4</b> Ammonia triborane hydrolysis                                                          | 18  |
| <b>1.5</b> Ammonia borane thermolysis                                                            | 19  |
| <b>1.6</b> Acid catalyzed AB H <sub>2</sub> -release mechanism                                   | 25  |
| <b>1.7</b> Colloidal rhodium catalyzed AB H <sub>2</sub> -release mechanism                      | 27  |
| <b>1.8</b> Generic homogeneous catalyzed AB H <sub>2</sub> -release mechanism                    | 29  |
| <b>1.9</b> Iridium pincer catalyzed AB H <sub>2</sub> -release using 16 e <sup>-</sup> mechanism | 30  |
| <b>1.10</b> Difference between iridium and other homogenous catalyst mechanisms                  | 31  |
| <b>1.11</b> Nickel carbene catalyzed AB H <sub>2</sub> -release mechanism                        | 35  |
| <b>1.12</b> Calculated titanocene catalyzed AB H <sub>2</sub> -release mechanism                 | 36  |
| <b>1.13</b> Experiemntally predicted Titanocene catalyzed AB H <sub>2</sub> -release mechanism   | 37  |
| <b>1.14</b> Ammonia borane production from $NaBH_4$ and $(NH_4)_2SO_4$                           | 38  |
| <b>1.15</b> Ammonium borohydride production from NaBH <sub>4</sub> and NH <sub>4</sub> Cl        | 38  |
| <b>1.16</b> Decomposition ammonium borohydride to form ammonia borane                            | 38  |
| <b>1.17</b> Spent fuel regeneration scheme                                                       | 39  |
| Chapter 2                                                                                        |     |
| 2.1 Ammonia borane thermolysis                                                                   | 52  |
| <b>2.2</b> Ammonia borane dimerization into ionic intermediate the diammoniate of                | 103 |

diborane

| 2.3   | Thermolytic H <sub>2</sub> -release from diammoniate of diborane      | 103 |
|-------|-----------------------------------------------------------------------|-----|
| Cha   | apter 3                                                               |     |
| 3.1   | Ammonia borane dehydrogenated with lithium amide                      | 117 |
| 3.2   | Ammonia borane dehydrogenated with lithium hydride                    | 117 |
| 3.3   | Lithium amidoborane undergoing dehydropolymerization with ammonia     | 118 |
| bora  | ane                                                                   |     |
| 3.4   | Lithium amidoborane decomposition into aminoborane                    | 118 |
| 3.5   | Formation of side-product lithium borohydride                         | 118 |
| 3.6   | Proton Sponge protonation                                             | 151 |
| 3.7   | Ammonia borane studies with lithium and potassium triethylborohydride | 152 |
| 3.8   | Ammonia borane chain growth studies with lithium and potassium        | 156 |
| triet | hylborohydride                                                        |     |

### Chapter 1

### The Hydrogen Economy: Benefits, Problems, and Possible Solutions

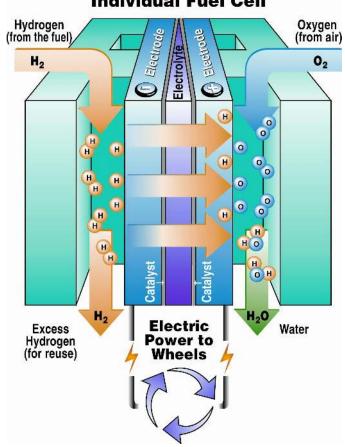

### Summary

The overall goal of the studies described in this dissertation was to investigate the use of a chemical hydride, ammonia borane (AB), as a potentially efficient material for hydrogen storage. The specific goals of this study were both to develop new efficient methods for increasing the rate and extent of H<sub>2</sub>-release from AB and to elucidate the important mechanistic pathways and intermediates in these reactions. Chapter 1 discusses the need for a chemical hydrogen storage system, and more generally, the need for a paradigm shift from hydrocarbons to a hydrogen economy. Chapter 2 demonstrates that AB/ionic liquid based H<sub>2</sub>-release systems show increased activity for H<sub>2</sub>-release compared to neat AB. Furthermore, it is also shown that these reactions can be tuned by using various ionic liquids, temperatures, and loading ratios. In Chapter 3, base catalyzed reactions, using primarily 1,8-bis(dimethylamino)naphthalene, Proton Sponge (PS), are also shown to enhance release rates and reduce reaction foaming (a common AB thermolysis problem) in both solid state and systems solvated by ionic liquids.

### 1.1 We Use More than We Make!

As discussed in the 2008 Annual Energy Review generated by the Department of Energy,<sup>1</sup> worldwide consumption of energy continues to rise while global production of energy struggles to keep pace. In the United States, most of the energy consumed is used in the form of electric power. However, the second largest consumption sector is transportation at 27.8% in 2008. Energy sources used for transportation include, petroleum, natural gas, and biofuels, but 95% of the consumed energy is from petroleum. Domestic production has not been able to keep up with demand for decades; production of crude oil has slowly declined since its peak in 1970. Therefore, importation of petroleum has increased to keep pace with consumption demands. The United States currently imports (12.9 million barrels per day) twice the petroleum it produces (6.7 million barrels per day).

Looking at the breakdown of petroleum consumption in the United States, most is used in the transportation sector (71%, **Figure 1.1**), and of that most petroleum is used for light vehicles (i.e. cars and light trucks).<sup>1</sup> Oil reserves will inevitably run out and fuel prices will continue to rise. To match current and future energy needs, a new energy carrier is needed. Additional reasons for phasing out the use of petroleum as a transportation energy carrier are the negative effects of global warming caused by the  $CO_2$  produced by petroleum combustion and the danger to United States national security caused by having an unstable foreign energy supply. As discussed in the next section, utilization of hydrogen as a substitute for petroleum has many benefits particularly when used with fuel cells, a rapidly developing technology.




**Figure 1.1** Energy demand by sector and supply by source for 2008.<sup>1</sup>

### **1.2** Push for a Hydrogen Economy

### 1.2.1 Why Do We Need a Hydrogen Economy?

In 2003, President George W. Bush announced the hydrogen fuel initiative that had as its goals the development of new technology for the production, storage, and distribution of hydrogen. The ultimate goal was to make fuel cell powered cars competitive by 2020. In order to accomplish this goal, the hydrogen economy must be as good, if not better, than the current hydrocarbon based energy economy. Hydrogen as an energy carrier has many benefits, the biggest being as a fuel source for fuel cells.



Individual Fuel Cell

Figure 1.2 Simple schematic diagram of a PEM fuel cell.<sup>2</sup>

A Proton Exchange Membrane (PEM) fuel cell (**Figure 1.2**) operates by oxidizing molecular hydrogen and allowing the protons to migrate through the membrane while the electrons are shuttled out to do work by the catalytic electrodes. The protons recombine on the other side of the membrane with reduced molecular oxygen, typically from the air, to form water,<sup>3</sup> as shown in the half reactions in **Equation 1.1**.

Anode: 
$$2H_2 \longrightarrow 4H^+ + 4e^-$$
  
Cathode:  $O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$  (1.1)

Fuel cells have two to three times the efficiency of internal combustion engines and can be designed to power a broad spectrum of sizes of applications from a watch to a building. Additionally, the only product from fuel cells when using hydrogen as a fuel is water.

#### 1.2.2 What are the Barriers to a Hydrogen Economy?

There are many barriers to implementing a hydrogen economy. The biggest overarching difficulty is in replacing an energy system that has been in place for one hundred years. Gasoline is an excellent energy carrier. It has a high energy density, it is easy to transport and handle, and is inexpensive for now. Gasoline has the added benefit of one hundred years of optimization and infrastructure that hydrogen will have to overcome. It is difficult to expect hydrogen to replace this type of system in a short period of time (a few decades), but that is exactly what is expected. The difficulties in implementing a hydrogen economy can be broken down into three areas: hydrogen production, hydrogen delivery, and hydrogen storage.

### **1.2.2.1 Hydrogen Production**

Most hydrogen (95%) is currently produced from natural gas reforming via high temperature steam. The generic reaction is given in **Equation 1.2** where steam at temperatures from 700  $^{\circ}$ C to 1000  $^{\circ}$ C is used to split the methane into carbon monoxide and hydrogen.<sup>4</sup>

$$CH_4 + H_2O \longrightarrow CO + 3H_2 \quad (1.2)$$

If hydrogen is produced from hydrocarbons or other fossil fuels like coal, then we are still: relying on foreign sources, quickly depleting hydrocarbon fuel sources, and producing large amounts of carbon monoxide. Other production methods are necessary in order to create an environmentally friendly, secure hydrogen energy supply. Biomass or water electrolysis using electricity from nuclear or renewable sources, such as wind and photovoltaics, must be employed to efficiently produce the hydrogen to make the hydrogen economy viable. While these sources are still being developed, a great deal of progress has recently been made especially in the area of water splitting. The Nocera lab has been a leader in developing self-regenerative water-splitting catalysts.<sup>5</sup> These types of new technologies are necessary to make the implementation of a hydrogen economy possible.

#### 1.2.2.2 Hydrogen Delivery

The problems with delivery center around what sort of infrastructure for hydrogen delivery would be needed. The existing pipelines used for moving petroleum do not work for gases. In theory, with renewable sources producing hydrogen, local fuel stations or even individuals could produce their own hydrogen. However, depending on the hydrogen storage method used in vehicles, central processing plants maybe needed and therefore transportation of gas or solid fuels would be necessary. The type of delivery system is heavily dependent on the storage method used.

#### **1.2.2.3 Hydrogen Storage**

The Department of Energy (DOE) originally setup a series of metrics<sup>2</sup> that hydrogen would have to meet or exceed for it to become economically viable as a gasoline equivalent. These goals included the need for the fuel cell vehicle to have greater than a 300 mile range, with the fuel delivered at an equivalent cost to gasoline, as well as durability of the fuel cell and the over all system. Important requirements for hydrogen-based systems are that they operate over the wide variety of environments in which gasoline operates. Fuel cell systems must work in -20 °C temperatures and survive -40 °C, while not breaking down at temperatures that exceed 50 °C.

There are three main methods currently being explored for storing hydrogen for transportation purposes. The first utilizes high pressure storage tanks. Tanks have a large number of benefits. Simplicity in the overall system is the biggest benefit. Using a high pressure tank delivery system in the vehicle is much simpler since the fuel is stored in the form in which it is ultimately consumed and the fuel can be transferred in the same form. There are of course drawbacks to this approach mainly due to the pressure required to make these tanks practical. For instance, a 5000 psi fuel tank holding 3.92 kg of hydrogen only gives the Honda Clarity a 240 mile range,<sup>6</sup> which is well short of the goal set by the DOE and much worse than comparable gasoline vehicles. Higher ranges are possible only with higher pressures because hydrogen gas has a low energy density. This creates a problem with current tank design and has a direct impact on safety of these

systems. The higher the pressure being stored, the more dangerous tank imperfections are. Likewise the durability of the tanks in vehicular collisions is a real danger.

A second method for storing hydrogen is in the liquid phase which gives much lower pressures for storage, as well as a higher energy density. To compare compressed gas versus liquid hydrogen; a 10,000 psi tank of compressed hydrogen has a hydrogen density of ~56 kg/m<sup>3</sup>, whereas the same volume tank of liquid hydrogen would only be ~670 psi with a density of ~68 kg/m<sup>3</sup>. However, this technology is impractical due to the higher energy costs necessary to liquefy hydrogen and the cryogenic tanks necessary to maintain it as a liquid. For these reasons, the energy input is greater than the efficiency gained by a higher energy density.

The third storage method is to utilize materials and compounds, that is, chemical hydrides, for storage. Chemical hydrides can have a higher energy density for H<sub>2</sub> storage than can be achieved by either gas or liquid hydrogen tank systems to store the hydrogen. Under this umbrella term 'materials' there are three subcategories; reversible metal hydrides, carbon adsorption materials, and chemical hydrogen storage. Some examples of metal hydrides include materials such as lithium aluminum hydride and lithium hydride.<sup>7-18</sup> Carbon nanotubes and metal-organic frameworks have been the focal points of carbon-based storage systems.<sup>19-29</sup> Because of their high material weight percents, chemical hydrogen storage has focused mainly on boron hydrides, including compounds such as sodium borohydride, ammonium borohydride, and ammonia borane (AB).

### 1.2.3 The Chemical Hydrogen Storage Center of Excellence

In order to comprehensibly investigate the three materials-based storage methods, the DOE setup Centers' of Excellence to work on each of these materials. As summarized in **Figure 1.3**, the DOE set specific goals, the main one being total system weight percent of 9.0 % by 2015.<sup>2</sup> To clarify, the **total system weight percent** is the weight of hydrogen produced, divided by the weight of the fuel system including tanks, heaters, tubing, release compound and solvents. On the other hand, **materials weight percent**, is just the weight of hydrogen released divided by the weight of the compound system (including possible solvent and catalyst) doing the release. To achieve a target total system weight percent, the material weight percent must be much higher so that additional weight for tanks, etc. can be factored in. Other goals such as volumetric density, flow rate, and initial rate also have metrics set by the DOE. All of theses goals were set based on the needs of fuel cells powering a vehicle for a 300 mile range and that the H<sub>2</sub>-storage container should not be significantly larger that the existing gasoline tank.

| Target                         | 2015  |
|--------------------------------|-------|
|                                | old   |
| System Gravimetric Density     | [9]   |
| [wt.%] (kWh/kg)                | (3.0) |
| System Volumetric Density      | [81]  |
| [g/L] (kWh/L)                  | (2.7) |
| System fill time for 5-kg fill | [2.5] |
| [min] (kgH <sub>2</sub> /min)  | (2.0) |
| System cost [\$/kgH2]          | [67]  |
| (\$/kWhnet)                    | (2)   |

Figure 1.3 Total system targets from DOE Center of Excellence.<sup>2</sup>

To achieve these goals, the Center for Chemical Hydrogen Storage brought together a diverse group of partners. The Center combined computational and synthetic expertise from academics: UCLA, Univ. of Pennsylvania, Univ. of Alabama, Univ. of Washington, Penn State, UCDavis, and Northern Arizona University. Analytical and computational resources were drawn from national labs such as Pacific Northwest National Laboratories and Los Alamos National Laboratories. Scale up and economic experience was taken from industrial companies Borax, Millennium Cell, Rohm and Haas, and Intematix. Therefore, the Center as a whole had a wide range of technical expertise. Conference calls and collaborations as well as periodic progress reports and an annual review provided the coordination of the efforts.

### **1.3** What is Ammonia Borane?

After the initial 2003 Hydrogen initiative was announced, amine boranes were identified as an excellent hydrogen storage material candidate. Amine boranes' high hydrogen densities, for example 24.5 materials weight percent (mat. wt.%) for ammonium borohydride, 19.6 mat. wt% for AB, and 17.8 mat. wt.% for ammonia triborane, were the primary attribute that made these materials attractive. The structures and abbreviations of the compounds are shown in **Figure 1.4**. The other attractive property of amine boranes comes from the different electronegativities of B(2.04) and N(3.04) that result in protonic N-H and hydridic B-H hydrogens. Thus, the elimination of H<sub>2</sub> by the reaction of B-H and N-H<sup>+</sup> is favorable.

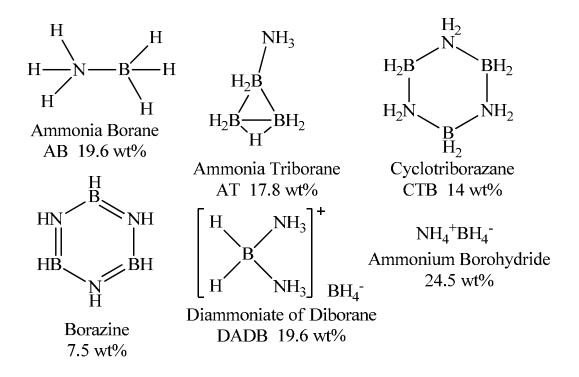
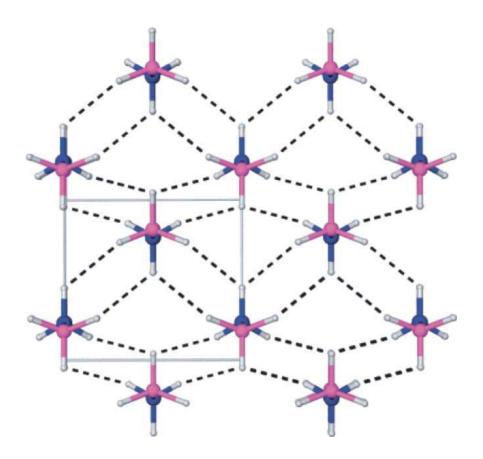




Figure 1.4 Select amine boranes discussed in the following Chapters.



**Figure 1.5** Low temperature (orthorhombic) crystal structure of AB. Nitrogen, boron, and hydrogen atoms are depicted in blue, purple, and gray, respectively.<sup>30</sup>

Within the amine borane class of compounds, AB was quickly identified as the best overall candidate due to its high materials weight percent (19.6 %), as well as its stability and non-toxicity. The first group to work on ammonia borane and the ionic dimer diammoniate of diborane (DADB) was Alfred Stock, who reported the formation of these compounds in 1925.<sup>31</sup> The Schlesinger group in the 1930s initially proposed incorrect structures for DADB and AB based on incorrect molecular weight measurements.<sup>13</sup> Crystalline AB was synthesized by Parry and Shore in 1955 and purified from DADB using AB's ether solubility. They also collected the first definite

X-ray powder diffraction of AB.<sup>32</sup> The correct structures of AB and DADB were elucidated in a series of papers by Parry and Shore in 1958.<sup>33</sup> Work continued in these groups through the 1960s further defining the properties.

Ammonia borane is a colorless solid that melts at 110 °C – 114 °C, but is stable at room temperature. There are several methods of producing AB that will be discussed in section **1.3.4**. It is soluble in a variety of polar solvents, including ammonia (260 g/ 100 g solvent), water (33.6 g/ 100 g solvent), and tetrahydrofuran (25 g/ 100 g solvent). Both X-ray and neutron diffraction studies have been used to determine the solid-state structure of AB. AB has a staggered conformation with a B-N bond distance of 1.564(6) Å. The gas phase calculations determined the B-N bond distance to be 1.6722(5) Å. Solid-state AB shows close BH---HN distances of 2.02 Å on adjacent molecules which is inside the Van der Waals distance of 2.4 Å indicating strong dihydrogen bonds (**Figure 1.5**). Due to the dihydrogen bonding, a stabilization energy of 90.4 kJ/mol is added making AB a solid.<sup>34</sup> This gives AB a much higher volumetric density than ethane, its isoelectronic carbon analogue.

The diammoniate of diborane (DADB,  $[BH_2(NH_3)_2]^+BH_4^-$ ) is the ionic dimer of AB where the cation is comprised of a NBN motif with the terminal ammonia groups forming dative bonds with the  $BH_2^+$  unit while the anion is a borohydride group. DADB does not have a melting point, but decomposes at 80 °C to give similar decomposition products, in general, as AB. DADB is insoluble in ethers and hydrolyzes readily in water and will slowly split off hydrogen at room temperature. Shultz, Parry, and Shore were the first to correctly identify<sup>33</sup> the structure of DADB as  $[H_3NBH_2NH_3]^+[BH_4]^-$  and not  $[NH_4]^+[H_3BNH_2BH_3]^{-35}$  or  $NH_4(H_2BNH_2)BH_4^{-36}$  through a series of reactivity studies.

The first reactions were with sodium which, when reacted with DADB, formed sodium borohydride and not the complex salt Na[H<sub>3</sub>BNH<sub>2</sub>BH<sub>3</sub>].

Another interesting property of DADB is the stabilizing effect of the cation on the borohydride anion. Lithium borohydride salts reacts vigorously with water, whereas the DADB reaction is not nearly as violent. Reaction of DADB with lithium halide salts increased the proton sensitivity on the borohydride as evidenced by increased H<sub>2</sub>-release.<sup>33</sup> The standard DADB preparation is to bubble diborane through liquid ammonia held at -78 °C. DADB can also be made in organic solvents; however, the yields are reduced. Regardless of the solvent used, the reaction is highly temperature sensitive and if the solvent is warmer, the product ratio shifts towards the side product, AB.<sup>37</sup> If pure DADB is placed in complex ethers such as glyme, it will slowly convert to AB almost cleanly.<sup>38</sup> The IR spectrum of DADB has also been tentatively assigned.<sup>39</sup>

AB dehydrogenation is exothermic. The Dixon group and collaborators have calculated detailed reaction pathways starting from 2 AB molecules through the formation of DADB and subsequent hydrogen loss from DADB.<sup>40</sup> They also used coupled cluster (CCSD(T)) level calculations to show that breaking the B-N bond is the easiest AB decomposition method. This had serious implications for a reaction mechanism where the easiest bond breakage formed free ammonia and borane moieties.<sup>41</sup>

**Figure 1.6** shows an energy profile calculated by the Dixon group. Starting with two AB, one of the two AB units dissociates into borane and ammonia with the borane associated with both the hydridic B-H from the other AB and the ammonia forming a transition state which is 12.4 kcal/mol above the two free AB. This then forms a bridging hydrogen with ammonia dissociation dropping the energy by 4.3 kcal/mol. If the free

ammonia associates with the protonic N-H of the other AB the energy drops 0.3 kcal/mol below the starting point. The second transition state involves abstraction of the hydride by the free borane and association of the free ammonia with the now positively charged borane. This transition state lays 27.8 kcal/mol above the starting point. The ionic dimer of AB, DADB, forms from this transition state and is 3.3 kcal/mol more stable than the two starting AB molecules.

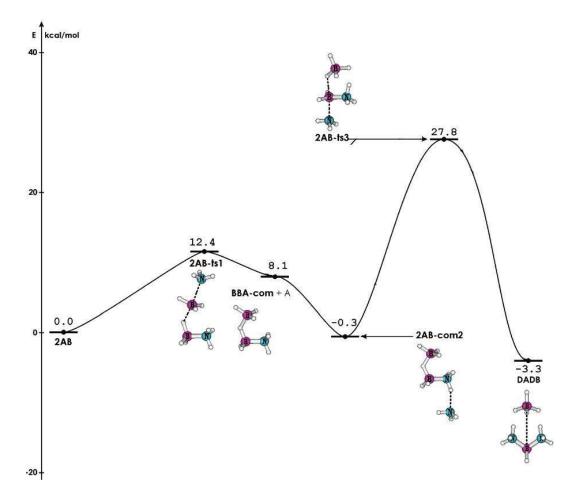



Figure 1.6 Schematic energy profile of the conversion of 2 AB to DADB.<sup>40</sup>

To then release hydrogen from DADB, the Dixon group calculated the energy profile, **Figure 1.7**, where the boron and hydride from the borohydride associates with the protonic N-H with concomitant H<sub>2</sub>-release and formation of the B-N bond. They then calculated that the most favorable conformation is cis so that the boron and nitrogen can associate. Further monomer addition and dehydrogenation yield products such as CTB  $(\Delta H_1^o = -120.5 \text{ kcal/mol (solid)})$  and borazine  $(\Delta H_1^o = -122.6 \text{ kcal/mol (liquid)})$ .<sup>42</sup> The  $\Delta H$  of the reaction of three AB going to form CTB with the release of three H<sub>2</sub> was calculated to be -55.9 kcal/mol at 298 K. The subsequent release of another three H<sub>2</sub> to form borazine was calculated to be -18.9 kcal/mol at 298 K.<sup>42</sup> Nguyen also calculated a reaction plot using free borane as a catalyst where the products were H<sub>2</sub>, borane (which continued catalyzing the reaction), and aminoborane. Aminoborane is a highly reactive species that was implicated by others in the overall AB reaction scheme.<sup>41</sup> These proposed mechanisms explain the reason a significant amount of ammonia is released during solid-state AB reactions.

The abstraction of a proton from AB to form the  $H_3BNH_2^-$  anion was calculated to be 357 kcal/mol at 298 K. This is a gas phase calculation and is based mainly on the enthalpic contribution which is mostly from the stability of the anion.<sup>43</sup> The difficulty of removing a proton in a solvent environment should be dramatically less.

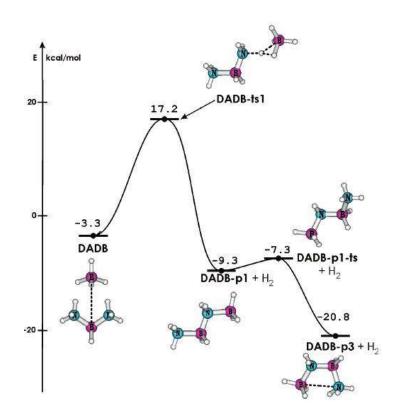



Figure 1.7 Schematic energy profile of the dehydrogenation of DADB.<sup>40</sup>

#### 1.3.1 How to Release Hydrogen from Ammonia Borane?

There are two main methods to release hydrogen from a chemical hydride; hydrolytically and thermolytically. The requirements for hydrogen release for utilization in vehicles powered by fuel cells are fast, controlled, and complete release. The hydrogen needs to be fast enough to power fuel cells in times of acceleration when more energy is needed. The H<sub>2</sub>-release also needs to be both controllable so that it can be turned off and have a consistent release rate so there are no spikes of hydrogen when it is not needed. Lastly, in order to achieve a high materials weight percent, most of the hydrogen needs to be released or the hydrogen yield will be very low.

#### 1.3.1.1 Utilizing Hydrolysis to Release Hydrogen.

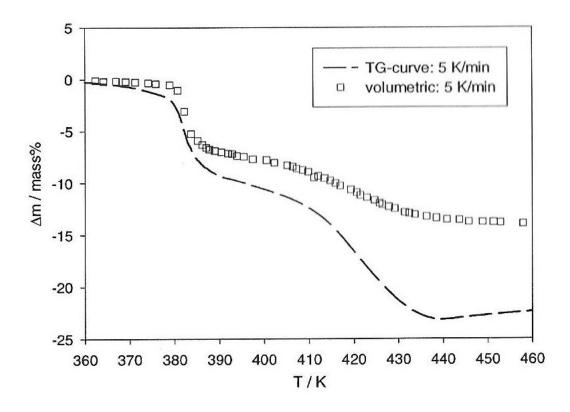
The area that received the most attention early was AB hydrolysis. General reactions for amine borane hydrolysis are given in **Equations 1.3** and **1.4**.

$$H_3NBH_3 + 2H_2O \longrightarrow NH_4^+ + BO_2^- + 3H_2 \quad (9.0 \text{ wt\%}) \quad (1.3)$$

$$H_3NB_3H_7 + 6H_2O \longrightarrow NH_4^+ + 3BO_2^- + 2H^+ + 8H_2$$
 (9.8 wt%) (1.4)

Ammonia borane will undergo hydrolysis only very slowly at room temperature in basic water, but the rate is accelerated by lowering the pH or increasing the Most of the research in this area has focused on the search for temperature. transition-metal catalysts to increase the rate of AB-hydrolysis. Utilization of catalysis<sup>44-</sup> <sup>64</sup> can lower the H<sub>2</sub>-release temperature to room temperature. Metal catalyzed hydrolysis can give ultra-fast hydrogen release, often in seconds, with very controllable rates. This method also drives the dehydrogenation of AB to near completion, with ~3 equivalents released. Nonetheless, the use of hydrolysis as a method for hydrogen delivery in a fuel cell powered car is impractical for several reasons. AB is only moderately soluble in water and consumes 2 waters per AB so that despite a theoretical materials weight percent of 9 %, only ~5 % materials weight percent is possible. Regeneration of the spent fuel is another reason hydrolytic hydrogen release is not going to be used in vehicle fuel cells due to the difficulty of reducing B-O bonds. More about fuel regeneration will be discussed later. While this technology has great promise in certain areas such as emergency power backup, it is too inefficient to work in the transportation sector.

# **1.3.1.2** The Better Hydrogen Release Method: Thermolysis.


The simplest hydrogen release method is to just heat it up. Thermolysis offers several benefits over hydrolysis, with the main advantage being the system can achieve much higher material weight percent, as shown in the general reaction for AB thermolysis given in **Equation 1.5**.

$$H_3NBH_3 \longrightarrow BN + 3H_2 (19.6\%) (1.5)$$

#### **1.3.2** Ammonia Borane Solid-State H<sub>2</sub>-Release

Wolf<sup>65,66</sup> first showed that there are two exothermic H<sub>2</sub>-release events associated with the decomposition of AB. The first event starts at ~70 °C when heating at 1 K/min but ~100 °C at 5 K/min. The endotherm directly before the first exotherm centered at ~100 °C is attributed to the melting of AB. The second event is much broader and starts at ~130 °C before the first event is finished. Comparing volumetric H<sub>2</sub>-release and thermogravimetric analysis (**Figure 1.8**), the two release events become clear as does a disparity. The thermogravimetric curves indicate more mass loss than the volumetric curve. This is attributed to other volatile gases being formed besides H<sub>2</sub> and the gap increases as the heating rate increases.<sup>65</sup> According to Autrey, raising the temperature of reaction can release potentially all three equivalents from AB taking >500 °C.<sup>67</sup> Most research in AB hydrogen release has focused on increasing the extent of release as well as the rate.

While thermolysis is a simple system and hence has many benefits for engineering an end use system, there are a host of difficulties associated with solid-state reactions. There are four major problems with solid-state H<sub>2</sub>-release reactions illustrated in **Figure 1.9**.



**Figure 1.8** Comparison of thermogravimetric and volumetric data at 5 K/min of AB thermolysis.<sup>65</sup>

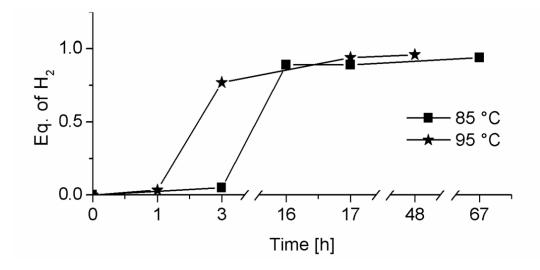
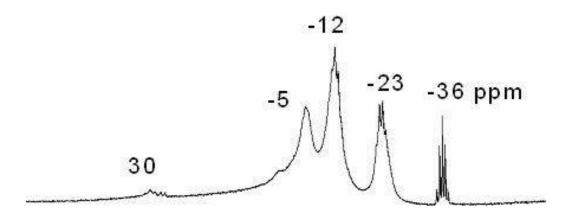




Figure 1.9 Solid-State hydrogen release data for AB at 85 and 95 °C.

The first is an induction period where, it has been proposed,<sup>68</sup> the AB is slowly converting to the DADB, the active intermediate and ionic dimmer of AB discussed in depth in **Chapter 2**, with H<sub>2</sub>-release not beginning until after 3 hours at 85 °C. The conversion of AB to DADB releases no hydrogen. The second major issue is the slow rate of H<sub>2</sub>-release. Once dehydrogenation starts, it takes hours to get to one equivalent. The third is, as discussed above, AB can release 3-H<sub>2</sub> when heated above 500 °C, but this would require heaters to raise the temperature thus adding weight and complexity to the system as well as requiring energy to power the heaters. A proton exchange membrane fuel cell's waste heat is ~85 °C, so to avoid the need for heaters, the most efficient systems for AB H<sub>2</sub>-release should be designed to operate near 85 °C. However, at 85 °C, less than one third (one equivalent) of the hydrogen is released from solid-state AB. These three problems seriously limit the practical uses of solid-state AB reactions for transportation since fast rates as well as high wt% H<sub>2</sub>-materials are needed. The fourth major issue is the products that form during the dehydrogenation reaction are diverse which can cause problems in regenerating the spent fuel.

In order to better understand the reaction pathways the products of these reactions were studied. The large product distribution coupled to the insolubility of some of the products made analysis difficult. Initially, pyridine extracts of reactions in progress were analyzed using <sup>11</sup>B NMR. A typical <sup>11</sup>B NMR spectrum for one of these extracts after the release of 1 equivalent is shown in **Figure 1.10**. At least 5 different resonances can be observed. Geanangel was the first to do comprehensive studies of the thermal decomposition of AB and proposed the formation of polyaminoboranes (NH<sub>2</sub>BH<sub>2</sub>)<sub>x</sub> as the initial product.<sup>69,70</sup> Indeed, DFT/GIAO calculations of linear (NH<sub>2</sub>BH<sub>2</sub>)<sub>x</sub> shown in

**Figure 1.11** indicate that the <sup>11</sup>B shifts at -12 and -23 ppm correlate with the BH<sub>2</sub> and BH<sub>3</sub> of the linear polymer. The signal at -5 ppm is in good agreement with the calculated shift of the BH unit of a branched chain polyaminoborane (**Figure 1.11**). The -12 and - 36 ppm signals correlate with the cation and anion of DADB respectively.<sup>33,71</sup> Lastly, the small signal at 30 ppm is characteristic of unsaturated B-N bonds and could be either unsaturated polyaminoborane (**Figure 1.11**) or borazine.<sup>72-74</sup> Poorly defined products made it difficult to determine the best catalyst to use to improve the rate and extent of H<sub>2</sub>-release. The diverse product distribution has other ramifications, namely with the regeneration of spent fuel research, that will be discussed later in section **1.3.6**.



**Figure 1.10** <sup>11</sup>B NMR (128.4 MHz) spectra recorded at 20 °C. Pyridine extract of a solid-state AB reaction at 85 °C after 19 h with 0.83 equivalents of  $H_2$ -released.

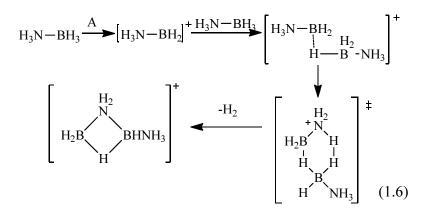


**Figure 1.11** DFT/GIAO calculated <sup>11</sup>B NMR shifts for possible dehydropolymerization products.

#### **1.3.3** Activated AB H<sub>2</sub>-Release from AB

# **1.3.3.1** Mesoporous Scaffolds Aid in Solid-State H<sub>2</sub>-Release

Mesoporous scaffolds have been shown to activate AB H<sub>2</sub>-release and have achieved faster release rates, lower H<sub>2</sub>-release temperatures, and better product control. There are four main types of scaffolds: carbon cryogels,<sup>19,22,25-27</sup> mesoporous silica,<sup>20,21,24,28</sup> zeolites,<sup>29</sup> and metal-organic frameworks.<sup>23</sup> The carbon scaffolds were explored both with AB and AB/metals intercalated into them. One type of carbon scaffold, mesoporous carbon, is somewhat acidic and was shown to enhance reaction rates and lower temperatures due to the acidity or the proximity of another AB unit. It was also shown that the addition of lithium to this scaffold 'scrubs' the gas stream by removing NH<sub>3</sub>,<sup>22</sup> a potential fuel cell killer. All of the carbon based mesoporous scaffolds decrease the temperature needed for AB dehydrogenation. The efficiency is 23


affected by pore size where the smaller the pore size, the lower the activation energy. Like the lithium doped scaffold that removed ammonia, non-metal doped AB-carbon scaffolds suppress the formation of borazine, another potential fuel cell killer.<sup>19,25-27</sup> Mesoporous silica showed similar reaction rates and volatile-elimination improvements as its carbon analogues.<sup>20,21,24,28</sup> Autrey *et al.* used SBA-15 and methanol to get a 1:1 ratio of AB and mesoporous silica. Subsequent reaction resulted in a 15 °C reduction in onset temperature for dehydrogenation.<sup>20</sup> Carbon cyrogels have the advantage of being slightly easier to synthesize. Unfortunately, thermolysis of these materials only lends ~7 materials weight percent due to the excessive weight of the scaffold.

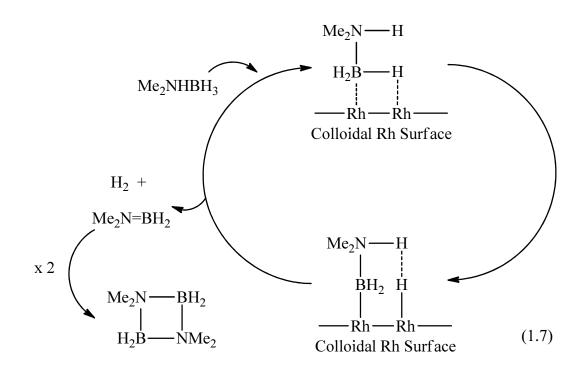
The other two mesoporous materials, zeolites and metal-organic frameworks, were used differently than the carbon and silica scaffolds. In the case of zeolites, research focused on using them as supports for metal nanoclusters. Zahmakiran et al. showed that reduction of Rh(III) onto the zeolite backbone can significantly enhance the catalytic activity during hydrolysis.<sup>29</sup> Similarly, metal-organic frameworks perform well as hydrolysis catalysts.<sup>23</sup> The resiliency of these materials was far greater than normal heterogeneous catalysts in hydrolysis; however, as stated previously, hydrolysis cannot achieve the overall total system weight goals.

# 1.3.3.2 Acid Catalyzed Hydrogen Release Reactions

Only limited research has gone into studying the acid catalyzed H<sub>2</sub>-release from AB. Work first focused on acids in ethereal solvents, such as tris(pentafluorophenyl)borane, since there was precedence for dehydrocoupling reactions with dihydrophenylphosphine borane.<sup>75</sup> While Manners showed that  $B(C_6F_6)_3$  does not

catalyze the dehydrocoupling of  $Me_2NHBH_3$ ,<sup>76</sup> Stephens showed that it catalyzed H<sub>2</sub>-releases from AB.<sup>77</sup>




It was found that the amount of acid dramatically changed the reaction pathway. The proposed mechanism is cationic (**Equation 1.6**) and started with hydride abstraction followed by association of AB and subsequent H<sub>2</sub>-release and formation of a cationic ammonia-substituted  $\mu$ -aminodiborane. With low acid concentration ( $\leq 1 \mod \%$ ), more hydrogen was released and cationic dehydropolymerization continued. However, at high acid loadings (>10 mol%), a side reaction occurred where neutral  $\mu$ -aminodiborane was the main product and H<sub>2</sub>-release stopped after only 0.6 equivalents. Stephens also showed that HCl in ethereal solvents can release 1.2 equivalents of hydrogen at 60 °C after 20 hours. H<sub>2</sub>-release reactions were measured the on a manual gas burette setup.<sup>77</sup> The products of the low acid reactions tended to be cyclic species, such as borazine; however, this was most likely due to the use of organic solvents not as a result of acid catalysis. Ultimately, the slow reaction rates and low H<sub>2</sub>-release amounts, as well as the use of volatile catalysts made this method less favorable than other activation methods.

#### **1.3.3.3 Using Transition-Metal Catalysis to Enhance Release Rate and Extent.**

Since AB is an ethane analogue, the use of transition-metal catalysis was a logical path to explore to activate AB for  $H_2$ -release. Research has focused on both heterogeneous catalysis, mainly nanomaterials, and homogenous catalysts. These catalysts were used for both thermolysis and hydrolysis/methanolysis reactions. Transition-metal catalysts were also used to activate alkylated amine boranes.

#### **1.3.3.3.1** Heterogeneous Transition-Metal Catalysts

The Manners group spearheaded the chemistry of transition-metal catalysis of aminoboranes. From 2001 until 2006, the Manners group was the only group publishing on aminoborane catalysis.<sup>76,78-81</sup> The work in 2001 focused on rhodium complexes that cyclized alkylated aminoboranes. They found that the secondary amine borane adducts formed cyclodimers. On the other hand, the monomethylamine borane and parent AB, formed trimers, but with the parent borazine formed in only 10 % yield.<sup>78</sup> It was found that the original catalyst, [Rh(1,5-cod)( $\mu$ -Cl)]<sub>2</sub>, was the most active at Me<sub>2</sub>NHBH<sub>3</sub> dimerization achieving 100 % yield in 8 hours at room temperature. It was proposed at the time that based on TEM and Hg poisoning studies, the active catalysts is shown in **Equation 1.7**.<sup>80</sup>



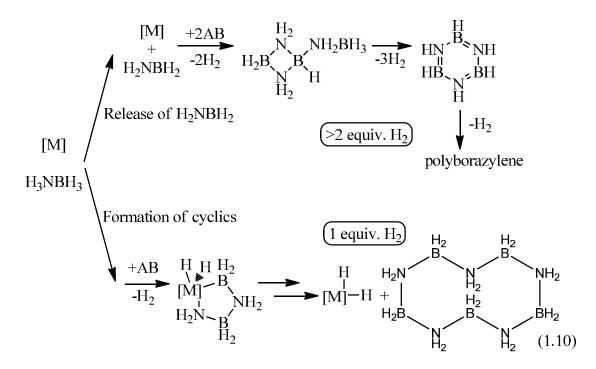
Others have used nanoclusters similar to those in the above experiments, which were formed *in situ* starting from the precatalyst [Rh(COD)Cl]<sub>2</sub>.<sup>79,82,83</sup> There has been controversy surrounding the size of the rhodium active catalyst and whether it was metallic or a ligated cluster. Chen *et al.* in 2005 showed that rhodium formed six atom clusters when used in toluene where amine boranes formed the ligands to the rhodium clusters.<sup>83</sup> A more complete study was published in 2007 by Fulton *et al.* where it was shown that the clusters were either four or six rhodium clusters, not metallic rhodium, though metallic rhodium was formed when the clusters were exposed to air.<sup>82</sup> Therefore, it was argued that these clusters are actually homogenous catalysts. Other work by Chang used nanoparticles as additives,<sup>84</sup> which could also be supported.<sup>85</sup> Work has also gone into the recovery of these nanoparticles. Zhang et al. designed shell-core particles that use iron as the core and platinum as the shell so they can be magnetically recovered.<sup>86</sup>

## **1.3.3.3.2** Homogeneous Transition-Metal Catalysts

Homogenous catalysis is another area of research using a range of first, second, and third row transition metals. One of the most exciting new catalysts was an iridium pincer catalysis, ( $^{t-Bu}$ POCOP)Ir(H)<sub>2</sub>.<sup>87-90</sup> First row transition metal catalysis focused on nickel carbene chemistry, where both experimental<sup>90,91</sup> and theoretical<sup>92-94</sup> work showed activity in high extent of H<sub>2</sub>-release. Catalysis by early transition metals, such as titanocene, has been reported by Pun.<sup>95</sup> Three examples of transition-metal catalysts used to enhance AB H<sub>2</sub>-release will be discussed below.

#### **1.3.3.3.2.1** Iridium Pincer Catalyst

Heinekey and Goldberg first identified iridium pincer the  $(\kappa^3-1,3-(OP^tBu_2)_2C_6H_3)Ir(H)_2$  as an excellent catalyst for the dehydrogenation of AB. They found that at room temperature with only 0.5 mol% catalyst loading, the reaction went to one equivalent in 14 minutes and at 1 mol% it was complete in just 4 minutes. This makes the iridium catalyst the fastest dehydrogenation catalyst to date. The <sup>11</sup>B NMR spectra of the dehydrogenation products showed a broad signal at -18 ppm characteristic of tetracoordinate boron. The product of the iridium catalyzed reaction was identified as the AB pentamer, [H<sub>2</sub>NBH<sub>2</sub>]<sub>5</sub>, by IR and X-ray powder diffraction and was formed in near quantitative yields.<sup>87</sup> It was found that the catalyst was also active for methylamineborane and the product was soluble unlike the AB reaction products. The methylated products were not discrete pentamers like the previously reported<sup>87</sup> AB dehvdrogenation products, but were a mixture of cyclic oligomers [MeNHBH<sub>2</sub>]<sub>n</sub> (n = 2 - 120) as well as acyclic oligomers. Heinekey and Goldberg then catalyzed mixtures of methylamineborane and AB to get a soluble product while increasing the hydrogen


weight percent. The 1:1 ratio of methylamineborane : AB was still fast and made soluble products. Higher AB ratios produced insoluble products.<sup>88</sup> The iridium catalyst was also used by Manners to make discrete linear alkylated amine borane species.<sup>96</sup> In these studies the concentration of substrate (AB, MeNH<sub>2</sub>BH<sub>3</sub>, and *n*BuNH<sub>2</sub>BH<sub>3</sub>) was increased substantially from 0.5 M solution in the Heinekey/Goldberg reactions to 10 M. With only 0.3 mol% iridium catalyst at 0 °C, Manners was able to produce high molecular weight, soluble (MeNH<sub>2</sub>BH<sub>3</sub>) polyaminoboranes. These polymers were characterized through gel permeation chromatography and the MeNH<sub>2</sub>BH<sub>3</sub> based polymer showed a poly-dispersion index of only 2.9 with a molecular weight of 160,000.

$$[M] \xrightarrow{H} \begin{array}{c} \text{oxidative} \\ \text{image indication} \\ \text{H}_2\text{B} \\ \text{NH}_3 \end{array} \xrightarrow{H} [M] - \text{BH}_2\text{NH}_3 \xrightarrow{\text{B-H}} [M] + \text{H}_2 + \text{H}_2\text{NBH}_2 \\ \hline k_2 \\ \text{Image indication} \\ k_2 \\ \text{Image indication} \\ \text{Image indication$$

The iridium pincer catalyst was initially used for alkane dehydrogenation. In these reactions it was proposed that C-H oxidative addition was the first step. Since AB has a heteroactomic backbone other reaction pathways are possible. It is generally believed that AB dehydrogenation with transition-metal catalysts follow **Equation 1.8**; however, theoretical studies have introduced the possibility of a much more complex mechanism.<sup>89</sup> Calculations showed that both a 14 e<sup>-</sup> and 16 e<sup>-</sup> iridium systems were possible although the 14 e<sup>-</sup> mechanism is higher in energy than the 16 e<sup>-</sup> system and too high for the reaction to occur at room temperature. The 16 e<sup>-</sup> system is shown in **Equation 1.9** and progresses through a 6 center transition state. The most stable species in this mechanistic pathway is the tetrahydroiridium center by 12.5 kcal/mol and progresses to the parent species by loss of molecular hydrogen.<sup>89</sup> The catalyst kicks out aminoborane which is proposed to then polymerize in the solvent, THF.



The initially proposed reason for pentamer formation in AB dehydrogenation is based on the fact that the AB timer (CTB) is soluble in THF, but the pentamer is not and therefore the pentamer is isolated exclusively.<sup>89</sup> However, more recent trapping studies by Baker along with calculations by Dixon revealed that metal coordination of aminoborane (H<sub>2</sub>NBH<sub>2</sub>) may be the important intermediate in the mechanism of these reactions. Baker and Dixon proposed that strong coordination to the iridium center with polymerization stopping at the pentamer was due to sterics (**Equation 1.10**) whereas non-iridium transition-metal catalysts released the aminoborane thus giving a much different product distribution.<sup>90</sup> The dehydrogenation of MeNH<sub>2</sub>BH<sub>3</sub> that formed linear polymers found by Manners was at a higher concentration and cooler temperatures then previously reported by Heinekey and Goldberg. However, the Heinekey and Goldberg products were not well characterized and therefore no direct comparisons can be drawn. The catalyst is not implicated in further dehydrogenation or polymerization due to its steric bulk. Another reason for the iridium pincer catalyst stopping at one equivalent was poisoning of the iridium center with a borane moiety. It was then shown that the catalyst could be regenerated by placing it under H<sub>2</sub> pressure.<sup>87,97</sup>



## 1.3.3.3.2.2 Nickel Carbene Catalyst

While the iridium catalyst is exceedingly fast, the reaction only reaches one equivalent. This is a problem for application to  $H_2$ -release systems but other recently reported catalysts can now achieve more extensive  $H_2$ -release. An example of a high extent of  $H_2$ -release catalyst is Baker's nickel carbene catalyst.<sup>91</sup> Baker explored N-

heterocyclic carbenes (NHC) as a more robust ligand system than phosphines and found that it gave unprecedented dehydrogenation, achieving 2.5 equivalents.<sup>91</sup> This system uses a Ni(cod)<sub>2</sub> precatalyst with 2 equivalents of NHC ligand to generate the active catalyst *in situ*. Enders' NHC (1,3,4-triphenyl-4,5-dihydro-1*H*-1,2,4-triazol-5-ylidene) was shown to exhibit the best activity releasing 18 wt% H<sub>2</sub> based on the amount of AB used. The reaction was run in diglyme at 60 °C and produced mainly polyborazylene type products, as well as some carbene-BH<sub>3</sub> side-product (**Figure 1.12**). The nickel carbene system is certainly not as fast as the iridium pincer, but the catalytic release of over 2 equivalents is unique to this catalyst.

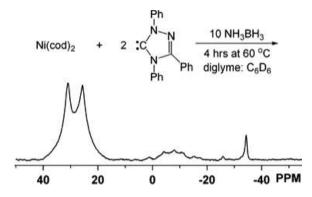
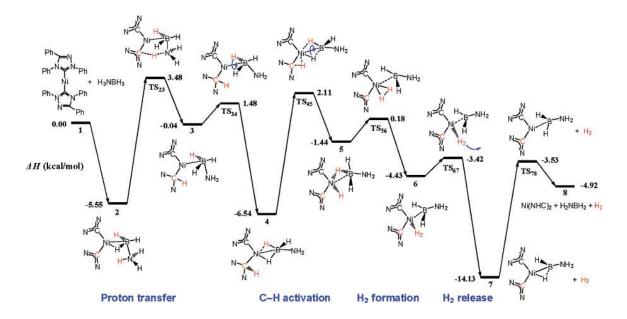




Figure 1.12 Baker's nickel carbene catalyst with <sup>11</sup>B NMR showing final products.<sup>91</sup>

The initial overall reaction mechanism proposed for nickel, rhodium, and a few other catalysts is shown in **Equation 1.8**. The first step is association of AB with the metal center. The B-H bond then oxidatively adds to the metal center followed by a  $\beta$ -H elimination. Pons and Heinekey reported some experimental evidence for this reaction pathway by forming complexes where an amine borane is associated with a metal center. Using Cr(CO)<sub>5</sub> and dimethylamineborane they were able to form

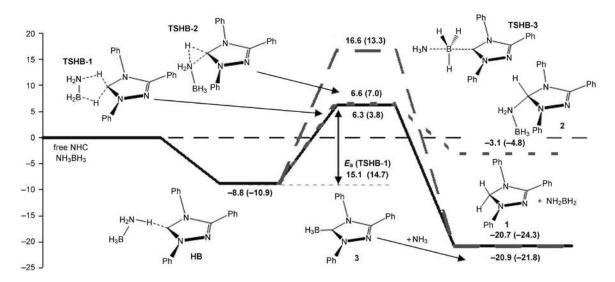
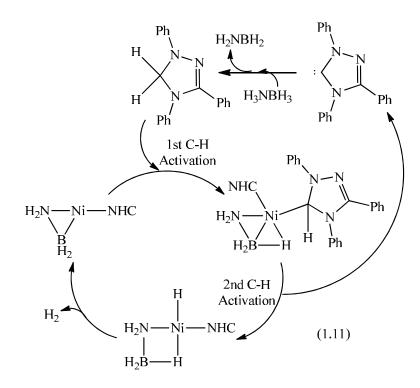
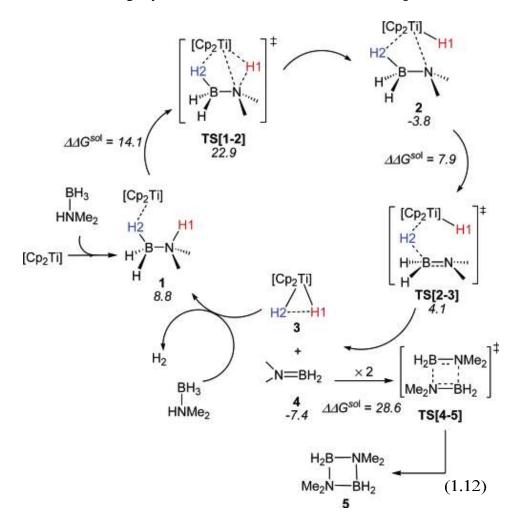
 $[Cr(CO)_5(\eta^1-H_3BNHMe_2)]$  which decomposed within hours at 20 °C into  $(Me_2NBH_2)_2$ . They also generated the AB adduct  $[Cr(CO)_5(\eta^1-H_3BNH_3)]$  which decomposed above -20 °C to form uncharacterized material.<sup>98</sup>

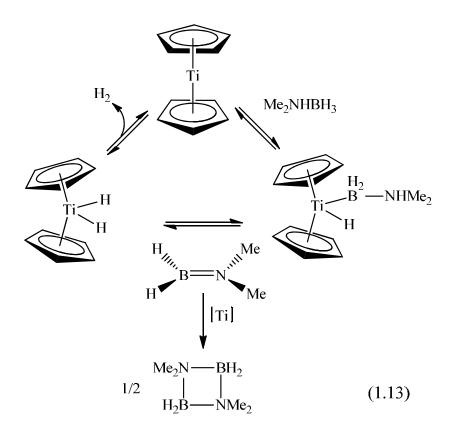
However, the side-product carbene-BH<sub>3</sub> along with the observed kinetic isotope effects and calculations have shown that for carbene catalysts, there is an unexpected proton transfer to the carbene rather than the B-H bond undergoing oxidative addition.<sup>99</sup> Hall calculated a reaction pathway where the boron coordinates to the nickel center while a proton from the nitrogen is abstracted by one of the carbene ligands (**Figure 1.13**). The proton then adds to the nickel center as well as a hydride. H<sub>2</sub> then reductively eliminates followed by loss of aminoborane.<sup>99</sup>



**Figure 1.13** Schematic energy profile of the nickel carbene catalyst using the carbene as a proton abstractor.<sup>99</sup>

This pathway does not explain the formation of carbene-BH<sub>3</sub> which requires a free carbene ligand. Kinetic isotope effect studies as well as additional calculations showed that AB replaces one of the NHC ligands so that the active catalyst is actually a Ni-NHC monoligated species.<sup>92,93</sup> In addition to the dehydrogenation reaction at the nickel center, the free carbene actively dehydrogenates AB so that there are two catalytic cycles operating in conjunction with each other. The free carbenes calculated AB H<sub>2</sub>-release mechanism is shown in **Figure 1.14**. As part of the catalytic cycle, the carbene reattaches to the nickel center through oxidative addition once the nickels' catalytic cycle has reached a point where a ligated aminoborane can assist in the dehydrogenation as shown in **Equation 1.11**.<sup>93</sup>



Figure 1.14 Schematic energy profile for free carbene abstracting H<sub>2</sub> from AB.<sup>93</sup>



#### 1.3.3.3.2.3 Titanocene Catalyst

Early transition-metal complexes have been evaluated for AB also dehydrogenation catalysts. Manners' screening of complexes for activity with Me<sub>2</sub>NHBH<sub>3</sub> showed that Cp<sub>2</sub>TiMe<sub>2</sub>, a Ti(IV), was inactive.<sup>76</sup> They later showed that Cp<sub>2</sub>Ti, a Ti(II), which is made *in situ* using Cp<sub>2</sub>TiCl<sub>2</sub> and *n*BuLi. The Ti(II) catalyst was not studied with AB extensively and therefore no H<sub>2</sub>-release data are available. The reaction was followed by <sup>11</sup>B NMR and the initial product was cyclotriborazane which slowly converted to borazine with release of 2 equivalents of H2.95 H2-release data collected for Me<sub>2</sub>NHBH<sub>3</sub> and the titanium catalyst showed 50 % conversion to the dimer in <50 minutes, whereas the heterogeneous Rh(0) catalyst took >400 minutes to reach the same conversion percentage.<sup>81</sup> The proposed mechanism for H<sub>2</sub>-release and Me<sub>2</sub>NHBH<sub>3</sub> dimerization utilizing Cp<sub>2</sub>Ti is shown in Equation 1.12. This calculation study by Luo and Ohno started with coordination and abstraction of a proton from the nitrogen in  $Me_2NHBH_3$  followed by subsequent removal of the B-H hydride and  $Me_2NBH_2$  release to self-dimerize.<sup>100</sup> This study failed to take into account concurrent results by Chirik that showed in a similar catalyst the mechanistic cycle is reversible. This was shown by deuterium studies where  $(Cp_2^*Ti)_2N_2$  was subjected to a  $D_2$  atmosphere while dehydrogenating  $Me_2NHBH_3$ . Deuterium was found in the B-H position and HD was also detected.<sup>95</sup> This slightly alternative mechanism is shown in **Equation 1.13**.





# 1.3.3.3.2.4 Transition-Metal Catalysis in Hydrolysis/Methanolysis

Although hydrolysis/methanolysis cannot meet the DOE's total system targets as previously discussed, utilizing this technology in areas not as dependent on weight efficiency is possible. Therefore, research has continued in this area and developed a wide range of catalysts. Most of these catalysts are heterogeneous and on the nano-scale. Some, like work done by Umegaki and coworkers,<sup>60,61</sup> use supported nanoclusters, while the bulk of the hydrolysis catalysts are free nanoparticle/nanocluster. A majority of this work has used first-row transition metals such as cobalt, nickel and iron<sup>51,56-59,62,63,101</sup> and the rest use much more expensive noble metal nanoparticles.<sup>53-55,64</sup>

#### 1.3.4 Large Scale Preparations of Ammonia Borane

In order to make the hydrogen economy work, a large scale synthesis of AB is needed. The traditional preparation of AB uses sodium borohydride and ammonium sulfate in an ethereal solvent.<sup>102,103</sup> Ramachandrand et al. have reported a large scale preparation using tetrahydrofuran as the solvent. In their prep (**Equation 1.14**), ammonium sulfate was used in 50 % excess with the resulting AB yield being 96 % and

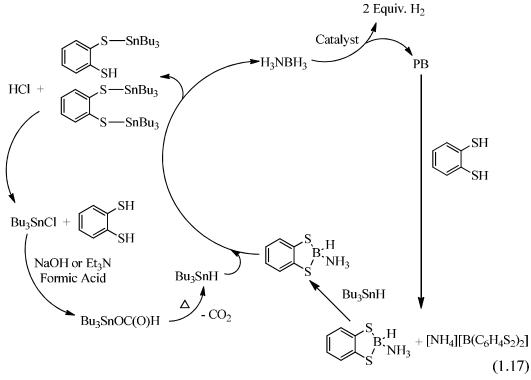
$$2\text{NaBH}_{4} + (\text{NH}_{4})_2 \text{SO}_4 \xrightarrow{\text{THF}} 2\text{NH}_3 - \text{BH}_3 + \text{Na}_2 \text{SO}_4 + 2\text{H}_2$$
  
2 h (1.14)

achieved in 98 % purity. In addition to ammonium sulfate, ammonium formate was used in dioxane with similar results.<sup>102</sup> While these preps show that the traditional methods can be scaled-up, other pathways will be needed if AB is to become a large scale energy carrier. To that end, Heldebrant et al.<sup>103</sup> showed that AB could be made from the decomposition of ammonium borohydride which was made *in situ* by the reaction of NaBH<sub>4</sub> and NH<sub>4</sub>Cl. In their preparation, liquid ammonia was used as the solvent with

$$NaBH_{4} + NH_{4}Cl \xrightarrow{NH_{3}} NH_{4}BH_{4} + NaCl$$

$$1 h \qquad (1.15)$$

$$NH_{4}BH_{4} \xrightarrow{THF} NH_{3} - BH_{3} + H_{2}$$


$$30 min/1 h \qquad (1.16)$$

ammonium chloride and sodium borohydride forming the ammonium borohydride (**Equation 1.15**). Subsequent hydrogen loss and purification gave AB (**Equation 1.16**) in 99 % yield. All of these materials are available on large scales already; therefore scale-up should be straight forward.

## 1.3.5 Recycling the AB Fuel Source

Regeneration of the spent fuel is one of the most important aspects of a complete closed energy system. Most regeneration attempts focus on a two step system where the spent fuel is digested and the boron is converted into a B-X species which is then reduced to B-H bonds and coupled to ammonia. The best current approach for digestion uses *ortho*-benzenedithiol in THF which was refluxed for 12 hours to form the borane dithiol adduct. This adduct was then reduced using tributyltinhydride and the intermediate amine exchanged for ammonia (**Equation 1.17**).<sup>104</sup> Therefore, a regeneration scheme to turn the benzenedithiol-tributyltin adduct back into usable benzenedithiol and tributyltinhydride was designed. In this scheme, the adducts were replaced with chloride then oxidized using formic acid which was driven off with heat to recycle the tributyltinhydride.<sup>105</sup>

The production of large amounts of waste tributyltin in this process is a serious problem. In an effort to find an alternative to tin reducing agents, Mock et al. analyzed the hydride donor ability in acetonitrile of several transition-metal hydrides and compared them to the hydride affinities of several borane adducts such as B(OSiMe<sub>3</sub>)<sub>3</sub>, B(OPh)<sub>3</sub>, and BF<sub>3</sub>.<sup>106</sup> Utilizing this information, combinations of digestion agents and transition-metal hydride donors can be identified eliminating the need for hazardous, expensive stoichiometric reagents.



1.3.6 Hybrid Materials Try to Bridge the Gap Between AB and Metal Hydrides

Another class of amine boranes that has received attention is the metal amidoboranes. The progenitor of this class was sodium amidoborane (Na(NH<sub>2</sub>BH<sub>3</sub>)), synthesized in 1938 by Schlesinger and Burg.<sup>13</sup> The lithium analogue was identified by Myers in 1996<sup>11</sup> and initially used as a powerful reductant. Metal amidoboranes have the potential to combine the high hydrogen content of amine boranes with the cleaner reaction pathways of metal borohydrides. Thermolytic release from lithium amidoborane can give 10.9 weight percent hydrogen while the sodium analogue is only 7.5 weight percent. These materials can be made through solid state ball milling of AB and the desired metal hydride/amide or similarly can be made in ethereal solvents such as tetrahydrofuran.<sup>7-11,13-18</sup> The range of compounds that can be synthesized is large and use alkali<sup>9-13,15-18</sup> and alkaline earth metals.<sup>7,8,14,15</sup> Lithium amidoborane can begin to release hydrogen at lower temperatures than even AB giving it a great advantage. As a class,

they also decompose cleaner than neat AB by not releasing borazine; however, they do release a good deal of ammonia. The ultimate goal of the use of metal amidoboranes is to achieve on-board regeneration of the spent fuel. As yet, none of the materials produced have shown the ability to uptake hydrogen at reasonable temperature for regeneration. The other draw backs are lower hydrogen content due to the addition of the metal and additional synthetic steps.

# 1.4 Conclusions

As petroleum supplies run low and the need for an alternative energy carrier becomes evident, hydrogen has the potential to supplant petroleum as the United States' and the worlds' primary energy carrier. Ammonia borane is one of the most promising hydrogen storage materials due to its high materials weight percent and stability. While the solid-state reaction of AB is slow and incomplete, there are many methods being researched to enhance the rate and extent of H<sub>2</sub>-release from AB. There have been advances in the use of metals, carbon scaffold, and acid catalysis to achieve the DOE's targets; however none have solved the problems with AB H<sub>2</sub>-release either due to low extent and/or rate of H<sub>2</sub>-release or high cost. Now methods for activating AB dehydrogenation catalysis are needed to help AB become a solution for hydrogen storage. **Chapters 2** and **3** demonstrate two new complimentary ways of activating H<sub>2</sub>-release from AB.

# 1.5 References

- Boyer, R., et. al. Annual Energy Review, Washington, 2008, <u>http://www.eia.doe.gov/emeu/aer/pdf/aer.pdf</u>.
- Dillich, S. 2009 DOE Hydrogen Program & Vehicle Technologies Program <u>http://www.hydrogen.energy.gov/pdfs/review09/st\_0\_dillich.pdf</u>. DOE has recently lowered the 2015 gravimetric total system target to only 5.5 total system weight %.
- Erlebacher, J.; Henry, E.; Frans, S., In *Solid State Physics*, Academic Press: Burlington, MA, 2009; Vol. 61, pp 77-141.
- Natural Gas Reforming.
   <a href="http://www1.eere.energy.gov/hydrogenandfuelcells/production/natural\_gas.html">http://www1.eere.energy.gov/hydrogenandfuelcells/production/natural\_gas.html</a>.
- 5. Nocera, D. G. *Inorg. Chem.* **2009**, *48*, 10001-10017.
- 6. Honda *Honda FCX Clarity*. <u>http://automobiles.honda.com/fcx-clarity/</u>.
- Chua, Y. S.; Wu, G.; Xiong, Z.; He, T.; Chen, P. Chem. Mater. 2009, 21, 4899-4904.
- Diyabalanage, H. V. K.; Shrestha, R. P.; Semelsberger, T. A.; Scott, B. L.;
   Bowden, M. E.; Davis, B. L.; Burrell, A. K. Angew. Chem. Int. Ed. 2007, 46, 8995-8997.
- 9. Fijalkowski, K. J.; Grochala, W. J. Mater. Chem. 2009, 19, 2043-2050.
- 10. Lee, T. B.; McKee, M. L. Inorg. Chem. 2009, 48, 7564-7575.
- 11. Myers, A. G.; Yang, B. H.; David, K. J. Tetrahedron Lett. 1996, 37, 3623-3626.
- Ramzan, M.; Silvearv, F.; Blomqvist, A.; Scheicher, R. H.; Lebegue, S.; Ahuja,
   R. *Phys. Rev. B: Condens. Matter. Mater. Phys.* 2009, 79, 132102-132104.

- 13. Schlesinger, H. I.; Burg, A. B. J. Am. Chem. Soc. 1938, 60, 290.
- 14. Spielmann, J.; Bolte, M.; Harder, S. Chem. Comm. 2009, 6934-6936.
- 15. Wu, H.; Zhou, W.; Yildirim, T. J. Am. Chem. Soc. 2008, 130, 14834-14839.
- Xiong, Z.; Chua, Y. S.; Wu, G.; W., X.; Chen, P.; Shaw, W. J.; Karkamkar, A.;
   Linehan, J. C.; Smurthwaite, T.; Autrey, T. *Chem. Comm.* 2008, 5595-5597.
- Xiong, Z.; Wu, G.; Chua, Y. S.; Hu, J.; He, T.; Xu, W.; Chen, P. *Energy Environ*. *Sci.* 2008, *1*, 360-363.
- Xiong, Z.; Yong, C. K.; Wu, G.; Chen, P.; Shaw, W. J.; Karkamkar, A.; Autrey, T.; Jones, M. O.; Johnson, S. R.; Edwards, P. P.; David, W. I. F. *Nat. Mater.* 2008, 7, 138-141.
- Feaver, A.; Sepehri, S.; Shamberger, P.; Stowe, A.; Autrey, T.; Cao, G. J. Phys. Chem. B 2007, 111, 7469-7472.
- Gutowska, A.; Li, L.; Shin, Y.; Wang, C. M.; Li, X. S.; Linehan, J. C.; Smith, R.
   S.; Kay, B. D.; Schmid, B.; Shaw, W. J.; Gutowski, M.; Autrey, T. Angew. Chem.
   *Int. Ed.* 2005, 44, 3578-3582.
- Kim, H.; Karkamkar, A.; Autrey, T.; Chupas, P.; Proffen, T. J. Am. Chem. Soc.
   2009, 131, 13749-13755.
- Li, L.; Yao, X.; Sun, C.; Du, A.; Cheng, L.; Zhu, Z.; Yu, C.; Zou, J.; Smith, S. C.;
  Wang, P.; Cheng, H.-M.; Frost, R. L.; Lu, G. Q. Adv. Funct. Mater. 2009, 19, 265-271.
- 23. Li, Y.; Xie, L.; Li, Y.; Zheng, J.; Li, X. Chem. Eur. J. 2009, 15, 8951-8954.
- Paolone, A.; Palumbo, O.; Rispoli, P.; Cantelli, R.; Autrey, T.; Karkamkar, A. J.
   *Phys. Chem. C* 2009, *113*, 10319-10321.

- Sepehri, S.; Feaver, A.; Shaw, W. J.; Howard, C. J.; Zhang, Q.; Autrey, T.; Cao,
   G. J. Phys. Chem. B 2007, 111, 14285-14289.
- 26. Sepehri, S.; Garcia, B. B.; Cao, G. J. Mater. Chem. 2008, 18, 4034-4037.
- 27. Sepehri, S.; García, B. B.; Cao, G. Eur. J. Inorg. Chem. 2009, 599-603.
- Wang, L.-Q.; Karkamkar, A.; Autrey, T.; Exarhos, G. J. J. Phys. Chem. C 2009, 113, 6485-6490.
- 29. ZahmakIran, M.; Özkar, S. Appl. Catal., B 2009, 89, 104-110.
- 30. Custelcean, R.; Dreger, Z. A. J. Phys. Chem. B 2003, 107, 9231-9235.
- 31. Stock, A.; Pohland, E. Ber. 1925, 58, 657.
- 32. Shore, S. G.; Parry, R. W. J. Am. Chem. Soc. 1955, 77, 6084-6085.
- 33. Shore, S. G.; Parry, R. W. *J. Am. Chem. Soc.* **1958**, *80*, 20-24 and preceeding papers in this issue.
- 34. Stephens, F. H.; Pons, V.; Baker, R. T. *Dalton Trans.* **2007**, *25*, 2613-2626.
- 35. Schlesinger, H. I.; Burg, A. B. J. Am. Chem. Soc. 1938, 60, 290-299.
- Schaeffer, G. W.; Adams, M. D.; Koenig, F. J.; Koenig, S. J. J. Am. Chem. Soc. 1956, 78, 725-728.
- 37. Mayer, E. Inorg. Chem. 1972, 11, 866-869.
- 38. Mayer, E. inorg. Chem. 1973, 12, 1954-1955.
- 39. Carpenter, J. D.; Ault, B. S. J. Phys. Chem. 1991, 95, 3502-3506.
- 40. Nguyen, V. S.; Matus, M. H.; Grant, D. J.; Nguyen, M. T.; Dixon, D. A. *J. Phys. Chem. A* **2007**, *111*, 8844-8856.
- Nguyen, M. T.; Nguyen, V. S.; Matus, M. H.; Gopakumar, G.; Dixon, D. A. J.
   *Phys. Chem. A* 2007, 111, 679-690.

- 42. Matus, M. H.; Anderson, K. D.; Camaioni, D. M.; Autrey, S. T.; Dixon, D. A. J. *Phys. Chem. A* **2007**, *111*, 4411-4421.
- Matus, M. H.; Grant, D. J.; Nguyen, M. T.; Dixon, D. A. J. Phys. Chem. C 2009, 113, 16553-16560.
- Basu, S.; Brockman, A.; Gagare, P.; Zheng, Y.; Ramachandran, P. V.; Delgass,
  W. N.; Gore, J. P. J. Power Sources 2009, 188, 238-243.
- 45. Basu, S.; Zheng, Y.; Varma, A.; Delgass, W. N.; Gore, J. P. J. Power Sources
  2010, 195, 1957-1963.
- 46. Chandra, M.; Xu, Q. J. Power Sources 2007, 168, 135-142.
- 47. Clark, T. J.; Whittell, G. R.; Manners, I. Inorg. Chem. 2007, 46, 7522-7527.
- 48. Metin, O.; Ozkar, S. *Energy Fuels* **2009**, *23*, 3517-3526.
- 49. Metin, Ö.; Sahin, S.; Özkar, S. Int. J. Hydrogen Energy **2009**, *34*, 6304-6313.
- 50. Mohajeri, N.; T-Raissi, A.; Adebiyi, O. J. Power Sources 2007, 167, 482-485.
- Yan, J.-M.; Zhang, X.-B.; Shioyama, H.; Xu, Q. J. Power Sources 2010, 195, 1091-1094.
- Yao, C. F.; Zhuang, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Int. J. Hydrogen Energy 2008, 33, 2462-2467.
- Dai, H.-B.; Gao, L.-L.; Liang, Y.; Kang, X.-D.; Wang, P. J. Power Sources 2010, 195, 307-312.
- 54. Durap, F.; ZahmakIran, M.; Özkar, S. Appl. Catal., A 2009, 369, 53-59.
- Erdogan, H.; Metin, O.; Ozkar, S. Phys. Chem. Chem. Phys. 2009, 11, 10519-10525.
- 56. Kalidindi, S. B.; Indirani, M.; Jagirdar, B. R. Inorg. Chem. 2008, 47, 7424-7429.

- Kalidindi, S. B.; Sanyal, U.; Jagirdar, B. R. Phys. Chem. Chem. Phys. 2008, 10, 5870-5874.
- Kalidindi, S. B.; Vernekar, A. A.; Jagirdar, B. R. Phys. Chem. Chem. Phys. 2009, 11, 770-775.
- Park, J.-H.; Kim, H.-S.; Kim, H.-J.; Han, M.-K.; Shul, Y.-G. *Res. Chem. Intermed.* 2008, *34*, 709-715.
- 60. Simagina, V. I.; Storozhenko, P. A.; Netskina, O. V.; Komova, O. V.; Odegova,
  G. V.; Larichev, Y. V.; Ishchenko, A. V.; Ozerova, A. M. *Catal. Today* 2008, 138, 253-259.
- Umegaki, T.; Yan, J.-M.; Zhang, X.-B.; Shioyama, H.; Kuriyama, N.; Xu, Q. *Int. J. Hydrogen Energy* 2009, *34*, 3816-3822.
- Umegaki, T.; Yan, J.-M.; Zhang, X.-B.; Shioyama, H.; Kuriyama, N.; Xu, Q. J.
   *Power Sources* 2009, 191, 209-216.
- 63. Yan, J.-M.; Zhang, X.-B.; Han, S.; Shioyama, H.; Xu, Q. Angew. Chem. Int. Ed.
  2008, 47, 2287-2289.
- Yang, X.; Cheng, F.; Liang, J.; Tao, Z.; Chen, J. Int. J. Hydrogen Energy 2009, 34, 8785-8791.
- Baitalow, F.; Baumann, J.; Wolf, G.; Jaenicke-Roessler, K.; Leitner, G.
   *Thermochim. Acta* 2002, 391, 159-168.
- 66. Hausdorf, S.; Baitalow, F.; Wolf, G.; Mertens, F. O. R. L. *Int. J. Hydrogen Energy* **2008**, *33*, 608-614.
- 67. Neiner, D.; Karkamkar, A.; Linehan, J. C.; Arey, B.; Autrey, T.; Kauzlarich, S.
  M. J. Phys. Chem. C 2008, 113, 1098-1103.

- Stowe, A. C.; Shaw, W. J.; Linehan, J. C.; Schmid, B.; Autrey, T. *Phys. Chem. Chem. Phys.* 2007, *9*, 1831-1836 and references therein.
- Hu, M. G.; Geanangel, R. A.; Wendlandt, W. W. *Thermochim. Acta* 1978, 23, 249-255.
- 70. Komm, R.; Geanangel, R. A.; Liepins, R. Inorg. Chem. 1983, 22, 1684-1686.
- 71. Onak, T. P.; Shapiro, I. J. Chem. Phys. 1960, 32, 952.
- Fazen, P. J.; Beck, J. S.; Lynch, A. T.; Remsen, E. E.; Sneddon, L. G. *Chem. Mater.* 1990, 2, 96-97.
- Fazen, P. J.; Remsen, E. E.; Beck, J. S.; Carroll, P. J.; McGhie, A. R.; Sneddon, L.
  G. *Chem. Mater.* 1995, *7*, 1942-1956.
- Gervais, C.; Framery, E.; Duriez, C.; Maquet, J.; Vaultier, M.; Babonneau, F. J.
   *Eur. Ceram. Soc.* 2005, 25, 129-135.
- Denis, J. M.; Forintos, H.; Szelke, H.; Toupet, L.; Pham, T. N.; Madec, P. J.;
   Gaumont, A. C. *Chem. Comm.* 2003, 54-55.
- Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. J. Am. Chem. Soc. 2003, 125, 9424-9434.
- Stephens, F. H.; Baker, R. T.; Matus, M. H.; Grant, D. J.; Dixon, D. A. Angew.
   *Chem. Int. Ed.* 2007, 46, 746-749.
- 78. Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. Chem. Comm. 2001, 962-963.
- 79. Jaska, C. A.; Manners, I. J. Am. Chem. Soc. 2004, 126, 2698-2699.
- 80. Clark, T. J.; Lee, K.; Manners, I. Chem. Eur. J. 2006, 12, 8634-8648.
- 81. Clark, T. J.; Russell, C. A.; Manners, I. J. Am. Chem. Soc. 2006, 128, 9582-9583.

- Fulton, J. L.; Linehan, J. C.; Autrey, T.; Balasubramanian, M.; Chen, Y.;
   Scymczak, N. K. J. Am. Chem. Soc. 2007, 129, 11936-11949.
- Chen, Y.; Fulton, J. L.; Linehan, J. C.; Autrey, T. J. Am. Chem. Soc. 2005, 127, 3254-3255.
- 84. Cheng, F.; Ma, H.; Li, Y.; Chen, J. Inorg. Chem. 2007, 46, 788-794.
- Shrestha, R. P.; Diyabalanage, H. V. K.; Semelsberger, T. A.; Ott, K. C.; Burrell,
   A. K. *Int. J. Hydrogen Energy* 2009, *34*, 2616-2621.
- Zhang, X.-B.; Yan, J.-M.; Han, S.; Shioyama, H.; Xu, Q. J. Am. Chem. Soc. 2009, 131, 2778-2779.
- Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, D. M.; Goldberg, K. I. J. Am. Chem. Soc. 2006, 128, 12048-12049.
- Dietrich, B. L.; Goldberg, K. I.; Heinekey, D. M.; Autrey, T.; Linehan, J. C. *Inorg. Chem.* 2008, 47, 8583-8585.
- 89. Paul, A.; Musgrave, C. B. Angew. Chem. Int. Ed. 2007, 46, 8153-8156.
- 90. Pons, V.; Baker, R. T.; Szymczak, N. K.; Heldebrant, D. J.; Linehan, J. C.; Matus,
  M. H.; Grant, D. J.; Dixon, D. A. *Chem. Comm.* 2008, 6597-6599.
- 91. Keaton, R. J.; Blacquiere, J. M.; Baker, R. T. J. Am. Chem. Soc. 2007, 129, 1844-1845.
- 92. Zimmerman, P. M.; Paul, A.; Musgrave, C. B. Inorg. Chem. 2009, 48, 5418-5433.
- Zimmerman, Paul M.; Paul, A.; Zhang, Z.; Musgrave, Charles B. Angew. Chem. Int. Ed. 2009, 48, 2201-2205.
- 94. Yang, X.; Hall, M. B. J. Organomet. Chem. 2009, 694, 2831-2838.
- 95. Pun, D.; Lobkovsky, E.; Chirik, P. J. Chem. Comm. 2007, 3297-3299.

- 96. Staubitz, A.; Soto, A. P.; Manners, I. Angew. Chem. Int. Ed. 2008, 47, 6212-6215.
- 97. Hebden, T. J.; Denney, M. C.; Pons, V.; Piccoli, P. M. B.; Koetzle, T. F.; Schultz,
  A. J.; Kaminsky, W.; Goldberg, K. I.; Heinekey, D. M. J. Am. Chem. Soc. 2008,
  130, 10812-10820.
- Pons, V.; Denney, M. C.; Goldberg, K. I.; Heinekey, D. M. in 230th ACS National Meeting, Washington, DC, 2005, FUEL-051.
- 99. Yang, X.; Hall, M. B. J. Am. Chem. Soc. 2008, 130, 1798-1799.
- 100. Luo, Y.; Ohno, K. Organometallics 2007, 26, 3597-3600.
- Yan, J.-M.; Zhang, X.-B.; Han, S.; Shioyama, H.; Xu, Q. *Inorg. Chem.* 2009, 48, 7389-7393.
- 102. Ramachandran, P. V.; Gagare, P. D. Inorg. Chem. 2007, 46, 7810-7817.
- 103. Heldebrant, D. J.; Karkamkar, A.; Linehan, J. C.; Autrey, T. *Energy Environ. Sci.* **2008**, *1*, 156-160.
- 104. Davis, B. L.; Dixon, D. A.; Garner, E. B.; Gordon, J. C.; Matus, M. H.; Scott, B.;
  Stephens, F. H. Angew. Chem. Int. Ed. 2009, 48, DOI: 10.1002 and references therein.
- Sutton, A. D.; Davis, B. L.; Bhattacharyya, K. X.; Ellis, B. D.; Gordon, J. C.;
   Power, P. P. *Chem. Comm.* 2010, 46, 148-149.
- Mock, M. T.; Potter, R. G.; Camaioni, D. M.; Li, J.; Dougherty, W. G.; Kassel,
  W. S.; Twamley, B.; DuBois, D. L. J. Am. Chem. Soc. 2009, 131, 14454-14465.

# Chapter 2

# Ammonia Borane Hydrogen Release in Ionic Liquids

# Summary

Ionic liquids were found to promote the rate and extent of H<sub>2</sub>-release from ammonia borane (AB), a promising, high capacity hydrogen storage material. For example, AB reactions at 85 °C in 1-butyl-3-methylimidazolium chloride (bmimCl) (50:50-wt%) exhibited no induction period and released 1.0 H<sub>2</sub>-equiv. in 67 min and 2.2 H<sub>2</sub>-equiv. in 330 min at 85 °C, whereas comparable solid-state AB reactions had a 180 min induction period and required 360 min to release ~0.8 H<sub>2</sub>-equiv. at 85 °C, with the release of only another  $\sim 0.1 \text{ H}_2$ -equiv. at longer times. Significant rate enhancements for the ionic-liquid mixtures were obtained with only moderate increases in temperature, with, for example, a 50:50-wt% AB/bmimCl mixture releasing 1.0  $H_2$ -equiv. in 5 min and 2.2 H<sub>2</sub>-equiv. in only 20 min at 110 °C. Increasing the AB/bmimCl ratio to 80:20 still gave enhanced H<sub>2</sub>-release rates compared to the solid-state, and produced a system that achieved 11.4 materials-weight percent  $H_2$ -release. Solid-state and solution <sup>11</sup>B NMR studies of AB H<sub>2</sub>-release reactions in progress support a mechanistic pathway involving: (1) ionic-liquid promoted conversion of AB into its more reactive ionic diammoniate of diborane (DADB) form, (2) further intermolecular dehydrocoupling reactions between hydridic B-H hydrogens and protonic N-H hydrogens on DADB and/or AB to form neutral polyaminoborane polymers and (3) polyaminoborane dehydrogenation to unsaturated cross-linked polyborazylene materials.

# 2.1 Introduction

The requirement for efficient and safe methods for hydrogen storage is a major hurdle that must be overcome to enable the use of hydrogen as an alternative energy carrier.<sup>1,2</sup> Owing to its high hydrogen content, ammonia borane (AB) has been identified as one of the leading candidates for chemical hydrogen storage, potentially releasing 19.6 wt% H<sub>2</sub> according to **Equation 2.1**.<sup>3</sup>

$$H_3NBH_3 \longrightarrow BN + 3H_2$$
 (2.1)

As discussed in **Chapter 1**, partial dehydrogenation of ammonia borane can be thermally induced in the solid-state,<sup>4,5</sup> but to be useful for hydrogen storage, milder conditions and more controllable reactions still need to be developed. Such reactions could, in principle, be attained in solution, but practical applications of chemical hydrogen storage would require a replacement for the volatile organic solvents that have traditionally been employed for reactions of molecular chemical hydrides. The work reported in this **Chapter** demonstrates that ionic liquids provide advantageous media for ammonia borane dehydrogenation in which both the extent and rate of hydrogen release are significantly increased. Solid-state and *in situ* <sup>11</sup>B NMR studies of reactions in progress are also presented that provide insight into the intermediates and mechanistic steps involved in ionic-liquid promoted AB H<sub>2</sub>-release.

# 2.2 Experimental Section

# 2.2.1 Materials

manipulations were carried out using standard high-vacuum or All inert-atmosphere techniques as described by Shriver.<sup>6</sup> Ammonia borane (Aviabor 97%) minimum purity) was ground into a free flowing powder using a commercial coffee The diammoniate of diborane (DADB) was synthesized by the literature grinder. method.<sup>7</sup> The 1-butyl-3-methylimidazolium iodide (bmimI) was synthesized sonochemically from 1-iodobutane and 1-methyl-imidazole according to literature methods.<sup>8</sup> All ionic liquids, including 1-butyl-2,3-dimethylimidazolium chloride (bmmimCl) (EMD), 1-butyl-3-methylimidazolium tetrafluoroborate  $(bmimBF_4)$ , 1-butyl-3-methylimidazolium chloride (bmimCl), 1-butyl-3-methylimidazolium triflate (bmimOTf), 1-butyl-3-methylimidazolium hexafluorophosphate  $(bmimPF_6)$ , 1-ethyl-2,3-dimethylimidazolium ethylsulfate (emmimEtSO<sub>4</sub>), 1-ethyl-2,3-dimethylimidazolium (emmimOTf), 1,3-dimethylimidazolium triflate methylsulfate (mmimMeSO<sub>4</sub>) 1-propyl-2,3-dimethylimidazolium triflide and  $(pmmimTf_3C)$  (Aldrich) were dried by toluene azeotropic distillation to remove any moisture. Tetraethylene glycol dimethyl ether (Sigma 99%) (tetraglyme) and ethylene glycol dimethyl ether (Sigma 99%) (glyme) were distilled from sodium under vacuum with heating.

# 2.2.2 Physical Measurements

#### 2.2.2.1 H<sub>2</sub>-Release Measured On a Toepler Pump

The Toepler pump system used for hydrogen measurements was similar to that described by Shriver.<sup>6</sup> The Toepler pump (**Figure 2.1**) system also enabled the trapping

of any volatile dehydrogenation products. This method of measuring H<sub>2</sub>-release worked best for reactions with slow H<sub>2</sub>-release rates, since the Toepler pump requires several minutes to make each measurement. The released gases from the reaction vessel were first passed through a liquid nitrogen trap before continuing on to the Toepler pump (700 mL). The released H<sub>2</sub> was then pumped into a series of calibrated volumes with the final pressure of the collected H<sub>2</sub> gas measured ( $\pm 0.5$  mm) with the aid of a U-tube manometer. After the H<sub>2</sub> measurement was completed, the in-line liquid nitrogen trap was warmed to room temperature and the amount of any volatiles that had been trapped were then also measured using the Toepler pump.

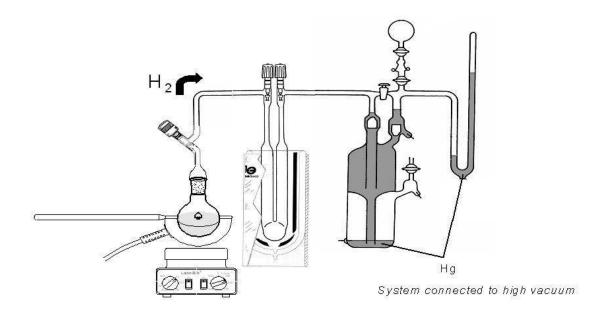



Figure 2.1 Toepler pump system used for H<sub>2</sub>-release measurements.

#### 2.2.2.2 H<sub>2</sub>-Release Measured On an Automated Gas Burette

For reactions with faster rates, an automated gas burette was employed for  $H_2$ -release measurements. The automated gas burette (Figure 2.2) was based on a design

reported by Zheng et al.,<sup>9</sup> but employed all glass connections with a cold trap (-78  $^{\circ}$ C) inserted between the reaction flask and burette to allow trapping of any volatiles that might have been produced during the reaction. The gas burette enabled rapid data collection of H<sub>2</sub>-release at short time ranges.

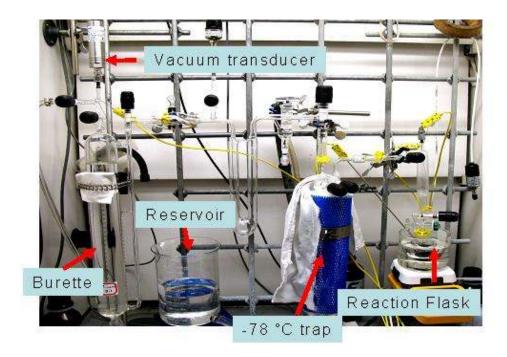



Figure 2.2 Automated gas burette used for H<sub>2</sub>-release measurements.

Unlike the Toepler pump reactions, which were run under vacuum, reactions carried out with the burette were run under inert gas at atmospheric pressure to mimic real-world conditions. As shown in **Figure 2.2**, the reactions were carried out in the volume-calibrated flask on the right, which was plunged into a pre-heated oil bath to start the reaction. On top of the reaction flask was an air condenser to keep most of the volatiles in the reaction flask. The  $H_2$  stream, along with any additional volatiles, passed through the -78 °C trap and flowed into the bottom of the oil-filled burette. As  $H_2$ 

collected at the top of the burette, the oil flowed into a reservoir kept at atmospheric pressure (measured with pressure gauge). The pressure difference in the burette was tracked with a vacuum transducer and the temperature was tracked at multiple locations with thermocouples. All data were collected and processed on a program written in LabVIEW 8.5 by Zheng et al.<sup>9</sup>

A typical data set collected with the automated gas burette is shown in **Table 2.1** where the data in columns one and two run from page 6 to 24, then begin again in columns 3 and 4. The data set is plotted in Figure 2.4 plot B. The number of seconds per data point was set from 1 point per second up to 10 or more seconds per point depending on the rate of the reaction and length of reaction. The example is from the measurement of the H<sub>2</sub>-release from a solid-state AB sample at 85 °C for ~400 minutes with 1 point every 10 seconds. The flask was plunged into the oil bath at time point 0.73698 min after the computer program had time to equilibrate. Since this was a solid-state reaction, the time between plunging the flask into the oil bath and the onset of H<sub>2</sub>-release corresponds to the AB induction period. The fluctuations in the baseline before the onset of  $H_2$ -release are just due to signal noise.  $H_2$ -release began at the bolded time point 170.203 min on page 20 and essentially stopped at the bolded point 376.604 min on page 22. Control experiments conducted without AB showed negligible pressure change, corresponding to less than <0.01 gas equivalents, when a helium filled reaction flask connected to the gas burette was heated up to 120 °C. Clearly, a large amount of data can be collected with this setup. The rest of the data sets for the gas burette graphs presented in **Chapter 2** are available on a CD submitted with the paper copy of this

dissertation and electronically in the supplementary files submitted with the electronic copy of this dissertation.

# Table 2.1. AB H<sub>2</sub>-Release Data Collected on the Automated Gas Burette from the H<sub>2</sub>-Release Reaction of a Solid-State AB Sample at 85 $^{\circ}$ C

| Equiv.  | Time    | Equiv.  | Time    | Equiv.  | Time    | Equiv.  | Time    |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0       | 0.33698 | 0.02658 | 98.337  | 0.0856  | 196.47  | 0.66494 | 294.603 |
| -0.001  | 0.47031 | 0.02712 | 98.4701 | 0.08554 | 196.604 | 0.66583 | 294.737 |
| -0.0028 | 0.60365 | 0.02562 | 98.6034 | 0.08685 | 196.737 | 0.6648  | 294.87  |
| -0.0009 | 0.73698 | 0.025   | 98.737  | 0.08798 | 196.87  | 0.66334 | 295.003 |
| 0.00396 | 0.87031 | 0.0242  | 98.8703 | 0.08789 | 197.003 | 0.66541 | 295.137 |
| 0.11409 | 1.00365 | 0.02481 | 99.0036 | 0.08893 | 197.137 | 0.66588 | 295.27  |
| 0.04792 | 1.13672 | 0.02395 | 99.137  | 0.08952 | 197.27  | 0.66595 | 295.403 |
| 0.03474 | 1.27005 | 0.02207 | 99.2703 | 0.08984 | 197.403 | 0.66779 | 295.537 |
| 0.02714 | 1.40365 | 0.0235  | 99.4036 | 0.09402 | 197.537 | 0.66859 | 295.67  |
| 0.01239 | 1.53672 | 0.02249 | 99.537  | 0.09007 | 197.67  | 0.66852 | 295.803 |
| 0.0034  | 1.67005 | 0.02169 | 99.6701 | 0.09194 | 197.803 | 0.66792 | 295.937 |
| -0.0033 | 1.80339 | 0.02341 | 99.8036 | 0.09225 | 197.937 | 0.6691  | 296.07  |
| -0.0058 | 1.93672 | 0.02322 | 99.937  | 0.09327 | 198.07  | 0.66914 | 296.203 |
| -0.0004 | 2.07005 | 0.02372 | 100.07  | 0.09267 | 198.203 | 0.66912 | 296.337 |
| -0.0061 | 2.20339 | 0.02417 | 100.203 | 0.09316 | 198.337 | 0.66991 | 296.47  |
| -0.0086 | 2.33672 | 0.02417 | 100.337 | 0.09308 | 198.47  | 0.67269 | 296.603 |
| -0.0027 | 2.47005 | 0.02336 | 100.47  | 0.09507 | 198.604 | 0.67334 | 296.737 |
| -0.0059 | 2.60365 | 0.02339 | 100.604 | 0.09856 | 198.737 | 0.67406 | 296.87  |
| -0.0079 | 2.73698 | 0.02378 | 100.737 | 0.09568 | 198.87  | 0.6737  | 297.003 |
| 0.00052 | 2.87031 | 0.02494 | 100.87  | 0.09653 | 199.003 | 0.6729  | 297.137 |
| -0.0082 | 3.00365 | 0.02403 | 101.004 | 0.096   | 199.137 | 0.67458 | 297.27  |
| -0.0082 | 3.13698 | 0.02175 | 101.137 | 0.09687 | 199.27  | 0.67574 | 297.403 |
| -0.0094 | 3.27005 | 0.01951 | 101.27  | 0.10136 | 199.403 | 0.67612 | 297.537 |
| -0.0083 | 3.40339 | 0.02296 | 101.403 | 0.09723 | 199.537 | 0.67767 | 297.67  |
| -0.009  | 3.53672 | 0.02577 | 101.537 | 0.09853 | 199.67  | 0.67786 | 297.803 |
| -0.0092 | 3.67005 | 0.02668 | 101.67  | 0.09974 | 199.803 | 0.67661 | 297.937 |
| -0.0096 | 3.80339 | 0.0232  | 101.804 | 0.09993 | 199.937 | 0.67861 | 298.07  |
| -0.0086 | 3.93672 | 0.02046 | 101.937 | 0.10082 | 200.07  | 0.67827 | 298.204 |
| -0.0081 | 4.07005 | 0.02377 | 102.07  | 0.10217 | 200.204 | 0.67904 | 298.337 |
| -0.0093 | 4.20365 | 0.02235 | 102.203 | 0.10229 | 200.337 | 0.68326 | 298.47  |
| -0.0078 | 4.33698 | 0.02219 | 102.337 | 0.10306 | 200.47  | 0.67994 | 298.603 |

| -0.0072 | 4.47031 | 0.0219  | 102.47  | 0.10432 | 200.604 | 0.68089 | 298.737 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| -0.0116 | 4.60365 | 0.02299 | 102.603 | 0.10474 | 200.737 | 0.68135 | 298.87  |
| -0.0102 | 4.73698 | 0.02317 | 102.737 | 0.10441 | 200.87  | 0.68121 | 299.003 |
| -0.0113 | 4.87031 | 0.02508 | 102.87  | 0.10529 | 201.004 | 0.68326 | 299.137 |
| -0.0102 | 5.00339 | 0.02422 | 103.003 | 0.1057  | 201.137 | 0.68312 | 299.27  |
| -0.0096 | 5.13672 | 0.02233 | 103.137 | 0.10689 | 201.27  | 0.68413 | 299.403 |
| -0.0079 | 5.27031 | 0.02144 | 103.27  | 0.10769 | 201.403 | 0.6847  | 299.537 |
| -0.0087 | 5.40365 | 0.0234  | 103.403 | 0.10678 | 201.537 | 0.68473 | 299.67  |
| -0.0079 | 5.53672 | 0.02223 | 103.537 | 0.10657 | 201.67  | 0.68436 | 299.803 |
| -0.0068 | 5.67005 | 0.0223  | 103.67  | 0.109   | 201.803 | 0.68641 | 299.937 |
| -0.0079 | 5.80339 | 0.02298 | 103.803 | 0.10806 | 201.937 | 0.68577 | 300.07  |
| -0.0082 | 5.93672 | 0.02354 | 103.937 | 0.10802 | 202.07  | 0.68527 | 300.204 |
| -0.0068 | 6.07005 | 0.02253 | 104.07  | 0.10857 | 202.204 | 0.69099 | 300.337 |
| -0.008  | 6.20339 | 0.02204 | 104.204 | 0.10881 | 202.337 | 0.68879 | 300.47  |
| -0.006  | 6.33672 | 0.02254 | 104.337 | 0.10884 | 202.47  | 0.68815 | 300.603 |
| -0.0065 | 6.47005 | 0.0234  | 104.47  | 0.11114 | 202.603 | 0.68872 | 300.737 |
| -0.0077 | 6.60365 | 0.021   | 104.604 | 0.11099 | 202.737 | 0.69124 | 300.87  |
| -0.0075 | 6.73672 | 0.02026 | 104.737 | 0.1133  | 202.87  | 0.68864 | 301.004 |
| -0.0074 | 6.87005 | 0.0209  | 104.87  | 0.11186 | 203.003 | 0.68754 | 301.137 |
| -0.0072 | 7.00365 | 0.02104 | 105.003 | 0.11276 | 203.137 | 0.69084 | 301.27  |
| -0.0068 | 7.13698 | 0.02005 | 105.137 | 0.11234 | 203.27  | 0.68952 | 301.403 |
| -0.0062 | 7.27031 | 0.02162 | 105.27  | 0.11355 | 203.403 | 0.68689 | 301.537 |
| -0.0053 | 7.40365 | 0.02308 | 105.403 | 0.11429 | 203.537 | 0.68979 | 301.67  |
| -0.0073 | 7.53698 | 0.02474 | 105.537 | 0.11815 | 203.67  | 0.69288 | 301.803 |
| -0.0063 | 7.67031 | 0.02237 | 105.67  | 0.11391 | 203.803 | 0.69166 | 301.937 |
| -0.005  | 7.80339 | 0.02222 | 105.803 | 0.114   | 203.937 | 0.69201 | 302.07  |
| -0.0039 | 7.93698 | 0.02366 | 105.937 | 0.1164  | 204.07  | 0.69404 | 302.204 |
| -0.0037 | 8.07005 | 0.02226 | 106.07  | 0.11704 | 204.203 | 0.69321 | 302.337 |
| -0.0032 | 8.20339 | 0.01967 | 106.204 | 0.11797 | 204.337 | 0.6927  | 302.47  |
| -0.0018 | 8.33672 | 0.01915 | 106.337 | 0.11787 | 204.47  | 0.69365 | 302.603 |
| -0.0014 | 8.47005 | 0.02022 | 106.47  | 0.11874 | 204.603 | 0.69462 | 302.737 |
| -0.0017 | 8.60339 | 0.02004 | 106.604 | 0.11848 | 204.737 | 0.69368 | 302.87  |
| -0.0017 | 8.73672 | 0.01944 | 106.737 | 0.1184  | 204.87  | 0.69443 | 303.003 |
| -0.0032 | 8.87005 | 0.01986 | 106.87  | 0.12355 | 205.003 | 0.69587 | 303.137 |
| -0.0016 | 9.00365 | 0.02008 | 107.003 | 0.11887 | 205.137 | 0.69438 | 303.27  |
| -0.0024 | 9.13698 | 0.01945 | 107.137 | 0.12503 | 205.27  | 0.69531 | 303.403 |
| -0.003  | 9.27031 | 0.02125 | 107.27  | 0.11891 | 205.403 | 0.70269 | 303.537 |
| -0.0027 | 9.40365 | 0.02048 | 107.403 | 0.12618 | 205.537 | 0.69627 | 303.67  |
| -0.0037 | 9.53672 | 0.02135 | 107.537 | 0.12141 | 205.67  | 0.69645 | 303.803 |
| -0.0035 | 9.67005 | 0.02216 | 107.67  | 0.12214 | 205.803 | 0.6978  | 303.937 |
|         |         |         |         |         |         |         |         |

| -0.0059 | 9.80339 | 0.0209  | 107.803 | 0.12438 | 205.937 | 0.69712 | 304.07  |
|---------|---------|---------|---------|---------|---------|---------|---------|
| -0.0045 | 9.93672 | 0.02211 | 107.937 | 0.12426 | 206.07  | 0.69896 | 304.203 |
| -0.0061 | 10.0701 | 0.02264 | 108.07  | 0.12478 | 206.203 | 0.69983 | 304.337 |
| -0.0072 | 10.2034 | 0.02195 | 108.203 | 0.12379 | 206.337 | 0.6995  | 304.47  |
| -0.0053 | 10.337  | 0.02318 | 108.337 | 0.12542 | 206.47  | 0.70035 | 304.604 |
| -0.0047 | 10.4703 | 0.0223  | 108.47  | 0.1249  | 206.604 | 0.69854 | 304.737 |
| -0.003  | 10.6034 | 0.02209 | 108.604 | 0.1262  | 206.737 | 0.70157 | 304.87  |
| -0.0035 | 10.7367 | 0.02101 | 108.737 | 0.12519 | 206.87  | 0.70017 | 305.003 |
| -0.0022 | 10.8701 | 0.02324 | 108.87  | 0.12987 | 207.004 | 0.69967 | 305.137 |
| -0.0025 | 11.0034 | 0.01943 | 109.003 | 0.12795 | 207.137 | 0.70263 | 305.27  |
| -0.0059 | 11.1367 | 0.0189  | 109.137 | 0.12902 | 207.27  | 0.70049 | 305.403 |
| -0.0037 | 11.2701 | 0.01892 | 109.27  | 0.12921 | 207.403 | 0.70037 | 305.537 |
| -0.0032 | 11.4034 | 0.01946 | 109.403 | 0.13117 | 207.537 | 0.70161 | 305.67  |
| -0.0014 | 11.5367 | 0.01958 | 109.537 | 0.13647 | 207.67  | 0.70326 | 305.804 |
| -0.0013 | 11.6703 | 0.02033 | 109.67  | 0.13124 | 207.803 | 0.70205 | 305.937 |
| -0.002  | 11.8036 | 0.0206  | 109.804 | 0.13229 | 207.937 | 0.70777 | 306.07  |
| -0.001  | 11.937  | 0.0176  | 109.937 | 0.13364 | 208.07  | 0.70465 | 306.203 |
| -0.0013 | 12.0703 | 0.0189  | 110.07  | 0.13245 | 208.203 | 0.70565 | 306.337 |
| -0.001  | 12.2034 | 0.01988 | 110.203 | 0.13491 | 208.337 | 0.70484 | 306.47  |
| 0.00017 | 12.3367 | 0.01989 | 110.337 | 0.13572 | 208.47  | 0.70463 | 306.603 |
| -0.0016 | 12.4701 | 0.02006 | 110.47  | 0.13521 | 208.604 | 0.70603 | 306.737 |
| -3E-05  | 12.6034 | 0.02108 | 110.603 | 0.13579 | 208.737 | 0.70855 | 306.87  |
| -0.0008 | 12.7367 | 0.02192 | 110.737 | 0.13622 | 208.87  | 0.70911 | 307.003 |
| -0.0015 | 12.8701 | 0.02093 | 110.87  | 0.13762 | 209.003 | 0.70957 | 307.137 |
| -0.001  | 13.0034 | 0.02105 | 111.003 | 0.13761 | 209.137 | 0.70839 | 307.27  |
| -0.0015 | 13.1367 | 0.02027 | 111.137 | 0.13718 | 209.27  | 0.70805 | 307.404 |
| -0.0034 | 13.2701 | 0.01836 | 111.27  | 0.1384  | 209.403 | 0.7096  | 307.537 |
| -0.0022 | 13.4034 | 0.01941 | 111.404 | 0.13909 | 209.537 | 0.70909 | 307.67  |
| -0.002  | 13.537  | 0.01964 | 111.537 | 0.14142 | 209.67  | 0.71002 | 307.803 |
| -0.0008 | 13.6701 | 0.01894 | 111.67  | 0.1402  | 209.803 | 0.71072 | 307.937 |
| -0.0015 | 13.8034 | 0.02002 | 111.804 | 0.1424  | 209.937 | 0.71083 | 308.07  |
| -0.0012 | 13.9367 | 0.01848 | 111.937 | 0.14255 | 210.07  | 0.7088  | 308.203 |
| -0.0023 | 14.0703 | 0.01885 | 112.07  | 0.14904 | 210.203 | 0.71038 | 308.337 |
| -0.0003 | 14.2036 | 0.02013 | 112.204 | 0.14438 | 210.337 | 0.71131 | 308.47  |
| 0.00251 | 14.337  | 0.01886 | 112.337 | 0.14477 | 210.47  | 0.71075 | 308.603 |
| 0.00019 | 14.4701 | 0.02203 | 112.47  | 0.14527 | 210.603 | 0.71343 | 308.737 |
| 0.00033 | 14.6034 | 0.01827 | 112.604 | 0.1455  | 210.737 | 0.71753 | 308.87  |
| 0.00107 | 14.7367 | 0.01653 | 112.737 | 0.14654 | 210.87  | 0.71378 | 309.004 |
| 6.2E-05 | 14.8701 | 0.01661 | 112.87  | 0.14708 | 211.003 | 0.71479 | 309.137 |
| -0.0011 | 15.0034 | 0.01998 | 113.003 | 0.14995 | 211.137 | 0.7142  | 309.27  |
|         |         |         |         |         |         |         |         |

| -0.0009 | 15.1367 | 0.01948 | 113.137 | 0.14777 | 211.27  | 0.71503 | 309.403 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| -0.0018 | 15.2701 | 0.01859 | 113.27  | 0.14778 | 211.403 | 0.71451 | 309.537 |
| -0.0009 | 15.4034 | 0.01893 | 113.404 | 0.15098 | 211.537 | 0.71584 | 309.67  |
| -0.0015 | 15.5367 | 0.02005 | 113.537 | 0.15044 | 211.67  | 0.71626 | 309.803 |
| -0.0008 | 15.6701 | 0.0175  | 113.67  | 0.15234 | 211.803 | 0.7173  | 309.937 |
| 0.00051 | 15.8034 | 0.01682 | 113.804 | 0.15354 | 211.937 | 0.71778 | 310.07  |
| -0.0003 | 15.9367 | 0.01658 | 113.937 | 0.15294 | 212.07  | 0.71751 | 310.203 |
| 0.00095 | 16.0701 | 0.01625 | 114.07  | 0.15189 | 212.203 | 0.71713 | 310.337 |
| 0.00142 | 16.2034 | 0.01796 | 114.203 | 0.15813 | 212.337 | 0.71665 | 310.47  |
| 0.00253 | 16.3367 | 0.01859 | 114.337 | 0.15274 | 212.47  | 0.71799 | 310.603 |
| 0.00324 | 16.4701 | 0.01771 | 114.47  | 0.15374 | 212.603 | 0.718   | 310.737 |
| 0.00279 | 16.6036 | 0.0171  | 114.603 | 0.15557 | 212.737 | 0.71944 | 310.87  |
| 0.00204 | 16.737  | 0.0173  | 114.737 | 0.15648 | 212.87  | 0.72001 | 311.003 |
| 0.00364 | 16.8703 | 0.01574 | 114.87  | 0.15685 | 213.003 | 0.72053 | 311.137 |
| 0.00345 | 17.0034 | 0.01238 | 115.004 | 0.15804 | 213.137 | 0.72059 | 311.27  |
| 0.00343 | 17.1367 | 0.0101  | 115.137 | 0.15841 | 213.27  | 0.72031 | 311.403 |
| 0.00302 | 17.2701 | 0.01301 | 115.27  | 0.15994 | 213.403 | 0.71998 | 311.537 |
| 0.00253 | 17.4034 | 0.01563 | 115.403 | 0.16098 | 213.537 | 0.72049 | 311.67  |
| 0.00348 | 17.5367 | 0.0196  | 115.537 | 0.1615  | 213.67  | 0.72124 | 311.803 |
| 0.002   | 17.6701 | 0.01852 | 115.67  | 0.16079 | 213.803 | 0.72156 | 311.937 |
| 0.00404 | 17.8034 | 0.01831 | 115.803 | 0.16267 | 213.937 | 0.72197 | 312.07  |
| 0.00173 | 17.9367 | 0.02023 | 115.937 | 0.16326 | 214.07  | 0.72255 | 312.204 |
| 0.0024  | 18.0701 | 0.01766 | 116.07  | 0.16836 | 214.203 | 0.72173 | 312.337 |
| 0.00254 | 18.2034 | 0.01904 | 116.203 | 0.16268 | 214.337 | 0.72353 | 312.47  |
| 0.00141 | 18.3367 | 0.01896 | 116.337 | 0.16574 | 214.47  | 0.72379 | 312.604 |
| 0.00126 | 18.4701 | 0.01705 | 116.47  | 0.16587 | 214.603 | 0.72455 | 312.737 |
| 0.00152 | 18.6034 | 0.01702 | 116.603 | 0.16666 | 214.737 | 0.72391 | 312.87  |
| 0.00218 | 18.7367 | 0.01585 | 116.737 | 0.16628 | 214.87  | 0.72493 | 313.003 |
| 0.00475 | 18.8701 | 0.01737 | 116.87  | 0.16753 | 215.003 | 0.72504 | 313.137 |
| 0.0036  | 19.0034 | 0.01707 | 117.004 | 0.16989 | 215.137 | 0.72668 | 313.27  |
| 0.00313 | 19.1367 | 0.01748 | 117.137 | 0.16946 | 215.27  | 0.72588 | 313.403 |
| 0.00458 | 19.2701 | 0.0186  | 117.27  | 0.17057 | 215.403 | 0.72731 | 313.537 |
| 0.00403 | 19.4034 | 0.01763 | 117.403 | 0.16991 | 215.537 | 0.72665 | 313.67  |
| 0.00272 | 19.5367 | 0.01812 | 117.537 | 0.17193 | 215.67  | 0.72953 | 313.803 |
| 0.00395 | 19.6701 | 0.01827 | 117.67  | 0.17121 | 215.803 | 0.72875 | 313.937 |
| 0.00456 | 19.8034 | 0.01858 | 117.803 | 0.17135 | 215.937 | 0.72842 | 314.07  |
| 0.00274 | 19.937  | 0.01673 | 117.937 | 0.17144 | 216.07  | 0.72875 | 314.203 |
| 0.00404 | 20.0703 | 0.01947 | 118.07  | 0.17298 | 216.203 | 0.72953 | 314.337 |
| 0.00284 | 20.2036 | 0.01828 | 118.203 | 0.17502 | 216.337 | 0.73029 | 314.47  |
| 0.00351 | 20.3367 | 0.01941 | 118.337 | 0.17453 | 216.47  | 0.73036 | 314.603 |
|         |         |         |         |         |         |         |         |

| 0.00251 | 20.4701 | 0.01912 | 118.47  | 0.17324 | 216.603 | 0.73095 | 314.737 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.00368 | 20.6036 | 0.01974 | 118.604 | 0.17767 | 216.737 | 0.73115 | 314.87  |
| 0.004   | 20.737  | 0.01945 | 118.737 | 0.17612 | 216.87  | 0.73149 | 315.003 |
| 0.00335 | 20.8703 | 0.0186  | 118.87  | 0.17559 | 217.003 | 0.73046 | 315.137 |
| 0.00125 | 21.0034 | 0.01985 | 119.004 | 0.17749 | 217.137 | 0.73183 | 315.27  |
| 0.00198 | 21.1367 | 0.01979 | 119.137 | 0.17708 | 217.27  | 0.73362 | 315.403 |
| 0.00338 | 21.2701 | 0.02022 | 119.27  | 0.17884 | 217.403 | 0.73284 | 315.537 |
| 0.00489 | 21.4034 | 0.01893 | 119.403 | 0.177   | 217.537 | 0.73225 | 315.67  |
| 0.00465 | 21.5367 | 0.01982 | 119.537 | 0.17966 | 217.67  | 0.73408 | 315.804 |
| 0.00545 | 21.6701 | 0.01905 | 119.67  | 0.17913 | 217.804 | 0.7327  | 315.937 |
| 0.00455 | 21.8034 | 0.01972 | 119.804 | 0.17926 | 217.937 | 0.7321  | 316.07  |
| 0.00234 | 21.9367 | 0.01925 | 119.937 | 0.18457 | 218.07  | 0.73446 | 316.203 |
| 0.00016 | 22.0703 | 0.01931 | 120.07  | 0.17977 | 218.203 | 0.73413 | 316.337 |
| 0.00311 | 22.2034 | 0.01929 | 120.204 | 0.17935 | 218.337 | 0.7348  | 316.47  |
| 0.00186 | 22.3367 | 0.01635 | 120.337 | 0.1807  | 218.47  | 0.73592 | 316.603 |
| 0.00112 | 22.4703 | 0.01829 | 120.47  | 0.18418 | 218.603 | 0.73401 | 316.737 |
| 0.00354 | 22.6036 | 0.01785 | 120.603 | 0.1852  | 218.737 | 0.73571 | 316.87  |
| 0.00341 | 22.737  | 0.01784 | 120.737 | 0.18374 | 218.87  | 0.73558 | 317.003 |
| 0.00449 | 22.8701 | 0.01974 | 120.87  | 0.18576 | 219.003 | 0.73626 | 317.137 |
| 0.00434 | 23.0034 | 0.0183  | 121.003 | 0.18614 | 219.137 | 0.73645 | 317.27  |
| 0.00619 | 23.1367 | 0.01661 | 121.137 | 0.18615 | 219.27  | 0.7367  | 317.403 |
| 0.00414 | 23.2701 | 0.01608 | 121.27  | 0.18765 | 219.403 | 0.7367  | 317.537 |
| 0.00643 | 23.4036 | 0.01758 | 121.403 | 0.18645 | 219.537 | 0.73661 | 317.67  |
| 0.00292 | 23.5367 | 0.01789 | 121.537 | 0.19185 | 219.67  | 0.73483 | 317.803 |
| 0.00531 | 23.6701 | 0.01662 | 121.67  | 0.18642 | 219.803 | 0.73805 | 317.937 |
| 0.00287 | 23.8034 | 0.01736 | 121.803 | 0.18755 | 219.937 | 0.738   | 318.07  |
| 0.00337 | 23.9367 | 0.01797 | 121.937 | 0.18809 | 220.07  | 0.7378  | 318.203 |
| 0.00527 | 24.0703 | 0.01843 | 122.07  | 0.19024 | 220.203 | 0.74415 | 318.337 |
| 0.00594 | 24.2036 | 0.01653 | 122.203 | 0.19127 | 220.337 | 0.7387  | 318.47  |
| 0.00479 | 24.337  | 0.01668 | 122.337 | 0.1918  | 220.47  | 0.7391  | 318.603 |
| 0.00306 | 24.4701 | 0.01761 | 122.47  | 0.19236 | 220.603 | 0.73806 | 318.737 |
| 0.00463 | 24.6034 | 0.01853 | 122.603 | 0.1914  | 220.737 | 0.73781 | 318.87  |
| 0.00416 | 24.7367 | 0.01806 | 122.737 | 0.19569 | 220.87  | 0.74008 | 319.003 |
| 0.00367 | 24.8701 | 0.01851 | 122.87  | 0.19453 | 221.004 | 0.73815 | 319.137 |
| 0.00492 | 25.0036 | 0.01683 | 123.004 | 0.19406 | 221.137 | 0.73981 | 319.27  |
| 0.00625 | 25.1367 | 0.0175  | 123.137 | 0.1975  | 221.27  | 0.74066 | 319.404 |
| 0.0065  | 25.2701 | 0.01658 | 123.27  | 0.19701 | 221.404 | 0.74088 | 319.537 |
| 0.00885 | 25.4036 | 0.0162  | 123.403 | 0.19644 | 221.537 | 0.74161 | 319.67  |
| 0.0072  | 25.537  | 0.01605 | 123.537 | 0.19916 | 221.67  | 0.74172 | 319.804 |
| 0.00715 | 25.6703 | 0.01585 | 123.67  | 0.19787 | 221.803 | 0.74118 | 319.937 |
|         |         |         |         |         |         |         |         |

| 0.00868 | 25.8034 | 0.01674 | 123.804 | 0.19755 | 221.937 | 0.74092 | 320.07  |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.00503 | 25.9367 | 0.0176  | 123.937 | 0.19918 | 222.07  | 0.74133 | 320.203 |
| 0.00513 | 26.0701 | 0.01698 | 124.07  | 0.20076 | 222.203 | 0.74273 | 320.337 |
| 0.00727 | 26.2036 | 0.01664 | 124.204 | 0.19998 | 222.337 | 0.74404 | 320.47  |
| 0.00794 | 26.3367 | 0.01653 | 124.337 | 0.2007  | 222.47  | 0.74427 | 320.603 |
| 0.00544 | 26.4703 | 0.01741 | 124.47  | 0.20406 | 222.604 | 0.74424 | 320.737 |
| 0.00526 | 26.6034 | 0.01705 | 124.603 | 0.2036  | 222.737 | 0.74329 | 320.87  |
| 0.00525 | 26.7367 | 0.01587 | 124.737 | 0.20339 | 222.87  | 0.74638 | 321.003 |
| 0.00448 | 26.8701 | 0.01661 | 124.87  | 0.20083 | 223.003 | 0.74531 | 321.137 |
| 0.00433 | 27.0036 | 0.01716 | 125.003 | 0.1981  | 223.137 | 0.74537 | 321.27  |
| 0.00493 | 27.137  | 0.01597 | 125.137 | 0.2023  | 223.27  | 0.74573 | 321.403 |
| 0.00525 | 27.2701 | 0.01704 | 125.27  | 0.21148 | 223.403 | 0.74518 | 321.537 |
| 0.00637 | 27.4036 | 0.01761 | 125.403 | 0.20251 | 223.537 | 0.74617 | 321.67  |
| 0.00543 | 27.537  | 0.0167  | 125.537 | 0.19912 | 223.67  | 0.74684 | 321.803 |
| 0.00763 | 27.6703 | 0.01747 | 125.67  | 0.20233 | 223.803 | 0.74594 | 321.937 |
| 0.00576 | 27.8036 | 0.01726 | 125.803 | 0.20432 | 223.937 | 0.75148 | 322.07  |
| 0.00588 | 27.937  | 0.01591 | 125.937 | 0.20174 | 224.07  | 0.74688 | 322.203 |
| 0.0062  | 28.0703 | 0.01505 | 126.07  | 0.20244 | 224.203 | 0.74865 | 322.337 |
| 0.00751 | 28.2034 | 0.0157  | 126.204 | 0.20458 | 224.337 | 0.74892 | 322.47  |
| 0.00728 | 28.3367 | 0.01596 | 126.337 | 0.20479 | 224.47  | 0.7486  | 322.603 |
| 0.00679 | 28.4701 | 0.01703 | 126.47  | 0.20189 | 224.603 | 0.74989 | 322.737 |
| 0.0076  | 28.6034 | 0.01717 | 126.604 | 0.20553 | 224.737 | 0.74987 | 322.87  |
| 0.00887 | 28.7367 | 0.01814 | 126.737 | 0.20561 | 224.87  | 0.75018 | 323.004 |
| 0.00665 | 28.8701 | 0.01647 | 126.87  | 0.20405 | 225.003 | 0.75001 | 323.137 |
| 0.00825 | 29.0034 | 0.01438 | 127.003 | 0.20587 | 225.137 | 0.75101 | 323.27  |
| 0.00605 | 29.1367 | 0.01686 | 127.137 | 0.20791 | 225.27  | 0.75217 | 323.403 |
| 0.00654 | 29.2701 | 0.0158  | 127.27  | 0.20829 | 225.403 | 0.75086 | 323.537 |
| 0.00577 | 29.4036 | 0.01712 | 127.403 | 0.20707 | 225.537 | 0.75092 | 323.67  |
| 0.00559 | 29.537  | 0.01658 | 127.537 | 0.21074 | 225.67  | 0.75087 | 323.804 |
| 0.00621 | 29.6701 | 0.01545 | 127.67  | 0.21619 | 225.803 | 0.75186 | 323.937 |
| 0.00639 | 29.8034 | 0.01575 | 127.804 | 0.21122 | 225.937 | 0.75277 | 324.07  |
| 0.00892 | 29.9367 | 0.01496 | 127.937 | 0.21213 | 226.07  | 0.75351 | 324.203 |
| 0.00675 | 30.0701 | 0.01665 | 128.07  | 0.21173 | 226.203 | 0.7523  | 324.337 |
| 0.00854 | 30.2034 | 0.01666 | 128.204 | 0.21214 | 226.337 | 0.75194 | 324.47  |
| 0.00738 | 30.3367 | 0.01878 | 128.337 | 0.21494 | 226.47  | 0.75252 | 324.604 |
| 0.006   | 30.4701 | 0.01564 | 128.47  | 0.21455 | 226.603 | 0.75326 | 324.737 |
| 0.00525 | 30.6034 | 0.01869 | 128.603 | 0.22146 | 226.737 | 0.75391 | 324.87  |
| 0.00663 | 30.7367 | 0.01835 | 128.737 | 0.21374 | 226.87  | 0.75883 | 325.003 |
| 0.00786 | 30.8701 | 0.01633 | 128.87  | 0.21781 | 227.003 | 0.75636 | 325.137 |
| 0.00832 | 31.0034 | 0.01615 | 129.003 | 0.21589 | 227.137 | 0.7561  | 325.27  |
|         |         |         |         |         |         |         |         |

| 0.00861 | 31.1367 | 0.01885 | 129.137 | 0.22215 | 227.27  | 0.75428 | 325.403 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.00918 | 31.2701 | 0.01593 | 129.27  | 0.22167 | 227.403 | 0.75576 | 325.537 |
| 0.0079  | 31.4034 | 0.01708 | 129.404 | 0.21928 | 227.537 | 0.75542 | 325.67  |
| 0.00735 | 31.537  | 0.01845 | 129.537 | 0.21859 | 227.67  | 0.75559 | 325.803 |
| 0.00746 | 31.6703 | 0.0166  | 129.67  | 0.22591 | 227.803 | 0.75531 | 325.937 |
| 0.00762 | 31.8036 | 0.01745 | 129.803 | 0.22361 | 227.937 | 0.75595 | 326.07  |
| 0.00917 | 31.937  | 0.01729 | 129.937 | 0.22243 | 228.07  | 0.7575  | 326.203 |
| 0.00923 | 32.0703 | 0.01705 | 130.07  | 0.22575 | 228.203 | 0.75686 | 326.337 |
| 0.00951 | 32.2034 | 0.01797 | 130.203 | 0.23037 | 228.337 | 0.75712 | 326.47  |
| 0.01125 | 32.337  | 0.0168  | 130.337 | 0.22597 | 228.47  | 0.75651 | 326.603 |
| 0.01144 | 32.4701 | 0.01663 | 130.47  | 0.22881 | 228.603 | 0.75652 | 326.737 |
| 0.00982 | 32.6034 | 0.01779 | 130.604 | 0.22784 | 228.737 | 0.75763 | 326.87  |
| 0.01375 | 32.7367 | 0.01785 | 130.737 | 0.23594 | 228.87  | 0.75839 | 327.004 |
| 0.01255 | 32.8701 | 0.01792 | 130.87  | 0.22948 | 229.004 | 0.75769 | 327.137 |
| 0.01096 | 33.0034 | 0.01906 | 131.004 | 0.23248 | 229.137 | 0.7583  | 327.27  |
| 0.01038 | 33.1367 | 0.01505 | 131.137 | 0.23137 | 229.27  | 0.75826 | 327.403 |
| 0.01106 | 33.2701 | 0.0172  | 131.27  | 0.23326 | 229.403 | 0.7596  | 327.537 |
| 0.01134 | 33.4034 | 0.01823 | 131.403 | 0.23528 | 229.537 | 0.75857 | 327.67  |
| 0.01033 | 33.5367 | 0.01921 | 131.537 | 0.23367 | 229.67  | 0.75744 | 327.803 |
| 0.0115  | 33.6701 | 0.01748 | 131.67  | 0.2359  | 229.803 | 0.75769 | 327.937 |
| 0.01077 | 33.8034 | 0.01632 | 131.804 | 0.24432 | 229.937 | 0.75861 | 328.07  |
| 0.00996 | 33.937  | 0.01729 | 131.937 | 0.23796 | 230.07  | 0.75796 | 328.203 |
| 0.00856 | 34.0701 | 0.01715 | 132.07  | 0.23752 | 230.203 | 0.76135 | 328.337 |
| 0.00938 | 34.2036 | 0.01672 | 132.203 | 0.24026 | 230.337 | 0.75874 | 328.47  |
| 0.00968 | 34.3367 | 0.01889 | 132.337 | 0.2472  | 230.47  | 0.75863 | 328.604 |
| 0.00813 | 34.4701 | 0.01772 | 132.47  | 0.24133 | 230.604 | 0.76074 | 328.737 |
| 0.00864 | 34.6034 | 0.01798 | 132.603 | 0.24268 | 230.737 | 0.75954 | 328.87  |
| 0.00964 | 34.7367 | 0.01742 | 132.737 | 0.24552 | 230.87  | 0.7606  | 329.004 |
| 0.00958 | 34.8701 | 0.01602 | 132.87  | 0.24588 | 231.004 | 0.76095 | 329.137 |
| 0.009   | 35.0034 | 0.01548 | 133.003 | 0.24501 | 231.137 | 0.76094 | 329.27  |
| 0.00827 | 35.1367 | 0.01538 | 133.137 | 0.24775 | 231.27  | 0.75979 | 329.403 |
| 0.0098  | 35.2701 | 0.0163  | 133.27  | 0.25521 | 231.404 | 0.75996 | 329.537 |
| 0.01    | 35.4034 | 0.01638 | 133.403 | 0.24844 | 231.537 | 0.76145 | 329.67  |
| 0.01102 | 35.5367 | 0.01646 | 133.537 | 0.24987 | 231.67  | 0.76305 | 329.804 |
| 0.01215 | 35.6701 | 0.01671 | 133.67  | 0.25177 | 231.803 | 0.76255 | 329.937 |
| 0.01005 | 35.8034 | 0.0163  | 133.803 | 0.25197 | 231.937 | 0.76356 | 330.07  |
| 0.01112 | 35.9367 | 0.01571 | 133.937 | 0.25299 | 232.07  | 0.76287 | 330.203 |
| 0.01147 | 36.0701 | 0.01493 | 134.07  | 0.25406 | 232.204 | 0.76319 | 330.337 |
| 0.01112 | 36.2034 | 0.0162  | 134.203 | 0.26005 | 232.337 | 0.76336 | 330.47  |
| 0.01119 | 36.3367 | 0.01696 | 134.337 | 0.25476 | 232.47  | 0.76322 | 330.603 |
|         |         |         |         |         |         |         |         |

| 0.01033 | 36.4701 | 0.01588 | 134.47  | 0.25412 | 232.603 | 0.76473 | 330.737 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.0099  | 36.6034 | 0.01672 | 134.603 | 0.26367 | 232.737 | 0.76381 | 330.87  |
| 0.01064 | 36.737  | 0.01556 | 134.737 | 0.25695 | 232.87  | 0.76317 | 331.004 |
| 0.01167 | 36.8703 | 0.01631 | 134.87  | 0.25737 | 233.003 | 0.76474 | 331.137 |
| 0.01087 | 37.0036 | 0.01576 | 135.003 | 0.26074 | 233.137 | 0.76559 | 331.27  |
| 0.01132 | 37.1367 | 0.01595 | 135.137 | 0.26125 | 233.27  | 0.76427 | 331.403 |
| 0.01091 | 37.2701 | 0.01438 | 135.27  | 0.26118 | 233.403 | 0.76952 | 331.537 |
| 0.01103 | 37.4034 | 0.01605 | 135.403 | 0.26164 | 233.537 | 0.76629 | 331.67  |
| 0.0102  | 37.5367 | 0.01608 | 135.537 | 0.26281 | 233.67  | 0.76554 | 331.803 |
| 0.01062 | 37.6701 | 0.01461 | 135.67  | 0.26627 | 233.803 | 0.76573 | 331.937 |
| 0.01029 | 37.8034 | 0.0166  | 135.803 | 0.26478 | 233.937 | 0.76738 | 332.07  |
| 0.01093 | 37.9367 | 0.01766 | 135.937 | 0.26582 | 234.07  | 0.76638 | 332.203 |
| 0.01063 | 38.0701 | 0.01502 | 136.07  | 0.2668  | 234.203 | 0.76713 | 332.337 |
| 0.01251 | 38.2034 | 0.01333 | 136.203 | 0.26734 | 234.337 | 0.76788 | 332.47  |
| 0.01051 | 38.3367 | 0.01392 | 136.337 | 0.27272 | 234.47  | 0.76774 | 332.603 |
| 0.00974 | 38.4701 | 0.01589 | 136.47  | 0.26924 | 234.603 | 0.76666 | 332.737 |
| 0.01074 | 38.6036 | 0.01462 | 136.603 | 0.26928 | 234.737 | 0.76649 | 332.87  |
| 0.00993 | 38.7367 | 0.01359 | 136.737 | 0.27109 | 234.87  | 0.76577 | 333.004 |
| 0.01233 | 38.8701 | 0.01583 | 136.87  | 0.27189 | 235.003 | 0.76658 | 333.137 |
| 0.01247 | 39.0034 | 0.01598 | 137.003 | 0.2721  | 235.137 | 0.76613 | 333.27  |
| 0.01271 | 39.1367 | 0.01543 | 137.137 | 0.27201 | 235.27  | 0.76639 | 333.404 |
| 0.01225 | 39.2703 | 0.01758 | 137.27  | 0.27429 | 235.403 | 0.76724 | 333.537 |
| 0.01248 | 39.4036 | 0.01419 | 137.403 | 0.27409 | 235.537 | 0.76828 | 333.67  |
| 0.01225 | 39.537  | 0.01471 | 137.537 | 0.2748  | 235.67  | 0.76803 | 333.803 |
| 0.01293 | 39.6701 | 0.01616 | 137.67  | 0.27575 | 235.803 | 0.77098 | 333.937 |
| 0.0125  | 39.8034 | 0.01349 | 137.803 | 0.27788 | 235.937 | 0.76964 | 334.07  |
| 0.01501 | 39.9367 | 0.01395 | 137.937 | 0.27925 | 236.07  | 0.7699  | 334.203 |
| 0.01482 | 40.0701 | 0.01435 | 138.07  | 0.28146 | 236.203 | 0.7704  | 334.337 |
| 0.01317 | 40.2036 | 0.01563 | 138.203 | 0.27942 | 236.337 | 0.76959 | 334.47  |
| 0.01146 | 40.337  | 0.01594 | 138.337 | 0.28057 | 236.47  | 0.76959 | 334.603 |
| 0.0119  | 40.4701 | 0.0145  | 138.47  | 0.28459 | 236.604 | 0.77076 | 334.737 |
| 0.0119  | 40.6036 | 0.01667 | 138.603 | 0.2828  | 236.737 | 0.7716  | 334.87  |
| 0.01225 | 40.737  | 0.01533 | 138.737 | 0.2831  | 236.87  | 0.77092 | 335.004 |
| 0.0118  | 40.8703 | 0.0145  | 138.87  | 0.28977 | 237.003 | 0.7715  | 335.137 |
| 0.0139  | 41.0036 | 0.0165  | 139.004 | 0.28448 | 237.137 | 0.77208 | 335.27  |
| 0.01251 | 41.137  | 0.01481 | 139.137 | 0.28525 | 237.27  | 0.77235 | 335.404 |
| 0.01268 | 41.2703 | 0.01605 | 139.27  | 0.28634 | 237.403 | 0.77255 | 335.537 |
| 0.01202 | 41.4036 | 0.01538 | 139.403 | 0.29191 | 237.537 | 0.77171 | 335.67  |
| 0.01221 | 41.537  | 0.01505 | 139.537 | 0.28972 | 237.67  | 0.77325 | 335.803 |
| 0.01071 | 41.6701 | 0.01684 | 139.67  | 0.2896  | 237.803 | 0.773   | 335.937 |
|         |         |         |         |         |         |         |         |

| 0.01182 | 41.8034 | 0.01654 | 139.804 | 0.28931 | 237.937 | 0.7728  | 336.07  |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.0134  | 41.937  | 0.01618 | 139.937 | 0.29006 | 238.07  | 0.77413 | 336.203 |
| 0.01369 | 42.0701 | 0.01742 | 140.07  | 0.2996  | 238.203 | 0.77443 | 336.337 |
| 0.01485 | 42.2034 | 0.01714 | 140.204 | 0.29191 | 238.337 | 0.77279 | 336.47  |
| 0.01474 | 42.3367 | 0.01708 | 140.337 | 0.29192 | 238.47  | 0.77433 | 336.603 |
| 0.01628 | 42.4701 | 0.01539 | 140.47  | 0.29505 | 238.603 | 0.77475 | 336.737 |
| 0.01578 | 42.6034 | 0.0149  | 140.604 | 0.29603 | 238.737 | 0.77602 | 336.87  |
| 0.01307 | 42.7367 | 0.01772 | 140.737 | 0.29484 | 238.87  | 0.77631 | 337.003 |
| 0.01235 | 42.8701 | 0.01556 | 140.87  | 0.29922 | 239.003 | 0.775   | 337.137 |
| 0.01287 | 43.0034 | 0.01528 | 141.004 | 0.29856 | 239.137 | 0.778   | 337.27  |
| 0.01253 | 43.1367 | 0.01747 | 141.137 | 0.29726 | 239.27  | 0.77733 | 337.403 |
| 0.0112  | 43.2703 | 0.01747 | 141.27  | 0.29762 | 239.404 | 0.77581 | 337.537 |
| 0.01078 | 43.4036 | 0.01612 | 141.403 | 0.30059 | 239.537 | 0.77741 | 337.67  |
| 0.01272 | 43.537  | 0.01506 | 141.537 | 0.30214 | 239.67  | 0.77675 | 337.803 |
| 0.0119  | 43.6703 | 0.01653 | 141.67  | 0.30382 | 239.803 | 0.7789  | 337.937 |
| 0.01181 | 43.8034 | 0.01609 | 141.804 | 0.30496 | 239.937 | 0.77927 | 338.07  |
| 0.01151 | 43.937  | 0.01639 | 141.937 | 0.30435 | 240.07  | 0.77831 | 338.203 |
| 0.01366 | 44.0703 | 0.0156  | 142.07  | 0.30497 | 240.203 | 0.77924 | 338.337 |
| 0.01314 | 44.2034 | 0.01357 | 142.203 | 0.30675 | 240.337 | 0.77878 | 338.47  |
| 0.01363 | 44.3367 | 0.01643 | 142.337 | 0.30745 | 240.47  | 0.7779  | 338.604 |
| 0.01288 | 44.4701 | 0.01624 | 142.47  | 0.30886 | 240.604 | 0.77918 | 338.737 |
| 0.01248 | 44.6034 | 0.01561 | 142.604 | 0.31022 | 240.737 | 0.77934 | 338.87  |
| 0.01348 | 44.737  | 0.01505 | 142.737 | 0.31413 | 240.87  | 0.77867 | 339.003 |
| 0.01338 | 44.8703 | 0.0156  | 142.87  | 0.31215 | 241.003 | 0.77799 | 339.137 |
| 0.01455 | 45.0036 | 0.01449 | 143.003 | 0.31396 | 241.137 | 0.78019 | 339.27  |
| 0.01308 | 45.1367 | 0.01288 | 143.137 | 0.313   | 241.27  | 0.77799 | 339.403 |
| 0.01312 | 45.2701 | 0.01642 | 143.27  | 0.31602 | 241.403 | 0.77837 | 339.537 |
| 0.0149  | 45.4034 | 0.01413 | 143.403 | 0.31621 | 241.537 | 0.78061 | 339.67  |
| 0.01527 | 45.5367 | 0.01436 | 143.537 | 0.32103 | 241.67  | 0.77905 | 339.804 |
| 0.01457 | 45.6701 | 0.01371 | 143.67  | 0.31795 | 241.804 | 0.77756 | 339.937 |
| 0.01408 | 45.8034 | 0.01488 | 143.803 | 0.31841 | 241.937 | 0.78134 | 340.07  |
| 0.01357 | 45.937  | 0.01229 | 143.937 | 0.32117 | 242.07  | 0.7806  | 340.203 |
| 0.01454 | 46.0701 | 0.01362 | 144.07  | 0.32172 | 242.203 | 0.77961 | 340.337 |
| 0.01651 | 46.2036 | 0.01784 | 144.204 | 0.32192 | 242.337 | 0.78104 | 340.47  |
| 0.01662 | 46.337  | 0.01501 | 144.337 | 0.32514 | 242.47  | 0.78115 | 340.603 |
| 0.01469 | 46.4703 | 0.01603 | 144.47  | 0.3256  | 242.603 | 0.7802  | 340.737 |
| 0.01619 | 46.6034 | 0.01836 | 144.603 | 0.3255  | 242.737 | 0.78144 | 340.87  |
| 0.01555 | 46.737  | 0.0139  | 144.737 | 0.32563 | 242.87  | 0.78467 | 341.003 |
| 0.01516 | 46.8703 | 0.01575 | 144.87  | 0.32835 | 243.003 | 0.78258 | 341.137 |
| 0.01649 | 47.0034 | 0.01641 | 145.003 | 0.33463 | 243.137 | 0.78212 | 341.27  |
|         |         |         |         |         |         |         |         |

| 0.01655 | 47.1367 | 0.01357 | 145.137 | 0.33083 | 243.27  | 0.78062 | 341.403 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.01779 | 47.2701 | 0.01367 | 145.27  | 0.33031 | 243.403 | 0.78241 | 341.537 |
| 0.01558 | 47.4034 | 0.01766 | 145.403 | 0.3318  | 243.537 | 0.78226 | 341.67  |
| 0.016   | 47.5367 | 0.01737 | 145.537 | 0.33323 | 243.67  | 0.78332 | 341.804 |
| 0.0145  | 47.6701 | 0.01521 | 145.67  | 0.3326  | 243.804 | 0.78251 | 341.937 |
| 0.01407 | 47.8036 | 0.01599 | 145.803 | 0.33613 | 243.937 | 0.78118 | 342.07  |
| 0.01553 | 47.937  | 0.01794 | 145.937 | 0.33723 | 244.07  | 0.78246 | 342.203 |
| 0.01357 | 48.0703 | 0.01516 | 146.07  | 0.33708 | 244.203 | 0.78257 | 342.337 |
| 0.01488 | 48.2036 | 0.01574 | 146.203 | 0.34056 | 244.337 | 0.78842 | 342.47  |
| 0.01492 | 48.3367 | 0.01664 | 146.337 | 0.34    | 244.47  | 0.78392 | 342.604 |
| 0.01682 | 48.4701 | 0.01496 | 146.47  | 0.34176 | 244.603 | 0.78189 | 342.737 |
| 0.01807 | 48.6034 | 0.01326 | 146.603 | 0.34314 | 244.737 | 0.78894 | 342.87  |
| 0.01664 | 48.7367 | 0.01611 | 146.737 | 0.34272 | 244.87  | 0.78639 | 343.003 |
| 0.01816 | 48.8701 | 0.0156  | 146.87  | 0.34358 | 245.003 | 0.78394 | 343.137 |
| 0.01799 | 49.0034 | 0.01344 | 147.004 | 0.35025 | 245.137 | 0.78635 | 343.27  |
| 0.01656 | 49.1367 | 0.01359 | 147.137 | 0.34672 | 245.27  | 0.78875 | 343.403 |
| 0.01672 | 49.2701 | 0.01666 | 147.27  | 0.34677 | 245.403 | 0.78518 | 343.537 |
| 0.01739 | 49.4034 | 0.01554 | 147.403 | 0.34805 | 245.537 | 0.78451 | 343.67  |
| 0.01694 | 49.5367 | 0.01349 | 147.537 | 0.34934 | 245.67  | 0.78614 | 343.803 |
| 0.01723 | 49.6701 | 0.01563 | 147.67  | 0.34982 | 245.804 | 0.78759 | 343.937 |
| 0.01832 | 49.8034 | 0.01562 | 147.803 | 0.35284 | 245.937 | 0.7858  | 344.07  |
| 0.01751 | 49.937  | 0.01403 | 147.937 | 0.35391 | 246.07  | 0.78702 | 344.203 |
| 0.0164  | 50.0703 | 0.0151  | 148.07  | 0.3536  | 246.203 | 0.78834 | 344.337 |
| 0.01708 | 50.2036 | 0.0163  | 148.204 | 0.35415 | 246.337 | 0.78822 | 344.47  |
| 0.01755 | 50.337  | 0.01506 | 148.337 | 0.35587 | 246.47  | 0.78735 | 344.603 |
| 0.01708 | 50.4703 | 0.01562 | 148.47  | 0.35674 | 246.603 | 0.78781 | 344.737 |
| 0.01817 | 50.6034 | 0.01752 | 148.603 | 0.35606 | 246.737 | 0.78932 | 344.87  |
| 0.0185  | 50.7367 | 0.01442 | 148.737 | 0.35787 | 246.87  | 0.78965 | 345.003 |
| 0.01652 | 50.8701 | 0.01458 | 148.87  | 0.35847 | 247.003 | 0.78908 | 345.137 |
| 0.01505 | 51.0034 | 0.017   | 149.003 | 0.36021 | 247.137 | 0.78958 | 345.27  |
| 0.01604 | 51.1367 | 0.01458 | 149.137 | 0.36107 | 247.27  | 0.78883 | 345.403 |
| 0.01881 | 51.2703 | 0.01527 | 149.27  | 0.36273 | 247.404 | 0.78843 | 345.537 |
| 0.01745 | 51.4036 | 0.01496 | 149.403 | 0.36451 | 247.537 | 0.78718 | 345.67  |
| 0.01606 | 51.537  | 0.01242 | 149.537 | 0.36425 | 247.67  | 0.79001 | 345.803 |
| 0.01789 | 51.6703 | 0.01311 | 149.67  | 0.36508 | 247.803 | 0.78804 | 345.937 |
| 0.01829 | 51.8036 | 0.01702 | 149.803 | 0.36709 | 247.937 | 0.78957 | 346.07  |
| 0.01751 | 51.937  | 0.0154  | 149.937 | 0.3668  | 248.07  | 0.79122 | 346.203 |
| 0.01803 | 52.0703 | 0.01523 | 150.07  | 0.36682 | 248.203 | 0.79059 | 346.337 |
| 0.01751 | 52.2036 | 0.01349 | 150.204 | 0.36903 | 248.337 | 0.7912  | 346.47  |
| 0.01697 | 52.337  | 0.01349 | 150.337 | 0.36955 | 248.47  | 0.79305 | 346.603 |
|         |         |         |         |         |         |         |         |

| 0.01714 | 52.4701 | 0.01759 | 150.47  | 0.37353 | 248.603 | 0.79027 | 346.737 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.01721 | 52.6034 | 0.01537 | 150.604 | 0.37158 | 248.737 | 0.79073 | 346.87  |
| 0.01713 | 52.7367 | 0.01456 | 150.737 | 0.37317 | 248.87  | 0.79096 | 347.003 |
| 0.01675 | 52.8701 | 0.01464 | 150.87  | 0.37139 | 249.003 | 0.79103 | 347.137 |
| 0.01713 | 53.0034 | 0.01637 | 151.003 | 0.37484 | 249.137 | 0.79039 | 347.27  |
| 0.01587 | 53.1367 | 0.01353 | 151.137 | 0.37646 | 249.27  | 0.79246 | 347.403 |
| 0.01637 | 53.2703 | 0.01495 | 151.27  | 0.37647 | 249.403 | 0.79452 | 347.537 |
| 0.01937 | 53.4034 | 0.01518 | 151.404 | 0.37968 | 249.537 | 0.79289 | 347.67  |
| 0.01847 | 53.5367 | 0.01606 | 151.537 | 0.37726 | 249.67  | 0.7943  | 347.804 |
| 0.01875 | 53.6701 | 0.01495 | 151.67  | 0.37852 | 249.803 | 0.79358 | 347.937 |
| 0.01804 | 53.8036 | 0.01379 | 151.803 | 0.37845 | 249.937 | 0.79305 | 348.07  |
| 0.0205  | 53.937  | 0.01401 | 151.937 | 0.37994 | 250.07  | 0.7936  | 348.204 |
| 0.01917 | 54.0701 | 0.01493 | 152.07  | 0.38148 | 250.203 | 0.79427 | 348.337 |
| 0.0183  | 54.2034 | 0.01338 | 152.203 | 0.38208 | 250.337 | 0.79318 | 348.47  |
| 0.01831 | 54.3367 | 0.0146  | 152.337 | 0.38368 | 250.47  | 0.79226 | 348.603 |
| 0.01696 | 54.4701 | 0.01499 | 152.47  | 0.38272 | 250.603 | 0.79415 | 348.737 |
| 0.01743 | 54.6034 | 0.01464 | 152.603 | 0.38425 | 250.737 | 0.79354 | 348.87  |
| 0.01718 | 54.7367 | 0.01448 | 152.737 | 0.38873 | 250.87  | 0.7922  | 349.003 |
| 0.01799 | 54.8703 | 0.01586 | 152.87  | 0.38637 | 251.003 | 0.79498 | 349.137 |
| 0.01816 | 55.0036 | 0.01587 | 153.003 | 0.3872  | 251.137 | 0.79464 | 349.27  |
| 0.01879 | 55.137  | 0.01428 | 153.137 | 0.3886  | 251.27  | 0.79405 | 349.403 |
| 0.01819 | 55.2701 | 0.01523 | 153.27  | 0.38847 | 251.403 | 0.79563 | 349.537 |
| 0.01646 | 55.4034 | 0.01562 | 153.403 | 0.39125 | 251.537 | 0.79667 | 349.67  |
| 0.01907 | 55.5367 | 0.01562 | 153.537 | 0.39293 | 251.67  | 0.79582 | 349.803 |
| 0.01797 | 55.6701 | 0.01668 | 153.67  | 0.39499 | 251.803 | 0.79745 | 349.937 |
| 0.01846 | 55.8034 | 0.01421 | 153.803 | 0.39399 | 251.937 | 0.79763 | 350.07  |
| 0.01824 | 55.9367 | 0.01401 | 153.937 | 0.39524 | 252.07  | 0.79512 | 350.203 |
| 0.01907 | 56.0701 | 0.01461 | 154.07  | 0.39573 | 252.203 | 0.79492 | 350.337 |
| 0.02033 | 56.2034 | 0.01328 | 154.203 | 0.39654 | 252.337 | 0.79746 | 350.47  |
| 0.01978 | 56.3367 | 0.01465 | 154.337 | 0.39857 | 252.47  | 0.79711 | 350.603 |
| 0.01754 | 56.4701 | 0.01568 | 154.47  | 0.40621 | 252.603 | 0.79514 | 350.737 |
| 0.01691 | 56.6036 | 0.01469 | 154.603 | 0.39987 | 252.737 | 0.79654 | 350.87  |
| 0.01863 | 56.7367 | 0.01497 | 154.737 | 0.4016  | 252.87  | 0.79668 | 351.004 |
| 0.01782 | 56.8701 | 0.01527 | 154.87  | 0.40278 | 253.003 | 0.79636 | 351.137 |
| 0.01776 | 57.0034 | 0.01499 | 155.003 | 0.40173 | 253.137 | 0.79664 | 351.27  |
| 0.01935 | 57.1367 | 0.01669 | 155.137 | 0.40286 | 253.27  | 0.79852 | 351.403 |
| 0.01919 | 57.2703 | 0.0168  | 155.27  | 0.40593 | 253.403 | 0.79961 | 351.537 |
| 0.01841 | 57.4034 | 0.01536 | 155.403 | 0.40693 | 253.537 | 0.79778 | 351.67  |
| 0.01937 | 57.5367 | 0.01602 | 155.537 | 0.4078  | 253.67  | 0.79999 | 351.804 |
| 0.01926 | 57.6701 | 0.01619 | 155.67  | 0.40728 | 253.803 | 0.8001  | 351.937 |
|         |         |         |         |         |         |         |         |

| 0.01901 | 57.8034 | 0.0157  | 155.804 | 0.40994 | 253.937 | 0.79789 | 352.07  |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.01812 | 57.9367 | 0.01591 | 155.937 | 0.41098 | 254.07  | 0.79789 | 352.204 |
| 0.0191  | 58.0701 | 0.01475 | 156.07  | 0.41187 | 254.203 | 0.80043 | 352.337 |
| 0.01939 | 58.2034 | 0.0131  | 156.203 | 0.41439 | 254.337 | 0.79895 | 352.47  |
| 0.02047 | 58.3367 | 0.01427 | 156.337 | 0.41541 | 254.47  | 0.79965 | 352.604 |
| 0.01994 | 58.4703 | 0.01324 | 156.47  | 0.41661 | 254.603 | 0.79892 | 352.737 |
| 0.01973 | 58.6036 | 0.01359 | 156.603 | 0.41668 | 254.737 | 0.80071 | 352.87  |
| 0.02066 | 58.7367 | 0.01217 | 156.737 | 0.41706 | 254.87  | 0.79954 | 353.003 |
| 0.02149 | 58.8701 | 0.01272 | 156.87  | 0.41704 | 255.003 | 0.79921 | 353.137 |
| 0.02074 | 59.0034 | 0.013   | 157.003 | 0.41945 | 255.137 | 0.79888 | 353.27  |
| 0.02021 | 59.137  | 0.01285 | 157.137 | 0.42014 | 255.27  | 0.79825 | 353.404 |
| 0.02031 | 59.2701 | 0.01362 | 157.27  | 0.42102 | 255.404 | 0.8006  | 353.537 |
| 0.02007 | 59.4034 | 0.01524 | 157.403 | 0.42188 | 255.537 | 0.79858 | 353.67  |
| 0.01897 | 59.5367 | 0.01305 | 157.537 | 0.42247 | 255.67  | 0.79932 | 353.803 |
| 0.02072 | 59.6701 | 0.014   | 157.67  | 0.4221  | 255.804 | 0.79891 | 353.937 |
| 0.02041 | 59.8034 | 0.01363 | 157.803 | 0.42427 | 255.937 | 0.79917 | 354.07  |
| 0.01996 | 59.9367 | 0.01465 | 157.937 | 0.42557 | 256.07  | 0.80015 | 354.203 |
| 0.0201  | 60.0701 | 0.01471 | 158.07  | 0.42671 | 256.203 | 0.79912 | 354.337 |
| 0.01974 | 60.2034 | 0.01524 | 158.204 | 0.42861 | 256.337 | 0.79866 | 354.47  |
| 0.0203  | 60.3367 | 0.01485 | 158.337 | 0.43521 | 256.47  | 0.7991  | 354.603 |
| 0.01981 | 60.4703 | 0.01233 | 158.47  | 0.43036 | 256.604 | 0.80036 | 354.737 |
| 0.02049 | 60.6036 | 0.01412 | 158.603 | 0.43071 | 256.737 | 0.80186 | 354.87  |
| 0.02101 | 60.737  | 0.01386 | 158.737 | 0.43564 | 256.87  | 0.80102 | 355.003 |
| 0.02082 | 60.8701 | 0.01379 | 158.87  | 0.43342 | 257.003 | 0.80013 | 355.137 |
| 0.0215  | 61.0034 | 0.01348 | 159.003 | 0.43371 | 257.137 | 0.80172 | 355.27  |
| 0.02083 | 61.1367 | 0.01457 | 159.137 | 0.433   | 257.27  | 0.80201 | 355.403 |
| 0.02109 | 61.2701 | 0.01404 | 159.27  | 0.43729 | 257.404 | 0.80238 | 355.537 |
| 0.02031 | 61.4034 | 0.01518 | 159.404 | 0.43585 | 257.537 | 0.80488 | 355.67  |
| 0.02049 | 61.5367 | 0.01448 | 159.537 | 0.4367  | 257.67  | 0.80249 | 355.803 |
| 0.02171 | 61.6701 | 0.01341 | 159.67  | 0.44046 | 257.803 | 0.80392 | 355.937 |
| 0.02234 | 61.8034 | 0.01437 | 159.803 | 0.44033 | 257.937 | 0.80571 | 356.07  |
| 0.02322 | 61.937  | 0.01407 | 159.937 | 0.44138 | 258.07  | 0.8027  | 356.203 |
| 0.02169 | 62.0703 | 0.01398 | 160.07  | 0.44117 | 258.203 | 0.80306 | 356.337 |
| 0.02189 | 62.2034 | 0.01387 | 160.203 | 0.44551 | 258.337 | 0.80225 | 356.47  |
| 0.02182 | 62.3367 | 0.01353 | 160.337 | 0.44454 | 258.47  | 0.80125 | 356.603 |
| 0.0199  | 62.4703 | 0.0149  | 160.47  | 0.44389 | 258.603 | 0.80108 | 356.737 |
| 0.02127 | 62.6034 | 0.01477 | 160.603 | 0.44587 | 258.737 | 0.80338 | 356.87  |
| 0.01981 | 62.7367 | 0.01388 | 160.737 | 0.44651 | 258.87  | 0.80485 | 357.003 |
| 0.02162 | 62.8701 | 0.01379 | 160.87  | 0.44856 | 259.003 | 0.8047  | 357.137 |
| 0.02048 | 63.0036 | 0.01416 | 161.003 | 0.44921 | 259.137 | 0.80584 | 357.27  |
|         |         |         |         |         |         |         |         |

| 0.02056 |         | 0.01565 | 161.137 | 0.44965 | 259.27  | 0.8045  | 357.403 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.02252 | 63.2703 | 0.01512 | 161.27  | 0.45028 | 259.403 | 0.80426 | 357.537 |
| 0.02123 | 63.4034 | 0.01666 | 161.404 | 0.45073 | 259.537 | 0.80479 | 357.67  |
| 0.02326 | 63.5367 | 0.01513 | 161.537 | 0.45326 | 259.67  | 0.80495 | 357.803 |
| 0.0222  | 63.6701 | 0.01622 | 161.67  | 0.45152 | 259.803 | 0.80623 | 357.937 |
| 0.02337 | 63.8036 | 0.01545 | 161.804 | 0.4544  | 259.937 | 0.80648 | 358.07  |
| 0.02193 | 63.9367 | 0.01592 | 161.937 | 0.45406 | 260.07  | 0.80608 | 358.204 |
| 0.02118 | 64.0701 | 0.01548 | 162.07  | 0.45451 | 260.203 | 0.80409 | 358.337 |
| 0.02086 | 64.2034 | 0.01491 | 162.203 | 0.45711 | 260.337 | 0.80642 | 358.47  |
| 0.02274 | 64.3367 | 0.01195 | 162.337 | 0.45609 | 260.47  | 0.80629 | 358.603 |
| 0.02125 | 64.4703 | 0.01224 | 162.47  | 0.4601  | 260.603 | 0.80536 | 358.737 |
| 0.02304 | 64.6034 | 0.01538 | 162.603 | 0.45956 | 260.737 | 0.80513 | 358.87  |
| 0.02126 | 64.7367 | 0.0143  | 162.737 | 0.45987 | 260.87  | 0.80605 | 359.003 |
| 0.02292 | 64.8701 | 0.01277 | 162.87  | 0.46165 | 261.003 | 0.80434 | 359.137 |
| 0.02137 | 65.0034 | 0.01648 | 163.003 | 0.46142 | 261.137 | 0.80667 | 359.27  |
| 0.02302 | 65.1367 | 0.01934 | 163.137 | 0.46403 | 261.27  | 0.80607 | 359.403 |
| 0.0227  | 65.2701 | 0.01991 | 163.27  | 0.46503 | 261.403 | 0.8054  | 359.537 |
| 0.02421 | 65.4034 | 0.02293 | 163.403 | 0.4725  | 261.537 | 0.80818 | 359.67  |
| 0.0234  | 65.537  | 0.02569 | 163.537 | 0.47026 | 261.67  | 0.80836 | 359.804 |
| 0.02229 | 65.6703 | 0.02582 | 163.67  | 0.46879 | 261.803 | 0.80727 | 359.937 |
| 0.02356 | 65.8036 | 0.02666 | 163.803 | 0.47054 | 261.937 | 0.80751 | 360.07  |
| 0.02158 | 65.9367 | 0.02477 | 163.937 | 0.46999 | 262.07  | 0.80993 | 360.203 |
| 0.02092 | 66.0701 | 0.02332 | 164.07  | 0.47248 | 262.203 | 0.80875 | 360.337 |
| 0.02036 | 66.2034 | 0.02488 | 164.203 | 0.47329 | 262.337 | 0.80919 | 360.47  |
| 0.02224 | 66.3367 | 0.02533 | 164.337 | 0.47252 | 262.47  | 0.80961 | 360.603 |
| 0.02156 | 66.4701 | 0.02348 | 164.47  | 0.4821  | 262.603 | 0.80871 | 360.737 |
| 0.01976 | 66.6034 | 0.02639 | 164.603 | 0.47617 | 262.737 | 0.80848 | 360.87  |
| 0.02266 | 66.737  | 0.02734 | 164.737 | 0.47694 | 262.87  | 0.80914 | 361.003 |
| 0.02301 | 66.8703 | 0.02423 | 164.87  | 0.47857 | 263.003 | 0.81036 | 361.137 |
| 0.02286 | 67.0036 | 0.02359 | 165.003 | 0.47999 | 263.137 | 0.80886 | 361.27  |
| 0.02537 | 67.1367 | 0.02329 | 165.137 | 0.48166 | 263.27  | 0.81027 | 361.403 |
| 0.02254 | 67.2701 | 0.02231 | 165.27  | 0.48282 | 263.403 | 0.8097  | 361.537 |
| 0.02206 | 67.4034 | 0.02182 | 165.403 | 0.48474 | 263.537 | 0.80938 | 361.67  |
| 0.02287 | 67.5367 | 0.02206 | 165.537 | 0.48489 | 263.67  | 0.80962 | 361.804 |
| 0.0217  | 67.6703 | 0.02338 | 165.67  | 0.48512 | 263.803 | 0.81108 | 361.937 |
| 0.02314 | 67.8036 | 0.0234  | 165.803 | 0.48616 | 263.937 | 0.80833 | 362.07  |
| 0.02331 | 67.9367 | 0.02298 | 165.937 | 0.49005 | 264.07  | 0.80962 | 362.204 |
| 0.02166 | 68.0701 | 0.02268 | 166.07  | 0.48927 | 264.203 | 0.81104 | 362.337 |
| 0.0224  | 68.2036 | 0.02429 | 166.203 | 0.48963 | 264.337 | 0.8113  | 362.47  |
| 0.02194 | 68.3367 | 0.02267 | 166.337 | 0.49026 | 264.47  | 0.81024 | 362.603 |
|         |         |         |         |         |         |         |         |

| 0.02 |      | 68.4703 | 0.02306 | 166.47  | 0.49531 | 264.603 | 0.81008 | 362.737 |
|------|------|---------|---------|---------|---------|---------|---------|---------|
| 0.02 |      | 68.6034 | 0.02224 | 166.603 | 0.49359 | 264.737 | 0.81031 | 362.87  |
| 0.02 |      | 68.7367 | 0.0223  | 166.737 | 0.49389 | 264.87  | 0.81131 | 363.004 |
| 0.02 |      | 68.8701 | 0.0232  | 166.87  | 0.49499 | 265.004 | 0.81097 | 363.137 |
| 0.02 |      | 69.0034 | 0.02298 | 167.003 | 0.50176 | 265.137 | 0.81243 | 363.27  |
| 0.02 | 293  | 69.1367 | 0.02096 | 167.137 | 0.4979  | 265.27  | 0.81109 | 363.404 |
| 0.02 | 2318 | 69.2701 | 0.0229  | 167.27  | 0.49865 | 265.404 | 0.81288 | 363.537 |
| 0.02 | 2172 | 69.4034 | 0.02354 | 167.403 | 0.49925 | 265.537 | 0.81432 | 363.67  |
| 0.02 | 2444 | 69.5367 | 0.02236 | 167.537 | 0.49939 | 265.67  | 0.81198 | 363.803 |
| 0.0  | )24  | 69.6701 | 0.02243 | 167.67  | 0.50155 | 265.803 | 0.81169 | 363.937 |
| 0.02 | 229  | 69.8034 | 0.02168 | 167.803 | 0.50198 | 265.937 | 0.81363 | 364.07  |
| 0.02 | 233  | 69.9367 | 0.02232 | 167.937 | 0.50225 | 266.07  | 0.81279 | 364.203 |
| 0.02 | 2325 | 70.0701 | 0.02081 | 168.07  | 0.50322 | 266.203 | 0.81087 | 364.337 |
| 0.02 | 243  | 70.2034 | 0.02221 | 168.203 | 0.50404 | 266.337 | 0.81264 | 364.47  |
| 0.02 | .419 | 70.3367 | 0.02187 | 168.337 | 0.50571 | 266.47  | 0.81407 | 364.603 |
| 0.02 | 2376 | 70.4701 | 0.02029 | 168.47  | 0.50761 | 266.603 | 0.8151  | 364.737 |
| 0.02 | 2448 | 70.6034 | 0.02123 | 168.603 | 0.51045 | 266.737 | 0.81326 | 364.87  |
| 0.02 | 2418 | 70.7367 | 0.02099 | 168.737 | 0.50722 | 266.87  | 0.81454 | 365.004 |
| 0.02 | 2487 | 70.8701 | 0.02286 | 168.87  | 0.50943 | 267.003 | 0.81604 | 365.137 |
| 0.02 | 2516 | 71.0034 | 0.02246 | 169.003 | 0.5089  | 267.137 | 0.81277 | 365.27  |
| 0.02 | .439 | 71.1367 | 0.02175 | 169.137 | 0.51084 | 267.27  | 0.81443 | 365.404 |
| 0.02 | 2564 | 71.2703 | 0.02046 | 169.27  | 0.51269 | 267.403 | 0.81645 | 365.537 |
| 0.02 | 2363 | 71.4034 | 0.02345 | 169.403 | 0.51253 | 267.537 | 0.81384 | 365.67  |
| 0.02 | 229  | 71.5367 | 0.02219 | 169.537 | 0.51783 | 267.67  | 0.81441 | 365.803 |
| 0.02 | 2415 | 71.6701 | 0.02176 | 169.67  | 0.51531 | 267.803 | 0.81716 | 365.937 |
| 0.02 | 416  | 71.8034 | 0.02372 | 169.803 | 0.51481 | 267.937 | 0.81486 | 366.07  |
| 0.02 | 279  | 71.937  | 0.02689 | 169.937 | 0.51602 | 268.07  | 0.81529 | 366.203 |
| 0.02 | 245  | 72.0703 | 0.02597 | 170.07  | 0.5166  | 268.204 | 0.81723 | 366.337 |
| 0.02 | 241  | 72.2036 | 0.02348 | 170.203 | 0.51783 | 268.337 | 0.81649 | 366.47  |
| 0.02 | 292  | 72.337  | 0.02438 | 170.337 | 0.51859 | 268.47  | 0.81454 | 366.603 |
| 0.02 | 2378 | 72.4703 | 0.0265  | 170.47  | 0.51865 | 268.604 | 0.81823 | 366.737 |
| 0.02 | 2418 | 72.6034 | 0.02564 | 170.603 | 0.52165 | 268.737 | 0.8218  | 366.87  |
| 0.02 | 2526 | 72.7367 | 0.02585 | 170.737 | 0.52142 | 268.87  | 0.81549 | 367.003 |
| 0.02 | 2408 | 72.8701 | 0.02586 | 170.87  | 0.52272 | 269.004 | 0.81792 | 367.137 |
| 0.02 | 2526 | 73.0034 | 0.0252  | 171.004 | 0.52473 | 269.137 | 0.81804 | 367.27  |
| 0.02 | 2581 | 73.1367 | 0.02485 | 171.137 | 0.52415 | 269.27  | 0.81703 | 367.404 |
| 0.02 | 2596 | 73.2701 | 0.0262  | 171.27  | 0.52561 | 269.404 | 0.8169  | 367.537 |
| 0.02 | 611  | 73.4036 | 0.02715 | 171.403 | 0.53133 | 269.537 | 0.81975 | 367.67  |
| 0.02 | 2746 | 73.537  | 0.02612 | 171.537 | 0.52828 | 269.67  | 0.81777 | 367.803 |
| 0.02 | .923 | 73.6701 | 0.02671 | 171.67  | 0.52796 | 269.804 | 0.81652 | 367.937 |
|      |      |         |         |         |         |         |         |         |

| 0.02496 | 73.8034 | 0.0294  | 171.803 | 0.52901 | 269.937 | 0.81869 | 368.07  |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.02535 | 73.9367 | 0.02749 | 171.937 | 0.53232 | 270.07  | 0.82142 | 368.204 |
| 0.02489 | 74.0703 | 0.02927 | 172.07  | 0.53136 | 270.204 | 0.81888 | 368.337 |
| 0.02495 | 74.2034 | 0.02872 | 172.203 | 0.53271 | 270.337 | 0.81925 | 368.47  |
| 0.02394 | 74.3367 | 0.02895 | 172.337 | 0.53237 | 270.47  | 0.82035 | 368.603 |
| 0.02486 | 74.4701 | 0.02855 | 172.47  | 0.53941 | 270.604 | 0.81918 | 368.737 |
| 0.02504 | 74.6034 | 0.02955 | 172.603 | 0.53279 | 270.737 | 0.81892 | 368.87  |
| 0.02513 | 74.737  | 0.03051 | 172.737 | 0.5335  | 270.87  | 0.82239 | 369.003 |
| 0.02549 | 74.8703 | 0.0269  | 172.87  | 0.53473 | 271.004 | 0.82199 | 369.137 |
| 0.02691 | 75.0036 | 0.03041 | 173.003 | 0.53523 | 271.137 | 0.82174 | 369.27  |
| 0.02617 | 75.137  | 0.03107 | 173.137 | 0.5384  | 271.27  | 0.82308 | 369.403 |
| 0.02518 | 75.2703 | 0.03198 | 173.27  | 0.53841 | 271.403 | 0.8204  | 369.537 |
| 0.02589 | 75.4036 | 0.03321 | 173.403 | 0.53781 | 271.537 | 0.81985 | 369.67  |
| 0.02548 | 75.5367 | 0.03011 | 173.537 | 0.53824 | 271.67  | 0.82109 | 369.803 |
| 0.02452 | 75.6701 | 0.03231 | 173.67  | 0.54087 | 271.803 | 0.82139 | 369.937 |
| 0.0239  | 75.8034 | 0.03173 | 173.803 | 0.54676 | 271.937 | 0.82086 | 370.07  |
| 0.02389 | 75.937  | 0.03228 | 173.937 | 0.54299 | 272.07  | 0.82249 | 370.203 |
| 0.02421 | 76.0701 | 0.03283 | 174.07  | 0.54387 | 272.204 | 0.82282 | 370.337 |
| 0.02526 | 76.2036 | 0.03401 | 174.203 | 0.54528 | 272.337 | 0.82097 | 370.47  |
| 0.02516 | 76.3367 | 0.03318 | 174.337 | 0.54593 | 272.47  | 0.82184 | 370.604 |
| 0.02499 | 76.4701 | 0.03159 | 174.47  | 0.55111 | 272.604 | 0.82386 | 370.737 |
| 0.02757 | 76.6034 | 0.03156 | 174.603 | 0.54819 | 272.737 | 0.82277 | 370.87  |
| 0.02499 | 76.737  | 0.03165 | 174.737 | 0.54844 | 272.87  | 0.8227  | 371.004 |
| 0.02421 | 76.8703 | 0.03239 | 174.87  | 0.54934 | 273.004 | 0.82342 | 371.137 |
| 0.02482 | 77.0036 | 0.03493 | 175.003 | 0.54855 | 273.137 | 0.82364 | 371.27  |
| 0.02634 | 77.1367 | 0.03502 | 175.137 | 0.55097 | 273.27  | 0.8219  | 371.403 |
| 0.02597 | 77.2703 | 0.0357  | 175.27  | 0.55229 | 273.404 | 0.82345 | 371.537 |
| 0.02612 | 77.4034 | 0.03702 | 175.403 | 0.55267 | 273.537 | 0.82388 | 371.67  |
| 0.02778 | 77.5367 | 0.03535 | 175.537 | 0.5537  | 273.67  | 0.82157 | 371.803 |
| 0.02434 | 77.6701 | 0.03572 | 175.67  | 0.55422 | 273.804 | 0.82389 | 371.937 |
| 0.02515 | 77.8034 | 0.03506 | 175.803 | 0.55649 | 273.937 | 0.82214 | 372.07  |
| 0.0243  | 77.9367 | 0.03548 | 175.937 | 0.55833 | 274.07  | 0.82172 | 372.203 |
| 0.02762 | 78.0701 | 0.0349  | 176.07  | 0.55915 | 274.203 | 0.82275 | 372.337 |
| 0.02691 | 78.2036 | 0.03548 | 176.204 | 0.56053 | 274.337 | 0.8248  | 372.47  |
| 0.02588 | 78.337  | 0.03688 | 176.337 | 0.56127 | 274.47  | 0.823   | 372.603 |
| 0.02599 | 78.4703 | 0.03785 | 176.47  | 0.56145 | 274.603 | 0.82524 | 372.737 |
| 0.02571 | 78.6034 | 0.03647 | 176.604 | 0.56343 | 274.737 | 0.82583 | 372.87  |
| 0.02571 | 78.7367 | 0.03681 | 176.737 | 0.56396 | 274.87  | 0.82434 | 373.003 |
| 0.02523 | 78.8701 | 0.03808 | 176.87  | 0.564   | 275.003 | 0.82539 | 373.137 |
| 0.02567 | 79.0034 | 0.03773 | 177.003 | 0.57099 | 275.137 | 0.82612 | 373.27  |
|         |         |         |         |         |         |         |         |

| 0.02388 | 79.137  | 0.03813 | 177.137 | 0.56701 | 275.27  | 0.82556 | 373.403 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.02455 | 79.2701 | 0.03786 | 177.27  | 0.56842 | 275.403 | 0.82641 | 373.537 |
| 0.02645 | 79.4036 | 0.0382  | 177.403 | 0.56689 | 275.537 | 0.82514 | 373.67  |
| 0.02715 | 79.537  | 0.03833 | 177.537 | 0.5703  | 275.67  | 0.82718 | 373.803 |
| 0.02705 | 79.6703 | 0.0384  | 177.67  | 0.57091 | 275.803 | 0.827   | 373.937 |
| 0.02633 | 79.8034 | 0.03992 | 177.804 | 0.57069 | 275.937 | 0.82694 | 374.07  |
| 0.02737 | 79.937  | 0.0397  | 177.937 | 0.57202 | 276.07  | 0.82625 | 374.203 |
| 0.02817 | 80.0703 | 0.03901 | 178.07  | 0.57339 | 276.203 | 0.82683 | 374.337 |
| 0.02676 | 80.2036 | 0.03937 | 178.203 | 0.57433 | 276.337 | 0.82574 | 374.47  |
| 0.02645 | 80.337  | 0.04068 | 178.337 | 0.57582 | 276.47  | 0.82751 | 374.604 |
| 0.02734 | 80.4703 | 0.03986 | 178.47  | 0.5752  | 276.603 | 0.82661 | 374.737 |
| 0.02582 | 80.6036 | 0.04087 | 178.604 | 0.57766 | 276.737 | 0.82575 | 374.87  |
| 0.02681 | 80.737  | 0.04121 | 178.737 | 0.57805 | 276.87  | 0.82753 | 375.004 |
| 0.02422 | 80.8701 | 0.04068 | 178.87  | 0.57876 | 277.003 | 0.82712 | 375.137 |
| 0.02476 | 81.0036 | 0.03988 | 179.003 | 0.58632 | 277.137 | 0.8267  | 375.27  |
| 0.02633 | 81.137  | 0.04163 | 179.137 | 0.58028 | 277.27  | 0.82879 | 375.403 |
| 0.02594 | 81.2701 | 0.04145 | 179.27  | 0.58129 | 277.403 | 0.83004 | 375.537 |
| 0.02676 | 81.4034 | 0.04153 | 179.403 | 0.58173 | 277.537 | 0.82571 | 375.67  |
| 0.02637 | 81.537  | 0.04149 | 179.537 | 0.58378 | 277.67  | 0.82978 | 375.803 |
| 0.02634 | 81.6703 | 0.04238 | 179.67  | 0.58565 | 277.803 | 0.83081 | 375.937 |
| 0.02698 | 81.8034 | 0.0428  | 179.803 | 0.58485 | 277.937 | 0.83328 | 376.07  |
| 0.02665 | 81.9367 | 0.04224 | 179.937 | 0.58618 | 278.07  | 0.83614 | 376.203 |
| 0.02757 | 82.0701 | 0.04342 | 180.07  | 0.58611 | 278.203 | 0.834   | 376.337 |
| 0.02713 | 82.2034 | 0.04281 | 180.203 | 0.58651 | 278.337 | 0.83449 | 376.47  |
| 0.02907 | 82.337  | 0.04389 | 180.337 | 0.58772 | 278.47  | 0.83546 | 376.604 |
| 0.02698 | 82.4701 | 0.0444  | 180.47  | 0.58891 | 278.603 | 0.8337  | 376.737 |
| 0.02625 | 82.6036 | 0.04395 | 180.603 | 0.58876 | 278.737 | 0.83477 | 376.87  |
| 0.0275  | 82.737  | 0.0462  | 180.737 | 0.5894  | 278.87  | 0.83538 | 377.003 |
| 0.02984 | 82.8703 | 0.04599 | 180.87  | 0.59048 | 279.003 | 0.83394 | 377.137 |
| 0.0292  | 83.0036 | 0.04533 | 181.003 | 0.59104 | 279.137 | 0.83551 | 377.27  |
| 0.0296  | 83.137  | 0.0477  | 181.137 | 0.59146 | 279.27  | 0.83597 | 377.403 |
| 0.03006 | 83.2701 | 0.04584 | 181.27  | 0.5925  | 279.403 | 0.83505 | 377.537 |
| 0.02745 | 83.4034 | 0.04723 | 181.403 | 0.59502 | 279.537 | 0.83528 | 377.67  |
| 0.02788 | 83.5367 | 0.0465  | 181.537 | 0.5949  | 279.67  | 0.8344  | 377.803 |
| 0.02715 | 83.6701 | 0.04611 | 181.67  | 0.59533 | 279.803 | 0.8344  | 377.937 |
| 0.02822 | 83.8034 | 0.04763 | 181.804 | 0.5966  | 279.937 | 0.8333  | 378.07  |
| 0.02781 | 83.9367 | 0.04652 | 181.937 | 0.59634 | 280.07  | 0.8335  | 378.203 |
| 0.02787 | 84.0701 | 0.04756 | 182.07  | 0.59781 | 280.203 | 0.83245 | 378.337 |
| 0.02848 | 84.2034 | 0.04839 | 182.203 | 0.6017  | 280.337 | 0.83545 | 378.47  |
| 0.02938 | 84.3367 | 0.04906 | 182.337 | 0.59756 | 280.47  | 0.8352  | 378.604 |
|         |         |         |         |         |         |         |         |

| 0.02669 | 84.4701 | 0.04852 | 182.47  | 0.60039 | 280.603 | 0.8364  | 378.737 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.02648 | 84.6036 | 0.04901 | 182.603 | 0.59881 | 280.737 | 0.83593 | 378.87  |
| 0.02643 | 84.7367 | 0.04878 | 182.737 | 0.60649 | 280.87  | 0.83688 | 379.003 |
| 0.0249  | 84.8701 | 0.04895 | 182.87  | 0.60057 | 281.003 | 0.83414 | 379.137 |
| 0.02593 | 85.0034 | 0.05004 | 183.003 | 0.60268 | 281.137 | 0.83267 | 379.27  |
| 0.02654 | 85.137  | 0.04916 | 183.137 | 0.60365 | 281.27  | 0.8358  | 379.403 |
| 0.02735 | 85.2701 | 0.04968 | 183.27  | 0.60629 | 281.403 | 0.83384 | 379.537 |
| 0.02736 | 85.4034 | 0.04904 | 183.403 | 0.60632 | 281.537 | 0.83142 | 379.67  |
| 0.02757 | 85.5367 | 0.0491  | 183.537 | 0.60559 | 281.67  | 0.83054 | 379.803 |
| 0.02917 | 85.6703 | 0.05196 | 183.67  | 0.60585 | 281.803 | 0.83336 | 379.937 |
| 0.02793 | 85.8036 | 0.05261 | 183.803 | 0.60634 | 281.937 | 0.83359 | 380.07  |
| 0.0278  | 85.9367 | 0.05142 | 183.937 | 0.60748 | 282.07  | 0.83303 | 380.203 |
| 0.02728 | 86.0703 | 0.05134 | 184.07  | 0.60441 | 282.203 | 0.83248 | 380.337 |
| 0.02671 | 86.2034 | 0.05492 | 184.203 | 0.6036  | 282.337 | 0.83359 | 380.47  |
| 0.02563 | 86.3367 | 0.05345 | 184.337 | 0.60588 | 282.47  | 0.83319 | 380.604 |
| 0.02719 | 86.4703 | 0.05502 | 184.47  | 0.60608 | 282.603 | 0.83358 | 380.737 |
| 0.02524 | 86.6034 | 0.05421 | 184.604 | 0.6076  | 282.737 | 0.83313 | 380.87  |
| 0.02711 | 86.7367 | 0.05535 | 184.737 | 0.60644 | 282.87  | 0.8325  | 381.003 |
| 0.02598 | 86.8701 | 0.05587 | 184.87  | 0.60559 | 283.003 | 0.83185 | 381.137 |
| 0.02743 | 87.0036 | 0.05707 | 185.003 | 0.60754 | 283.137 | 0.83264 | 381.27  |
| 0.02571 | 87.137  | 0.05489 | 185.137 | 0.60881 | 283.27  | 0.83396 | 381.403 |
| 0.02737 | 87.2703 | 0.05632 | 185.27  | 0.60871 | 283.403 | 0.83533 | 381.537 |
| 0.02704 | 87.4034 | 0.05674 | 185.403 | 0.60948 | 283.537 | 0.83502 | 381.67  |
| 0.02397 | 87.537  | 0.05667 | 185.537 | 0.61101 | 283.67  | 0.83362 | 381.803 |
| 0.02593 | 87.6703 | 0.05575 | 185.67  | 0.61041 | 283.803 | 0.83468 | 381.937 |
| 0.02925 | 87.8036 | 0.057   | 185.804 | 0.61282 | 283.937 | 0.83476 | 382.07  |
| 0.03361 | 87.937  | 0.05849 | 185.937 | 0.61355 | 284.07  | 0.83329 | 382.203 |
| 0.03328 | 88.0701 | 0.05732 | 186.07  | 0.61397 | 284.203 | 0.83447 | 382.337 |
| 0.03642 | 88.2034 | 0.05662 | 186.203 | 0.61686 | 284.337 | 0.83321 | 382.47  |
| 0.03566 | 88.3367 | 0.05671 | 186.337 | 0.61653 | 284.47  | 0.8342  | 382.604 |
| 0.03335 | 88.4701 | 0.0584  | 186.47  | 0.61661 | 284.603 | 0.83336 | 382.737 |
| 0.0299  | 88.6034 | 0.05897 | 186.603 | 0.61512 | 284.737 | 0.83539 | 382.87  |
| 0.02689 | 88.7367 | 0.05782 | 186.737 | 0.61667 | 284.87  | 0.83436 | 383.004 |
| 0.02685 | 88.8701 | 0.05904 | 186.87  | 0.61815 | 285.004 | 0.8358  | 383.137 |
| 0.02642 | 89.0036 | 0.06007 | 187.003 | 0.62341 | 285.137 | 0.83544 | 383.27  |
| 0.02651 | 89.1367 | 0.05967 | 187.137 | 0.61767 | 285.27  | 0.83487 | 383.404 |
| 0.0266  | 89.2701 | 0.05979 | 187.27  | 0.62119 | 285.403 | 0.83526 | 383.537 |
| 0.02635 | 89.4034 | 0.06057 | 187.404 | 0.6222  | 285.537 | 0.83596 | 383.67  |
| 0.02698 | 89.5367 | 0.05984 | 187.537 | 0.62301 | 285.67  | 0.83405 | 383.803 |
| 0.02821 | 89.6701 | 0.06034 | 187.67  | 0.62687 | 285.804 | 0.83539 | 383.937 |
|         |         |         |         |         |         |         |         |

| 0.02875 | 89.8034 | 0.06167 | 187.803 | 0.62423 | 285.937 | 0.83511 | 384.07  |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.0279  | 89.9367 | 0.06087 | 187.937 | 0.62279 | 286.07  | 0.83472 | 384.203 |
| 0.02679 | 90.0703 | 0.06177 | 188.07  | 0.62435 | 286.204 | 0.8356  | 384.337 |
| 0.02611 | 90.2034 | 0.062   | 188.203 | 0.62474 | 286.337 | 0.8352  | 384.47  |
| 0.02642 | 90.3367 | 0.06232 | 188.337 | 0.62692 | 286.47  | 0.83632 | 384.604 |
| 0.02672 | 90.4701 | 0.06301 | 188.47  | 0.62708 | 286.603 | 0.8341  | 384.737 |
| 0.02631 | 90.6034 | 0.0633  | 188.603 | 0.63053 | 286.737 | 0.83519 | 384.87  |
| 0.02509 | 90.737  | 0.06268 | 188.737 | 0.62854 | 286.87  | 0.83497 | 385.004 |
| 0.0257  | 90.8703 | 0.06293 | 188.87  | 0.62995 | 287.004 | 0.83512 | 385.137 |
| 0.0242  | 91.0034 | 0.06499 | 189.004 | 0.63022 | 287.137 | 0.83466 | 385.27  |
| 0.0244  | 91.1367 | 0.06486 | 189.137 | 0.63101 | 287.27  | 0.83535 | 385.403 |
| 0.02519 | 91.2701 | 0.06369 | 189.27  | 0.63131 | 287.403 | 0.83451 | 385.537 |
| 0.0276  | 91.4034 | 0.06457 | 189.403 | 0.63198 | 287.537 | 0.83496 | 385.67  |
| 0.03193 | 91.5367 | 0.06453 | 189.537 | 0.63293 | 287.67  | 0.8344  | 385.804 |
| 0.03321 | 91.6701 | 0.06628 | 189.67  | 0.63412 | 287.803 | 0.83389 | 385.937 |
| 0.03269 | 91.8034 | 0.0664  | 189.803 | 0.63457 | 287.937 | 0.83596 | 386.07  |
| 0.03618 | 91.9367 | 0.06608 | 189.937 | 0.63688 | 288.07  | 0.83765 | 386.204 |
| 0.03636 | 92.0703 | 0.06522 | 190.07  | 0.63643 | 288.203 | 0.83533 | 386.337 |
| 0.03546 | 92.2036 | 0.06684 | 190.203 | 0.63529 | 288.337 | 0.83643 | 386.47  |
| 0.03555 | 92.337  | 0.06942 | 190.337 | 0.63755 | 288.47  | 0.8354  | 386.603 |
| 0.03628 | 92.4703 | 0.06967 | 190.47  | 0.63747 | 288.603 | 0.83637 | 386.737 |
| 0.03721 | 92.6034 | 0.06824 | 190.603 | 0.63886 | 288.737 | 0.83482 | 386.87  |
| 0.03595 | 92.7367 | 0.069   | 190.737 | 0.63972 | 288.87  | 0.83624 | 387.003 |
| 0.03675 | 92.8701 | 0.06868 | 190.87  | 0.64299 | 289.003 | 0.83685 | 387.137 |
| 0.03554 | 93.0034 | 0.06821 | 191.003 | 0.63943 | 289.137 | 0.8361  | 387.27  |
| 0.03349 | 93.137  | 0.07229 | 191.137 | 0.64154 | 289.27  | 0.83728 | 387.403 |
| 0.03374 | 93.2703 | 0.06932 | 191.27  | 0.6416  | 289.403 | 0.8363  | 387.537 |
| 0.03428 | 93.4034 | 0.06965 | 191.403 | 0.64139 | 289.537 | 0.83749 | 387.67  |
| 0.03123 | 93.5367 | 0.07113 | 191.537 | 0.64422 | 289.67  | 0.83595 | 387.803 |
| 0.03256 | 93.6701 | 0.07104 | 191.67  | 0.64474 | 289.803 | 0.83862 | 387.937 |
| 0.03173 | 93.8034 | 0.07258 | 191.803 | 0.64409 | 289.937 | 0.83855 | 388.07  |
| 0.03131 | 93.9367 | 0.07221 | 191.937 | 0.64489 | 290.07  | 0.83742 | 388.203 |
| 0.0289  | 94.0701 | 0.07319 | 192.07  | 0.64746 | 290.203 | 0.83841 | 388.337 |
| 0.0294  | 94.2034 | 0.07108 | 192.203 | 0.648   | 290.337 | 0.83864 | 388.47  |
| 0.02792 | 94.337  | 0.07308 | 192.337 | 0.64756 | 290.47  | 0.83886 | 388.603 |
| 0.02876 | 94.4701 | 0.07758 | 192.47  | 0.64779 | 290.603 | 0.83818 | 388.737 |
| 0.02891 | 94.6034 | 0.07404 | 192.604 | 0.6492  | 290.737 | 0.83743 | 388.87  |
| 0.03024 | 94.7367 | 0.0745  | 192.737 | 0.65159 | 290.87  | 0.83833 | 389.003 |
| 0.02907 | 94.8703 | 0.07379 | 192.87  | 0.65009 | 291.004 | 0.83933 | 389.137 |
| 0.02675 | 95.0036 | 0.07402 | 193.003 | 0.64998 | 291.137 | 0.83911 | 389.27  |
|         |         |         |         |         |         |         |         |

| 0.02885 | 95.137  | 0.07573 | 193.137 | 0.6502  | 291.27  | 0.83848 | 389.403 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| 0.02919 | 95.2701 | 0.07671 | 193.27  | 0.65106 | 291.404 | 0.83941 | 389.537 |
| 0.02837 | 95.4034 | 0.07747 | 193.403 | 0.65115 | 291.537 | 0.83907 | 389.67  |
| 0.02827 | 95.537  | 0.07684 | 193.537 | 0.64884 | 291.67  | 0.84017 | 389.803 |
| 0.02923 | 95.6703 | 0.07675 | 193.67  | 0.65295 | 291.803 | 0.8374  | 389.937 |
| 0.02697 | 95.8036 | 0.07689 | 193.804 | 0.65412 | 291.937 | 0.83862 | 390.07  |
| 0.0262  | 95.9367 | 0.07713 | 193.937 | 0.65346 | 292.07  | 0.83662 | 390.203 |
| 0.02727 | 96.0701 | 0.07755 | 194.07  | 0.65379 | 292.203 | 0.83965 | 390.337 |
| 0.02695 | 96.2034 | 0.07688 | 194.203 | 0.65496 | 292.337 | 0.83905 | 390.47  |
| 0.02732 | 96.3367 | 0.07879 | 194.337 | 0.65496 | 292.47  | 0.83906 | 390.603 |
| 0.02757 | 96.4703 | 0.07964 | 194.47  | 0.65506 | 292.603 | 0.83804 | 390.737 |
| 0.02636 | 96.6036 | 0.07889 | 194.604 | 0.65569 | 292.737 | 0.83695 | 390.87  |
| 0.02367 | 96.737  | 0.07949 | 194.737 | 0.65518 | 292.87  | 0.83595 | 391.003 |
| 0.02275 | 96.8701 | 0.08009 | 194.87  | 0.65752 | 293.003 | 0.83506 | 391.137 |
| 0.02472 | 97.0034 | 0.0798  | 195.003 | 0.66055 | 293.137 | 0.83562 | 391.27  |
| 0.02785 | 97.1367 | 0.08054 | 195.137 | 0.65795 | 293.27  | 0.83515 | 391.403 |
| 0.02915 | 97.2701 | 0.0812  | 195.27  | 0.65961 | 293.404 | 0.83634 | 391.537 |
| 0.0293  | 97.4034 | 0.08093 | 195.403 | 0.66112 | 293.537 | 0.83609 | 391.67  |
| 0.02899 | 97.5367 | 0.08691 | 195.537 | 0.65897 | 293.67  | 0.83518 | 391.803 |
| 0.0288  | 97.6701 | 0.08252 | 195.67  | 0.6622  | 293.803 | 0.83562 | 391.937 |
| 0.02797 | 97.8034 | 0.08722 | 195.803 | 0.66218 | 293.937 | 0.83516 | 392.07  |
| 0.0294  | 97.9367 | 0.08396 | 195.937 | 0.66136 | 294.07  | 0.83695 | 392.204 |
| 0.0264  | 98.0701 | 0.0855  | 196.07  | 0.66316 | 294.203 | 0.83592 | 392.337 |
| 0.0259  | 98.2036 | 0.08495 | 196.204 | 0.6631  | 294.337 | 0.83729 | 392.47  |
|         |         | 0.08652 | 196.337 | 0.66309 | 294.47  | 0.83919 | 392.604 |
|         |         |         |         |         |         |         |         |

## 2.2.2.3 Procedures for <sup>11</sup>B NMR Studies of Reaction Products

Solid-state and ionic liquid reactions carried out using either the Toepler pump or gas burette measurements were extracted with pyridine at various points in the reactions. The reaction flask was removed from the oil bath and cooled to room temperature, then dry pyridine was added to the reaction flask under  $N_2$  flow. The pyridine solution was extracted by syringe and then the <sup>11</sup>B NMR was taken.

While bmimCl is a liquid at 85 °C, it is a solid at room temperature; therefore, solid-state <sup>11</sup>B NMR analyses (at Pacific Northwest National Laboratories: 240 MHz machine spun at 10 kHz) were used to monitor the products of reactions carried out in bmimCl. All solid-state <sup>11</sup>B chemical shifts were measured relative to external NaBH<sub>4</sub> (-41 ppm) and then referenced to BF<sub>3</sub>•O(C<sub>2</sub>H<sub>5</sub>)<sub>2</sub> (0.0 ppm).

The solution <sup>11</sup>B NMR (128.4 MHz Bruker DMX-400) studies in the room temperature ionic-liquid bmimOTf were carried out by heating reaction mixtures composed of 50 mg of AB (1.6 mmol) or 50 mg of DADB (0.8 mmol) and 450 mg of ionic liquid at 85 °C in a sealed NMR tube, with the tube periodically removed from the heating bath to collect <sup>11</sup>B NMR spectra of the reaction mixture (recorded at 25 °C).

All solid-state and solution <sup>11</sup>B NMR chemical shifts are referenced to external  $BF_3 \cdot O(C_2H_5)_2$  (0.0 ppm) with a negative sign indicating an upfield shift.

## 2.3 Results and Discussion

Utilization of waste heat from a PEM fuel cell can provide for AB H<sub>2</sub>-release reaction temperatures near 85 °C.<sup>5</sup> However, as described in **Chapter 1**, at 85 °C, H<sub>2</sub>-release from solid-state AB has been shown to exhibit an induction period of up to 3 h. After hydrogen release begins, only the release of ~0.9 equiv. of H<sub>2</sub> can be achieved, rather than the 3 equiv. predicted by **Equation 2.1**, even with prolonged heating at 85 °C.<sup>4.5</sup> As a result, a number of approaches are now being explored to induce efficient AB H<sub>2</sub>-release, including, for example, activation by transition metal catalysts,<sup>10-25</sup> acid catalysts,<sup>26</sup> base catalysts<sup>27</sup> and nano and meso-porous scaffolds.<sup>28-30</sup> Most of these additives use organic solvents either as the reaction medium or as the AB transport and loading method. The use of organic solvents is not desirable due to their high volatility which would result in loss to the environment. In addition, using organic solvents would also reduce petroleum based feedstock needed for synthesis. An alternative solvent system is necessary.

#### 2.3.1 Why Use Ionic Liquids?

Ionic liquids are generally defined as salts that are relatively low viscosity liquids at temperatures below 100 °C. These salts have a number of unique properties that make them attractive substitutes for traditional organic solvents in hydrogen storage systems, including: (1) negligible vapor pressures, (2) stability to elevated temperatures, (3) the ability to dissolve a wide range of compounds and (4) a polar reaction medium that can stabilize ionic transition states and intermediates. The low volatility of these systems makes them superior to organic solvents and they have been used in a broad range of applications.<sup>31-34</sup> Their ability to stabilize ionic intermediates is critical to AB dehydropolymerization initiation as discussed in section **2.3.7**.

Another promising application in ionic liquid technology is in transition-metal catalyst immobilization. Many industrial processes use heterogeneous catalysts despite more efficient, cheaper homogenous catalysts being available due to separation issues. Ionic liquids promise to become an immobilizing solvent system for catalysis where the catalyst is solubilized in the ionic liquid while the reagents and products are held in the organic layer (biphasic system) and can therefore be easily separated. Other uses for ionic liquids include solvation for radical polymerization and catalytic cracking of polyethylene as well as electrochemical reactions.<sup>31</sup> Ionic liquids are often air and moisture stable though many are hygroscopic, needing drying before use in reactions. Traditional synthetic methods for ionic liquids require long, high temperature reaction conditions whereas new methods utilize sonication and significantly shorter reaction times.<sup>35</sup>

Some of the most common ionic liquids are composed of inorganic anions,  $X^-$ ,  $BF_4^-$ ,  $PF_6^-$ , and nitrogen-containing organic cations, such as RN,R'N-imidazolium or RN-pyridinium. **Figure 2.3** shows the structures, acronyms, and melting points of the variety of ionic liquids used in these studies. The ionic liquids are sectioned into solid and liquid (at room temperature). The two position of the imidazolium ring in ionic liquids is susceptible to attack, since the hydrogen at this position is acidic. Reactions at this hydrogen can lead to solvent degradation and/or the formation of carbene borane adducts (most often during transition-metal catalyzed reactions). Replacing the hydrogen

with a methyl group eliminates this issue and these ionic liquids are termed 'protected.' The protected ionic liquids can be obtained as either solids or liquids.

Solid ionic liquids have the advantage of easily being measured and have a wider variety of protected imidazolium rings. Liquids, as discussed in section **2.3.6**, are useful for running *in situ* <sup>11</sup>B NMR such as bmimI, bmimOTf, and mmimMeSO<sub>4</sub>. The main ionic liquid used in my work was 1-butyl-3-methylimidazolium chloride, bmimCl, since it showed good activity and was inexpensive and easy to handle. BmimCl's melting point is above room temperature, but it forms a stirrable liquid at room temperature when mixed with AB.

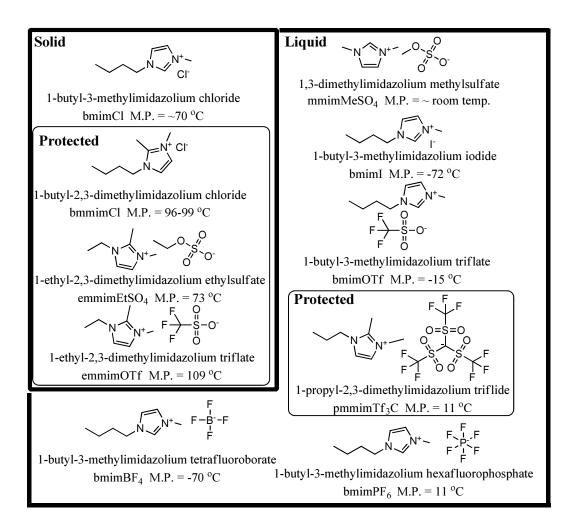
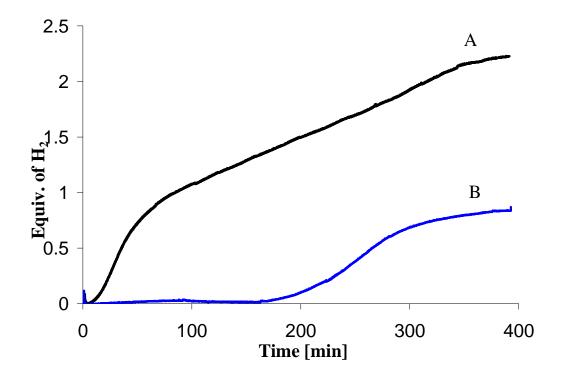



Figure 2.3 Structures of ionic liquids used in these studies.

#### 2.3.2 Procedures for AB H<sub>2</sub>-release reactions


For the experiments where the released  $H_2$  was measured with the Toepler pump, the AB (250 mg, 8.1 mmol) was loaded under  $N_2$  into ~100 mL single neck round bottom flasks with the ionic liquid (250 mg) given in **Tables 2.5-2.6**. The flasks were then evacuated, sealed, and placed in a hot oil bath preheated to the desired temperature. The flasks were opened at the indicated times and the released  $H_2$  was quantified using the Toepler pump system. Post reaction, the flasks were evacuated for 30 min through the cold trap to remove any volatile products from the reaction residue. The product residues and volatiles in the cold trap were extracted with dry glyme and analyzed by <sup>11</sup>B NMR.

For reactions using the automated gas burette, the AB (150 mg, 4.87 mmol) samples were loaded into ~100 mL flasks with calibrated volumes, along with the ionic liquid (150 mg) or tetraglyme (0.15 mL) solvents. Under a flow of helium, the flask was attached to the burette system. The system was evacuated for 30 min for reactions with the ionic liquid solutions, and for 5 min for tetraglyme solutions. The system was then backfilled with helium and allowed to equilibrate to atmospheric pressure for ~30 min. Once the system pressure equalized, the data collection program was started and the flask was immersed in the preheated oil bath. The data are reported from the point where the flask was initially plunged into the oil bath, but H<sub>2</sub>-release was not observed until the ionic-liquid/AB mixture melted. Data were recorded at 2-5 second intervals depending on the speed of the reaction. The product residues were extracted with dry glyme and analyzed by <sup>11</sup>B NMR.

### 2.3.3 Solid-State vs. Ionic Liquid H<sub>2</sub>-Release

Earlier reported<sup>4</sup> AB H<sub>2</sub>-release measurements from our lab for solid-state H<sub>2</sub>-release were periodic values obtained using a Toepler pump, but the new studies reported herein use the automated gas burette.<sup>36</sup> This method has provided both more precise and continuous release data for these reactions. A comparison of the 85  $^{\circ}$ C H<sub>2</sub>-release data, measured with the automated gas burette, obtained from solid-state AB versus AB dissolved in the 1-butyl-3-methyl-imidazolium chloride (bmimCl) ionic liquid (50:50- wt%) is presented in **Figure 2.4**. For the solid-state AB reaction, there was

negligible hydrogen production after 180 min and only 0.81 equivalents of  $H_2$  after 360 min. Other samples heated for longer times (67 h) showed that a total of only 0.9  $H_2$ -equivalents could ultimately be obtained from the solid-state AB reactions at 85 °C. In contrast, the AB/bmimCl mixture exhibited no induction period, with  $H_2$ -release beginning immediately after the solution melted, to give release of 1.0  $H_2$ -equiv. in 67 min and 2.2  $H_2$ -equiv. in 330 min. The released  $H_2$  was passed through a -78 °C trap before entering the gas burette. When the reaction was complete, the contents of the trap were extracted with glyme solvent, but <sup>11</sup>B NMR analyses of the solution showed only trace amounts of borazine.



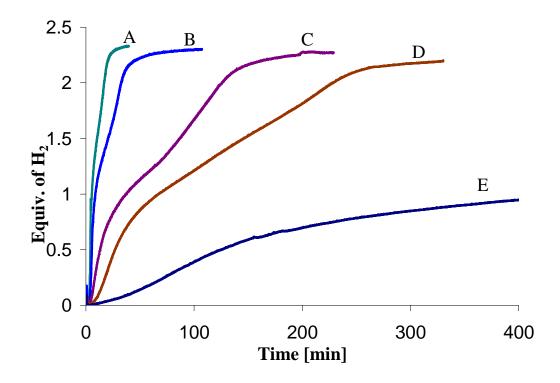
**Figure 2.4** H<sub>2</sub>-release measurements (gas burette) at 85 °C of: (A) 50-wt% AB (150 mg) in bmimCl (150 mg,) and (B) solid-state AB (150 mg).

The AB/bmimCl H<sub>2</sub>-release plot in **Figure 2.4** also clearly shows that release appears to occur in at least two steps with the release rate for the  $2^{nd}$  H<sub>2</sub>-equiv. being significantly slower than for the  $1^{st}$  equiv. Dramatic increases (**Figure 2.5**) in the rate of H<sub>2</sub>-release of the 50:50-wt% AB/bmimCl mixture for both H<sub>2</sub>-equivalents were observed as the temperature was increased with the release of 1.0 H<sub>2</sub>-equiv. in 37 min and 2.2 H<sub>2</sub>-equiv. in 161 min at 95 °C, 1.0 H<sub>2</sub>-equiv. in 9 min and 2.2 H<sub>2</sub>-equiv. in 45 min at 105 °C, and 1.0 H<sub>2</sub>-equiv. in 5 min and 2.2 H<sub>2</sub>-equiv. in 20 min at 110 °C . The 75 °C reaction did not reach 2 H<sub>2</sub>-equiv.

 Table 2.2 Times to Selected Equivalent Points of H2-Release (Gas Burette) of Ionic

| (A                     | )       | (B)                    |         |  |
|------------------------|---------|------------------------|---------|--|
| H <sub>2</sub> -Equiv. | Minutes | H <sub>2</sub> -Equiv. | Minutes |  |
| 0.25                   | 24      | 0.25                   | 231     |  |
| 0.5                    | 35      | 0.5                    | 265     |  |
| 0.75                   | 52      | 0.75                   | 323     |  |
| 1                      | 84      | 0.84                   | 385     |  |
| 1.25                   | 142     | -                      | -       |  |
| 1.5                    | 200     | -                      | -       |  |
| 1.75                   | 263     | -                      | _       |  |
| 2                      | 316     | -                      | _       |  |

Liquid and Solid-State Reactions at 85 °C


(A) 50-wt% AB (150 mg) in bmimCl (150 mg,) and (B) solid-state AB (150 mg).

(Reaction (B) stopped at 0.84 equivalents).

As discussed in **Chapter 1**, the U.S. Department of Energy (DOE) has set a 2015 gravimetric total-system target for H<sub>2</sub>-storage of 9.0 total-system-wt%.<sup>37,38</sup> The release of 2.2 H<sub>2</sub>-equiv. from a 50:50 AB/bmimCl mixture corresponds to a release of 7.2 mat-wt% H<sub>2</sub> [mat-wt% H<sub>2</sub> = H<sub>2</sub>-wt/(AB+bmimCl-wts)]. In order for an AB/ionic-liquid

system to attain the DOE total-system targets, an increase in the mat-wt% by reduction of the weight of the ionic-liquid component is necessary. As can be seen in **Figure 2.6**, it was found that significantly enhanced H<sub>2</sub>-release rates compared to the solid-state could still be obtained when employing as little as 20.2-wt% bmimCl. Thus, 2.0 H<sub>2</sub>-equiv. were released from 80:20 AB/bmimCl solutions in only 52 min and 157 min at 120  $^{\circ}$ C and 110  $^{\circ}$ C, respectively, with both solutions then ultimately giving 2.2 H<sub>2</sub>-equiv. at longer times. The final release observed for these mixtures corresponds to an 11.4 mat-wt% H<sub>2</sub>-release.

The 85 °C H<sub>2</sub>-release data (Toepler pump measurements) in **Table 2.5** and **Figure 2.7** show that AB H<sub>2</sub>-release is activated in a variety of 50:50-wt% AB/ionic-liquid mixtures, but that these mixtures exhibit a range of H<sub>2</sub>-release extents and rates. The biggest differences were observed for the release of the  $2^{nd}$  equivalent. The bmimCl, bmmimCl, bmimBF<sub>4</sub>, mmimMeSO<sub>4</sub> and emmimEtSO<sub>4</sub> (refer to **Figure 2.3** for structures) mixtures all yielded over 2 H<sub>2</sub>-equiv. at reasonably comparable rates, while the other mixtures showed greatly decreased release rates beyond the  $1^{st}$  equiv. For the pmmimTf<sub>3</sub>C mixture, H<sub>2</sub>-release stopped, as was observed for the AB solid-state reactions at 85 °C, after only ~0.9 H<sub>2</sub>-equiv. As shown in **Table 2.6** and **Figure 2.8**, the H<sub>2</sub>-release rates were significantly decreased upon lowering the temperature with the mmimMeSO<sub>4</sub> and emmimEtSO<sub>4</sub> mixtures being the most active. At 45 °C, bmimCl and bmmimCl showed little activity.



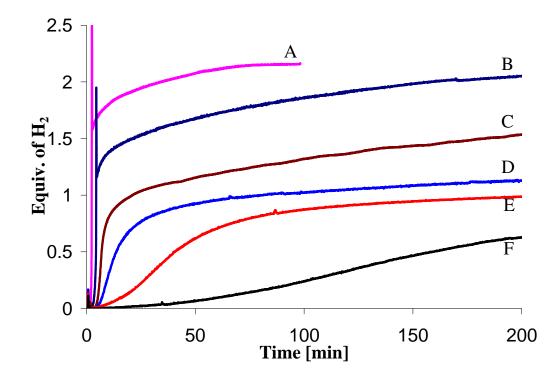

**Figure 2.5** H<sub>2</sub>-release measurements (gas burette) of 50-wt% AB (150 mg) in bmimCl (150 mg) at: (A) 110 °C, (B) 105 °C, (C) 95 °C, (D) 85 °C and (E) 75 °C.

 Table 2.3 Times to Selected Equivalent Points of H2-Release (Gas Burette) of

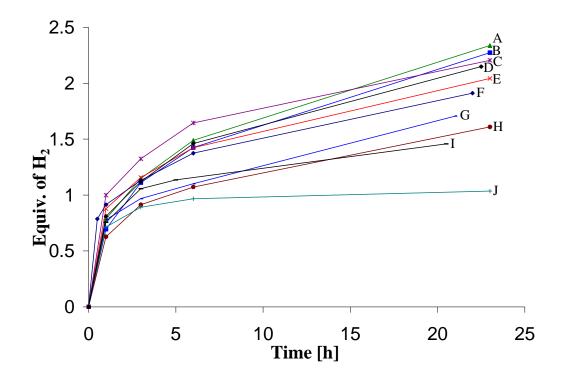
| 50-wt% AB (150 mg) in | BmimCl (150 mg) at Different | Temperatures |
|-----------------------|------------------------------|--------------|
|-----------------------|------------------------------|--------------|

| (/               | A)      | (]               | 3)      | ((               | C)      | (I               | D)      |
|------------------|---------|------------------|---------|------------------|---------|------------------|---------|
| H <sub>2</sub> - | Minutes |
| Equiv.           |         | Equiv.           |         | Equiv.           |         | Equiv.           |         |
| 0.25             | 3       | 0.25             | 5       | 0.25             | 8       | 0.25             | 18      |
| 0.5              | 4       | 0.5              | 5       | 0.5              | 13      | 0.5              | 27      |
| 0.75             | 4       | 0.75             | 6       | 0.75             | 21      | 0.75             | 40      |
| 1                | 5       | 1                | 9       | 1                | 37      | 1                | 67      |
| 1.25             | 7       | 1.25             | 13      | 1.25             | 63      | 1.25             | 106     |
| 1.5              | 10      | 1.5              | 20      | 1.5              | 87      | 1.5              | 146     |
| 1.75             | 14      | 1.75             | 27      | 1.75             | 106     | 1.75             | 190     |
| 2                | 17      | 2                | 32      | 2                | 126     | 2                | 228     |

(A) 110 °C, (B) 105 °C, (C) 95 °C, (D) 85 °C and (E) 75 °C.



**Figure 2.6** H<sub>2</sub>-release measurements (gas burette) of AB (150 mg) in 20.2-wt% bmimCl (38 mg): (A) 120  $^{\circ}$ C, (B) 110  $^{\circ}$ C, (C) 105  $^{\circ}$ C, (D) 95  $^{\circ}$ C, (E) 85  $^{\circ}$ C and (F) 75  $^{\circ}$ C. (The early spike in the data is caused by the initial delay of the burette to respond to H<sub>2</sub>-release)


# Table 2.4 Times to Selected Equivalent Points of H2-Release (Gas Burette) of AB

| (/               | A)      | ()               | 3)      | ()               | C)      | (I               | D)      |
|------------------|---------|------------------|---------|------------------|---------|------------------|---------|
| H <sub>2</sub> - | Minutes |
| Equiv.           |         | Equiv.           |         | Equiv.           |         | Equiv.           |         |
| 0.25             | 2       | 0.25             | 4       | 0.25             | 6       | 0.25             | 9       |
| 0.5              | 2       | 0.5              | 4       | 0.5              | 7       | 0.5              | 14      |
| 0.75             | 2       | 0.75             | 4       | 0.75             | 9       | 0.75             | 24      |
| 1                | 2       | 1                | 4       | 1                | 21      | 1                | 80      |
| 1.25             | 2       | 1.25             | 6       | 1.25             | 77      | 1.25             | 331     |
| 1.5              | 2       | 1.5              | 21      | 1.5              | 183     | 1.5              | 753     |
| 1.75             | 7       | 1.75             | 67      | 1.75             | 374     | 1.75             | 1278    |
| 2                | 34      | 2                | 158     | 2                | 767     | -                | -       |

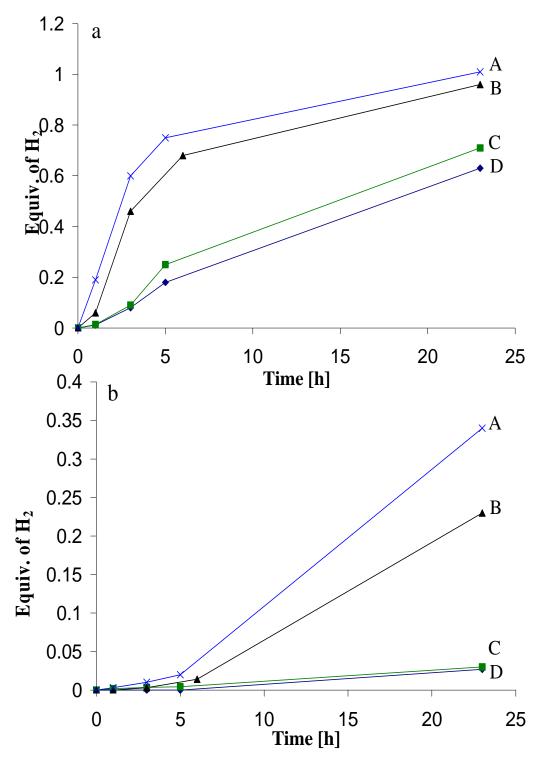
(150 mg) in 20.2-wt% BmimCl (38 mg) at Different Temperatures

(A) 120 °C, (B) 110 °C, (C) 105 °C, (D) 95 °C, (E) 85 °C and (F) 75 °C (Reaction (B)

stopped at 0.84 equivalents).



**Figure 2.7** H<sub>2</sub>-release measurements (Toepler pump) of the reaction of 50-wt% AB (250 mg) at 85 °C in 250 mg of: (A) bmmimCl, (B) bmmCl, (C) emmimEtSO<sub>4</sub>, (D) bmimBF<sub>4</sub>, (E) mmimMeSO<sub>4</sub>, (F) bmimOTf, (G) emmimOTf, (H) bmimI, (I) bmimPF<sub>6</sub> and (J) pmmimTf<sub>3</sub>C.


 Table 2.5
 H2-Release Data (Toepler pump) for AB/Ionic-Liquid (50-wt%) Reactions

at 85 °C

| Ionic   | Time | H <sub>2</sub> -Released |      |
|---------|------|--------------------------|------|
| Liquid  | [h]  | equiv.                   | mmol |
| bmimCl  | 1    | 0.70                     | 5.63 |
|         | 3    | 1.11                     | 9.00 |
|         | 6    | 1.42                     | 11.5 |
|         | 23   | 2.20                     | 17.8 |
| bmmimCl | 1    | 0.79                     | 6.37 |

|                        | 3  | 1.15 | 9.31  |
|------------------------|----|------|-------|
|                        | 6  | 1.49 | 12.1  |
|                        | 23 | 2.34 | 18.9  |
| bmimI                  | 1  | 0.63 | 5.08  |
|                        | 3  | 0.91 | 7.40  |
|                        | 6  | 1.07 | 8.68  |
|                        | 23 | 1.61 | 13.0  |
| bmimBF <sub>4</sub>    | 1  | 0.81 | 6.56  |
|                        | 3  | 1.12 | 9.07  |
|                        | 6  | 1.46 | 11.8  |
|                        | 23 | 2.15 | 17.03 |
| bmimPF <sub>6</sub>    | 1  | 0.76 | 6.13  |
|                        | 3  | 1.06 | 8.56  |
|                        | 6  | 1.14 | 9.20  |
|                        | 23 | 1.46 | 11.8  |
| mmimMeSO <sub>4</sub>  | 1  | 0.88 | 7.11  |
|                        | 3  | 1.16 | 9.37  |
|                        | 6  | 1.42 | 11.5  |
|                        | 23 | 2.04 | 16.5  |
| emmimEtSO <sub>4</sub> | 1  | 1.00 | 8.09  |
|                        | 3  | 1.32 | 10.7  |
|                        | 6  | 1.64 | 13.3  |
|                        | 23 | 2.20 | 17.8  |
| bmimOTf                | 1  | 0.91 | 7.40  |
|                        | 3  | 1.13 | 9.16  |
|                        | 6  | 1.37 | 11.1  |
|                        | 23 | 1.91 | 15.5  |
| emmimOTf               | 1  | 0.78 | 6.31  |
|                        | 3  | 0.97 | 7.84  |
|                        | 6  | 1.10 | 8.91  |
|                        | 23 | 1.71 | 13.8  |
| pmmimTf <sub>3</sub> C | 1  | 0.71 | 5.79  |
|                        | 3  | 0.89 | 7.22  |
|                        | 6  | 0.97 | 7.83  |
|                        | 23 | 1.04 | 8.39  |

250 mg (8.1 mmol) of AB and 250 mg of the ionic-liquid were used in all experiments.

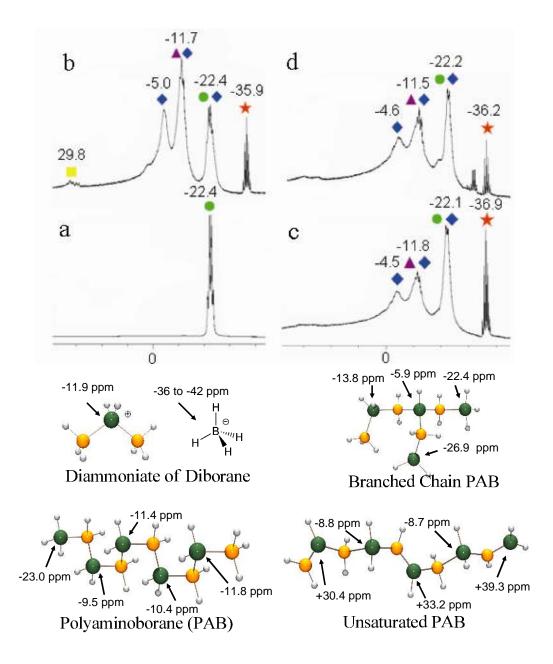


**Figure 2.8** H<sub>2</sub>-release measurements (Toepler pump) of the reaction of 50-wt% AB (250 mg) in 250 mg of: (A) emmimEtSO<sub>4</sub>, (B) mmimMeSO<sub>4</sub>, (C) bmmimCl and (D) bmimCl at (a) 65  $^{\circ}$ C and (b) 45  $^{\circ}$ C.

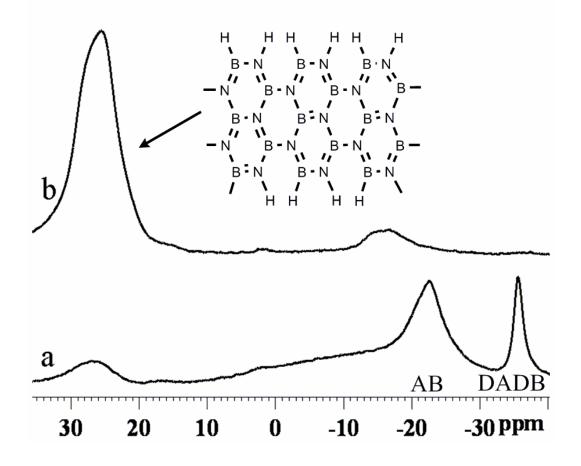
| Time   | Temp               |        | n Released |
|--------|--------------------|--------|------------|
| [h]    | [°C]               | equiv. | mmol       |
| bmim(  |                    |        |            |
| 1      | 65°                | 0.012  | 0.097      |
| 3      | 65°                | 0.08   | 0.67       |
| 5      | 65°                | 0.18   | 1.46       |
| 23     | 65°                | 0.63   | 5.07       |
| 1      | 450                |        |            |
| 1      | 45°                | -      | -          |
| 3      | 45°                | -      | -          |
| 5      | 45°                | -      | -          |
| 23     | 45°                | 0.027  | 0.23       |
| bmmir  | nCl                |        |            |
| 1      | 65°                | 0.014  | 0.11       |
| 3      | 65°                | 0.09   | 0.75       |
| 5      | 65°                | 0.25   | 2.03       |
| 23     | 65°                | 0.23   | 5.73       |
| 25     | 05                 | 0.71   | 5.75       |
| 1      | 45°                | 0.0017 | 0.014      |
| 3      | 45°                | 0.0034 | 0.028      |
| 5      | 45°                | 0.0043 | 0.034      |
| 23     | 45°                | 0.03   | 0.26       |
|        |                    | 0.00   | 0.20       |
| mmim   | MeSO <sub>4</sub>  |        |            |
| 1      | 65°                | 0.06   | 0.47       |
| 3      | 65°                | 0.46   | 3.71       |
| 6      | 65°                | 0.68   | 5.53       |
| 23     | 65°                | 0.96   | 7.76       |
|        |                    |        |            |
| 1      | 45°                | -      | -          |
| 3      | 45°                | 0.003  | 0.028      |
| 6      | 45°                | 0.014  | 0.11       |
| 23     | 45°                | 0.23   | 1.90       |
| emmir  | nEtSO <sub>4</sub> |        |            |
| 1      | 65°                | 0.19   | 1.51       |
|        | 65°                | 0.19   | 4.87       |
| 3<br>5 | 65°                | 0.00   | 6.08       |
| 23     | 65°                | 1.01   | 8.19       |
| 23     | 05                 | 1.01   | 0.19       |
| 1      | 45°                | 0.003  | 0.028      |
| -      |                    |        |            |

Table 2.6  $\,H_2\mbox{-}Release$  Data (Toepler pump) for AB/Ionic-Liquid (50-wt%) Reactions at 65 and 45  $^\circ C$ 

| 3  | 45° | 0.01 | 0.083 |
|----|-----|------|-------|
| 5  | 45° | 0.02 | 0.19  |
| 23 | 45° | 0.34 | 2.77  |


250 mg (8.1 mmol) of AB and 250 mg of the ionic-liquid were used in all experiments.

#### 2.3.4 <sup>11</sup>B NMR Characterization of Reaction Products and Pathways


The bmimCl ionic liquid is a solid at room temperature, but the 50:50-wt% AB/bmimCl mixtures formed a viscous, stirrable room temperature liquid. However, as the H<sub>2</sub>-release reaction began, the mixture foamed. As the H<sub>2</sub>-release neared the loss of  $\sim$ 1 H<sub>2</sub>-equiv., the foam began to convert to a white solid. The entire AB/bmimCl mixture ultimately became solid as the reaction reached over 2 H<sub>2</sub>-equiv. Similar behavior was seen for the other 50:50-wt% AB/ionic-liquid mixtures, but with some differences in their liquid ranges. On the other hand, the 80:20-wt% AB/bmimCl mixtures formed a moist paste at room temperature. Upon initial heating, this paste melted, but then rapidly solidified after the onset of H<sub>2</sub>-release. Solid formation was likewise observed in H<sub>2</sub>-release reactions of 50:50-wt% AB/tetraglyme systems (discussed later) to produce a final two-phase liquid/solid mixture.

## 2.3.4.1 <sup>11</sup>B NMR of Pyridine Extracts from Reaction Products

The <sup>11</sup>B NMR spectra of the pyridine soluble products produced at different stages in the AB solid-state and AB/bmimCl reactions are compared in **Figure 2.9**. Consistent with the observed absence of H<sub>2</sub>-loss, the spectrum (**Figure 2.9a**) of the residue of the 1 h solid-state AB reaction showed only unreacted AB (quartet, -22.3 ppm<sup>37</sup>), whereas the spectrum (**Figure 2.9c**) of the 1 h AB/bmimCl mixture clearly showed mutiple resonances indicating a significant reaction that was consistent with its measured 0.52 equiv. of H<sub>2</sub>-release. As shown in **Figures 2.9b** and **2.9d**, the spectra of the pyridine soluble residues of the AB solid-state and AB/bmimCl reactions obtained after the reactions had released 0.83 and 0.95 H<sub>2</sub>-equiv., respectively, were similar, each showing that the AB



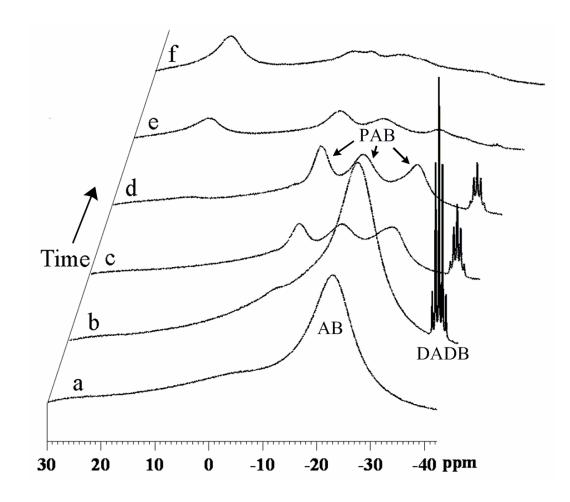
**Figure 2.9** Above: Solution <sup>11</sup>B NMR (128.4 MHz) spectra of the residues (extracted in pyridine) of the 85 °C reaction of: (**Left**) solid-state AB (250 mg) after H<sub>2</sub>-release of: (a) 0.04 equiv. and (b) 0.83 equiv. (**Right**) 50-wt% AB (250 mg) in bmimCl (250 mg) after H<sub>2</sub>-release of: (c) 0.52 equiv. and (d) 0.95 equiv. AB •, DADB ( $\star$  BH<sub>4</sub><sup>-</sup>  $\blacktriangle$  BH<sub>2</sub><sup>+</sup>), PAB •, B=N •. Below: Select <sup>11</sup>B NMR calculated shifts.



**Figure 2.10** Solid-state <sup>11</sup>B NMR (240 MHz) spectra recorded at 25 °C of the reaction of 50-wt% AB (150 mg) in bmimCl (150 mg) at 110 °C after the release of: (a) 1 equiv. and (b) 2 equiv.

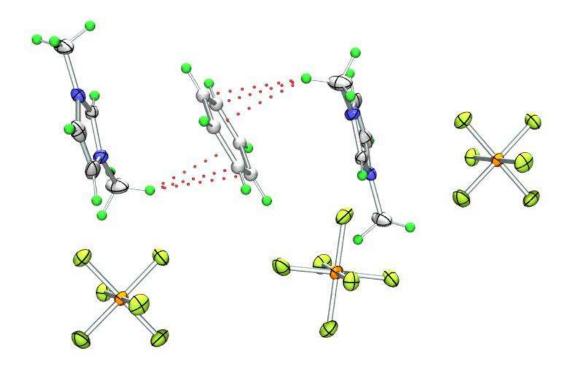
resonance had decreased and the growth of new resonances arising from the diammoniate of diborane (which forms without the loss of H<sub>2</sub>),  $[(NH_3)_2BH_2]^+BH_4^-$ , (DADB) (-13.3 (overlapped) and -37.6 ppm)<sup>7,39</sup> and branched-chain polyaminoborane polymers (PAB) (-7, -13.3 and -25.1 ppm).<sup>4</sup> As dehydrogenation progressed past 1 equivalent, only a

small amount of material was pyridine soluble; therefore, solid-state NMR was also used to analyze these materials.


# 2.3.4.2 Solid-State <sup>11</sup>B NMR Studies

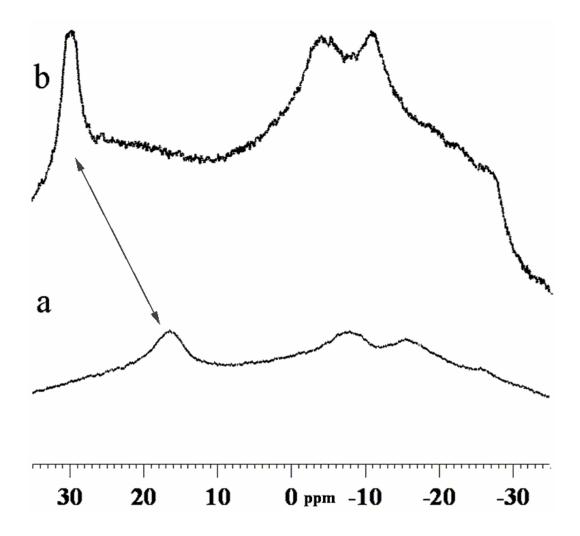
Consistent with both the H<sub>2</sub>-release measurements and the <sup>11</sup>B NMR analyses of the pyridine extracts, the solid-state <sup>11</sup>B spectrum (**Figure 2.10**) of the reaction of a 50:50-wt% bmimCl/AB mixture heated at 110 °C also showed the presence of DADB after 1.0 equiv. of H<sub>2</sub>-release. The solid-state <sup>11</sup>B NMR spectrum of the final product after the release of 2 H<sub>2</sub>-equiv. showed a broad downfield resonance characteristic of the sp<sup>2</sup> boron-nitrogen framework of cross-linked polyborazylene structures,<sup>40-42</sup> indicating that AB dehydrogenation ultimately produced B=N unsaturated products. NMR studies of the dehydrogenated products of AB H<sub>2</sub>-release promoted by solid-state thermal reactions<sup>5,41</sup> have likewise shown the formation of B=N unsaturated final products after the release of more than 2 H<sub>2</sub>-equiv.

# 2.3.4.3 In Situ <sup>11</sup>B NMR Studies in Ionic Liquids

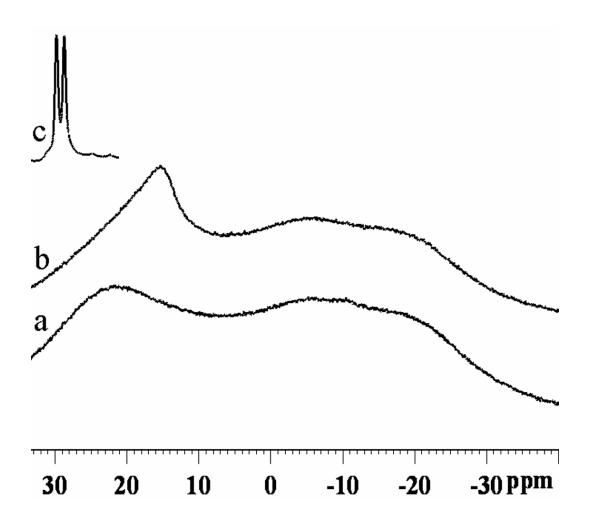

In situ <sup>11</sup>B NMR studies (**Figure 2.11**) of AB H<sub>2</sub>-release at 85 °C in a solution of the room temperature ionic liquid bmimOTf (10:90 AB/bmimOTf mixture) exhibited features similar to those observed in the solid-state NMR spectra of the more concentrated AB/bmimCl reactions. Initially, only the AB resonance was present, but the appearance, after 10 min, of the well resolved quintet resonance near -38 ppm indicated significant AB conversion to DADB. After 30 min, 0.5 H<sub>2</sub>-equiv. had been released, but the NMR spectrum (**Figure 2.11c**) indicated that the AB was completely consumed to produce a mixture of DADB and PAB polymer. Once the reaction reached the release of 0.9 H<sub>2</sub>-equiv., the spectrum (**Figure 2.11d**) of the mixture showed a decrease in the DADB resonance along with a corresponding increase in the PAB resonances. The spectrum taken after the release of  $1.5 \text{ H}_2$ -equiv. (Figure 2.11e) showed that the DADB had been almost completely consumed and a new downfield resonance near 16 ppm had appeared. This 16 ppm resonance continued (Figure 2.11f) to grow and the PAB resonances continued to decrease as the reaction achieved the release of  $2.0 \text{ H}_2$ -equiv.

The solid-state <sup>11</sup>B NMR spectrum, discussed earlier (**Figure 2.10**), of the product of the AB/bmimCl reaction after the release of 2 H<sub>2</sub>-equiv. showed the broad downfield resonance near 30 ppm that is characteristic of unsaturated sp<sup>2</sup> boron-nitrogen frameworks. On the other hand, the *in situ* NMR studies of the AB/bmimOTf reactions, as well as similar NMR studies of the 85 °C H<sub>2</sub>-release from AB/mmimMeSO<sub>4</sub> and AB/bmimI reactions, showed the growth of a 16 ppm resonance after the release of 2 H<sub>2</sub>-equiv. The 16 ppm resonance in these ionic liquid reactions is thus shifted almost 14 ppm upfield relative to that normally found for polyborazylene<sup>40.42</sup> or borazine.<sup>43</sup> This suggests that if either of these unsaturated species were formed in these solutions, the observed chemical shift change could result from interactions with the ionic liquid solvent.




**Figure 2.11** Solution <sup>11</sup>B NMR (128.4 MHz) spectra recorded at 25 °C of the reaction of 10-wt% AB (50 mg) in bmimOTf (450 mg) at 85 °C after the release of: (a) 0.0 equiv. (0 min), (b) 0.1 equiv. (10 min), (c) 0.5 equiv. (30 min), (d) 0.9 equiv. (60 min), (e) 1.5 equiv. (180 min) and (f) 2.0 equiv. (360 min). (The broad DADB resonance at -13 ppm is obscured by the AB and PAB resonances)

Given both their polar compositions and planar aromatic like structures and properties, a variety of ionic liquid interactions would be possible for borazine and polyborazylene, including the formation of ionic liquid hydrogen-bonded and/or clathrated<sup>44-49</sup> species. Holbrey et al. have shown that ionic liquids can clathrate aromatic species such as benzene, toluene, and *o- m- p-* xylene. In the ionic liquid 1,3-dimethylimidazolium hexafluorophosphate, crystals were grown from these clathrates and X-ray data were collected showing the benzene does actually form layered complexes with the imidazolium rings. The aromatic is encapsulated in a cation-anion cage with the cation imidazolium methyl groups having strong  $\pi$ -interactions with the aromatic.<sup>47</sup> These interactions are shown in **Figure 2.12**.




**Figure 2.12** 1,3-dimethylimidazolium hexafluorophosphate with 0.5 mol benzene included as a clathrate. Three closest benzene carbons are shown interacting with methyl hydrogen: distances are 3.07 Å, 3.03 Å, and 3.22 Å.<sup>47</sup>

Similar interactions would be expected to occur in the isoelectronic BN analogue Several <sup>11</sup>B NMR studies specifically probing this phenomenon showed borazine. interactions like that found by Holbrey and others. These interactions are expected to decrease as the temperature is increased and, as shown in the <sup>11</sup>B NMR spectra in Figure 2.13, it was found that upon recording the NMR spectrum of the final AB/bmimOTf sample with the NMR probe heated at 100 °C instead of 27 °C, the resonance at 16 ppm disappeared and was replaced by a resonance in the more normal 30 ppm region of borazine. It was likewise found that when glyme (1:10 glyme) was added to an AB/bmimOTf reaction sample exhibiting a 16 ppm resonance, this resonance disappeared and was replaced by a 30 ppm resonance. Additional evidence that borazine could give rise to a shift in this region in ionic liquid solutions was obtained by recording the spectra of a pure sample of borazine dissolved in 90 wt% bmimI. The initial spectrum showed only a broad downfield peak (Figure 2.14a), but this resonance then shifted to 16 ppm after the solution was heated at 85 °C (Figure 2.14b). The borazine could then be recovered from the bmimI solution by extraction with toluene (Figure 2.14c). These results are thus all consistent with a significant interaction between borazine and the ionic liquids. Some ionic liquids required initial heating to form these interactions, whereas the less viscous ionic liquids formed them at room temperature. Such interactions may play a key role in retarding the loss of borazine, a likely fuel cell catalyst poison, during AB H<sub>2</sub>-release.

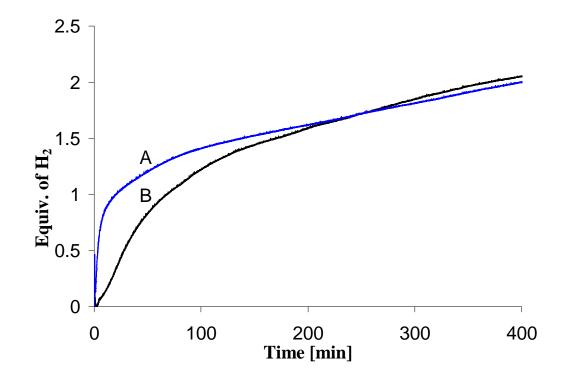


**Figure 2.13** Solution <sup>11</sup>B NMR (128.4 MHz) of the reaction of 10-wt% AB (50 mg) in bmimOTf (450 mg) at 85 °C for 6 h: (a) NMR probe at 27 °C and (b) NMR probe at 100 °C.



**Figure 2.14** Solution <sup>11</sup>B NMR (128.4 MHz) spectra recorded at 25 °C of 10-wt% borazine (50 mg) in bmimI (450 mg) after: (a) initial mixing at 25 °C, (b) 19 h at 85 °C and (c) the toluene extraction after heating.

# 2.3.6 Why do Ionic Liquids Accelerate AB H<sub>2</sub>-release? What is the Role of DADB?

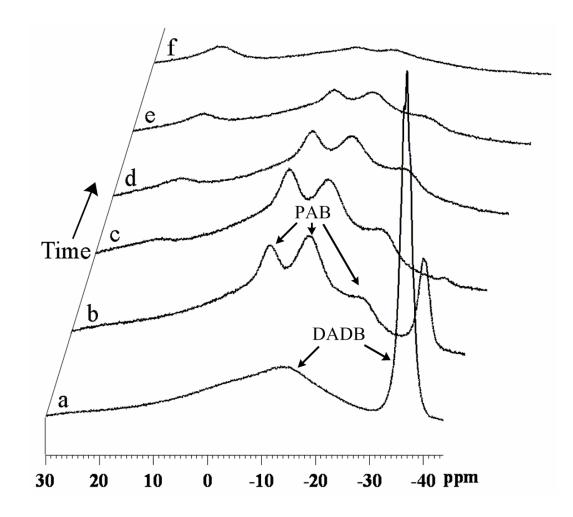

The <sup>11</sup>B NMR spectra of the pyridine extracts (**Figure 2.9**) of both solid-state and ionic liquid H<sub>2</sub>-release reactions at different times and the *in situ* NMR experiments in ionic liquids (**Figure 2.11**) clearly showed the initial formation of diammoniate of diborane (DADB) (**Equation 2.2**) resulting from the reaction of two equivalents (without H<sub>2</sub>-loss) of AB.

$$2H_{3}NBH_{3} \longrightarrow \begin{bmatrix} H_{2} \\ B \\ \Theta \\ H_{3}N \end{bmatrix} BH_{4}$$
(2.2)

The fact that the DADB is a precursor to the formation of the polyaminoboranes, rather than just a side reaction, was demonstrated by H<sub>2</sub>-release and <sup>11</sup>B NMR studies of DADB reactivity in ionic liquids. These studies showed that the 85 °C reaction of a pre-synthesized<sup>7,39</sup> pure sample of DADB dissolved in bmimOTf (10-wt% DADB) yielded the same type of polyaminoborane products, but with faster H<sub>2</sub>-release rates, as those found in the AB/bmimOTf reactions.

$$0.5 \begin{bmatrix} H_2 \\ B \\ \oplus \\ H_3N \end{bmatrix} BH_4^{\Theta} \longrightarrow BN + 3H_2$$
(2.3)

The theoretical DADB H<sub>2</sub>-release reaction in terms of AB equiv. is given by **Equation 2.3**. The H<sub>2</sub>-release rates for separate 10 wt% DADB and AB samples in bmimOTF are compared in **Figure 2.15**, where the faster rate of the DADB reaction is clearly apparent. While AB/bmimOTF required 96 min to release 1.0 H<sub>2</sub>-equiv. and 274 min for 1.5 H<sub>2</sub>-equiv., the DADB required only 28 min for 1.0 H<sub>2</sub>-equiv. and 94 min for 1.5 H<sub>2</sub>-equiv. At 400 min, the DADB/bmimOTF reaction had already released 2.09 H<sub>2</sub>-equiv., while the AB/bmimCl reaction was still at 1.76 H<sub>2</sub>-equiv. These rates are also faster than DADB H<sub>2</sub>-release from the solid state.<sup>50</sup> As can be seen in the NMR studies in **Figure 2.16**, the initial <sup>11</sup>B NMR spectrum obtained from a 10-wt% DADB/bmimOTF sample showed only the broad resonances expected for the DADB (NH<sub>3</sub>)<sub>2</sub>BH<sub>2</sub><sup>+</sup> (-13.3 ppm) and BH<sub>4</sub><sup>-</sup> (-37.6 ppm) components. However, after heating for only 10 min at 85 °C, most of the DADB had been converted to PAB. At 30 min, 0.9 H<sub>2</sub>-equiv. had been released and the <sup>11</sup>B NMR spectrum at this point (**Figure 2.16c**) showed that the DADB had been completely consumed. As the reaction proceeded beyond the release of 1 H<sub>2</sub>-equiv., a new resonance grew in that was also at the 16 ppm shift observed in the AB/bmimOTf reactions (**Figure 2.16d-f**).




**Figure 2.15** H<sub>2</sub>-release measurements (gas burette) of bmimOTf (450 mg) and 10-wt% (50 mg) of: (A) DADB and (B) AB.

| Table 2.7 Times to Selected Equivalent Points of $H_2$ -Release (Gas Burette | e) of |
|------------------------------------------------------------------------------|-------|
| bmimOTf (450 mg) and 10-wt% (50 mg) each of: (A) DADB and (B) AB at          | 85 °C |

| (A                     | (A)     |                        | )       |
|------------------------|---------|------------------------|---------|
| H <sub>2</sub> -Equiv. | Minutes | H <sub>2</sub> -Equiv. | Minutes |
| 0.25                   | 2       | 0.25                   | 17      |
| 0.5                    | 3       | 0.5                    | 28      |
| 0.75                   | 6       | 0.75                   | 43      |
| 1                      | 20      | 1                      | 68      |
| 1.25                   | 58      | 1.25                   | 105     |
| 1.5                    | 137     | 1.5                    | 170     |
| 1.75                   | 265     | 1.75                   | 262     |
| 2                      | 398     | 2                      | 367     |

r



**Figure 2.16** Solution <sup>11</sup>B NMR (128.4 MHz) spectra recorded at 25 °C of the reaction of 10-wt% DADB (50 mg) in bmimOTf (450 mg) at 85 °C after the release of: (a) 0.0 equiv. (0 min), (b) 0.9 equiv. (10 min), (c) 1.1 equiv. (30 min), (d) 1.3 equiv. (60 min), (e) 1.6 equiv. (180 min) and (f) 1.9 equiv. (360 min).

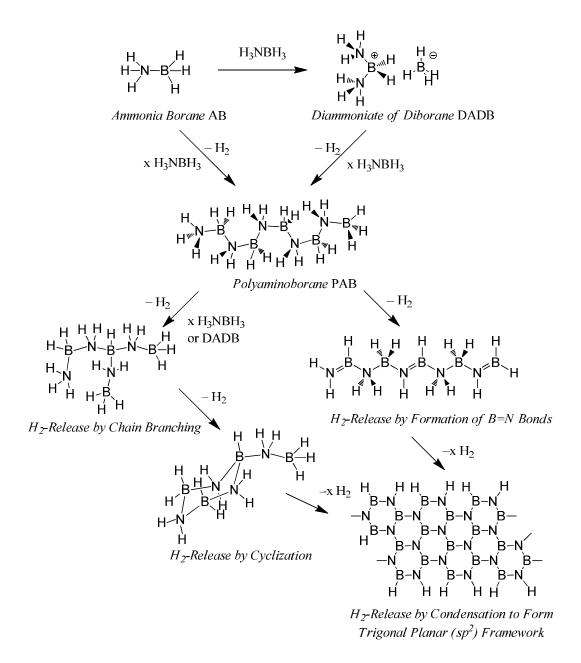


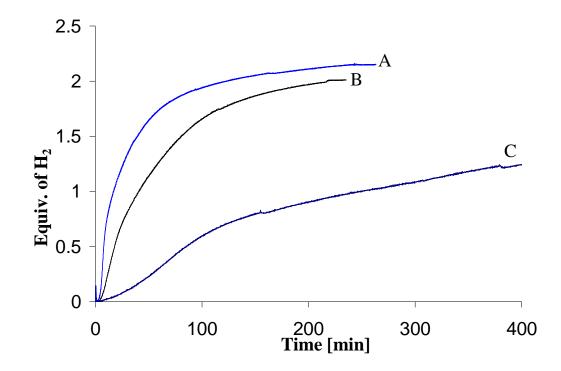

Figure 2.17 Possible pathway for ionic-liquid promoted H<sub>2</sub>-release from AB.

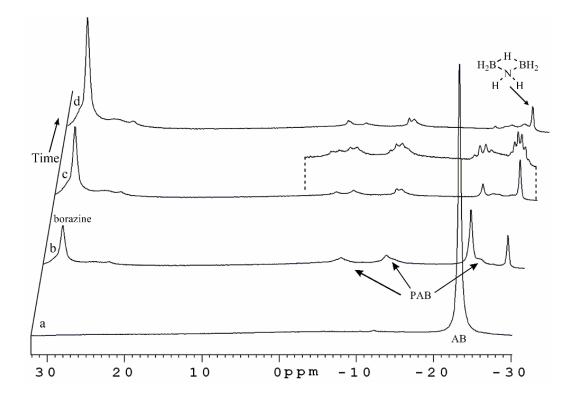
The combined solid-state and solution <sup>11</sup>B NMR studies of AB/ionic-liquid and DADB/ionic-liquid H<sub>2</sub>-release reactions in progress support a AB dehydrogenation pathway in ionic liquids (**Figure 2.17**) involving: (1) ionic-liquid promoted conversion of

AB into its more reactive ionic DADB form, (2) further intermolecular dehydrocoupling reactions between hydridic B-H hydrogens and protonic N-H hydrogens on DADB and/or AB to form polyaminoborane polymers and (3) polyaminoborane dehydrogenation to unsaturated cross-linked polyborazylene materials. The initial formation of DADB has also been proposed as a key step in thermally-induced AB H<sub>2</sub>-release reactions in the solid state<sup>50,51</sup> and in organic solvents,<sup>52</sup> but the highly polar medium provided by ionic liquids promotes DADB formation and appears to be the key activating feature of these ionic liquid reactions.

#### 2.3.7 H<sub>2</sub>-Release Reactions in Tetraglyme

The AB H<sub>2</sub>-release observed in the ionic liquid solvents was also compared with that obtained for the conventional polar organic solvent, tetraglyme. The H<sub>2</sub>-release data for a 50:50 wt% ratio AB/tetraglyme mixture showed that both the extent and rate of H<sub>2</sub>-release were comparable to that of the AB/bmimCl reactions (**Figure 2.18**). However, the <sup>11</sup>B NMR spectra of the AB/tetraglyme reactions showed that, unlike in the ionic liquids, there was little evidence of PAB formation, with the major product being instead borazine (30.1 ppm)<sup>43</sup> along with smaller amounts of BH<sub>4</sub><sup>-</sup> (-36.8 ppm)<sup>43</sup> and  $\mu$ -aminodiborane (-27.5 ppm)<sup>43</sup> (**Figure 2.19**). Thus, ionic liquid solvents are favored for AB H<sub>2</sub>-release since they suppress or retard the formation of these undesired products.





Figure 2.18  $H_2$ -release measurements (gas burette) of 50-wt% AB (150 mg) in tetraglyme (150 mg) at: (A) 95 °C, (B) 85 °C and (C) 75 °C.

| Table 2.8 Times to Selected Equivalent Points of H2-Release (Ga | as Burette) of |
|-----------------------------------------------------------------|----------------|
|-----------------------------------------------------------------|----------------|

50-wt% AB (150 mg) in Tetraglyme (150 mg) at Different Temperatures

| (A                     | )       | (B                     | )       | (C                     | )       |
|------------------------|---------|------------------------|---------|------------------------|---------|
| H <sub>2</sub> -Equiv. | Minutes | H <sub>2</sub> -Equiv. | Minutes | H <sub>2</sub> -Equiv. | Minutes |
| 0.25                   | 6       | 0.25                   | 12      | 0.25                   | 53      |
| 0.5                    | 8       | 0.5                    | 18      | 0.5                    | 85      |
| 0.75                   | 11      | 0.75                   | 27      | 0.75                   | 135     |
| 1                      | 17      | 1                      | 41      | 1                      | 246     |
| 1.25                   | 26      | 1.25                   | 58      | 1.25                   | 403     |
| 1.5                    | 39      | 1.5                    | 80      | 1.5                    | 585     |
| 1.75                   | 60      | 1.75                   | 118     | 1.75                   | 816     |
| 2                      | 122     | 2                      | 217     | 2                      | 1130    |

(A) 95 °C, (B) 85 °C and (C) 75 °C.



**Figure 2.19** Solution <sup>11</sup>B{<sup>1</sup>H} NMR (128 MHz) spectra recorded at 80 °C of the reaction of 10-wt% AB (50 mg) in tetraglyme (450 mg) at 85 °C after: (a) 1.1 equiv. (60 min), (b) 1.7 equiv. (180 min) and (c) 1.9 equiv. (360 min). Inset shows <sup>1</sup>H coupled spectra.

#### 2.4 Conclusions

The results described in this **Chapter** have demonstrated that ionic liquids have an activating effect on ammonia borane H<sub>2</sub>-release. Unlike the solid-state H<sub>2</sub>-release reactions, AB H<sub>2</sub>-release reactions in ionic liquids do not exhibit an induction period. <sup>11</sup>B NMR and H<sub>2</sub>-release studies showed that DADB is the active intermediate in AB dehydropolymerization and that ionic liquids induce the formation of DADB from AB. By increasing the speed of formation of DADB, ionic liquids dramatically improve the H<sub>2</sub>-release rate from AB. The high extent of their H<sub>2</sub>-release, the tunability of both their H<sub>2</sub>-materials weight percents and release rates, and their product control that is attained by either trapping or suppressing unwanted volatile side products make AB/ionic-liquid based systems attractive candidates for chemical hydrogen storage applications.

#### 2.5 References

- 1. Graetz, J. Chem. Soc. Rev. 2009, 38, 73-82.
- Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. *Chem. Soc. Rev.* 2009, 38, 279-293.
- 3. Stephens, F. H.; Pons, V.; Baker, R. T. *Dalton Trans.* **2007**, *25*, 2613-2626.
- 4. Bluhm, M. E.; Bradley, M. G.; Butterick III, R.; Kusari, U.; Sneddon, L. G. *J. Am. Chem. Soc.* **2006**, *128*, 7748-7749 and references therein.
- Stowe, A. C.; Shaw, W. J.; Linehan, J. C.; Schmid, B.; Autrey, T. *Phys. Chem. Chem. Phys.* 2007, *9*, 1831-1836 and references therein.
- Shriver, D. F.; Drezdzon, M. A., *Manipulation of Air Sensitive Compounds*. 2 ed.;
   Wiley: New York, 1986.
- 7. Shore, S. G.; Parry, R. W. J. Am. Chem. Soc. **1958**, 80, 20-24 and preceeding papers in this issue.
- 8. Namboodiri, V. V.; Varma, R. S. Org. Lett. 2002, 4, 3161-3163.
- Zheng, F.; Rassat, S. D.; Helderandt, D. J.; Caldwell, D. D.; Aardahl, C. L.;
   Autrey, T.; Linehan, J. C.; Rappe, K. G. *Rev. Sci. Instrum.* 2008, 79, 084103-1 084103-5.
- 10. Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. Chem. Comm. 2001, 962-963.
- Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. J. Am. Chem. Soc. 2003, 125, 9424-9434.
- 12. Jaska, C. A.; Manners, I. J. Am. Chem. Soc. 2004, 126, 2698-2699.
- 13. Clark, T. J.; Lee, K.; Manners, I. Chem. Eur. J. 2006, 12, 8634-8648.
- 14. Clark, T. J.; Russell, C. A.; Manners, I. J. Am. Chem. Soc. 2006, 128, 9582-9583.

- Denney, M. C.; Pons, V.; Hebden, T. J.; Heinekey, D. M.; Goldberg, K. I. J. Am. Chem. Soc. 2006, 128, 12048-12049.
- Fulton, J. L.; Linehan, J. C.; Autrey, T.; Balasubramanian, M.; Chen, Y.;
   Szymczak, N. K. *J. Am. Chem. Soc.* 2007, *129*, 11936-11949.
- 17. Jiang, Y.; Berke, H. Chem. Comm. 2007, 3571-3573.
- Keaton, R. J.; Blacquiere, J. M.; Baker, R. T. J. Am. Chem. Soc. 2007, 129, 1844-1845.
- 19. Paul, A.; Musgrave, C. B. Angew. Chem., Int. Ed. 2007, 46, 8153-8156.
- 20. Pun, D.; Lobkovsky, E.; Chirik, P. J. Chem. Comm. 2007, 3297-3299.
- Blacquiere, N.; Diallo-Garcia, S.; Gorelsky, S. I.; Black, D. A.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 14034-14035.
- 22. Douglas, T. M.; Chaplin, A. B.; Weller, A. S. J. Am. Chem. Soc. 2008, 130, 14432-14433.
- 23. Staubitz, A.; Soto, A. P.; Manners, I. Angew. Chem., Int. Ed. 2008, 47, 6212-6215.
- 24. Yang, X.; Hall, M. B. J. Am. Chem. Soc. 2008, 130, 1798-1799.
- Forster, T. D.; Tuononen, H. M.; Parvez, M.; Roesler, R. J. Am. Chem. Soc. 2009, 131, 6689-6691.
- 26. Stephens, F. H.; Baker, R. T.; Matus, M. H.; Grant, D. J.; Dixon, D. A. Angew. *Chem., Int. Ed.* **2007**, *46*, 746-749.
- Himmelberger, D. W.; Bluhm, M. E.; Sneddon, L. G. Prepr. Symp. Am. Chem.
   Soc., Div. Fuel Chem. 2008, 53, 666-667.

- Gutowska, A.; Li, L.; Shin, Y.; Wang, C. M.; Li, X. S.; Linehan, J. C.; Smith, R.
   S.; Kay, B. D.; Schmid, B.; Shaw, W.; Gutowski, M.; Autrey, T. Angew. Chem., Int. Ed. 2005, 44, 3578-3582.
- Sepehri, S.; Feaver, A.; Shaw, W. J.; Howard, C. J.; Zhang, Q.; Autrey, T.; Cao J.
   *Phys. Chem. B* 2007, 111, 14285-14289.
- Paolone, A.; Palumbo, O.; Rispoli, P.; Cantelli, R.; Autrey, T.; Karkamkar, A. J.
   *Phys. Chem. C* 2009, *113*, 10319-10321.
- 31. Dupont, J.; de Souza, R. F.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667-3692.
- 32. Dyson, P. J. Appl. Oragnomet. Chem. 2002, 16, 495-500.
- 33. Wasserscheid, P.; Keim, W. Angew. Chem., Int. Ed. 2002, 39, 3772-3789.
- 34. Zhao, H.; Malhotra, S. V. *Aldrich Chimica Acta* **2002**, *35*, 75-83.
- 35. Namboodiri, V. V.; Varma, R. S. Org. Lett. 2002, 4, 3161-3163.
- Zheng, F.; Rassat, S. D.; Helderandt, D. J.; Caldwell, D. D.; Aardahl, C. L.;
   Autrey, T.; Linehan, J. C.; Rappe, K. G. *Rev. Sci. Instrum.* 2008, 79, 084103.
- 37. Satyapal, S. 2007 DOE Hydrogen Program Review.
   <a href="http://www.hydrogen.energy.gov/pdfs/review07/st\_0\_satyapal.pdf">http://www.hydrogen.energy.gov/pdfs/review07/st\_0\_satyapal.pdf</a>.
- 38. Dillich, S. 2009 DOE Hydrogen Program & Vehicle Technologies Program <u>http://www.hydrogen.energy.gov/pdfs/review09/st\_0\_dillich.pdf</u>. DOE has recently lowered the 2015 gravimetric total system target to only 5.5 total system weight %.
- 39. Onak, T. P.; Shapiro, I. J. Chem. Phys. 1960, 32, 952.
- 40. Fazen, P. J.; Beck, J. S.; Lynch, A. T.; Remsen, E. E.; Sneddon, L. G. *Chem. Mater.* **1990**, *2*, 96-97.

- Fazen, P. J.; Remsen, E. E.; Beck, J. S.; Carroll, P. J.; McGhie, A. R.; Sneddon, L. G. *Chem. Mater.* **1995**, *7*, 1942-1956.
- 42. Gervais, C.; Framery, E.; Duriez, C.; Maquet, J.; Vaultier, M.; Babonneau, F. *J. Eur. Ceram. Soc.* **2005**, *25*, 129-135.
- 43. Nöth, H.; Wrackmeyer, B., In *Nuclear Magnetic Resonance Spectroscopy of Boron Compounds*, Springer-Verlag: New York, 1978; pp 188, 265, 394-395.
- Christie, S.; Dubois, R. H.; Rogers, R. D.; White, P. S.; Zaworotko, M. J. J.
   *Inclusion Phenom.* 1991, 11, 103-114.
- 45. Coleman, A. W.; Means, C. M.; Bott, S. G.; Atwood, J. L. J. Chem. Crystallogr.
  1990, 20, 199-201.
- Gaudet, M. V.; Peterson, D. C.; Zaworotko, M. J. J. Inclusion Phenom. 1988, 6, 425-428.
- 47. Holbrey, J. D.; Reichert, W. M.; Nieuwenhuyzen, M.; Sheppard, O.; Hardacre, C.;Rogers, R. D. *Chem. Comm.* 2003, 476-477.
- 48. Pickett, C. J. Chem. Comm. 1985, 323-326.
- 49. Surette, J. K. D.; Green, L.; Singer, R. D. Chem. Comm. 1996, 2753-2754.
- Heldebrant, D. J.; Karkamkar, A.; Hess, N. J.; Bowden, M.; Rassat, S.; Zheng, F.;
   Rappe, K.; Autrey, T. *Chem. Mater.* 2008, 20, 5332-5336.
- Stowe, A. C.; Shaw, W. J.; Linehan, J. C.; Schmid, B.; Autrey, T. *Phys. Chem. Chem. Phys.* 2007, *9*, 1831-1836 and references therein.
- Shaw, W. J.; Linehan, J. C.; Szymczak, N. K.; Helderandt, D. J.; Yonker, C.;
   Camaioni, D. M.; Baker, R. T.; Autrey, T. *Angew. Chem. Int. Ed.* 2008, *47*, 7493-7496.

#### Chapter 3

#### Base Promoted Ammonia Borane Hydrogen Release

#### Summary

The strong non-nucleophilic base, bis(dimethylamino)naphthalene, (Proton Sponge, PS) has been found to promote the rate and extent of H<sub>2</sub>-release from ammonia borane (AB) in both the solid state and in ionic-liquid and tetraglyme solutions. For example, AB reactions in 1-butyl-3-methylimidazolium chloride (bmimCl) containing 5.3 mol% PS released 2 equivalents of H<sub>2</sub> in 171 min at 85 °C and only 9 min at 110 °C, whereas comparable reactions without PS required 316 min at 85 °C and 20 min at 110 <sup>o</sup>C. Ionic liquid solvents proved more favorable than tetraglyme since they reduced the formation of undesirable products, such as borazine. Solid-state and solution <sup>11</sup>B NMR studies of PS-promoted reactions in progress support a reaction pathway involving initial AB deprotonation to form the  $H_3BNH_2^-$  anion. This anion can then initiate AB dehydropolymerization to form branched-chain polyaminoborane polymers. Subsequent chain-branching and dehydrogenation reactions lead ultimately to a cross-linked polyborazylene-type product. Model studies of the reactions of [Et<sub>3</sub>BNH<sub>2</sub>BH<sub>3</sub>]<sup>-</sup>Li<sup>+</sup> with AB show evidence of chain-growth,<sup>1</sup> providing additional support for a PS-promoted AB anionic dehydropolymerization H<sub>2</sub>-release process.

#### 3.1 Introduction

In the preceding **Chapter**, it was shown that the addition of ionic liquids to ammonia borane dramatically increased the extent and rate of  $H_2$ -release and eliminated the induction period that had been observed in solid-state reactions. These studies showed that DADB is the active intermediate in AB dehydropolymerization and that ionic liquids induce the formation of DADB from AB.

The Ionic-liquid based systems described in **Chapter 2** can be tuned to achieve a range of H<sub>2</sub>-release rates. But it was also found that the H<sub>2</sub>-release rate dramatically slowed after the first equivalent was released. Clearly there is room for other methods for improving the rate and extent of H<sub>2</sub>-release from AB. In addition to ionic liquids a number of other approaches are now being explored by others to induce AB H<sub>2</sub>-release, such as the use of transition metal catalysts,<sup>6-21</sup> acid catalysts,<sup>2</sup> nano and meso-porous scaffolds.<sup>3-5</sup> In this **Chapter**, the activating effect of base additives will be described for reactions in the solid-state, ionic liquids, and tetraglyme and it will be shown that they enhance H<sub>2</sub>-release of the second AB equivalent.

Earlier work showed<sup>6,7</sup> that the addition of small amounts of either LiH or LiNH<sub>2</sub> to AB in the solid state eliminated the induction period and increased both the rate and extent of H<sub>2</sub>-release at 85 °C. As outlined in **Equations 3.1** and **3.2**, the initial step in these reactions was proposed to be AB deprotonation to produce the H<sub>3</sub>BNH<sub>2</sub><sup>-</sup> anion, with this anion then inducing anionic dehydropolymerization of AB to produce a growing polyaminoborane polymer (**Equation 3.3**).

$$H_{3}NBH_{3} + Li^{+}NH_{2}^{-} \longrightarrow H_{3}BNH_{2}^{-}Li^{+} + NH_{3} \quad (3.1)$$
$$H_{3}NBH_{3} + Li^{+}H^{-} \longrightarrow H_{3}BNH_{2}^{-}Li^{+} + H_{2} \quad (3.2)$$

117

$$H_{3}BNH_{2}Li^{+} + H_{3}BNH_{3} \longrightarrow H_{3}BNH_{2}BH_{2}NH_{2}Li^{+} + H_{2} \quad (3.3)$$

Unfortunately, these reactions stopped after the release of ~1.5 H<sub>2</sub>-equivalents due at least in part to the formation of the LiBH<sub>4</sub> side-product via the reactions in **Equations 3.4** and **3.5**. Since LiBH<sub>4</sub> does not decompose until >350 °C, its formation reduces the extent of AB H<sub>2</sub>-release at 85 °C.<sup>8</sup>

$$H_{3}BNH_{2}^{-}Li^{+} \longrightarrow -(H_{2}NBH_{2}) + Li^{+}H^{-} \quad (3.4)$$
$$H_{3}BNH_{3} + Li^{+}H^{-} \longrightarrow Li^{+}BH_{4}^{-} + NH_{3} \quad (3.5)$$

In order to avoid the formation of stable alkali-metal borohydrides, we investigated the use of alternative nitrogen-based deprotonating agents to induce AB polymerization. This **Chapter** reports that the strong (pka ~12), non-nucleophilic base, bis(dimethyamino)naphthalene (Proton Sponge, PS),<sup>9</sup> can also induce AB H<sub>2</sub>-release via an anionic dehydropolymerization mechanism with the advantage that the formation of a stable  $BH_4^-$  salt is avoided.

#### **3.2** Experimental Section

#### 3.2.1 Materials

All manipulations were carried out using standard high vacuum or inert atmosphere techniques, as described by Shriver.<sup>10</sup> Ammonia borane (AB) (Aviabor, 97% minimum purity) was ground into a free flowing powder using a commercial coffee grinder. The 1-butyl-3-methylimidazolium chloride (bmimCl), 1,3-dimethylimidazolium methylsulfate (mmimMeSO<sub>4</sub>), 1-buytl-2,3-dimethylimidazolium chloride (bdmimCl), and 1-ethyl-2,3-dimethylimidazolium ethylsulfate (edmimEtSO<sub>4</sub>) ionic liquids (Fluka) were dried by toluene azeotropic distillation. Tetraethylene glycol dimethyl ether (Sigma 99%) (tetraglyme) and ethylene glycol dimethyl ether (Sigma 99%) (glyme) were vacuum distilled from sodium with heating. Aldrich bis(dimethylamino)naphthalene (Proton Sponge, PS) was sublimed and stored under inert atmosphere and light free conditions.

#### **3.2.2** Physical Measurements

The Toepler pump system used for hydrogen measurements was similar to that described by Shriver<sup>10</sup> and was diagramed in **Figure 2.1** of **Chapter 2**. The released gases from the reaction vessel were first passed through a liquid nitrogen trap before continuing on to the Toepler pump (700 mL). The released H<sub>2</sub> was then pumped into a series of calibrated volumes with the final pressure of the collected H<sub>2</sub>-gas measured ( $\pm 0.5$  mm) with the aid of a U-tube manometer. After the H<sub>2</sub>-measurement was completed, the in-line liquid nitrogen trap was warmed to room temperature and the amount of any volatiles that had been trapped was then also measured using the Toepler pump.

The automated gas burette **Figure 2.2** of **Chapter 2** was based on the design reported by Zheng et al.,<sup>11</sup> but employed all glass connections with a cold trap (-78 °C) inserted between the reaction flask and burette to allow trapping of any volatiles that might have been produced during the reaction. A more complete description of both the Toepler pump and automated gas burette is available in **Chapter 2**.

Differential scanning calorimetry was carried out on a Setaram C80 calorimeter at Pacific Northwest National Laboratories. Samples containing 50 mg of AB and 50 mg of bmimCl, without and with 5 mol% (18 mg) of PS were loaded into the cells under a  $N_2$  atmosphere. The ramp rate was 1 °C/min and samples were taken to either 85 °C or 110 °C.

Solid-state reactions carried out with the Toepler pump were extracted with pyridine at various points in the reactions and monitored by  $^{11}$ B NMR. The reaction flask was removed from the oil bath and cooled to room temperature, then dry pyridine was added to the reaction flask under N<sub>2</sub> flow. The pyridine solution was extracted by syringe and then the  $^{11}$ B NMR was taken.

While bmimCl is a liquid at 85 °C, it is a solid at room temperature; therefore, solid-state <sup>11</sup>B NMR analyses (at Pacific Northwest National Laboratories: 240 MHz machine spun at 10 kHz) were used to monitor the products of reactions carried out in bmimCl. All solid state <sup>11</sup>B chemical shifts were measured relative to external NaBH<sub>4</sub> (-41 ppm).

The solution <sup>11</sup>B NMR (128.4 MHz Bruker DMX-400) studies in the room temperature ionic liquid mmimMeSO<sub>4</sub> were carried out by heating the reaction mixtures in sealed NMR tubes at 85 °C for the indicated times with the spectra taken at 25 °C. The

<sup>11</sup>B NMR spectra of the reactions in tetraglyme were collected with the NMR probe heated at 80 °C.

All solid-state and solution <sup>11</sup>B NMR chemical shifts are referenced to external  $BF_3 \cdot O(C_2H_5)_2$  (0.0 ppm) with a negative sign indicating an upfield shift.

#### 3.2.3 Procedures for AB H<sub>2</sub>-Release Reactions

For the experiments where the released  $H_2$  was measured with the Toepler pump, the AB (250 mg, 8.1 mmol) was loaded into the reaction flasks under N<sub>2</sub>. The solid-state reactions of AB/PS mixtures were carried out in evacuated 500 mL break-seal flasks that were heated in an oven preheated to the desired temperature. The solids were initially crudely mixed, since upon heating the solid mixtures were found to form a melt before the onset of H<sub>2</sub>-release. Reactions in solution were loaded into ~100 mL flasks with the ionic liquid and PS in the amounts given in the tables. The flasks were then evacuated, sealed, and placed in a hot oil bath preheated to the desired temperature. The flasks were opened at the indicated times and the released hydrogen quantified using the Toepler pump system. Post reaction, the flasks were evacuated for 30 min through the cold trap to remove any volatile products from the reaction residue. The product residues and volatiles in the cold trap were extracted with dry glyme and analyzed by <sup>11</sup>B NMR.

For reactions using the automated gas burette, the AB (150 mg, 4.87 mmol) samples were loaded into ~100 mL flasks with calibrated volumes, along with the ionic liquid (150 mg) or tetraglyme (0.15 mL) solvents and PS. Under a flow of helium, the flask was attached to the burette system. The system was evacuated 30 min for reactions with the ionic liquid solutions, and 5 min for tetraglyme solutions. The system was then backfilled with helium and allowed to equilibrate to atmospheric pressure for ~30 min.

Once the system pressure equalized, the data collection program was started and the flask was immersed in the preheated oil bath. The product residues were extracted with dry glyme and analyzed by <sup>11</sup>B NMR. The data are reported from the point where the flask was initially plunged into the oil bath, but H<sub>2</sub>-release was not observed until the ionic-liquid/AB mixture melted. Data were recorded at 2-5 second intervals depending on the speed of the reaction. An example data set is shown in **Table 2.1** in **Chapter 2** along with a more complete description of the automated gas burette. The rest of the data sets for the gas burette graphs presented in this **Chapter** are available on a CD submitted with the paper copy of this dissertation and electronically in the supplementary files submitted with the electronic copy of this dissertation.

Reactions of bmimCl and bmimCl/PS with partially dehydrogenated AB followed the procedures for the automated gas burette. Initially, two separate samples of neat AB (150 mg, 4.87 mmol) were heated for 23 h at 85 °C to release ~1 equivalent of H<sub>2</sub>. The reaction flasks were removed from the gas burette system under a flow of helium and then taken into a glove box where bmimCl (150 mg, 50 wt%) was added to one sample and bmimCl (150 mg, 50 wt%) and PS (55 mg, 5 mol%) added to the second. After thorough mixing, the flasks were reattached to the gas burette system and heated again at 85 °C. Data were recorded on the gas burette system until H<sub>2</sub>-release stopped.

#### **3.2.4** Computational Methods

DFT/GIAO/NMR calculations were performed using the Gaussian 03 program.12 Geometries were fully optimized at the B3LYP/6-31G(d) level without symmetry constraints. The <sup>11</sup>B NMR chemical shifts were calculated at the B3LYP/6-311G(d) level using the GIAO option within Gaussian 03. The <sup>11</sup>B NMR GIAO chemical shifts are

referenced to  $BF_3 \bullet OEt_2$  using an absolute shielding constant of 101.58, which was obtained from the GIAO NMR calculated shift of  $BF_3 \bullet OEt_2$  at the B3LYP/6-311G(d)//B3LYP/6-31G(d) level of theory. The Cartesian coordinates for the calculated species in **Figures 3.9** and **3.18** are listed below in **Tables 3.1-3.5**.

|   | Х         | Y         | Ζ         |
|---|-----------|-----------|-----------|
| Ν | -0.773299 | -0.000000 | -0.134999 |
| В | 0.791599  | -0.000000 | 0.012799  |
| Η | -1.135099 | -0.804499 | 0.381400  |
| Η | -1.135099 | 0.804499  | 0.381400  |
| Η | 1.259600  | 1.009599  | -0.542400 |
| Η | 1.259600  | -1.009500 | -0.542600 |
| Η | 1.206199  | -0.000100 | 1.203099  |

 Table 3.1 Cartesian Coordinates for [H<sub>3</sub>BNH<sub>2</sub>]<sup>-</sup> (Figure 3.9A)

#### Table 3.2 Cartesian Coordinates for Straight Chain

#### $[H_3BNH_2BH_2NH_2BH_2NH_2BH_2NH_2]^-$ (Figure 3.9B)

|   | Х         | Y         | Ζ         |
|---|-----------|-----------|-----------|
| Ν | 1.959700  | 0.758999  | 1.187400  |
| В | 2.540399  | 0.412200  | -0.198300 |
| Ν | 1.293600  | -0.033100 | -1.148400 |
| В | 0.438000  | -1.324199 | -0.793400 |
| Ν | -0.208900 | -1.079400 | 0.647899  |
| В | -1.770800 | -0.859699 | 0.824700  |
| Ν | -2.317500 | 0.158000  | -0.263600 |
| В | -1.968999 | 1.736400  | -0.269600 |
| Η | 2.621800  | 0.566400  | 1.930099  |
| Η | 1.690000  | 1.733499  | 1.274600  |
| Η | 3.295600  | -0.544500 | -0.124400 |
| Η | 3.079500  | 1.353000  | -0.788600 |
| Η | 1.666900  | -0.159100 | -2.085399 |
| Η | 0.660999  | 0.766799  | -1.215500 |
| Η | 1.179299  | -2.286599 | -0.761700 |
| Η | -0.431200 | -1.475000 | -1.641799 |
| Η | 0.363400  | -0.328299 | 1.081500  |
| Η | 0.006900  | -1.898000 | 1.208599  |

| Η | -2.009999 | -0.428400 | 1.935800  |
|---|-----------|-----------|-----------|
| Η | -2.320700 | -1.938300 | 0.636300  |
| Η | -3.330500 | 0.091499  | -0.210599 |
| Η | -2.079099 | -0.229699 | -1.175400 |
| Η | -2.334400 | 2.210500  | 0.790599  |
| Η | -2.574799 | 2.233699  | -1.213899 |
| Η | -0.765400 | 1.877400  | -0.419700 |

 Table 3.3 Cartesian Coordinates for Branched Chain

|   | r         | r         |           |
|---|-----------|-----------|-----------|
|   | X         | Y         | Z         |
| Ν | 0.936900  | -1.183599 | 0.363600  |
| Ν | -3.477799 | 0.052300  | -0.022599 |
| В | -2.135199 | -0.649400 | 0.192800  |
| Ν | -0.967499 | 0.439900  | -0.199000 |
| В | 0.448600  | -0.075100 | -0.630100 |
| Ν | 1.511099  | 1.101200  | -0.554800 |
| В | 1.424499  | 2.188700  | 0.643000  |
| В | 2.350199  | -1.921000 | 0.066400  |
| Η | 0.204500  | -1.889200 | 0.394999  |
| Η | 0.967599  | -0.795899 | 1.306100  |
| Η | -3.907000 | 0.364899  | 0.842100  |
| Η | -4.148900 | -0.556700 | -0.475500 |
| Η | -1.892199 | -0.982400 | 1.350600  |
| Η | -1.999500 | -1.589500 | -0.576400 |
| Η | -0.870600 | 1.111000  | 0.562499  |
| Η | -1.391400 | 0.972999  | -0.955799 |
| Η | 0.388799  | -0.524300 | -1.750799 |
| Η | 1.519300  | 1.602100  | -1.438399 |
| Η | 2.418199  | 0.634999  | -0.505100 |
| Η | 0.455499  | 2.902500  | 0.431400  |
| Η | 1.299700  | 1.582000  | 1.695699  |
| Η | 2.453100  | 2.843799  | 0.631900  |
| Η | 2.261599  | -2.477400 | -1.011600 |
| Η | 3.231400  | -1.069400 | 0.053500  |
| Η | 2.550500  | -2.713099 | 0.974099  |

[(NH<sub>2</sub>BH<sub>3</sub>)<sub>2</sub>BHNH<sub>2</sub>BH<sub>2</sub>NH<sub>2</sub>]<sup>-</sup> (Figure 3.9C)

# Table 3.4 Cartesian Coordinates for Branched Chain

|   | Х         | Y         | Z         |
|---|-----------|-----------|-----------|
| В | 0.952800  | 1.127599  | -0.632599 |
| В | -3.608900 | -0.082999 | -0.197800 |
| Ν | -2.090899 | 0.391100  | 0.108600  |
| В | -0.943000 | -0.681100 | 0.233600  |
| Ν | 0.470500  | 0.036699  | 0.461900  |
| В | 1.593199  | -0.997600 | 0.780699  |
| Ν | 1.653900  | -1.898799 | -0.575000 |
| Ν | 1.751000  | 2.201099  | 0.111999  |
| Η | -0.009499 | 1.651199  | -1.183400 |
| Η | -4.299799 | 0.933600  | -0.234500 |
| Η | -3.970399 | -0.817499 | 0.707500  |
| Η | -3.621200 | -0.655200 | -1.274800 |
| Η | -1.807799 | 1.056199  | -0.608300 |
| Η | -2.124200 | 0.935900  | 0.968200  |
| Η | -0.910399 | -1.311300 | -0.815700 |
| Η | -1.180600 | -1.407399 | 1.179100  |
| Η | 0.390799  | 0.606400  | 1.304599  |
| Η | 1.332799  | -1.745900 | 1.699600  |
| Η | 2.697300  | -0.496499 | 0.891300  |
| Η | 0.750399  | -2.344899 | -0.726400 |
| Η | 1.785399  | -1.215200 | -1.331499 |
| Η | 2.398799  | -2.585799 | -0.574399 |
| Η | 1.818200  | 3.047100  | -0.444999 |
| Η | 2.704399  | 1.902899  | 0.300900  |
| Η | 1.584100  | 0.505399  | -1.529600 |

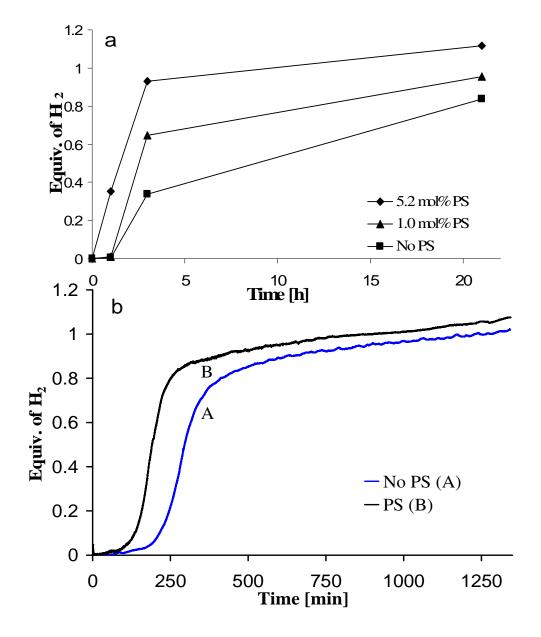
## [H<sub>3</sub>BNH<sub>2</sub>BH<sub>2</sub>(BH<sub>2</sub>NH<sub>3</sub>)NHBH<sub>2</sub>NH<sub>2</sub>]<sup>-</sup> (Figure 3.9D)

 Table 3.5 Cartesian Coordinates for [H<sub>3</sub>BNH<sub>2</sub>BH<sub>2</sub>NH<sub>2</sub>BEt<sub>3</sub>]<sup>-</sup> (Figure 3.18)

|   | Х         | Y         | Ζ         |
|---|-----------|-----------|-----------|
| Η | -1.973376 | 1.031556  | 0.884937  |
| Η | -2.201170 | 0.815859  | -1.126664 |
| Η | -0.820510 | -1.339560 | 0.655743  |
| Η | -0.852136 | -1.250299 | -0.957451 |
| В | -2.066478 | 0.275274  | -0.052926 |
| В | 0.836476  | -0.192348 | -0.092427 |
| Ν | -0.768299 | -0.670796 | -0.118477 |
| С | 1.605095  | -1.636615 | -0.386310 |
| Η | 1.200371  | -2.068877 | -1.323103 |

| Η | 1.334269  | -2.370456 | 0.397727  |
|---|-----------|-----------|-----------|
| С | 1.108688  | 0.872984  | -1.310904 |
| Η | 0.702173  | 0.466378  | -2.255249 |
| Η | 2.197316  | 0.926333  | -1.485537 |
| С | 1.069508  | 0.408922  | 1.420464  |
| Η | 0.321383  | 1.193611  | 1.605925  |
| Η | 0.850119  | -0.370906 | 2.175262  |
| С | 3.137576  | -1.647815 | -0.521249 |
| Η | 3.631333  | -1.364183 | 0.415665  |
| Η | 3.529675  | -2.638214 | -0.802335 |
| Η | 3.476580  | -0.938600 | -1.287172 |
| С | 0.592853  | 2.314007  | -1.146182 |
| Η | 0.839618  | 2.949048  | -2.012247 |
| Η | -0.493703 | 2.336795  | -1.019284 |
| Η | 1.029156  | 2.795498  | -0.260936 |
| С | 2.454242  | 0.997297  | 1.747594  |
| Η | 2.482709  | 1.479006  | 2.737705  |
| Η | 3.241083  | 0.232662  | 1.745465  |
| Η | 2.750655  | 1.756872  | 1.012585  |
| Η | -3.347816 | -1.408267 | -0.518157 |
| Η | -3.215754 | -1.163142 | 1.079698  |
| Η | -5.045222 | 0.442455  | -0.884607 |
| Η | -5.589647 | -0.981050 | 0.446384  |
| Η | -4.870481 | 0.792194  | 1.104587  |
| Ν | -3.326438 | -0.671772 | 0.190345  |
| В | -4.834247 | -0.038808 | 0.214854  |

### 3.3 Results and Discussion


#### 3.3.1 H<sub>2</sub>-Release from AB/PS Solid-State Reactions

As shown in **Figure 3.1a** and **Table 3.6**, initial H<sub>2</sub>-release measurements using the Toepler pump of the solid-state reactions of AB in the presence of 1.0 and 5.2 mol% PS at 85 °C clearly demonstrated the activating effect of PS on AB H<sub>2</sub>-release. While the reaction with 1.0 mol % PS still showed an induction period with no H<sub>2</sub>-released after 1 h, the extent of release was significantly increased at 3 h (0.65 equiv.) compared to that from pure AB at the same time (0.34 equiv.). The data for the 5.2 mol % PS reaction indicated both a shortened induction period, with 0.35 equiv. already released at 1 h, and significantly increased amounts of H<sub>2</sub>-release at both 3 h (0.93 equiv.) and 20 h (1.12 equiv.) compared to those of either the pure AB or 1.0 mol% PS reactions. However, the solid-state AB/PS reactions stopped just after the release of ~1.1 H<sub>2</sub>-equivalents. More detailed H<sub>2</sub>-release data collected (**Table 3.7** and **Figure 3.1b**) for the 5.2 mol% PS reaction with the automated gas burette again clearly demonstrated that the induction period was shortened and that the rate of H<sub>2</sub>-release was increased upon the addition of 5.2 mol% PS.

The NMR spectra in **Figure 3.2** of the glyme-soluble residues from the solid-state AB/PS reactions showed features similar to those of the pure AB reactions. Thus, as the reaction progressed, the AB resonance (-23.5 ppm) decreased and was replaced by resonances arising from both the diammoniate of diborane,  $[(NH_3)_2BH_2]^+BH_4^-$ , (DADB) (-13.3 (overlapped) and -37.6 ppm)<sup>13,14</sup> and branched-chain polyaminoborane polymers (-7, -13.3 and -25.1 ppm)<sup>15</sup> with the observed shift is in good agreement with the calculated shifts given in **Chapter 2, Figure 2.9**. Consistent with the faster H<sub>2</sub>-release found for the PS/AB mixtures, the spectra show that after 22 h the amount of unreacted AB was less in the PS/AB reactions than in that of the pure AB reaction.

The solid-state <sup>11</sup>B NMR spectra in **Figure 3.3** of the final products of the reactions showed an additional broad resonance centered near ~23 ppm that is characteristic of the sp<sup>2</sup> boron-framework of cross-linked polyborazylene structures,<sup>16-18</sup> thus indicating that AB dehydrogenation ultimately produces B=N unsaturated products. Consistent with this conclusion, the <sup>11</sup>B NMR spectra of the volatile products of the PS/AB reactions collected in the cold trap through which the released H<sub>2</sub> had been

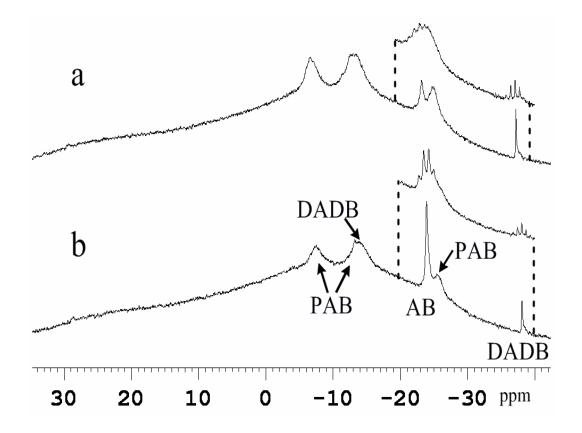
passed, also indicated some borazine  $(B_3N_3H_6)$  formation with the amount of the volatiles (ranging from 0.04 to 0.25 mmol depending upon the particular experiment) corresponding to less than 10% of the AB converting to borazine.



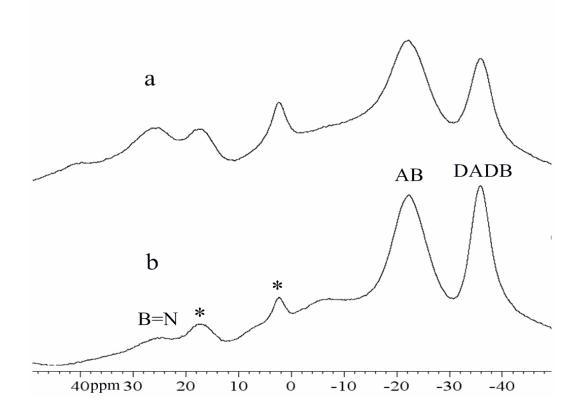
**Figure 3.1** H<sub>2</sub>-release measurements (a) (Toepler pump) for solid state AB (250 mg) reactions with 0, 1.0 and 5.2 mol% PS (18 and 91 mg) at 85 °C, (b) (gas burette) for solid state AB (150 mg) reactions with 0 and 5.2 mol% PS (55 mg) at 85 °C.

Table 3.6 H<sub>2</sub>-Release Data (Toepler pump) for AB/PS Solid-State Reactions at 85

## °C

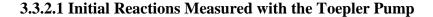

| Time | Amount of PS           | Total   | H <sub>2</sub> -Rele | eased |
|------|------------------------|---------|----------------------|-------|
| [h]  | [mol%, mg, mmol]       | wt [mg] | equiv.               | mmol  |
| 1    | -                      | 250     | -                    | 0.02  |
| 3    | -                      | 250     | 0.34                 | 2.74  |
| 21   | -                      | 250     | 0.84                 | 6.79  |
|      |                        |         |                      |       |
| 1    | <b>1.0</b> , 18, 0.084 | 268     | -                    | 0.08  |
| 3    | <b>1.0</b> , 18, 0.084 | 268     | 0.65                 | 5.23  |
| 21   | <b>1.0</b> , 18, 0.084 | 268     | 0.95                 | 7.73  |
|      |                        |         |                      |       |
| 1    | <b>5.2</b> , 91, 0.43  | 341     | 0.35                 | 2.86  |
| 3    | <b>5.2</b> , 91, 0.43  | 341     | 0.92                 | 7.52  |
| 21   | <b>5.2</b> , 91, 0.43  | 341     | 1.12                 | 9.04  |

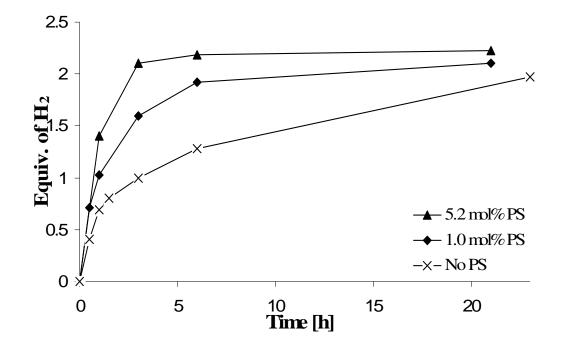
250 mg NH<sub>3</sub>BH<sub>3</sub> (8.1 mmol) was used for all reactions.


## Table 3.7 H<sub>2</sub>-Release Data (gas burette) for AB/PS Solid-State Reactions at 85 °C

| Amount of PS          | Total   | Time to H <sub>2</sub> -equivalents (min) |          |                |
|-----------------------|---------|-------------------------------------------|----------|----------------|
| [mol%, mg, mmol]      | wt [mg] | 0.5 equiv.                                | 1 equiv. | Final (equiv.) |
| -                     | 150     | 295                                       | 1264     | 1333 (1.02)    |
| <b>5.3</b> , 55, 0.26 | 205     | 191                                       | 885      | 1334 (1.08)    |

150 mg NH<sub>3</sub>BH<sub>3</sub> (4.87 mmol) was used for all reactions.





**Figure 3.2** <sup>11</sup>B{<sup>1</sup>H} NMR (128.4 MHz) spectra (insets show <sup>1</sup>H coupled spectra) recorded at 25 °C of the glyme extract of the reaction of: (a) AB (150 mg) and 5.3 mol% PS (55 mg) at 85 °C for 22 h and (b) AB (150 mg) at 85 °C for 22 h. (The broad DADB resonance at -13 ppm is obscured by the PAB resonance)



**Figure 3.3** Solid-state <sup>11</sup>B NMR (240 MHz) spectra recorded at 25 °C of the reaction of: (a) AB (150 mg) and 5.3 mol% PS (55 mg) at 85 °C until 1 H<sub>2</sub>-equivalent was released and (b) AB (150 mg) at 85 °C until 1 H<sub>2</sub>-equivalent was released. (The broad DADB resonance at -13 ppm is obscured by the AB resonance) \*Borate resonances at 17 and 2 ppm result from exposure of sample to air.

#### 3.3.2 H<sub>2</sub>-Release from AB/PS Solution Reactions

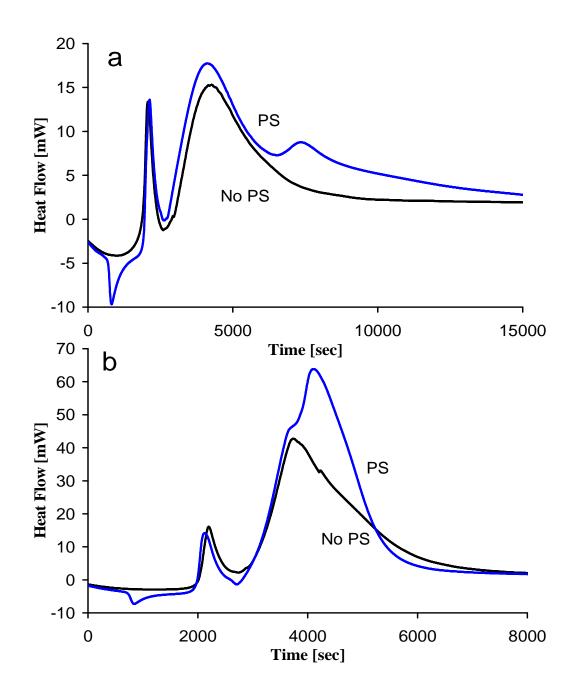




**Figure 3.4** H<sub>2</sub>-release measurements (Toepler pump) of the reaction of AB (250 mg) in bmimCl (250 mg) with 0, 1.0 and 5.2 mol% PS (18 and 91 mg) at 85  $^{\circ}$ C.

The work described in **Chapter 2** and elsewhere<sup>15</sup> showed that polar solvents, especially ionic liquids such as 1-butyl-3-methylimidazolium chloride (bmimCl), can activate H<sub>2</sub>-release from AB at 85 °C, with over 2 equivalents being produced in ~5 h from a 50/50 weight% AB/bmimCl mixture. Comparisons of the H<sub>2</sub>-release rates using Toepler pump measurements of AB dissolved in bmimCl with different amounts of added PS at 85 °C are summarized in **Table 3.8** and **Figure 3.4**. In the absence of PS, only 0.69, 1.00, 1.28 and 1.97 H<sub>2</sub>-equiv. were released at 1, 3, 6 and 23 h, respectively. In contrast, a similar reaction of AB in bmimCl containing 5.2 mol% PS showed a 132

significantly increased H<sub>2</sub>-release rate, with 1.40 H<sub>2</sub>-equiv. released by 1 h and 2.10 H<sub>2</sub>-equiv. released after only 3 h. Even when the amount of PS was decreased to only 0.5 mol% PS, there were still significant increases in the H<sub>2</sub>-release found at 1 h (0.83 equiv.), 3 h (1.65 equiv.) and 6 h (2.10 equiv.) compared to those of the reaction without PS.


The plots in **Figure 3.4** show that the biggest differences in the  $H_2$ -release rates of the bmimCl reactions with and without PS occurred following the release of the first equivalent of  $H_2$ . For the reaction without PS, the first equivalent was released in 3 h, and even after 23 h only 1.97 equiv was released. On the other hand, by 3 h the reactions with 5.2 and 1.0 mol% PS had already released 2.10 and 1.75 equiv., respectively, and at 6 h, 2.18 and 2.01 equiv. Thus, PS appears to have significantly enhanced the release rate of the second  $H_2$ - equivalent from AB.

Differential scanning calorimetry measurements also support this conclusion. The black curve in **Figure 3.5a** shows a single well-defined exotherm for the release of the first H<sub>2</sub>-equivalent from the reaction of an AB/bmimCl mixture. The blue curve, which is from the reaction of a similar mixture containing 5.3 mol% of added PS, clearly exhibits a second exotherm indicating the release of additional H<sub>2</sub> by a different process. Consistent with the H<sub>2</sub>-release measurements that showed significant rate enhancements for the  $2^{nd}$  H<sub>2</sub>-equivalent as the temperature was raised, when the upper temperature of the DSC analysis was raised from 85 °C to 110 °C (**Figure 3.5b**), the second exotherm grew and shifted to shorter times such that it overlapped the first isotherm.

| Time | Amount of PS            | Total <sup>a</sup> | H <sub>2</sub> -Re | leased |
|------|-------------------------|--------------------|--------------------|--------|
| [h]  | [mol%, mg, mmol]        | wt [mg]            | equiv.             | mmol   |
| 1    | -                       | 500                | 0.69               | 5.62   |
| 3    | -                       | 500                | 1.00               | 8.10   |
| 6    | -                       | 500                | 1.28               | 10.36  |
| 23   | -                       | 500                | 1.97               | 15.94  |
|      |                         |                    |                    |        |
| 1    | <b>0.5</b> , 9, 0.04    | 509                | 0.83               | 6.70   |
| 3    | <b>0.5</b> , 9, 0.04    | 509                | 1.65               | 13.37  |
| 6    | <b>0.5</b> , 9, 0.04    | 509                | 2.10               | 17.04  |
| 22   | <b>0.5</b> , 9, 0.04    | 509                | 2.23               | 18.04  |
|      |                         |                    |                    |        |
| 1    | <b>5.2</b> , 91, 0.43   | 591                | 1.40               | 11.33  |
| 3    | <b>5.2</b> , 91, 0.43   | 591                | 2.10               | 17.02  |
| 6    | <b>5.2</b> , 91, 0.43   | 591                | 2.18               | 17.67  |
| 21   | <b>5.2</b> , 91, 0.43   | 591                | 2.23               | 18.04  |
|      |                         |                    |                    |        |
| 1    | <b>24.9</b> , 434, 2.03 | 934                | 0.79               | 6.37   |
| 3    | <b>24.9</b> , 434, 2.03 | 934                | 1.75               | 14.14  |
| 6    | <b>24.9</b> , 434, 2.03 | 934                | 2.01               | 16.28  |
| 22   | <b>24.9</b> , 434, 2.03 | 934                | 2.13               | 17.23  |

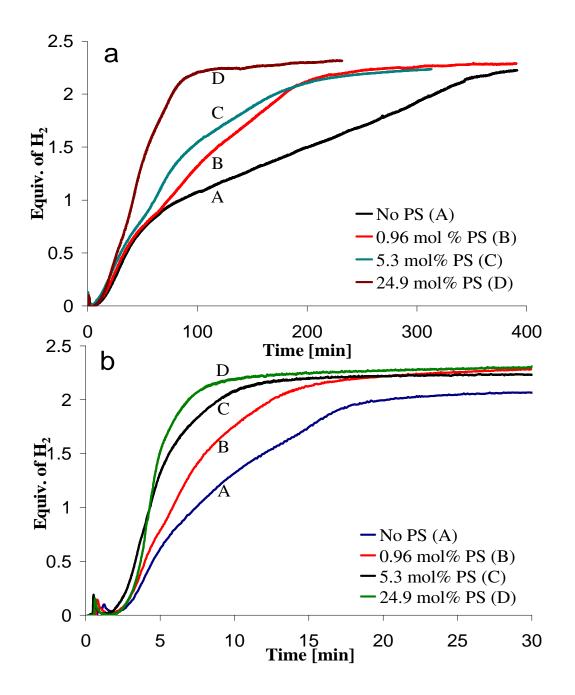
Table 3.8 H<sub>2</sub>-Release Data (Toepler pump) for AB/BmimCl/PS Reactions at 85  $^\circ C$ 

 $250\ mg\ NH_3BH_3\ (8.1\ mmol)$  and  $250\ mg\ bmimCl\ were\ used\ for\ all\ reactions.$ 



**Figure 3.5** Differential Scanning Calorimetry analyses of the reactions of AB (150 mg) in bmimCl (150 mg) with 5.3 mol% PS (55 mg) at: (a) 85 °C and (b) 110 °C. \*Initial exotherm is apparatus artifact.

### 3.3.2.2 H<sub>2</sub>-Release Reactions Measured with the Automated Gas Burette


In order to better quantify the effects of both PS-loading and temperature, more detailed H2-release data on a series of 50/50 wt% AB/bmimCl systems containing from 0 to 24.9 mol% PS at 75, 85, 95 and 110 °C were collected on the automated gas burette (Table 3.9 and Figure 3.6). The rate of  $H_2$ -release increased as the mol% of PS in the mixture was increased. For example, as shown in Figure 3.6a, while the reaction at 85 <sup>o</sup>C without PS required 84 min and 316 min to liberate the 1<sup>st</sup> and 2<sup>nd</sup> equivalents of H<sub>2</sub>, the reactions with 0.96 (1<sup>st</sup> 74, 2<sup>nd</sup> 179 min), 5.3 (1<sup>st</sup> 61, 2<sup>nd</sup> 171 min) and 24.9 (1<sup>st</sup> 41, 2<sup>nd</sup> 77 min) mol% PS were all significantly faster, with the fastest rate found for the highest loading. Substantial rate increases were observed for all reactions when the reaction temperature was increased. Thus, as illustrated in the plots in Figure 3.6b, at 110 °C the reaction without PS required only 7.4 min and 20 min to liberate the 1st and 2nd equivalents of H<sub>2</sub>, but the reactions with 0.96 ( $1^{st}$  5.9,  $2^{nd}$  13 min), 5.3 ( $1^{st}$  4.3,  $2^{nd}$  9 min) and 24.9 (1<sup>st</sup> 4.3, 2<sup>nd</sup> 7 min) mol% PS were all again significantly faster. It is also noteworthy that at 95 °C and 110 °C, unlike at 85 °C, the rate of H<sub>2</sub>-release for the 5.3 and 24.9 mol% PS reactions were similar; indicating that less PS is required to induce H<sub>2</sub>-release at higher temperatures.

The above studies all indicate that both bmimCl and PS promote the loss of more than one equivalent of  $H_2$  with the combination of PS in bmimCl being the most effective. To further test this conclusion, two samples of neat AB were first heated at 85 °C for 23 h to produce a partially dehydrogenated material where only ~1.0 H<sub>2</sub>-equivalent had been released. To the first sample bmimCl was added and to the second sample both PS and bmimCl. The flasks were then reheated at 85 °C to produce liquid suspensions, and any additional H<sub>2</sub>-release was measured. While the heating of AB in the solid state at 85 °C for more extended periods (~48 h) gave no further H<sub>2</sub>-release, both Toepler pump (**Table 3.10**) and gas burette measurements (**Figure 3.7**) showed that the addition of either bmimCl or bmimCl/PS to the partially dehydrogenated AB caused H<sub>2</sub>-release to resume, ultimately yielding an additional ~0.7 equivalent of H<sub>2</sub> from both samples, with the bmimCl/PS reaction exhibiting the fastest rate.

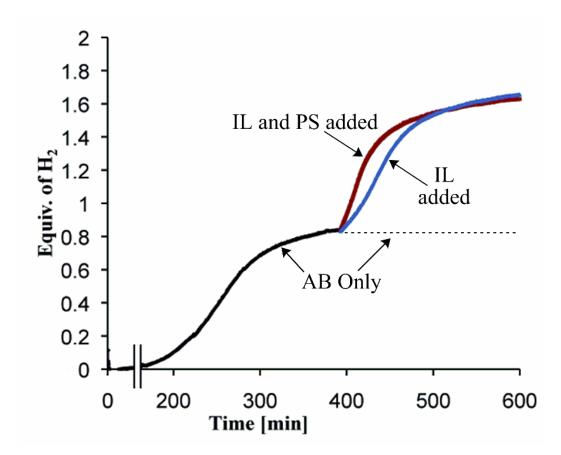

| Temp. | Amount of PS            | Total <sup>a</sup> | Т      | ime to H <sub>2</sub> | -equivaler | nts (min)      |
|-------|-------------------------|--------------------|--------|-----------------------|------------|----------------|
| °C    | [mol%, mg, mmol]        | wt [mg]            | 0.75   | 1                     | 1.5        | Final (equiv.) |
|       |                         |                    | equiv. | equiv.                | equiv.     |                |
| 75    | -                       | 300                | 228    | 459                   | -          | 1041 (1.43)    |
|       | <b>0.96</b> , 10, 0.047 | 310                | 205    | 320                   | 665        | 1040 (2)       |
|       | <b>5.3</b> , 55, 0.26   | 355                | 161    | 215                   | 342        | 723 (1.99)     |
|       | <b>24.9</b> , 260, 1.21 | 560                | 140    | 208                   | 378        | 782 (1.98)     |
| 85    | -                       | 300                | 52     | 84                    | 199        | 316 (2)        |
|       | <b>0.96</b> , 10, 0.047 | 310                | 50     | 74                    | 118        | 179 (2)        |
|       | <b>5.3</b> , 55, 0.26   | 355                | 45     | 61                    | 95         | 171 (2)        |
|       | <b>24.9</b> , 260, 1.21 | 560                | 35     | 41                    | 55         | 77 (2)         |
| 95    | -                       | 300                | 21     | 37                    | 87         | 126 (2)        |
|       | <b>0.96</b> , 10, 0.047 | 310                | 20     | 27                    | 44         | 72 (2)         |
|       | <b>5.3</b> , 55, 0.26   | 355                | 17     | 21                    | 31         | 52 (2)         |
|       | <b>24.9</b> , 260, 1.21 | 560                | 16.3   | 20.9                  | 32         | 59 (1.91)      |
| 110   | -                       | 300                | 5.8    | 7.4                   | 12         | 20 (2)         |
|       | <b>0.96</b> , 10, 0.047 | 310                | 4.9    | 5.9                   | 8          | 13 (2)         |
|       | <b>5.3</b> , 55, 0.26   | 355                | 3.8    | 4.3                   | 6          | 9 (2)          |
|       | <b>24.9</b> , 260, 1.21 | 560                | 4.0    | 4.3                   | 5          | 7 (2)          |

Table 3.9 H<sub>2</sub>-Release Data (gas burette) for AB/bmimCl/PS Reactions

150 mg NH<sub>3</sub>BH<sub>3</sub> (4.87 mmol) and 150 mg bmimCl were used for all reactions.



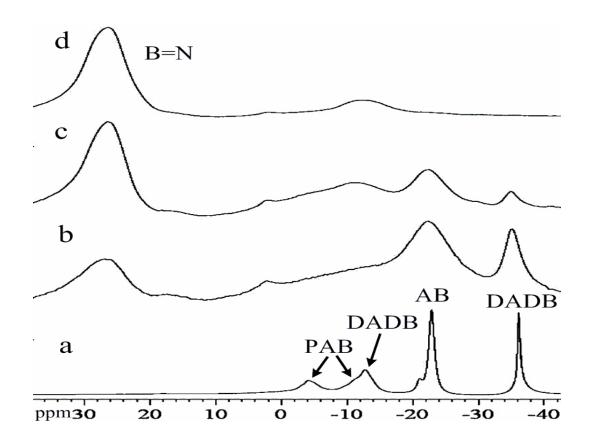
**Figure 3.6** H<sub>2</sub>-release measurements (gas burette) of the reaction of AB (150 mg) in bmimCl (150 mg) with 0, 0.96, 5.3 and 24.9 mol% PS (10, 55 and 260 mg) at: (a) 85  $^{\circ}$ C and (b) 110  $^{\circ}$ C.



**Figure 3.7** H<sub>2</sub>-release measurements (gas burette) of partially dehydrogenated AB (150 mg) where 1 H<sub>2</sub>-equivalent was initially released at 85 °C, then bmimCl (150 mg) and bmimCl (150 mg)/PS (55 mg/5.2 mol%) were added to separate samples and heating resumed at 85 °C. The dashed line shows the observed AB H<sub>2</sub>-release when IL and/or PS are not added.

| Time            | Total <sup>a</sup> | H <sub>2</sub> -F | Released |
|-----------------|--------------------|-------------------|----------|
| [h]             | wt [mg]            | equiv.            | mmol     |
| 0               | 250                | 0.99              | 8.04     |
| $1^{b}$         | 500                | 1.05              | 8.51     |
| $2^{b}$         | 500                | 1.11              | 9.02     |
| 3 <sup>b</sup>  | 500                | 1.27              | 10.30    |
| 21 <sup>b</sup> | 500                | 1.78              | 14.42    |
| 24 <sup>b</sup> | 500                | 1.79              | 14.51    |
| 0               | 250                | 0.98              | 7.96     |
| $1^{c}$         | 591                | 1.21              | 9.82     |
| $2^{c}$         | 591                | 1.45              | 11.75    |
| $3^{c}$         | 591                | 1.51              | 12.20    |
| 24 <sup>c</sup> | 591                | 1.70              | 13.77    |

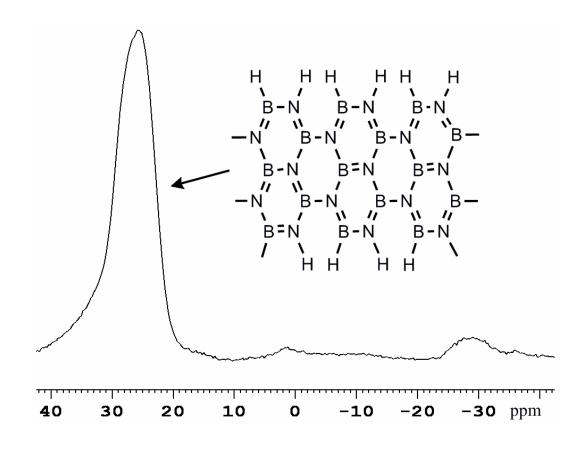
 Table 3.10
 H2-Release (Toepler pump)
 Data for Partially Dehydrogenated AB


<sup>a</sup>250 mg NH<sub>3</sub>BH<sub>3</sub> (8.1 mmol) for all experiments. <sup>b</sup>250 mg bmimCl added post neat NH<sub>3</sub>BH<sub>3</sub> reaction. <sup>c</sup>250 mg bmimCl and 91 mg PS added post neat NH<sub>3</sub>BH<sub>3</sub> reaction.

## 3.3.3 <sup>11</sup>B NMR Studies of Reaction Pathways and Intermediates


## 3.3.3.1 Solid-State <sup>11</sup>B NMR Studies

While bmimCl is a liquid at 85 °C, it is a solid at room temperature; therefore, solid-state NMR was used to monitor the bmimCl/AB/PS reactions at different stages by heating the liquid mixtures at 85 °C, then quenching the reactions at the indicated times by cooling to room temperature, with subsequent analyses of the resulting solid materials by solid-state <sup>11</sup>B NMR. Consistent with the H<sub>2</sub>-release measurements and <sup>11</sup>B NMR studies of solid-state PS/AB reactions, the solid-state <sup>11</sup>B spectrum of the reaction of a 50/50 wt% bmimCl/AB mixture containing 5.2 mol% PS showed after 0.5 equiv. of H<sub>2</sub>-release, the resonances of both DADB<sup>13,14</sup> and branched chain polyaminoboranes (**Figure 3.8**).<sup>15</sup> The small signal (-21.2 ppm) that is apparent just downfield of the AB (-23.2 ppm) resonance has a chemical shift value consistent with that previously reported<sup>19-22</sup> for the H<sub>3</sub>BNH<sub>2</sub><sup>-</sup> anion (-21.49 ppm) and with its DFT/GIAO calculated value (-20.6 ppm) (**Figure 3.9**).

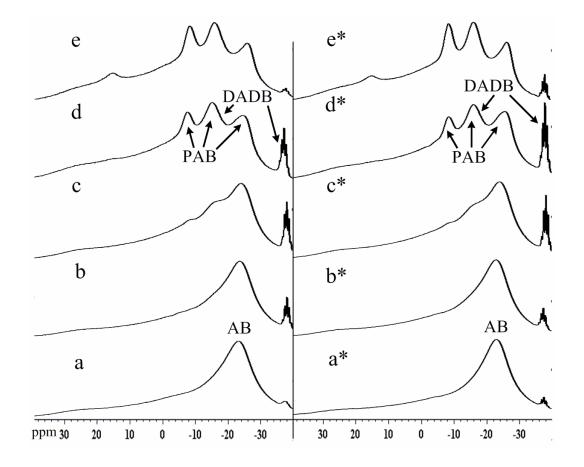

As the reaction continued, the resonances broadened and diminished and a new resonance centered at 25.9 ppm grew in that is characteristic of unsaturated sp<sup>2</sup>-hybridized boron. As shown in the spectrum in **Figure 3.10**, after prolonged reaction (23 h) only the 25.9 ppm resonance remained, indicating that all final products had unsaturated sp<sup>2</sup>-hybridized structures. NMR studies of the dehydrogenated products of AB H<sub>2</sub>-release promoted by solid-state thermal reactions<sup>23</sup> have likewise shown the formation of similar types of B=N unsaturated final products after more than 2 equivalents of H<sub>2</sub>-release.



**Figure 3.8** Solid-state <sup>11</sup>B NMR (240 MHz) spectra recorded at 25 °C of the reaction of AB (150 mg) and 5.3 mol% PS (55 mg) in bmimCl (150 mg) at 85 °C after the H<sub>2</sub>-release of: (a) 0.5 equiv. (30 min), (b) 1 equiv. (61 min), (c) 1.5 equiv. (95 min) and (d) 2 equiv. (171 min). (The broad DADB resonance at -13 ppm is obscured by the AB and PAB resonances)



**Figure 3.9** DFT optimized geometries (B3LYP/6-31G(d)) and GIAO calculated (B3LYP/6-311G(d)) <sup>11</sup>B NMR chemical shifts. The shifts for the corresponding neutral species are given in **Chapter 2, Figure 9**.




**Figure 3.10** Solid-state <sup>11</sup>B NMR (240 MHz) spectrum recorded at 25 °C of the reaction of AB (250 mg) and 5.2 mol% PS (91 mg) in bmimCl (150 mg) at 85 °C for 23 h.

# 3.3.3.2 In Situ <sup>11</sup>B NMR Studies of Reaction Progress in Ionic Liquids

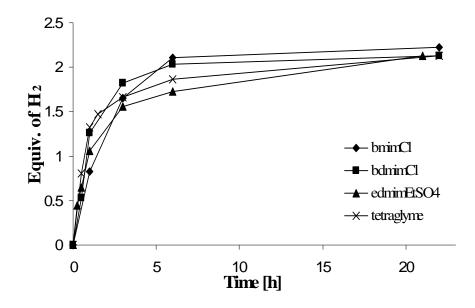
In situ solution <sup>11</sup>B NMR studies of the PS promoted H<sub>2</sub>-release from AB in the room temperature ionic liquid mmimMeSO<sub>4</sub> at 85 °C also exhibited features similar to those observed in the solid-state NMR spectra of the bmimCl reactions. It is also significant that the <sup>11</sup>B NMR spectra of the reactions with and without PS in mmimMeSO<sub>4</sub> (**Figure 3.11**) showed the formation of similar types of products. In both reactions, DADB and polyaminoborane polymers were formed initially, then at the longer times where more H<sub>2</sub> was released, the DADB and polyaminoborane resonances

decreased and insoluble materials formed. Only a small intensity resonance was observed near 25 ppm indicating that if unsaturated B=N products, such as borazine or polyborazylene, were formed they must have reacted rapidly to form the final insoluble product.



**Figure 3.11** Solution <sup>11</sup>B NMR (128 MHz) spectra recorded at 25 °C of the reaction of AB (50 mg) in mmimMeSO<sub>4</sub> (450 mg) at 85 °C, (right) with 5.2 mol% PS (18 mg) after the release of: (a) 0.03 equiv., (b) 0.08 equiv., (c) 0.32 equiv., (d) 1.14 equiv. and (e) 1.63 equiv.; (left) without PS after the release of: (a\*) 0.03 equiv., (b\*) 0.08 equiv., (c\*) 0.29 equiv., (d\*) 1.07 equiv. and (e\*) 1.62 equiv. (The broad DADB resonance at -13 ppm is obscured by the AB and PAB resonances)

### 3.3.4 Proton Sponge Reduces Foaming During AB Thermolysis


One of the barriers to the utilization of AB  $H_2$ -release for hydrogen storage, is that AB dehydrogenation in either the solid state or in solution normally produces considerable foaming.<sup>24</sup> However, as shown in the photographs in **Figure 3.12**, Proton Sponge, besides increasing both the rate and extent of  $H_2$ -release, was found to have the unanticipated, but highly beneficial, effect of significantly reducing foaming during AB  $H_2$ -release in the bmimCl/PS reactions.



**Figure 3.12** Foaming resulting from the reaction of 250 mg AB in 250 mg bmimCl after 1 h at 100 °C: (a) without PS, (b) with 5.2 mol% PS (91 mg).

#### 3.3.5 H<sub>2</sub>-Release in Other Ionic Liquids and Tetraglyme

PS was also found to increase AB H<sub>2</sub>-release in both other ionic liquids and tetraglyme, with both the extent and rate of H<sub>2</sub>-release comparable to that of the PS/bmimCl reactions (**Table 3.11** and **Figure 3.13**). Gas burette data (**Table 3.12**) at 85  $^{\circ}$ C for the tetraglyme reactions showed that fast rates could be achieved with only 1 mol% of PS. The <sup>11</sup>B NMR spectra of the tetraglyme/PS reactions also showed evidence for the initial formation of the H<sub>3</sub>BNH<sub>2</sub><sup>-</sup> anion, followed by the appearance of the resonances for polyaminoborane polymers. However, at longer times, unlike in the ionic liquids, the major product was borazine (30.1 ppm)<sup>25</sup> along with smaller amounts of BH<sub>4</sub><sup>-</sup> (-36.8 ppm)<sup>25</sup> and  $\mu$ -aminodiborane (-27.5 ppm)<sup>25</sup> (**Figure 3.14**). Thus, ionic liquid solvents are favored for AB H<sub>2</sub>-release since they suppress or reduce the formation of these products.

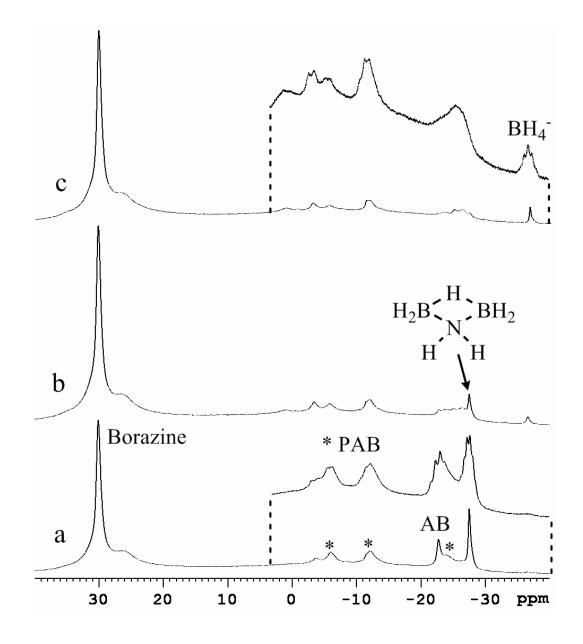


**Figure 3.13** H<sub>2</sub>-release measurements (Toepler pump) of the reaction of AB (250 mg) in ionic liquids or tetraglyme (250 mg) with 5.2 mol% PS (91 mg) at 85  $^{\circ}$ C.

| Solvent                | Time | Amount of PS          | Total <sup>a</sup> | H <sub>2</sub> -R | eleased |
|------------------------|------|-----------------------|--------------------|-------------------|---------|
|                        | [h]  | [mol%, mg, mmol]      | wt [mg]            | equiv.            | mmol    |
| BDmimCl                | 1    | -                     | 500                | 0.68              | 5.52    |
|                        | 3    | -                     | 500                | 1.06              | 8.58    |
|                        | 6    | -                     | 500                | 1.31              | 10.61   |
|                        | 22   | -                     | 500                | 2.29              | 18.59   |
|                        |      |                       |                    |                   |         |
| BDmimCl                | 1    | <b>5.2</b> , 91, 0.43 | 591                | 1.26              | 10.19   |
|                        | 3    | <b>5.2</b> , 91, 0.43 | 591                | 1.82              | 14.74   |
|                        | 6    | <b>5.2</b> , 91, 0.43 | 591                | 2.03              | 16.47   |
|                        | 22   | <b>5.2</b> , 91, 0.43 | 591                | 2.13              | 17.23   |
| EDmimEtSO <sub>4</sub> | 1    | -                     | 500                | 1.00              | 8.09    |
| ····                   | 3    | -                     | 500                | 1.32              | 10.7    |
|                        | 6    | -                     | 500                | 1.64              | 11.3    |
|                        | 22   | -                     | 500                | 2.20              | 17.8    |
|                        |      |                       |                    |                   |         |
| EDmimEtSO <sub>4</sub> | 1    | <b>5.2</b> , 91, 0.43 | 591                | 1.52              | 12.33   |
|                        | 3    | <b>5.2</b> , 91, 0.43 | 591                | 1.91              | 15.50   |
|                        | 6    | <b>5.2</b> , 91, 0.43 | 591                | 2.04              | 16.51   |
|                        | 21.5 | <b>5.2</b> , 91, 0.43 | 591                | 2.16              | 17.47   |
| Tetraglyme             | 1    | _                     | 500                | 1.19              | 9.65    |
| 20000819110            | 3    | _                     | 500                | 1.80              | 14.57   |
|                        | 6    | _                     | 500                | 1.00              | 15.97   |
|                        | 22   | _                     | 500                | 2.12              | 17.20   |
|                        |      |                       | 500                | 2.12              | 17.20   |
| Tetraglyme             | 1    | <b>5.2</b> , 91, 0.43 | 591                | 1.32              | 10.73   |
|                        | 3    | <b>5.2</b> , 91, 0.43 | 591                | 1.66              | 13.45   |
|                        | 6    | <b>5.2</b> , 91, 0.43 | 591                | 1.86              | 15.10   |
|                        | 22   | <b>5.2</b> , 91, 0.43 | 591                | 2.13              | 17.22   |

 Table 3.11
 H<sub>2</sub>-Release Data (Toepler pump) for AB/Ionic-Liquid/PS Reactions at

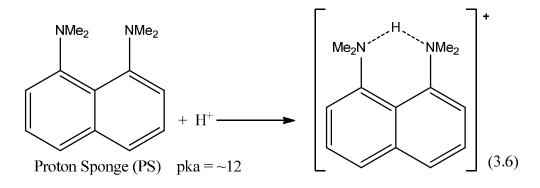
| 85 | °C     |
|----|--------|
|    | $\sim$ |


 $250\ mg\ NH_3BH_3\ (8.1\ mmol)$  and  $250\ mg\ ionic\ liquid\ or\ tetraglyme\ were\ used\ for\ all$ 

reactions.

| Temp | Amount of PS            | Total <sup>a</sup> | Time to H <sub>2</sub> -equivalents (min) |            |                |  |
|------|-------------------------|--------------------|-------------------------------------------|------------|----------------|--|
| °C   | [mol%, mg, mmol]        | wt [mg]            | 1 equiv.                                  | 1.5 equiv. | Final (equiv.) |  |
| 75   | -                       | 300                | 248                                       | 587        | 1126 (2)       |  |
|      | <b>0.96</b> , 10, 0.047 | 310                | 166                                       | 234        | 461 (2)        |  |
|      | <b>5.3</b> , 55, 0.26   | 355                | 164                                       | 263        | 886 (2)        |  |
|      | <b>24.9</b> , 260, 1.21 | 560                | 193                                       | 458        | 1238 (1.91)    |  |
| 85   | -                       | 300                | 40.7                                      | 80.4       | 211 (2)        |  |
|      | <b>0.96</b> , 10, 0.047 | 310                | 36.1                                      | 51.4       | 125 (2)        |  |
|      | <b>5.3</b> , 55, 0.26   | 355                | 27.8                                      | 51.6       | 253 (1.87)     |  |
|      | <b>24.9</b> , 260, 1.21 | 560                | 34.9                                      | 107        | 325 (1.76)     |  |
| 95   | -                       | 300                | 17.2                                      | 39.6       | 122 (2)        |  |
|      | <b>0.96</b> , 10, 0.047 | 310                | 14.4                                      | 22.9       | 77.1 (2)       |  |
|      | <b>5.3</b> , 55, 0.26   | 355                | 12.1                                      | 25.2       | 169 (2)        |  |
|      | <b>24.9</b> , 260, 1.21 | 560                | 18.5                                      | 87.2       | 369 (1.88)     |  |

Table 3.12  $\,H_2\text{-Release}$  Data (gas burette) for AB/Tetraglyme/PS Reactions at 85  $^{o}\mathrm{C}$ 


150 mg  $NH_3BH_3$  (4.87 mmol) and 150 mg tetraglyme were used for all reactions.

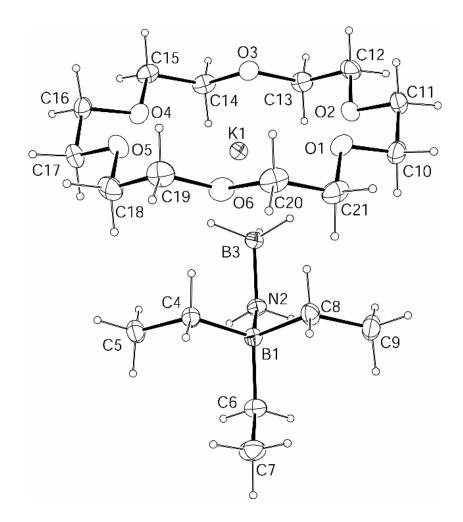


**Figure 3.14** Solution <sup>11</sup>B{<sup>1</sup>H} NMR (128 MHz) spectra (insets show <sup>1</sup>H coupled spectra) recorded at 80 °C of the reaction of AB (50 mg) and 5.2 mol% PS (18 mg) in tetraglyme (450 mg) at 85 °C after: (a) 1 h, (b) 3 h, and (c) 6 h.

#### 3.3.6 Why Does Proton Sponge Induce H<sub>2</sub>-Release from AB?

In **Chapter 2** and elsewhere,<sup>15</sup> it was proposed that the AB activation for  $H_2$ -release that is observed in ionic liquids may occur by a mechanistic pathway (**Chapter 2, Figure 2.16**) involving: (1) ionic-liquid promoted conversion of AB into its more reactive ionic DADB form ([BH<sub>2</sub>(NH<sub>3</sub>)<sub>2</sub>]BH<sub>4</sub><sup>-</sup>), (2) further intermolecular dehydrocoupling reactions between hydridic B-H hydrogens and protonic N-H hydrogens on DADB and/or AB to form neutral polyaminoborane polymers and (3) polyaminoborane dehydrogenation to unsaturated cross-linked polyborazylene materials. The initial formation of DADB has also been proposed as a key step in thermally-induced AB H<sub>2</sub>-release reactions in the solid state and in organic solvents.<sup>23,26</sup> While a DADB pathway may contribute to the H<sub>2</sub>-release observed in the bmimCl/PS solutions, the observed rate enhancements and DSC properties of the Proton Sponge reactions suggest that there is also another mechanistic pathway for H<sub>2</sub>-release in these systems.

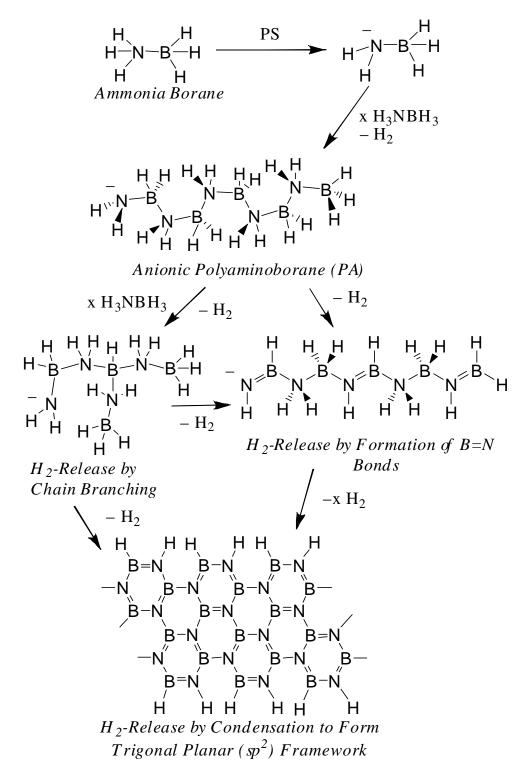


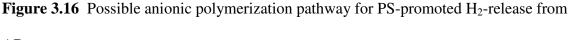

Proton Sponge is a strong base and because of its low nucleophilicity is frequently used as a deprotonating agent in organic and inorganic syntheses that can eliminate the undesirable side reactions often found with more coordinating bases.<sup>9</sup> Shown in **Equation 3.6**, PS gains its low nucleophilicity from the hindered lone pairs that are partially protected by a methyl group from the other nitrogen. A contributing factor to

the high basicity found in PS is the naphthalene backbone strain. Free PS has a strained naphthalene backbone due to the lone pair/lone pair repulsion and methyl group steric strain. The protonated form is less strained because the lone pairs swing into the naphthalene plane to bond making the PSH<sup>+</sup> more stable than would be expected without the strain relief.<sup>27</sup> The observation of a <sup>11</sup>B NMR signal near -21.0 ppm and a <sup>1</sup>H NMR signal at ~18.9 ppm, characteristic of AB deprotonation to form the H<sub>3</sub>BNH<sub>2</sub><sup>-</sup>PSH<sup>+</sup> ion, at the beginning stages of the reactions of AB with PS, strongly supports a PS-promoted AB H<sub>2</sub>-release reaction pathway.

Deprotonation of AB by bases is well-known. For example, the H<sub>3</sub>BNH<sub>2</sub>-Li<sup>+</sup> salt has previously been prepared *in situ* from AB and n-BuLi at 0 °C.<sup>19</sup> More recently, ball milling<sup>20,22,28</sup> and solution<sup>29,30</sup> reactions of AB with metal hydrides have been used to generate H<sub>3</sub>BNH<sub>2</sub>-M<sup>+</sup> (M = Li and Na) and (H<sub>3</sub>BNH<sub>2</sub>-)<sub>2</sub>Ca<sup>2+</sup>. Work<sup>1</sup> by Chang Yoon in our lab showed that AB deprotonation could also be easily achieved by its reaction with either lithium or potassium triethylborohydride (**Equation 3.7**), but that in these cases, a Et<sub>3</sub>B-stabilized anion was formed, with the observed resonances in the <sup>11</sup>B NMR spectra of the Li<sup>+</sup> (-7.5 (s) and -23.8 (q) ppm) and K<sup>+</sup> (-7.8 (s) and -23.6 (q) ppm) compounds being assigned based on the DFT/GIAO calculations to the BEt<sub>3</sub>- (calc -10.6) and terminal -BH<sub>3</sub> (calc -25.3) units in the anion.<sup>1</sup>

$$H_{3}BNH_{3} + M^{+}BEtH^{-} \longrightarrow [Et_{3}BNH_{2}BH_{3}]^{-}M^{+} + H_{2} (M = Li \text{ or } K)$$
 (3.7)


The structures of  $H_3BNH_2^-M^+$  (M = Li and Na) and  $(H_3BNH_2^-)_2Ca^{2+}$  have recently been established from the analyses of their high resolution powder diffraction data,<sup>28,30</sup> and that of  $(H_3BNH_2^-)_2Ca^{2+}\bullet 2THF$  by a single-crystal X-ray determination.<sup>29</sup> The crystallographic determination of the [Et<sub>3</sub>BNH<sub>2</sub>BH<sub>3</sub>]<sup>-</sup>K<sup>+</sup>•18-crown-6 complex in **Figure 15**,<sup>1</sup> confirmed that following AB nitrogen-deprotonation by the triethylborohydride, the Lewis-acidic triethylborane group coordinated at the nitrogen.

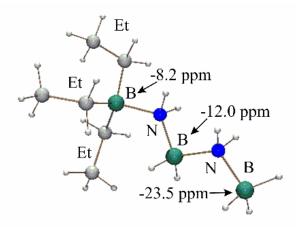



**Figure 3.15** Selected bond distances (Å) and angles (°) for [Et<sub>3</sub>BNH<sub>2</sub>BH<sub>3</sub>]<sup>-</sup> K<sup>+</sup>•18-crown-6: B3-N2, 1.594(2); B1-N2, 1.630(2); B1-C4, 1.622(2); B1-C6 1.637(2); B1-C8, 1.629(2); B3-H3a, 1.13(2); B3-H3b, 1.14(2); B3-H3c, 1.13(2); N2-H2a, 0.94(2); N2-H2b, 0.91(2); K1-H3a, 2.85(2); K1-H3c, 2.76(2); B1-N2-B3, 122.05(10); N2-B1-C4, 108.75(11); N2-B1-C6, 105.17(10); N2-B1-C8, 108.43(11); B1-N2-H2a, 107.0(11); B1-N2-H2b, 107.6(10); H2a-N2-H2b, 106(2).<sup>1</sup>

Electronic structure calculations on  $[H_2NBH_3]^-M^+$  have predicted<sup>28,30</sup> that the B-H hydrogens in these complexes will be much more negatively charged and, as a result, have a higher bascity than in AB. This increases the ability of these anions to release H<sub>2</sub> by the intermolecular reaction of their hydridic B-H hydrogens with an N-H proton on an adjacent complex. Thus, the most likely second step in PS-promoted AB H<sub>2</sub>-release is the intermolecular dehydrocoupling of one of the hydridic B-H hydrogens of  $[H_2NBH_3]^-PSH^+$  with a H<sub>3</sub>NBH<sub>3</sub> to produce, as shown in **Figure 3.16**, a growing anionic polyaminoborane polymer. DFT/GIAO calculations of model anionic polymers showed that their <sup>11</sup>B NMR chemical shifts (**Figure 3.9**) would be indistinguishable from those of the corresponding neutral polyaminoborane polymers,<sup>15</sup> thus explaining the similarity of the spectra for the reactions with and without PS in **Figure 3.11**.

The expected decreased acidity of the internal  $NH_2$  hydrogens of a polyaminoborane polymer relative to those on terminal  $NH_3$  units should result in the  $NH_2$  protons being less reactive for dehydrocoupling reactions that could liberate more than one-equivalent of  $H_2$ . Thus, the increased release-rate for the second equivalent of  $H_2$  observed for the PS-induced reactions of AB may result from the greater ability of the more basic B-H hydrogens of an *anionic* polyaminoborane to induce  $H_2$ -elimination reactions with the protons at these  $NH_2$  sites.






AB.

Support for the proposed anionic polymerization pathway for the AB/PS reaction was obtained from the Chang Yoon studies of the reaction (**Equation 3.8**) of [Et<sub>3</sub>BNH<sub>2</sub>BH<sub>3</sub>]<sup>-</sup>Li<sup>+</sup> with AB.<sup>1</sup> The higher Lewis acidity of the BH<sub>3</sub> group compared to the Et<sub>3</sub>B unit should significantly increase the nucleophilic character of the boron-hydrogens and enhance the ability of this anion to undergo dehydropolymerization with AB. In agreement with this expectation, Toepler pump measurements confirmed the loss of H<sub>2</sub> during the reaction of equal equivalents of NH<sub>3</sub>BH<sub>3</sub> with [Et<sub>3</sub>BNH<sub>2</sub>BH<sub>3</sub>]<sup>-</sup>Li<sup>+</sup> at 23 °C and an electrospray mass spectrum indicated formation of Et<sub>3</sub>BNH<sub>2</sub>BH<sub>2</sub>NH<sub>2</sub>BH<sub>3</sub><sup>-</sup>. the <sup>11</sup>B NMR spectra was in good agreement with the calculated <sup>11</sup>B NMR shifts for the DFT optimized geometry of the chain growth product Et<sub>3</sub>BNH<sub>2</sub>BH<sub>2</sub>NH<sub>2</sub>BH<sub>3</sub><sup>-</sup> given in **Figure 3.17**.

 $[Et_{3}BH_{2}NBH_{3}]^{-}Li^{+} + H_{3}NBH_{3} \longrightarrow [Et_{3}BH_{2}NBH_{2}NH_{2}BH_{3}]^{-}Li^{+} + H_{2} \quad (3.8)$ 

These results provide additional strong support for a PS-induced  $H_2$ -release mechanism involving an intermolecular anionic dehydropolymerization pathway initiated by the  $NH_2BH_3^-$  anion.



**Figure 3.17** DFT (B3LYP/6-31G(d)) optimized geometry and GIAO (B3LYP/6-311G(d)) calculated <sup>11</sup>B NMR shifts for [Et<sub>3</sub>BNH<sub>2</sub>BH<sub>2</sub>NH<sub>2</sub>BH<sub>3</sub>]<sup>-</sup>.

### 3.4 Conclusions

In summary, the work described in this **Chapter** demonstrated base-activation by Proton Sponge of AB H<sub>2</sub>-release in solid-state and in ionic-liquid and tetraglyme solution reactions. My experimental observations and model study contributions by Chang Yoon support an anionic dehydropolymerization mechanism initiated by the H<sub>3</sub>BNH<sub>2</sub><sup>-</sup> anion. For the bmimCl/PS reactions, significantly increased rates of AB H<sub>2</sub>-release, yielding over 2 equivalents of H<sub>2</sub>, were achieved with as little as 1 mol% Proton Sponge. PS was also found to have the unanticipated effect of significantly reducing reaction foaming. These studies further demonstrate that H<sub>2</sub>-release from chemical hydrides can occur by a number of different mechanistic pathways and strongly suggest that optimal chemical-hydride based H<sub>2</sub>-release systems may require the use of synergistic dehydrogenation methods to induce H<sub>2</sub>-loss from chemically different intermediates formed during release reactions.

## 3.5 References

- Himmelberger, D. W.; Yoon, C. W.; Bluhm, M. E.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 2009, 131, 14101-14110.
- Stephens, F. H.; Baker, R. T.; Matus, M. H.; Grant, D. J.; Dixon, D. A. Angew. Chem., Int. Ed. 2007, 46, 746-749.
- Gutowska, A.; Li, L.; Shin, Y.; Wang, C. M.; Li, X. S.; Linehan, J. C.; Smith, R.
   S.; Kay, B. D.; Schmid, B.; Shaw, W. J.; Gutowski, M.; Autrey, T. Angew. Chem.
   *Int. Ed.* 2005, 44, 3578-3582.
- Paolone, A.; Palumbo, O.; Rispoli, P.; Cantelli, R.; Autrey, T.; Karkamkar, A. J. Phys. Chem. C 2009, 113, 10319-10321.
- Sepehri, S.; Feaver, A.; Shaw, W. J.; Howard, C. J.; Zhang, Q.; Autrey, T.; Cao,
   G. J. Phys. Chem. B 2007, 111, 14285-14289.
- Sneddon, L. G. 2007 DOE Hydrogen Program Review.
   <a href="http://www.hydrogen.energy.gov/pdfs/review07/st\_27\_sneddon.pdf">http://www.hydrogen.energy.gov/pdfs/review07/st\_27\_sneddon.pdf</a>.
- Bluhm, M. E.; Bradley, M. G.; Sneddon, L. G. Prepr. Symp. Am. Chem. Soc., Div. Fuel Chem. 2006, 51, 571-572.
- Fang, Z. Z.; Wang, P.; Rufford, T. E.; Kang, X. D.; Lu, G. Q.; Cheng, H. M. Acta Mater. 2008, 56, 6257-6263.
- 9. Alder, R. W. Chem. Rev. 1989, 89, 1215-1223.
- Shriver, D. F.; Drezdzon, M. A., *Manipulation of Air Sensitive Compounds*. 2 ed.;
   Wiley: New York, 1986.

- Zheng, F.; Rassat, S. D.; Helderandt, D. J.; Caldwell, D. D.; Aardahl, C. L.;
   Autrey, T.; Linehan, J. C.; Rappe, K. G. *Rev. Sci. Instrum.* 2008, 79, 084103-1 084103-5.
- Frisch, M. J. *et al. Gaussian 03*, Revision B.05; Gaussian, Inc.: Pittsburgh, PA, 2003.
- 13. Onak, T. P.; Shapiro, I. J. Chem. Phys. 1960, 32, 952.
- 14. Shore, S. G.; Parry, R. W. J. Am. Chem. Soc. **1958**, 80, 20-24 and preceeding papers in this issue.
- Bluhm, M. E.; Bradley, M. G.; Butterick III, R.; Kusari, U.; Sneddon, L. G. J. Am. Chem. Soc. 2006, 128, 7748-7749 and references therein.
- Fazen, P. J.; Beck, J. S.; Lynch, A. T.; Remsen, E. E.; Sneddon, L. G. *Chem. Mater.* **1990**, *2*, 96-97.
- Fazen, P. J.; Remsen, E. E.; Beck, J. S.; Carroll, P. J.; McGhie, A. R.; Sneddon, L.
   G. *Chem. Mater.* **1995**, *7*, 1942-1956.
- Gervais, C.; Framery, E.; Duriez, C.; Maquet, J.; Vaultier, M.; Babonneau, F. J.
   *Eur. Ceram. Soc.* 2005, 25, 129-135.
- 19. Myers, A. G.; Yang, B. H.; David, K. J. Tetrahedron Lett. 1996, 37, 3623-3626.
- Kang, X.; Fang, Z.; Kong, L.; Cheng, H.; Yao, X.; Lu, G.; Wang, P. Adv. Mater.
   2008, 20, 2756-2759.
- Xiong, Z.; Chua, Y. S.; Wu, G.; Xu, W.; Chen, P.; Shaw, W.; Karkamkar, A.;
   Linehan, J.; Smurthwaite, T.; Autrey, T. *Chem. Comm.* 2008, 5595-5597.

- Xiong, Z.; Yong, C. K.; Wu, G.; Chen, P.; Shaw, W.; Karkamkar, A.; Autrey, T.; Jones, M. O.; Johnson, S. R.; Edwards, P. P.; David, W. I. F. *Nat. Mater.* 2008, 7, 138-141.
- Stowe, A. C.; Shaw, W. J.; Linehan, J. C.; Schmid, B.; Autrey, T. *Phys. Chem. Chem. Phys.* 2007, *9*, 1831-1836 and references therein.
- 24. Aardahl, C. L. 2008 DOE Hydrogen Program Review. http://www.hydrogen.energy.gov/pdfs/review08/st\_5\_aardahl.pdf.
- Nöth, H.; Wrackmeyer, B., In Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, Springer-Verlag: New York, 1978; pp 188, 265, 394-395.
- Shaw, W. J.; Linehan, J. C.; Szymczak, N. K.; Heldebrant, D. J.; Yonker, C.;
   Camaioni, D. M.; Baker, R. T.; Autrey, T. *Angew. Chem., Int. Ed.* 2008, *47*, 7493-7496.
- 27. Alder, R. W. Chem. Rev. 1989, 89, 1215-1223.
- Ramzan, M.; Silvearv, F.; Blomqvist, A.; Scheicher, R. H.; Lebegue, S.; Ahuja,
   R. *Phys. Rev. B: Condens. Matter Mater. Phys.* 2009, 79, 132102-4.
- Diyabalanage, H. V. K.; Shrestha, R. P.; Semelsberger, T. A.; Scott, B. L.;
   Bowden, M. E.; Davis, B. L.; Burrell, A. K. Angew. Chem., Int. Ed. 2007, 46, 8995-8997.
- 30. Wu, H.; Zhou, W.; Yildirim, T. J. Am. Chem. Soc. 2008, 130, 14834-14839.