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HYDROGEN STARK BROADENING CALCULATIONS WITH
THE UNIFIED CLASSICAL PATH THEORY *
C. ‘R. Vidal, J. Cooper, and E, W. Smith

The unified theory has been generalized for the
case of upper and lower state interaction by introducing
a more compact tetradic notation. The general result
is then applied to the Stark broadening of hydrogen,

The thermal average of the time development operator
for upper and lower state interaction is presented, Ex-
cept for the time ordering it contains the effect of finite
interaction time between the radiator and perturbers to
all orders, thus avoiding a Lewis type cutoff, A simple
technique for evaluating the Fourier transform of the
thermal average has been developed. The final calcu-
lations based on the unified theory and on the one-elect-
ron theory are compared with measurements in the high
and low electron density regime., The unified theory cal-
culations cover the entire line profile from the line center
to the static wing and the simpler one-electron theory
calculations provide the line intensities only in the line
wings.

Key words: Classical path; hydrogen lines; line
wings; one-electron theory; Stark
broadening; unified theory.

* This research was supported in part by the Advanced
Research Projects Agency of the Department of
Defense, monitored by Army Research Office-
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I. INTRODUCTION
For the first few Balmer lines of hydrogen, recent papers

{Gerardoand Hill, 1966; Bacon and Edwards, 1968; Kepple and Griem,
1968; Birkeland, Oss and Braun, 1969) have demonstrated fairly good
agreement between measurements in high electron density plasmas
(ne > 1016cmm3) and improved calculations of the so called ""modified
impact theory''. The experimental and theoretical half-widths differ
less than about 10%. However, measurements of the Lyman-q wings
{Boldt and W. Cooper, 1964; Elton and Griem, 1964) and low electron

density measurements (ne = 1013cm~3) of the higher Balmer and

Paschen lines (Ferguson and Schliter, 1963; Vidal, 1964; Vidal, 1965)
have revealed parts of the hydrogen line profile, for which the modi-
fied impact theory appears to break down. For the higher series
members better agreement has been obtained with quasi~-static cal-
culations {Vidal, 1965). The reason the current impact theories

break down is that these theories correct the completed collision
assumption by means of the Lewis cutoff (Lewis, 1961} which is only
correct to second order. With this cutoff it was possible to extend

the range of validity for the impact theory beyond the plasma frequency.
However, in the distant wings, where the electron broadening becomes
quasistatic, the second order perturbation treatment with the Lewis
cutoff breaks down because the time development operator must then

be evaluated to all orders. Attempts to correct the second order theory
have been made already (Griem, 1965; Shen and J. Cooper, 1969), but
these theories still make the completed collision assumption by re-
placing the time development operator by the corresponding S-matrix,
and so it has to be emphasized that in conjunction with the Lewis cutoff
these theories would only be correct to second order. The impact
theory in its present form is intrinsicly not able to describe the static

wing and the transition region to the line center where dynamic effects
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cannot be neglected. To overcome this problem, several semiemp-
irical procedures (Griem, 1962; Griem, 1967a; F. Edmonds, Schliter
and Wells, 1967) have been suggested to generate a smooth transition
from the modified impact theory to the static wing.

Recently the classical path methods in line broadening have
been reinvestigated in two review papers { E. Smith, Vidal and J.
Cooper, 196%9a, 1969b), which are from now on referred to as papers
I and II. The purpose of I and II was to state clearly the different
approximations which are required to obtain the classical path theories
of line broadening and to find out where these theories are susceptible
to improvements. In a manner similar to the Mozer-Baranger treat-
ment of electric microfield distribution functions {Baranger and Mozer,
1959, 1960}, it was shown that the general thermal average can be
expanded in two ways, one of which leads to the familiar impact tieory
describing the line center {Baranger, 1958, 1962; Griem, Kolb and
Shen, 1959, 1962). The other expansion represents a generalized
version of the one electron theory (J. Cooper, 1966), which holds in
the line wings. It is also shown that there is generally a considerable
domain of overlap between the modified impact theory and the one
electron theory. Based on these results, a "unified theory'" was then
developed (E. Smith, J. Cooper and Vidal, 1969}, henceforth referred
to as paper III, which presents the first line shape expression which is
valid from the line center out to the static line wing including the
problematic transition region. The line shape obtained by the unified

theory has the form

1 - 1 -
) = TZIm{d mﬁ | tn



where d, Aw and £{Aw) are operators. In paper IIl it was shown that

the familiar impact theories, which hold in the line center, may be
obtained by making a Markoff approximation in the unified theory,

while the one electron theory describing the line wings is just a wing
expansion of the unified theory. Consequently the crucial problem for
any line broadening calculation is to evaluate the matrix elements of
£{pw), which is essentially the Fourier transform of the thermal average
(see Eq. (46) and {47) of paper III). This will be done in detail in this

paper for the general case of upper and lower state interactions.

In the following Sec. II we start with a brief summary of the
basic relations which are required for the classical path approach
pursued here. We then generalize the results of the unified theory to
include lower state interaction {Sec. IV} after introducing a more
compact tetradic notation {Sec. III}). From this general result we turn
to the specific problem of hydrogen by discussing briefly the no
quenching assumption (Sec. V} and deriving the thermal average 3(1)(15:)
(see Eq. {47) of paper III) for the general case of upper and lower state
interaction (Sec. VI). We next investigate the multipole expansion of
the classical interaction potential in the time development operator

{Sec. VII). The thermal average 3(1)

(t) is then evaluated in two steps
by first performing a spherical average (Sec, VIII) and then an average
over the collision parameters: some reference time to’ impact para-
meter p and velocity v {Sec, IX}. Appendix A gives the computer
program which we used in calculating the thermal average for dipole
interactions including lower state interactions. The large time limit
of the thermal average, which leads to the familiar impact theories in

the line center, is investigated in detail in Appendix B for different

cutoff procedures and compared with the results in the literature. In



Sec. X, a methed is developed for performing the Fourier transform-
ation of the thermal average and it leads us to the crucial function for
any classical path theory of Stark broadening. This function is finally
applied in Sec. XI to the one electron theory, which forms the basis

for the asymptotic wing expansion, and in Sec., XII to the unified theory,
which describes the whole line profile from the line center to the static
wing. Numerical results are given for the hydrogen line profiles as
measured by Boldt and W. Cooper, 1964; Elton and Griem, 1964, and
Vidal, 1964, 1965. The computer program for the unified theory cal-
culations and the asymptatic wing expansion is given and explained in

Appendix C,
II. BASIC RELATIONS

In this section we will briefly cutline the basic relations which
are used in our classical path treatment of line broadening.

As discussed in Sec. 2 of paper I, we are considering a system
containing a single radiator and a gas of electrons and ions. We will
make the usual quasi-static approximation for the ions by regarding
their electric field -@i as being constant during the times of interest =
1/pm . This approximation is usually very good because the region
where ion dynamics are important is normally well inside the half
width of the line except for a few cases such as the n-q lines of
hydrogen (Griem, 1967b). The complete line profile I{w) is then given
by the microfield average {see Eq. (3) of paper II)

[es)

I(w)=jP(8.)I(w,e.)da. (IL 1)
i 1 1

where the normalized distribution function P{€ ) is the low frequency
i
component of the fluctuating electric microfields. Due to shielding effects
P{&i) depends on the shielding parameter r /D where r and D are the
o o

mean particle distance and the Debye length {for electrons onlyjrespectively,



With the static ion approximation we have reduced the problem
to a calculation of the electron broadening of a radiator in a static
electric field 81. The resulting line profile I(w,&i) is then simply
averaged over all possible ion fields to give the complete line profile
H{w). The static ion field will be used to define the z-~axis for the
radiator and the ion-radiator interaction will be taken to be the dipole
interaction eZF,i where -eZ denotes the Z-component of the radiators
dipole moment.

If the unperturbed radiator is described by a Hamiltonian Ha’
we may then define a Hamiltonian for a radiator in the static field
Fii by

H =H + GZF (II.Z)
[e] a 1

The complete Hamiltonian for the system is then given by
= P S 8
H= Ho + Ve(R, %, ¥, t) {I1. 3)

where Ve denotes the electron radiator interaction. In this equation,

X and ¥ are 3N vectors X = (‘5?1, 'f'z, s, S?N)’ 7 = ('\'?1,”*?2, SR ”iN),
which denote the positions and velocities of the N electrons and R
denotes some internal radiator coordinates. For one-electron atoms,
R is the position of the "orbital" electron relative to the nucleus,.

The interaction Ve will be regarded as a sum of binary interactions,

~> s . - > s
Ve (R, %, ¥, t) = E VI(R, Xj, vj, t) {II. 4)
J

where V1 denotes the interaction between the radiator and a single
electron. As is well known the line shape I(w,ai) may be given by

the Fourier transform of an autocorrelation function C{t) (Baranger, 1962)

(ve]

I(w,fi.):-wl-—Reje]wt Clt) dt (IL. 5)
i ™ o
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In the classical path approximation, the correlation function for electric

dipole radiation is given by

+
C(t) = Tra éd <Ta {t) d Ta(t) }avp o g , (11. 6)

where ::'T and o, denote the dipole moment and the density matrix for
the radiator. The thermal average denoted by the subscript av

represents the average over electron states {see Eq. (47) of paper I}

+ _ ««: Y s s .= — P
(T_()a T_(t)) _ﬁxdv P W(F) T (REVE)dT R x7v,t) (IL7)

where P(SE) and W("\?’) are the position and velocity distribution functions
for the electron perturbers (defined by Eqs.(37) to (40) in paper II).

The time development operator for the system Ta(ﬁ, %, v, t) is the

solution of the differential equation

L3
T () = {HO + Ve(t)] T (1)

(II. 8)
and it may be written in an interaction representation defined by
Ta(ﬁ, %,9,t) = exp (-itH_/n) Ua(‘fi £, %, t) (IL 9)
where
RCRROER AORNC (I1. 10)



and
Ve(t) = exp (itHO/h)Ve(t) exp (-=itHO/h) . {(I1I.11)

It should be noted that ’{/‘e(t) is identical with Ve(t) in paper II except
that we have not yet made the no quenching assumption which removes
the unperturbed part Ha in the Hamiltonian HO in Eq. (I1.11). Using

the time ordering operator &, Ua(t) may be written in the form

1

o]

t
U (R,%,7,t) =™ exp % -2V (R, x, v, t7) dt’ é (IL. 12)
a hJg € §

To evaluate the trace over atomic states in Eq. (IL 6}, it is convenient

to use the HO eigenstates !a), ib), ¢ o+ with the eigenvalues Ea’ Eb’ .
Hence, using Ua(t) we have
: ﬂiwdct
C(t) = z<a1dlb> {cldld)e (I1.13)
abcd
wluTnley (al v (e)la)]  (alp_la)
a ' a av Ta
where
W4, = (EdnEc)/h (I1.14)

In paper II and III, the correlation function C{t} was evaluated
for the case of no lower state interactions in order to keep the math-
ematics as simple as possible because one of the Ua(‘t) operators in
Eq. (II.13) may then be replaced by a unit operator. In this paper we
will give a more general evaluation of C(t) which includes lower state
interactions. For this purpose we introduce in the next section a more
compact tetradic notation. Furthermore, it should be noted already

at this stage that we will interchange the sequence of approximations



with respect to paper II by deriving the generalized unified theory
before making the no quenching approximation., This makes the results
of the unified theory also useful for situations where the no quenching
approximation cannot be made like, for example, microwave lines.
III. THE TETRADIC NOTATION

The purpose of the tetradic notation which we shall use is to
write the product of the Ua(t) operators in Eq. (IL. 13) in terms of a
single operator. To do this we first consider the product of the matrix
elements (ai A‘_a’) and (8| B|g’) where A and B may be any arbitrary
operator. This product may be written in terms of the direct product

A® B according to

(al Ala’y (8IBIB’Y = (aB| ABBla’B'Y, (II1. 1)

where the product states |a8) = la)|8) are essentially the same as the
states of Barangers "doubled atom"(Baranger‘, 1962). This direct
product, A®B, is a simple form of tetradic operator., If one of the
operators A or B happens to be a unit operator I, we may conveniently

denote this fact by means of superscripts £ and r according to

(a8l ABTla’8*y= (aplatla’s’y = (al Ala’) 5 (I11. 2)

Bl

: r
(a8l15Bla’8’) = (apIB la’8") = (8| Blg") 6_ . - (I1L. 3)
That is, a superscript { denotes a 'left’ operator which operates only
on the ''left" subspace (in this case the la), la’) subspace) and a

superscript r denotes a ''right" operator which operates on the "right"



subspace, It is thus clear that anv "left" operator will commute with

any ''right"" operator:
rat, 8 = 0. (I11. 4)

With this notation, the thermal average in Eq. (IL 13) can now be

written in the more compact form
(III, 5}

{(blUZ(t)ic} (dan(t)‘a>] . [(aiuzmlm <d!Ua(t)la>Lv

li(cd] Ui'*(t) U:iba% av

»
(cd] [Ua (t) Uz (t)} Lol )

1

We have chosen to write (bl UZ(t)U cy as (clUXt) b)Y simply for con-
. . a i
venience in the derivation given in later sections. Noting the definition

oNfrUait) gilren in Eq. (II.12), we define operators R}i (ﬁ, X, Y, t) and
V. {R,X, ¥V, t) so that

Since any "'left' operator commutes with any ''right" operator, we

have

10



where

r ng*‘,&
= e

%}’e(ﬁ, 2Vt V (R, £7,t) - VIR, E Y0, (111, 8)

e
We have now succeeded in replacing the two Ua(t) operators by a more

general tetradic operator ('Zji(t) which operates in both ''left' and "right"
subspaces. Eg., (IIL 5) thus becomes

{(b!UZ(t)le} <dan(t)la>] v = (cd![ﬂ(t),}avlba).

(II1. 9)
It is important to realize that the tetradic operator %?(t) is formally

the same as the operator'Ua(t); that is, it satisfies the same type of

differential equation

s B = s . ~ = — -
S URE =7, (REIOUR XV, 1) (IIL. 10)

This means that all of the line broadening formalism which has been
developed for Ua(t), will be directly applicable to C'UZ(t)Q

To make the formal correspondence more complete we use the

r I = =
operators Hf) R HO, Vé (R, %,¥,t) and VZ(R, X, ¥, t) to define the tetradics

}CO and ‘)fe(ﬁg X,¥, t) according to

o o o (IIL. 11)

. (III.12)

11



Since any left operator commutes with any right operator we have

~

VZ (t) = exp éitHZ/h ! VZ(t) exp g-itHl;)/hé {IIL 13)

J
= exp {ife-co/hé VZ(t) exp g“imo/hg

Hence
(111, 14)
~ e o . = s e .
7 (R, X, V,t) = exp gm—c /h§ r {R,%,V,t) exp g—lﬂc /h§
e o e o
which is formally the same as Eq. (II.11}. It is also obvious that both
"re and @{e will be given by a sum over binary interactions "ifl or "’?71
just as in Eq. (IL 4).
ﬁ. %, V, t) = o, Ry .o
7 (R, ¥ t) ZII(R,XJ., v, t) (IIL 15)
J
b S T, = = 2» /ﬂ*“"__s.b
rAR,x.,v,,t)= VAR, x,,V,,t}) -V R,x%x,,v.,t 1. 16
1 il 1 it 1 i bt )

The formal similarity between the operators H , V (t), v {t), U (&},
o e e a
etc. and the tetradic operators }CO, ‘)fe(‘t), %e(t), @f{(t), etc. will greatly

simplify the treatment of the thermal average for the general case of

upper and lower state interactions.

12



IV, THE GENERALIZED UNIFIED THEORY

Using the tetradic operators as defined in the previous section

we have for the correlation function

‘ - o "iwd t
Cty= Y (aldlby (cldlay e ““(alp_la)
abcd

(cd| F (t) | va) (IV.1)
where F (t) denotes the thermal average of%){(ﬁ,"ﬁ?, v, th

F(t)= [

. fd?d‘{?pﬁz)wﬁ?‘)%( R,%XV.0) . (IV.2)

This tetradic operator F(t) is formally identical to the operator F(t)
defined in Sec. (2. A} of paper III. It would also be formally identical
to the F(t) defined by Eq. (19) of paper II if we would make the no
dquenching approximation at this point. To preserve generality, however,

the no quenching approximation will be deferred until a later section

when we specify the |a), |b), " eigenstates to be HO eigenstates for

hydrogen,

i3



Following the formalism developed in Sec. 2 of paper III, we

define an operator S(fg, %, ¥, t) by

HRET t) = PR) WERIY(R, X9 1) (1v. 3)
so that
Ft) = jd;;’ AT HR, T, T t) (IV. 4)

(cf. Egs. {11} and {12) of paper III). From Eq. {IIl. 10} we see that

n 23 (RETY=-F REEHHERTY (1V. 5)
which is formally the same as Eq. (13) in paper III. We next introduce
a projection operator P which is identically the same as the operator f
defined by Eq. (14) of paper III (the fact that P now operates on tetradics

does not change its definition). That is, for any function of electron

variables f(X, V) we have
PEXE, V) = P(X) W(v)fdi"dv“" f(=,9') {IV. 6)

This relation holds whether f{ is a matrix, tetradic or any other type

of operator, With this operator we can follow the derivation in Sec. (2. B)
£ Il replacing H ,V ,V etc. by ,7 ,% , etc.

of paper III replacing o Ve Ve etc y";CO fe 7/6 etc. As a result

{cf. Eq. (27) in paper III) we have

14



O % —_...Z e 7 57 et PP R
Y FHty= -n &iftexza (it ’I-Co/h) E’Zfe(t £y Glt-t Mre(e) .
exp ("it'ﬁCo/h) F(t’) at’ (IV. 7)
where
 ptet
e - Y 1 ined == i &4 ??
G(R, X, ¥, t-t') = & exp %-%—ﬁl-P) ”Ife(R, %z, v, t77) dt é . {1V, 8)
o

Returning to Eqgs. (IL. 5) and {IV. 1) we see that the quantity of interest

is not H(t) but rather its Fourier transform.

P iwd t
{cdlSw)ba) i[ eWhe < {cdlF(t) ba) dt
o

f e ¥t (cdl exp (~ite_/n) Ft) ba) at
o]

j[ ei‘”t (calF(t) ba) dt (IV.9)
O
where

F(t) = exp (-i6i¢_/n) Ft) . (IV.10)

From Eq. (IV.7) we see that

t
%'i?(t) = -{1R_/n) Ht) - h”f{ exp (-i(t-t")%_/n)
E?/‘e(t—t’) q(t-t’)%e(()):é v F(t!) de’. (IV.11)

Solving this equation by Fourier transforms gives

-1
) =i [Awop-i‘;mw Op)} (IV.12)

15



where

Smwop) = - ihw?j: exp (it[\wOEﬁ E@;&t}q&)%@(@)} - dt {iIv. 13}

and Awop is an operator defined by

— o, - - r-‘ '?/
Awop =w Ko/h =w (HO HO)/h . (IV, 14)
With these results, the line shape given in Eq. {IL. 5) becomes

{cf Eq. (I.1)}

D~ (aldlv (e|d@a) Calp, la)
abcd

(cdl gAwop—ﬂAwop)’E ml{ba) . {(Iv.15)

P

1
w,2. )= —Im
1 7T

We next simplify E(Amop) by means of the impact approximation

{see Sec. (3.2) of paper II}). Basically this approximation assumes
that the average collision is weak, that strong collisions do not overlap
in time and that a weak collision overlapping a strong one is negligible
in comparison {weak collisions are those interactions for which a low
order perturbation expansion in ‘?/e provides a good approximation to

CU{ or G ; for strong collisions the full exponential must be retained),
It should be emphasized again that we make a distinction between the

impact approximation and the impact theory. The latter contains the

impact approximation as well as other approximations like the com-
pleted collision assumption which will not be made here. We also
assume that the electron perturbers may be replaced by statistically
independent quasi particles {e. g., shielded electrons). In Sec. (3)

and Appendix B of paper III, it is shown that these approximations

16



reduce ${pw ) to
op

t itL\wopm(”
£ (Awopé = - 1Awopfe & () dt Aw s (IV.16)
o
where
@41) _ B e b [
T {t)=n dxldVIW(VI) GUZ}(R, X vlyt) -1 {IV.17)
and

el

@Zl(fi, :?31,‘%?1, t) = & exp ,3‘5’1,??1, t’)dt’é(l’\/', 18)
and n denotes the electron density.

Equations (IV.15) through {IV.18) give the line profile of the
generalized unified theory. To obtain the impact theory we simply
replace g(Awop) by £(0) and as discussed in Sec. 4 of paper III, we have
the familiar result (cf. Eq. (44) of Baranger, 1962).

£(0) = ijﬁ(sf“‘ S? - 1) du {IV.19)
where 5. denotes an S-matrix for a binary {(completed) collision and

1
fd\) denotes the integral over collision variables, as defined in the

Appendix of paper IL

fd\) =0, f dv vf(‘v)jdp anjd_ﬂ (Iv.20)
o
(e

In comparing Eq. (IV.19) with Barangers result it is important to note
that Barangers operators S, and Sf operate only on ''initial' and ''final"

f r
states respectively, whereas our operators Sé and Sl operate on all
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possible HO eigenstates. This difference occurs because we have not
made the no quenching assumption yet.
The other limit of the one electron theory is obtained by making
a wing expansion of the unified theory; that is, the operator
-1
- i ded i f . Tol t
[Awop £ (L\wop)j is expanded in powers o [£(Awop)/[\wop] o lowes

order this gives

L
AW
o)

oooooo

i
+___
" (A )

-1 1
[Awo -Si(Awo 7=
P op op

W
P Aw op

p

iEAw

t * -

=Z’107 —ife Opg(l)(t)dt+~'°. (IV.21)
op o

The first term, I/Au;op, gives a delta function when one takes the
imaginary part required by Eq. (IV.15). To get this delta function we
approximate radiation damping effects by using {Aw op + ie) in place of
Awop (see Sec. {3. A) of Smith and Hooper, 1967); the imaginary part of
1/(/_\(1) op + ic) is just -md{Aw op) when ¢-0. When this delta function term
is averaged over ion fields according to Eq. (II.1) it will produce the
line broadening due to the static ions alone (see Sec. 5 of paper II}.
The influence of the electrons as well as electron~ion coupling is
contained in the second term of Eq. (IV.21). Hence one is interested

(1 )(t), which is

in the matrix elements of the Fourier transform of ¥
also the quantity of interest in the unified theory (see Eq. (IV.16}). The
primary difference between calculations made by the unified and one-

electron theories is therefore the matrix inversion of [Awop-si(Awo )]

P
which is reguired by the unified theory but not by the one electron

=(1)

theory, Since the matrix elements of the Fourier transform of ¥  '(t)
play such a central role in any classical path theory {(including the im-
pact theory), the evaluation of these matrix elements for hydrogen will

be discussed in detail in the following sections.
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V., THE NO-QUENCHING APPROXIMATION FOR HYDROGEN
In the preceding section we have derived the thermal average

“g(t) and its Fourier transform 9(w) for the general case of upper and
lower state interaction. In order to evaluate I(w,gi) in Eq. {IV.15)
we have to consider the compiete trace over all HO eigenstates
lay, ib), c»+ ., However, in looking at the Eqs. {(IV.9), (IV.18) and
(II1. 14) one realizes that due to the exponential factors only a few of all
the possible matrix elements will contribute significantly to the final
line profile at a particular frequency w. That is, we can neglect those
matrix elements for which the argument of the exponential factor is
so large that it gives rise to rapid oscillations within the range of the
time integral. Hence, if one treats well isolated lines, only those
matrix elements of Ul(t) between either "initial” or ""final'' states
have to be considered. We may therefore state the no-quenching

approximation as
(t)= U (e) Ut () (v.1)
U8 =13 1 :

where Ul now no longer operates on the complete "left" or "right"
subspace, but only on '"initial' or "final'' states ( see also Sec. 2.2
and 7.2 of paper II).

Further approximations cannot easily be generalized and depend on
the particular problem investigated, We now apply our general results
to the problem of hydrogen. In this case the no-quenching assumption
states that we need to consider only those matrix elements of U1€t§

and Vl(ﬁ, X.,¥.,t) which are diagonal in the principal quantum number

1" 1
n. As shown already in paper II this is a good approximation as long
as the lines investigated are well separated. For calculating the line

wings it is furthermore required that there is no appreciable overlap
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with wings of adjacent lines in the region of interest. The same is
true also in any reliable measurement of line wings.

To show this we can proceed as in Secs., 2.2 and 7.2 of paper
II with the difference that now we are dealing with the operator
HO = I—Ia + eZEli rather than just Ha. Since Ha does not commute with
Z we introduce a projection operator Pn {see Sec. 2.2 of paper II})
which picks out the part of an operator which is diagonal in n. Using

this operator we split Ho into a part which is diagonal in n

H =H +eP Z¢, (v.2)
on a n i

and a part which is not diagonal in n

= - Ze .. .3
Hoge = o1-Fp) 284 (v.3)
Ha now commutes with PnZ because both operators are diagonal in
parabolic toordinates. We therefore specify their eigenstates com-
pletely by the principal quantum number n, the magnetic quantum

number m and the quantum number g which is defined to be
g=n,-n, 3 (V. 4)

n, and n, are the usual parabolic quantum numbers which obey the

relation

n=n1+n2+!ml+1. {V.5)
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Knowing the solution of the eigenvalue problem
H | = B .6
R nqmi ngm) {V.6)
with

E =E +eZ &, (V.7)
ngm n ng 1

we see from a second order perturbation approach {cf. Chap. 16 of
Merzbacher, 1961} that the energy correction

5(‘nqm§_Hof n’q'm’){

|
=(2) £

= = -
ngm n? ngm En’q ‘m’

A (V.8)

can always be neglected as long as the ion fields do not become too

large. This is again equivalent to stating that the lines have to be well

separated.
As a result one is left with the eigenvalues Ea’ Eb , e
of the Hamiltonian Hon whose eigenstates |a), !b), -+ 1d) are the

parabolic states !nqm). This allows us to rewrite the autocorrelation

function C{t) in Eq. {IV.1) for hydrogen in the form:
e A nlalm’ A
Clt, E“,i) L (nqama! dln q m) Y{n qub\ dal :nqub>
{_ |
I § I telZ - 5 Ip |
exXp é h { n En/ e nqb Zn/q]lo )E’j t § <nqama:paAnqama>

7.

’ o =1 r 7 r .,
{n qy m/ ; nqub|3(t)!n q/m’ ; nqama> (V.9)

where quantum numbers which refer to the lower state are distinguished

from the upper state quantum numbers by a prime.
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The matrix elements of PﬁZ are given by {see Bethe and

Salpeter, 1957)

3
(nqm! Z!nqm‘) = an = 5T nga_ {(v.10)

2 2
with a = h /{me”) being the Bohr radius. As a further definition the

ion field 81 will be normalized to the Holtsmark field strength &
o

Pii= B=80 (v.11)
where 2
8c‘)= {—'AL—;—>Se nf_ . (vV.12)
This yields
..E..(z -7 )E",iz Awi(n, qb,n’,qg) ° R {v.13)

n nq.b n’q{)

with

Wi

2
by {4\ 3 TS
Awi(nsqb,n,qb)— <3> > (nqbnqb>mne.

(V.14)

Awi is now the frequency shift of a particular Stark component char-
acterized by the guantum numbers n, q.b, n’ and q{) due to the Holtsmark
field strength 80. Introducing the frequency shift pow = w-w where

the frequency of the unperturbed line W is given by

W= (En=En,)/h (V.15)
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the line profile I{pw, B} can be written in the form

/

= [P 4 [ -
> {nqama! d! n qama> {n quba dl nqub)

(V.16)

‘ b oy ? 7. - Sy 7.

where

(n’q'/m/; ng m lgw) |n’g’m’sng m )=
b b b b a a a a (V.17)

5" _ I el Pt
gdt exp Ql(Aw AwiB)té (n'q m/s nqubi'&(t)!n q/m’; ng m )

Performing the ion field average according to Eq. (IL 1) will then give
us the desired line profile once we know the thermal average_f}?(t).
VI. THE THERMAL AVERAGE 3(1)(1:) FOR HYDROGEN
In Sec. IV. we saw that the crucial problem in any classical
path theory of line broadening is the evaluation of the matrix elements
of ?ﬁ(l )(t). With the no-quenching approximation for hydrogen a typical

matrix element in parabolic states is given by

‘ (1

77 . o ) 7 F 7. —
{(n qp s nq,bmbfzi (t)!n a m’; nqama> =

(VI.1)

S 3 ’ ;o &) P ? .
nefdxldvlw(vl) {n aym) 3 nqubi (ﬂl(t)—lln qam;, nq_ama')

To simplify the evaluation we transform to the natural collision vari-
ables p, v and to which denote the impact parameter)electron velocity
and some reference time of the collision (see the appendix of paper II).
The orientation of the collision axes with respect to the radius vector

- .
R of the orbital electron is specified by the three Euler angles
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represented by (). Furthermore we assume a spherically symmetric
distribution of perturbing electrons; this is a good approximation as
long as the impact parameters are not too small. The velocity dis-
tribution function W{v)} is related to the Maxwell distribution function

(v} by
2
f{v) = dnv WI{v). (VIL.2)
With the preceding definitions Eq. {VI.1) can be rewritten as

(1) ot t
(n'g/m’ ;nq m I3 (t)n'q/m’;ng_ m_) =
° br 2 e e e (VL 3)

%ﬁ?‘{dv Vf(‘/’fdp Fj!dt (n'q/ m, ;ng, m b! LI(t I{n ’%;m;nqama}

Next we have to know the matrix elements of the time development
operator Ull(t) defined by Eq. (IV.18). This requires the matrix
elements of the interaction potential :)71(1‘._). In order to save some
writing we consider for the moment only Ul(t) and %1(1:) which after
making the no-quenching assumption may be the "initial' or '"final"
part of the corresponding tetradic operators {see Eq. (V.1)})). A

typical matrix element of {/:l(t) is given by

~ . € .
(nqcmcgvl(t)gnqdmd> = exp{ir (an .,an )S;it (nqcmcgvl(t){nqdmd’).
c d (VL. 4)

With the no-quenching assumption the unperturbed energy eigenvalues
En have cancelled., At this stage we now make another simplification

by dropping the exponential in the latier equation; this has been done
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in all previous Stark broadening calculations but it is rarely stated
explicitly. This will be a good approximation in the line wings where
the times of interest 1/Aw are small and Aw is much larger than the
average ion field splitting. In the line center, however, the argument
of the exponential can easily be on the order of unity or larger in

which case gl(t) effectively vanishes due to rapid oscillations of the
exponentials. This effect was first noted by Van Regemorter,1964 , who
shows that this effectively introduces another cut off which may easily
be smaller than the usual Debye or Lewis cutoffs. This additional

cutoff has been included in recent calculations{ Kepple and Griem, 1968).

However, as discussed in Sec. XII it turns out that its influence on the

final line profile is in most cases negligible,

Neglecting the ion field exponentials in Eq. (VI. 4). the time

development operator U, is now given by

1
; t
U1 = (¥ exp % mhbianl(t } dt § {VI. 5}

where the time ordering is still required because PnVl(t) need not
commute with anl(t')., In paper II it was shown that this time ordering
is negligible for weak collisions {to second order) as well as quasi-
static collisions (i.e., in the distant line wings). Time ordering is not
negligible for strong collisions; however, when the thermal average is
performed, the errors due to neglecting time ordering are expected to

be small. The reason for this is that the time development operator

t
- _i : /
U, = exp g h!: PV, (t) at % (VL. 6)

still retains its unitarity {cf. Sec. 8 of paper II}.
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VI, THE MULTIPOLE EXPANSION OF THE CLASSICAL
INTERACTION POTENTIAL
=(1)

Before evaluating the thermal average &  '(t} we briefly consider
the classical interaction potential Vl{t) due to a single electron. If the
perturber does not ''penetrate' the radiator, Vl( t} is given by the well

known multipole expansion

2 s~ RIS

A

Vl(t) = e ;ﬁ m—*m . Pk {COS e(t)j {VIL 1}
=1 [r(t)]

=
where lRl is the distance of the orbital electron from the nucleus, r{t)}
is the instantaneous distance of the perturbing electron, the Pk are

-3
Leegendre polynomials and §{t) is the instantaneous angle between R
-
and r(t).

In most cases it is sufficient to consider only the dipole {(k=1)
term. However, to account for some asymmetries of a line, it may be
necessary to keep some of the higher multipole terms as well. In any
case, one can show that this multipole expansion is terminated after
some finite number of terms due to symmetries of the radiator,

=
To show this we specify the angular positions of R and x{t) by

8, ©y and § respectively and we apply the spherical harmonic

1 20 92
addition theorem (Eq. (4.6.7) of Edmonds, 1960)
+k . .
- -13P .
Py (cos 8) =3 | (-1)" C_(8;, v} C_ (8
p=-k

,0,)  (VIL2Z)

where

cos § = cos 91 cos eZ + sin 91 sin 82 cos (cplncpz). {VII 3)
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We may simplify the mathematics without loosing generality by choosing

a coordinate system in which @, = 0. Using the relation

k PSRRI < I 3 oo
C_p (Gz,cpz = 0} = (-1} CP (ez,gpz = 0} {VIL. 4)
one then obtains
k k
Pk(cos 9) = Co (91,m1 )CO (92) +
(VIL 5}

k

‘ 1P ek S K + 1PC

3o 1P € (6,0,70) [c_pml,cpg SUE N
which gives for the interaction potential

k
V (t) = e E [ (t)] {CO . Pk {cos ez(t)) +
(VII, 6)

- Pi(cos ez(t))gck +(-1)P ¢ i; H

The dipole case {(k=1) gives the well known result

2.
Vd(t)= eéR‘ {Ci cose t)+ _5 1 - 1§sinez(t)}

r {t) !
2 . a
= Ze {Z - cos ez(t) + X sin ez(t) (VIL. 7)
v (t)

The y-component vanished because ©,= 0. Similarily one can write
down the higher order multipole terms. The necessary matrix elements

of Cij are given by

K o 25k 4\ ok
<,g,'m'lcpu,m> = (1) 4 (20 +1 )20 +1 -y 000/ (VIL8)

P m
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From the last 3j-symbol we see that these matrix elements exist only

if 1, k, 4 satisfy the triangle condition and their sum is an even integer.
Therefore it turns out that, within the no-quenching assumption where
one needs the matrix elements of PﬂVl(t), only a finite number of
multipole terms exist, The summation index k in equation {VIL. 6} has

to obey the condition

1 <k<2(n-1}) . (VIL 9)

As an example we see that a calculation of the upper state interaction
of Lyman o requires only the dipole and quadrupole terms. This
condition also illustrates the well known fact that there is no ground

state interaction for the Lyman series.
VIiI. THE SPHERICAL AVERAGE OF THE TIME

DEVELOPMENT OPERATOR ’ULI (t)

=(1)

In our evaluation of the thermal average & (t);defined in
Eq. (VL 3)}we first perform the spherical average represented by the
integral over the Euler angles (), because it greatly simplifies the
remaining integrals over ‘i:o, p and v. This is due to the spherical
symmetry of the time development operator Ul(‘t) defined in Eq. (VI 6).
It should be noted that this symmetry was achieved by dropping the ion
field exponentials in Eq. (VL 4}, thus replacing %1(1:) by Vl(t). We
will perform this average by means of a rotation technique used by
J. Cooper, 1967, and Barangei, 1958, for S-matrices. Although we
are working with the more general time development operators
Ul(t) or ‘U{l(t)s the rotation technique is the same.

In terms of the collision variables p, v, to and (), the dipole

interaction between the radiator and a perturber is given by

v () = “R [5‘-%"?(1:%0)} / %Z‘LYZ(”"JO)Z} 2 (VIIL 1)
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(see the appendix  of paper II}. The three Euler angles denoted by
() describe the orientation of the collision frame relative to the atomic
frame. It is therefore convenient to perform a rotation of the atomic
axis. through the angles () in such a way that R points in the same dir-
ection as P and the x axis of the rotated atomic frame points in the
same direction as™V. In this rotated frame, the interaction potential
takes the form

3
Z

V()= e { Zp + Xv (t+to)} /EQZWZ(MO)ZE (VIIL 2)

This rotation transforms the time development operator Ul into a new

where U, and U, are related to one another by

operator Ulc’ 1 le

-1
Ul = 8 7{Q) Ulc 8(Q) (VIIL. 3)

where § {Q) is a rotation operator (see Chap. 4 of Edmonds, 1960). The

time development operator in the rotated frame, U is given by

1c’

— . ;i_ ¢ ’
Uic_ exp g hﬁnvc(t y dt § . {VIII. 4)

To make the form of Ulc more explicit, we perform the integral over

t’ and we obtain

i
Ulc = exp é- . g anZA(t, to, 0, v)-PnXB(t, to, 0, v)é {VIII. 5)

where

(v/p e +t) (vt_/p)

Alt, t o v) = (VIIL 6)

1+(v/p )2(t0+t)2
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and

1

gl +{v/p )Z(to+t)2

(VIII. 7)

B(t,tggp,\fh

Substituting Eq. (VIIL 3) into Eq. (VI 3) we see that the integral over
0 in Eq. (VI.3) involves only the matrix elements of four rotation
operators. Since it is convenient to use spherical states I ntm) when
taking matrix elements of § {) , we make use of the unitary trans-

formation from parabolic to spherical states discussed by Hughes, 1967,

Ingm) = )" Intm’)(ntm’|nqm)
s m’

{VIIIL 8)
n-1 n-1
- 5 4
<M;m’|nqm> - 6mm;(”1) ( m Cln
m-gq mtq
2 2

using 3j-symbols and the definitions in the Egs. (V. 4) and {V.5). (An
error in the phase factor has been pointed out by H. Pfennig, private
communication). Noting that §{)) is diagonal in the angular momentum 4,

the () integral in Eq. (VI.3) may now be written

LN S [N S _
j{n a,m); nqubiml(tﬂn qama, nqama> dn =

{27)-1

-7 4 F4 1‘ 7 4 4
(n :,amClUlcin 2lm’)

i b d
a ¢ (VIIL. 9)
i%{)} vy # 1‘ Py o P ‘n{, >
g m/m? (n'g myin qub}%nqub b b
(0 )-1 o)
8 m, m (n&bmdﬂUlcin&amC> 8 (n{,amal_nqama>}
b d mcma
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’
e s 4 s
where the summation E denotes sums over %a’&a’ f’b"?’b’ mc’ m/, md
and mé The () dependence of the integrand in Eq, {(VIIL 9) is contained

entirely in the four rotation operators B (Q). Using Eqgs. {4.3,2) and
(4. 6.1)of Edmonds, 1960, we obtain the identity

Agmmagmm da =
b d c

f@ WO-1 @) )l )

mé-m; + m-m, + M-M’
(2L + 1)

(VIIL. 10)

Hence Eq. {VIIL 9) becomes

’ o ? 7. Py ? 7. —_
ﬁn qub9 nqub‘ml(t)!n qama2 nqama> dQ -

¥ Y P b2 b bt Pt
2 (r'aimlIn’e/m (' mlIn’qm/}(nq m, Tnt, m 5 (nt m [nq m )

mé«m;+ md-rnb+M-M"
{-1) (2L + 1)

(VIIL. 11)

‘4L 1! 4 L 2fo4, L x/&bL



This result is spherically symmetric; that is, any further rotations of
the atomic coordinate system leave this expression unchanged., One

may verify this rotational invariance by rotating U, through some

ilc

arbitrary angle 0/ so that Ulc = 2 ml{Q") U]Zc 9{0’). Taking matrix

elements of the new rotation operators and making use of the ortho-
gonality properties of the 3j-symbols one sees that the right hand side
of Eq. (VIII,11) did not change. Since we are free to perform further

rotations on Ulc without altering Eq. {(VIII. 11), it is convenient to

rotate the X-Y plane through an angle ¢ =arctg (B/A) where A and B
are given by Eqgs. (VIIL 6) and (VIII, 7). This rotation transforms Ulc

s

into an operator U_ given by

1

- i 2
U, = exp gu TP Zglt ¢ p,v)§ (VIIL 12)

where

/ 2

1 2
glt, to, o, V) = e YA +B
(VIIL 13)

ol

o 1+ (v/p)e (et 1)

= Y11 -

gl +{v/p )Z(to + t)z

has the important property that it is diagonal in

. 3
1+ (vtO/p)

The operator ﬁl
parabolic states (because it contains only PnZ). Hence a typical

matrix element of Ul is given by

{ngm]| El(tﬂ ngm}) = exp é-i %— ng % g (t, to, 0, v)§ . (VIIL. 14)

We also realize that one and the same rotation through the angle ¢= arctg

(B/A) diagonalizes simultaneously both time development operators
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acting on initial and final states respectively. As a result a typical

matrix element of the corresponding tetradic operator ’Uzl(t) is given by

(nfq/ml;nqml_ml(t)} n’q'm’ingm) = exp é»i %(nqam'q/)%’g(t, top, V)é

(VIIL 15)

Substituting this identity into Eq. (VIIL 11) the spherical average of the

time development operator Uz‘l(t) finally becomes

F 4 7, [P L —
j{n 9y nqub‘ 'Ull(i:)}n Ay nqama) dq =

7o 7 fg 7 4 Iy # 7 Pyl s b o ! 7 i ) P .7 7 o ;
(n qama‘.n Lrm Y {n f;amcln ) m L(n qcmc]n 1/m!)(n “o’bmbln a/m/

(nqama! n&ama> <n&amc! nqcmc) (nquJ n{bmc) <1%bmﬂbi nqub>

5 -m -m 20 L L7

’?/
b W
gn (-1) 2

L £ '{/
er+y * 2 a’a p fp YR B

-m’ m M{f\-m’m M/{\m’m Myfm m M
c ¢ a a’ c ¢ b b g
exp -i—?z-(nq =n'q’)~h—- g (t,t ,p,v) (VIIL 16)
2 c ¢’ m Pt T
where the unitary transformations are given by Eq. (VIIL 8). This

result greatly simplifies if there is no lower state interaction (e. g.,

Lyman lines), in which case one obtains

j(nqubl Ul(t)]/nqama} dan X

( Ry, Int ama> { IL?’ama!‘ nqama} 6m m,
a

2 2
8 .3 h
%n&amc! nqcmc% 2p _t1 exp §~1 2 "¢ m & (¢, to P v)§

(VIIL. 17)
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This simplified relation may alsoc be used for the higher series mem-
bers of the Balmer Paschen etc, series where lower stale interactions
contribute only a negligible amount of broadening to the final line
profile.
IX, EVALUATION OF THE THERMAL AVERAGE
F ) FOR HYDROGEN
Having performed the spherical average over the Euler angles

() we can rewrite Eq. {VI.3) in the form

, -ma—mb

Pyt s (1) Pt ! s - (-

o Fmg 4 7 Fa 7 7 7 4 ! f f I f 4 / 7 7 ? 2 £ 7 7 4 /
{n qamal n /f,ama)(n /P’amc‘ n qcmc>(n qcmcg n J,bmc}(n f,bmbi n’qm/

(nqamaln&ama} <n/tamc‘ nqcmc) (nqcmcl n/&bmc> <m’bmb‘ nqub>

where

mt 4 ! = t 2 by N
F(,n,qc,n ,qc) Znnejdvvf(vj‘:ip p‘fd o ) (t,tocv) (IX.2)

and

— ’_§__ - £ 4 _E_ .
3 {t, to,p,v)- expg i (nqc n qc) mg (t,to,p,v)§ 1. (IX. 3)

Thus, the problem is now reduced to evaluating f(t), which will be
done in this section. It is interesting to note the similarity between
Eqs. (VIIL. 13) and (IX. 2) and the | ~functionof Anderson and Talman,

1955, which is the crucial function in their classical adiabatic theory.
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We first realize that due to the symmetry of the line profile we
only have to evaluate the real part of 3§ (t, to’ p, v}; that is, for every
positive value of (ng »n’q(’:) there will be the corresponding negative

c

value. Hence we are left with
3{t, t v} = cos —?i-(nq -n’q’) Lg(t,t , 0, V) -1, {I1X.4)
1ty P 2 c ¢’ m o

In performing the integrals over p and to in BEq. {IX.2) we account for
shielding by setting the interaction potential V and hence also % equal
to zero whenever the distance of the perturbing electron is larger than

the Debye length D. We also introduce a strong collision cutoff p i

In principle we can let the impact parameter go to zero because the
functions 3 and F{t) do not diverge for small impact parameters as they
do in some second order theories. However, for numerical purposes
this would result in very large computer times due to the growing
fluctuations in the integral. For this reason we will choose P rnin to be
small enough so that when we are interested in large frequency per-
turbations Aw where perturbers at small impact parameters are quasi-
static, the rest of the integral from 0 to P nin ™2Y then be replaced by
the static limit., In the dipole approximation this gives rise to the

-5/2
well known Holtsmark Al 5/ -wing {see also Sec. X). According

to the validity conditions of the classical path theories (see Paper I) the

minimum impact parameter P min will be of the order of

2
o =k +n’a (IX. 5)

whered is the De Broglie wavelength.
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We now concentrate our attention on the integral

G(t,p,w:fdto 3 (L€ ,p, V). (IX. 6)

For convenience we consider the collision sphere as shown in Fig, 1.
The perturbing electron moves along the classical straight line
trajectory L and we are interested in the interaction from some time

t to some time to + t. Due to the Debye cutoff the to- integral extends

o
from =T to + T where

(IX. 7)

and the interaction potential vanishes if the electron is outside the
sphere of radius D. The corresponding time integration limit v due to

the strong collision cutoff P min is given by

(IX. 8)

Based on this model of the collision sphere we split the integral G

into two parts
= ) t . X.
Glt, p, v) U(p>po) Ga( P, V) U(po>p) Gb(t, 0, V) (IX.9)
where the step function U is defined to be

1 if a=b
U{a>b) = (IX.10)

it if a<b
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In order to evaluate Ga(ﬁ, 0, v} we have to distinguish the following
four cases depending on whether the initial and final times of inter-~

action are inside or outside the sphere.

Casel: - T<t ;t +t< T
o o 2

glit, t P v) =

This is the same general expression as given in Eq. (VIIL 13).

Case II: -T<t ;T<t +t
o

%
J— )
g {t,t ,p,v)= V;é— {IX.11b)
2 2 O’ s p‘V
Caselll: t «<-T; t +t< T
o o g N
vz :
2
- X, 11
galt,t .0, v) - ( c)
CaseIV: t «-T; T<t +1t
o) o
(IX,11d)

34(t= tO’D,V) =
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After defining

{
3
@k(tatoapsv)z cos 2?(7ﬂq =0 qc}‘?ﬁ gk(tstoaﬁsv)é =1
{IX.12)

the integral G is given by
T

G (tp,v)=TU th)éf%dt +§§Zdt
+U(t>2'1‘§j@ dt f@ t j@ c‘lt

~T-t

where we have separated the cases where the time of interaction is

(IX. 13)

longer or shorter than the time 2T required to cross the collision

sphere,
In a similar manner we evaluate Gb distinguishing between the
following cases:
Casel: -T<t 3t +1t<=r
o o
or T<t st +t< T
o o
= X,
gltt ,0,vl=gtt 0, v) (IX. 14a)
Case Il: 7<t <« T; T<t + ¢
o o
= IX, 14b
glt.t ,0,vl=g,ltt .0,V { )

38



Case III: t €« =T =Tt +t< =
o) o

g {t, £ o,v)= g, (t, t 0 v} {(IX. l4c)

Collisions which enter the strong collision sphere are neglected because

of the strong oscillations. This yields

-7~ T-t T -
Gb(t, p,v)= U{T-7>t) }éldto +j@l dto + deto -i-j@ o
=T T T-t

J 7.
T Tt
+U(t>T-T)§§§ At ffﬁ at §
2 o 3 o

T -T-t

(-rwh%

{IX. 15)

where again interaction times longer or shorter than {T-7) have been

separated. In the expressions for G and Gb we realize after a change

of variables that the corresponding integrals over @Z and §3 are

identical. From the Eqgs. {(IX.11a) and {IX. 12) it is also clear that

. s . t .
& 1 is a symmetric function in z = ‘to + 5 Performing the 3§ -

4
integral one finally obtains

L. (t 0, V)= U(th)gﬁ‘? -l;{ §_dt §
—t/Z
+ U (bZT)gj Zdto-%- (-—Z-u T) - % 4;
=T
T-t T
Lo Gb(t, p, V)= U(T°T>t)§j§1dto +f§2 o §
T T-t
T
+ U(t>T—T)§4§§2dto § . (IX. 16Db)
T
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and



We now introduce the following dimensionless variables

(IX.17)

(IX, 18)

!

Va2

g‘l(sy Vs x, u) = _;;a_ ¢

gz(s,y,x,u) = o

€ . (IX.19)

2

g4(5, v, %, u) = el Y




and

@k(s,y, x%,u) = cos § C- gkis,y, x, 1) § -1 (X, 20)
where
C= Cl‘ CZ {IX.21a)
and
C. = 3 {(ng =n’qg’) (IX.21b)
1 2 C C ’

N

10" K

Similarly we have for the integrals over t

(o]
1-R 1
Ga(s,x,u) = U(Z>R)§{@ldy Jf §2dy§
Bf 1-R (IX. 223a)
1

* R
+ U(R>2) Sdy + (- 1) 8,

-1

1-R 1
Gb(s,x, u) = U{'I>R+P)§j§>1dy -if @Z dy§
P i1-R
1
+ U(RIP > 1). j@z dy (IX. 22Db)

P

and

which leads to the thermal average

- 3 4 2 -u?f!
ﬂs,ne, T)= ZﬂneDf qu . € j dx

o] o]

-x%2.G (s, x,u)  (IX.23)
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with

Gis, x,u} = U(x>x0) . Ga(s, x,u)+ U (X0>x)' Gb(s, %, ul. {(IX, 24}
These integrals have been evaluated numerically using the program
(FORTRAN IV) discussed in Appendix A. This program calculates the
thermal average F as a function of the normalized time s for the
parameters (nqcvn’qé), n and T. The upper cutoff is given in units of
the Debye length and the lower cutoff in units of the strong collision
cutoff o, of Eq. (IX.5}.

Before we discuss the methods for obtaining the Fourier transform
of E;(t) and the actual intensity profile, it is useful to derive the small
and large time limit of-f.(t)’. The small time limit is determined by the
integrals over 8y and gives the asymptote of the thermal average for
the static wing. The large time limit depends only on the 3 4 integrals
and yields the thermal average as required by the impact theory.
In the small time limit 3 1 reduces to the form
3 1(t, r)t_ao = CcoS g%— (nqc—n’q::) %% § -1
’ (IX. 25)

where

(IX. 26)

This expression depends only on the instantaneous distance r as
expected in the static limit and the thermal average is therefore

obtained immediately by the integral over r

= c 2
F(t)t—-a() = 4nnef T @1(1:, r)‘é:—»O dr . {(IX.27)
o
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In the small time limit where {ng ~n'q’) ho-t 0 we can
2 c ¢ m rZ

then perform the integral with the result c

3

), = - o gty Boyl|Z
Flt), o= 3 ne%w(nqc n’q” ) mtj (IX.28)

For the limit of large times of interaction we have to solve the

integral

o0 D
P‘(t)t@oo = Zﬂnef dv vf(vig dppt- §4 . (IX, 29}
o Py
For simplicity we set Ps equal to zero {for po.z{: 0 see Appendix B),
After a change of variables and a partial integration the integral can

be rewritten as

(IX. 30}

The z -integral is known as Raabe's integral (see p. 144 of Bateman, 1953)
and can be expressed in terms of exponential integrals, Furthermore,
from Eq. (IX.21) we realize that for most practical situations C «<1.

Keeping only the leading term in C we have
- L 2 2
F)y = - WC 5D Vaut {Bn In {4C )}

Y 2 sk
= < 5 (nqc n qC) m> n_te
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where

4C2

1]

3 -y ? F4
2mn_ { (nq_-n'q’lhe

AV
T } and B = 0.27 (IX. 32)

m
The large time limit of the thermal average in Eq., {IX, 31} is required

for the calculation of the line center and all modern impact theories give

the same result except for the additive constant B whose value de-
pends on the particular cutoff procedure applied. Appendix B gives

a summary of the different constants obtained in the literature which
vary considerably, To what extent this uncertainty shows up in the
final line profile depends on the value of the constant C. The influence
will be small if - In (4C2) is considerably larger than the uncertainty
in the additive constant B. Furthermore, the large time limit of the
thermal average affects primarily the center of the line profile and

its contribution vanishes when moving into the line wings,

Finally we show numerical results for f(t) as obtained by means
of the program in Appendix A, Most of the calculations shown in this paper

have been performed for the following electron density and temperature

parameters,

case neE:mn ] Te [ K experiment
A 8. 4 iOlé 12200 G. Boldt and W. S, Cooper, 1964 {cascade arc})
B 3. 6. 1017 20400 R.C. Elton and H. R, Griem, 1964{TFshock tube)
C i.3- 1013 1850 C. R, Vidal, 1964, 1965 {RF=discharge)
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These parameters correspond to experiments which, as stated already
in the introduction, have revealed the largest discrepancies between
experiment and the modified impact theory. We will concentrate our
attention on the high density case A and the low density case C, since
case B is regarded as being less accurate because of lacking absolute
intensity calibrations.

Figures Z and 3 show the normalized thermal average%‘g/fli as
a function of the dimensionless variable s = G)’p. t for the cases A and C.
Figure 3 shows the results for three different Stark components
specified by the quantum numbers n, = nqcen’q(’: . Fo is the small
time limit according to Eq. (IX.28) whose Fourier transform leads to
the static wing. The dashed lines are cobtained with a lower cutoff
pmin = po =% + nzao. It can be seen that for case C the dashed curves
get closer to the static limit Fo than for case A, In order to obtain
the thermal average ¥ for the limit 0 in” 0 the numerical calculations

were finally performed with typically p . = 0.0l p_ so that F d

cale 2
fo differed less than about 0, 1% over at least one order of magnitude

in s, Far smaller values of s, where F 1
calc

is then replaced by Fo' In this manner we obtain the solid

and Fo start to differ
again, F

gain calc
curves in Egs. 2 and 3 which are used in the following.

It should be noted that these curves are calculated on the basis

of the dipole approximation. It is clear that for impact parameters

~ & .
p<moal higher multipole terms have to be considered. Since the
values s of interest are approximately given by s ’Z&’p/z\w, one expects
higher multipole terms to be less important the closer ?calc gets

= 2
toF forp . =mna . This is consistent with the experimental fact
o min o

that in case A an asymmetry of the line has been observed which cannot

be explained within the dipole approximation, while in case C no

asymmetry has been observed,
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For large s Figs. 2 and 3 show the transition to %ﬁl as given
in Eq. (IX. 31), which forms the basis for the familiar impact theories.
X. THE FOURIER TRANSFORM OF THE THERMAL AVERAGE
Having calculated the thermal average ?{t) we now focus our

attention on the evaluation of its Fourier transform
O =
i(AwR) a;—j exp {iAsz) F(s} ds {X.1)
o)

as required by Eq. {V.17) {see also Eq. {IV.16))where the dimension-

less variable
A g = (Aw«Awi° 8>/uvp (X.2)

is the frequency separation from a particular Stark component
{cf. Eq. (V.14)) for an ion field strength 8 in units of the plasma
frequency ’(E)lp.

The thermal average F(s) does not immediately allow a straight-
forward Fourier transformation because for large s F(s) is proportio-
nal to s according to Eq. (IX. 31}, hence i(AwR) diverges. This diver-
gence is due to the fact that we neglected the finite lifetimes of the un-
perturbed states involved which naturally terminate the maximum time
of interaction s. This may be taken care of by introducing a convergence
factor exp {-es) which can be obtained by replacing the delta function
in the power spectrum of Eg. (3) in paper [ by a narrow Lorentzian
line with a natural width ¢ (E. Smith and Hooper, 1967). In the final
line profile, however, natural line broadening is always negligible with

respect to Stark broadening which allows us to set ¢ to zero without



affecting the shapsz of the profile. For this reason we will evaluate

1 [® es MRS
1(A(”R) Zg]ﬁ%j. —:—j e e F(S) ds (X., 3)
o

F(s) is known numerically and there are many ways to perform the
Fourier transform., In order to find the most convenient method we

notice that according to Eqgs. (IX,28) and (IX, 31}, F(s) has the following

asymptotes
— 3/2
— 3 F =
for s-0 O(s§ pls
(X. 4)
and for §-500¢ Fm(s) =P,5
where
A 3 3/2

Py = -3 neD (2 C) (X.5)

and

- 3 A2 2}
P, = WneD C {B-ln(é(]} .

The transition fromwfo to -1-7:@ is very smooth because the power in s
changes only by 1/2 over the entire range. It has been found that F(s)
may be approximated by a function G{s) whose Fourier transform can
be given analytically and whose parameters may be determined by a

least square fit. The function G(s) can be given in terms of the series

(X. 6)

where the number of terms in the series depends on the required
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accuracy. As a first approximation Eq. (X, 4) suggests

(X.7)

=p X, 8

and

2
= L

Gl(s) has the small and large s behavior of F(s). It then turns out

that
for s-0 f(s)uGl(s) = p355/2
and for s-eo  F(s) - Gl(s) =Py {X.9)

where Py and p, mow bave to be determined numerically. Consequently

we take GZ(S) to be

5
a_s
G, (s) = (X.10)
2 (SZ+Zb 8)5/2
2
It then becomes apparent that Gk(s) is given by
3k-1
a, s
G. (s) = (X.11)
k (s2+2bks)2k'3/2
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with a, = P and bk =% (ka/kam1)4km3 (X.12)
such that one obtains
for s-0: Gis) = s ket
and for s—o: . ska {X.13)

In this manner the Fourier transform of any Gk(s) can be expressed
in terms of modified Bessel functions KO and K1° For all situations
calculated it was found that Gl(s) and GZ(S) were sufficient to keep
the deviation F(s)-G{s) smaller than 1% for all values of s. In some
situations a fit better than 2% was obtained with Gl(s) alone. As a
further advantage it should be noted that this method tends to suppress
‘'moise' introduced by the numerical evaluation of F(s).

In the following we evaluate the Fourier transform ik, AUJR?{ of
any Gk(s) as defined by

o i
i(k,AwR) =e1_§6n ;rl—f e % ¢ AwRS Gk(s) ds (X.14)

o

Their sum will then give us the desired Fourier transform i (AwR)a In

particular we are interested in i(k:l,AmR) and ilk = 2, Aw We have

R)'

1
i) (hog) = ifk= 1, Awp) = Gl ==

(e}

iNg .8

_ 1 i dé [° €%, R
= a1 61% - > =— ds {X.15)
de s + 2b, s
o 1
2

b {e~ipw_}
.1 4 1 R )
=2, lim — w2 fe K, iblqe"l’\‘”R)j} .
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Introducing

(X.16)

one finally obtains

. 2 R TS (1) :
11(AwR)= 2y 'blo e §1HO (ZIHI—Il (Zl) 1- ZZ];

2 . (X.17)
= e = °
3y 'b1 (cos Z1 isin Zl}

YI(ZI) . JI(ZI)
[(%‘ZN AN o }* 1{%“%) + YM}E ”“‘27;‘}}

(1) )

where H o and I--I(l1 are Hankel functions and J'O, J Yo and Y1 Bessel

15
functions. These functions like all the other functions used in this
report are consistent with the definitions as given, for example, by
the NBS Handbook of Mathematical Functions { Abramowitz, 1969).

For large arguments 2.1 it is also useful to have the asymptotic

expansion
2
a.*b
1 1 .. 5 . 5e
i (o) ———é—él + it 2p(1-1)- 22T (14)
z 1 2.8%72
1 1
9-25.7 . . 25¢ 49 .
S ¢ PR () - ‘ }
287, 87z, {X.18)
2
- -y _LosfFi} gy
AmR 32 2 2



Using Eq. {X.5) for Py the latter relation gives us exactly the Holtsmark

A;TS/Z wing for all Stark components

3.3/2 -5/2
iH(AwR): ‘I'TﬂeD C /2, AwR/ . (X.19)
In a similar way one derives
5
© A8 a.s”
- 2
Ldwg) = k=2, pup) = lim i ¢ %%e & > 573 ds:
e~0 A (s +2b_s)
2
a 3 2
= - __5; 1im 1 wd3 g 5 ds (X. 29)
=0 T g ap
2
With
Z2 = bZAwR {X.21)
one finally obtains
a.b -iZ
, 22 2 {1) I/ :
12(AwR) = Z e §HO (ZZ)(11622=36ZZ=115)
(1) 2,
+ Hl (ZZ) (1622 + 1Z8ZZ~3)
azbZ (X.22)
=2 {cos ZZ=1 sin ZZ}

2 2
gE%zZJO(zZ) +3(2,) (1625-3) - ¥ _(Z,) (162,-15) - zszzylgzz)j

. 2 2
+ 1 EIO(ZZ) (1 6ZZ~15) + ZSZZJ’I(ZZ) =-36ZZ YO(ZZ)+Y1(ZZ)(1622-‘3§§Q
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The asymptotic expansion for large ZZ is given by

3P, ” 35. 63 ,. .
L) = 22 5 2y 5035 (14 - z“"lH“'}”
A U Y 2

82
2 12822

{X.23)
If one requires an even better fit of G(s) to F{s) the general transform

i(k, AWR) as defined in Eq. (X .14} is given by

ik, MR)
k1l 2k-2 ¢ b (e-iAw
a5 bran 1 a~tt g ( Pyle-ibwg) o
=G AEm Y AT air )° Ko | Pale-hughe .
(4k-4)! d e d blﬁ

(X.24)
Finally we want to show that this technique always gives the static wing

according to Eq, (X.19) for large paw. For this purpose one has fo

perform the Fourier transform of the small time limit of G(s}) as given

in Eq. {X.13).
iAw s
R° Ktk
/o Pok-1 808 f " as
k=1

_(k+ _?i_.)
1 (2k+1)! w3 "§ 2
= k1 Poxy &¥P i (5K g
VT &=t 25 ]

(X. 25)
3 27 1 . 5 P3 5.7 Ps

) f- —5 J-p, (1+) + 2 == (1-1) + 20 = (144)
8 I Aw5/2§ 1 2w R 4

A L\UJR

i = 1i i =
oo(AwR) A&lg_m 1(AwR)
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Omne recognizes that the first two terms are identical with the first
terms in the Eqs. (X, 18) and {¥.23). Hence, we always obtain the
static wing for large AW -

Another important property of i{pw ) is that for small Aw, its

R R

leading terms in the expansion are

a
1 .
i ([\w ) = lim 1(/\(40 ) = = 2 -1
R -0 R TT TTAW
o L\wR AwR (X.26)

In this manner it smoothly goes over to the Lorentz profile of the un-
modified impact theory.
Before discussing the numerical results of i(AwR) we first list

the constants ay and bk for the cases A, B and C as specified at the end

of Sec, IX, ay and bl are determined from Eq., (X. 8), where Py is

given by Eq. (X.5) and P, is taken from the large time limit of the

computed ‘f‘m(s). as calculated by the program of Appendix A

Pa comp.
may differ slightly from p, as defined in Eq. (X.5), if C is not very
much smaller than unity because p is based on Eq. (A.18),

Z2 comp.
which is true for any value of C and goes over to Eq. (X.5) for small
C. 2, and b2 are determined numerically by a least squares fit,
The maximum deviations from F(s) obtained with Gl(s) alone and with

GI(S) + Gz(s) are listed too.
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In presenting the numerical results of {pw_) we concentrate on the real

R
part which turns out to be the most important part. We have chosen
two different normalizations. In Figs., 4 and 5, i(AwR) is normalized

with respect to the large frequency limit i {Aw..) to show the useful
[es]

R
range of the static theory. The short vertical lines mark the position

of the Weiskopf frequency

hw_ = Vavz/ <-—-3§-(nqc-n'q(’:) %} = fﬁp/C (X.27)
for a particular component (nqc-n’q’c) which according to classical
arguments determines roughly the range of validity for the static
theory {see p. 321 of Unsdld, 1955 and paper II). It should be pointed
out that ch is usually defined in terms of an average Stark splitting. In
both cases A and C ch describes the range of the static theory very
well, If ene allows for a deviation of about 10% at the most from the
static asymptote, ch may be lowered effectively by more than an order
of magnitude. A more detailed discussion is given later with the final
line profile calculations,

The other normalization with respect to the small frequency
limit io([\wR) is shown in Figs. 6 and 7 for cases A and C again. These
plots demonstrate the useful range of the unmodified impact theory,

which is based on iO(Aw ) and is expected to break down around the

plasma frequency, as c}in be seen in Figs, 6 and 7. In order to extend
the range of validity, the modified impact theory makes an impact para-
meter cutoff at v//\w { the Lewis cutoff) whenever this is smaller than
the Debye length D; this cutoff accounts for the finite time of interaction
to second order. More details are given in Appendix B. The corres-

) has been included in Figs, 6 and 7. Since

ponding function i Aw

Lewis( R

the usual derivation of i . {Aw,) is based on the limit of very small C,
Lewis R

one expects the best agreement between the Lewis result and our result,

which considers the finite time of interaction to all orders, for the

55



situation with the smallest C. That this is in fact true can be seen
from the low density case with nqcmn’q; = 3, This component is plotted
again in Fig. 8, in order to demonstrate the importance of GZ(S) for
those cases where the deviation of GI(S) from Fis) is large {Table I
gives a maximum deviation of 13%).

Figures 6 and 7 also contain the static limit iw(AwR} {dashed
lines) and the Weiskopf frequency A(vc. It gives an idea how close the
Lewis results get to the static limit. One notices that with increasing
values of C the deviation of iLewis(AwR) from the static limit becomes
larger. In his line wing calculations {(Griem, 1962, 196%)Griem adjusts
his "strong collision term" EBB , in such a manner that the Lewis result
is identical with the static limit at the Weiskopf frequency. In the Figs.

6 and 7 this means that the straight line representing 1 ewis (AwR) is

shifted to the right until it cuts /\wcs We use here ch as defined in

Eq. (X.27) for every individual component instead of the average value

2
L\UUC = kT/{(nn ) used by Griem. Since the Lewis line would then lie

appreciably above the curve i([\wR) one realizes that this procedure
definitely overestimates the electron broadening as already observed
experimentally (Vidal, 1965; see also Pfennig, Trefftz and Vidal, 1966).

A better method would have been to adjust E such that i . {Aw )

BB’ Lewis
forms a tangent of the static limit. However, it is clear that any

R

adjustment of E effectively changes the range of the unmodified

BB’

impact theory and also defeats the purpose of the Lewis cutoff, namely

to correct the completed collision assumption to second order.

Finally it ought to be emphasized again that except for the time

ordering the Fourier transform of the thermal average i{pw_) as pre-

R
sented here takes into account the finite time of interaction to all orders,

Hence, for small Aw_ it goes over to the impact theory limit and for

R

large pw ., it gives the static limit without requiring a Lewis cutoff.

R
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XI. THE ONE-ELECTRON LIMIT FOR HYDROGEN AND THE
ASYMPTOTIC WING EXPANSION

Having obtained the Fourier transform of the thermal average
i(AwR) we are now prepared to calculate the actual line intensity by
evaluating I(w,&,i) according to Eq. (IV.15)} and averaging it over all
ion fields according to Eq. k(II, 1). As explained in Sec, IV, this problem

is greatly simplified in the one electron limit where no matrix in-

version is required and the intensity I{pw) is given by

Hpw) = Ii([\w)'*E P(B)I{pw,B)dR . (XI.1)

I{Aw) is the static ion contribution originating from the first term
i
I/Awop in Eq. (IV.21) and I{pAw, B) is given by

- 5’_2 Y A 4 7 4 7 ’ 14
{aw,B) = - L(nqamaldin a ma} ({n qubldfnqub)

(XI.2)

1)
dt g > t 4 £ I; @( 14 4 I’;
j exp ? 1AwR é {n q;m/ nqubl‘& (t)Iin q/m’ nqama‘)
using the definitions of Egs. (V.14) and {X.2), The density matrix P,
is assumed to be counstant over the relevant initial states, With Eq.

(IX.1) the last expression can be rewritten as

_— 4 7 4 7 4 ’ 7 s 4 4 7 4
Haw, R) = Z(n{,amaldln J’,ama><n qubin !,Cmb)(n {,Cmb§dlm’,cmb>

‘ rp ¥ ? [ 7 [ 11 ? ’r ’ P ? I F oy I

=“ma“m'b
(21L+1)

J -
(nqubl n)?,bmb> <n,{’,bmc nqcmc> (nqcmcﬂ n,f,amc'> (-1)
2!
2 7 7 ?
awp,8.m,0% 9,959 ,9)

(XI. 3)




where the dipole matrix elements have been transformed from parabolic
to spherical states and the summation over intermediate states 5nqama>
and in’qémé} has been performed, We next apply the Wigner Eckart
theorem (see Eq. {5.4.1) of Edmonds, 1960} to the dipole matrix

elements and replace the reduced matrix elements by the corresponding

radial matrix elements (see Bethe and Salpeter 1957).

cm f& Y £ A
(umld Tnfp/m’y = (-1) 7 {f(20+1)(22 7+1) EIARI AP RS
H mp m//\0 00 )

(XL 4)
Inserting this relation into Eq. (XI.3) and using the orthogonality

properties of the 3j-symbols we have

Y P p P Fop ho ? P im’ q’'m’
I{pw, B) = (n qubln J?/Crnb>(nl?_,cmblnqub><n Ii,amcln qcmc>

(n’qé:’nél n '&émé') {n’{/];mél n’qémé}(nqub[ n{bmb> (n{/bmc! nqcmc>

i

(ng_m Int_m ) {(Zaaﬂ (22 #1020 +1 )(Zx,ém} (e _lrln’sM(n'2 | rline )

e 1 e g : d 4 '
oty o vl LA 1 2 {,bl WAZEEM 1 L. 4C 1
0 0 O 0 0 0 -m’ m M \-m’ M’ -’ -’

- G rnC mC mb mb M mbmbMv
> 7 7 4
1(AwR,B,n,n CHRC qc,qc) (X1, 5)
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If we finally replace the unitary transformation by the corresponding

3j-symbols according to Eg. {VIIL 8) the result is

Hpw, B) = (24 +1)24 /41020, +1)(22/+1)(22 _+1)(22/+1)

i 4 Caqf ’ X1.6
1(/\wR, B, m, n', q, 4, 9, qc) ( )
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The preceding relations hold for the general case of upper and
lower state interactions. They simplify considerably if there is no

lower state interaction {e.g., Lyman lines). Then one obtains

n-1 i ? n-1 n-1 \\2
I (pw,8)= I (nllzi10)!? ) i 2 z+ .
¢ P, Ty Ty m _-q_ma +q_
2 m'b/ 2 2 M,
i (g, B,m9,4) (XL 7)

with

. O [ [ - L
1u(AwR> 89 n, qb, qc) - 1(/,\U-)R: ﬁ:nan - 15 qba q-b"“ 01 qC: q.C - O)'
(XI.8)

Equation (XI. 7} may be further simplified by evaluating the 3j-symbols

and summing over m, and m with the result.

2 n-l U to

_ Hml]rl10y]
IU(A(”,B)_ 2 2 2

4n -1} n

2 _ 2
-2 3 ¥
(n qc) 1u(AwR,8,n, 9y qc)

{XI.9)
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These simplified relations may also be used for the higher series
members of the other series, whose transitions do not end on the
ground state if lower state interactions contribute only a negligible
amount of broadening to the final line profile.

The foregoing relations for the one electron limit essentially
represent the asymptotic expression for the intensity in the line wings.
If one is interested in frequency perturbations Aw which are significantly
larger than the average ion field splitting Eq. (XI.1) can be simplified
by replacing the ion field average of the electron contribution by the

electron contribution for the average ion field Bav

Kaw) = L (rw) + I {Aw, Bav) (X1, 10)
with
Bv =jBW(B) ds . (XI.11)
O

If Aw is very much larger than the average ion field splitting, then
according to Eq. (X, 2) Aw /\w/fif and I{Aw, Bav) may be replaced by
{Aw, 8= 0).

{pw) = Ii(Aw) +1(pw, B= 0) (XI.12)

In the limit g8 -» 0 the Egs. (XI.5) to (XI. 9} simplify drastically because
i(AwR) depends no longer on the quantum numbers 9 and qé which
specify the Stark components shifted by the quasistatic ion fields. This

allows us to sum in Eq. {XI. 7) over Ay and m,_ which gives us for the

b
case of no lower state interaction
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1
I (aw,8=0)= |(adlxl10)1” gl 620, 1. 9)
(X1.13)
2 ’)
= '<n1‘21“10>| <n2+(—1)q+n (n2—2q2)> i {Aw, 8=0,n,q)
Z2{n =1} n

q~(~1)

For the general case of upper and lower state interaction we can sum in

b m{; and M and after applying Eq. (XI. 4)

we finally sum over the intermediate spherical states to obtain

Eq. (XI. 6) over Qs qé, m

I{Aw, B=0) = a<nqm§d$_n’q’m’>[2 i(pw,B=0, n, n’, q, q’)

9 a’ (XI.14)

m, m’
How far into the line center the simplified relations (XI1.10) and {XI.12)
may be used, depends on the required accuracy. Numerical results,
which compare the asymptotic wing expansions with the more rigorous
unified theory calculations describing the entire line profile, are given
at the end of the next section,

XII, THE UNIFIED THEORY FOR HYDROGEN
In those cases, where the entire line profile including the line

center is required, the line intensities have to be calculated on the basis
of the unified theory, If has to be pointed out that in principal even in
calculating the distant line wings the unified theory has to be used when-
ever AwR in Egs, (X.1) or (V.17) is no longer large compared to unity.
This will happen in the final integration over ion fields whenever B is

close to

R - 14 2
3. Aw/Awi(n, . n qb) } (XIL. 1)

62



However, it was shown in the last section, that for large pw
one may use one of the asymptotic expansions in Eq. (XI1.10) and {XI.12).

In the unified theory we have to evaluate the following expression

I
I{pw,B)= =
-

R 7. P B ! b £ ?
nqamag dln qama> {n qubﬂ dl nqub

(XII. 2)
-1
- ! 4 ¢ ! .
{n’ qu.b, nqubE {/\wgp S(Awop)j n'q m’; nqama>
The matrix elements of Awo

o as defined in Eq. (IV.14) are diagonal in
parabolic states and are given by

PR
<n’q;m;; nqama![\wopln’q;m;; nqama>: /,\w—/,\wi(n, qa, n, qa) R

(X1I. 3)
where Awi is defined in Eq. (V.14). The matrix elements of S(Awop )are

given by

[ 7., 4 7, -

=M -1
a

2

b - ’oqlt E 2L+ 1
[Aw /,\wi(n, qp, 0 ,qb) B] ( )

{n'q’ m ‘n,?, m’><n L. m’ln q m’)(n a’ m’!n I3 m’)(n’ {)mé?n’q{)mé’)

~drr. (~1)

(nq m_ I o, ma}(n& m ‘nq m >{nqcmcln{,bmc><nli,bmb!nqb m, 3

a
? L 14 1,
tlor Ly Loy o '
1 <[\U.)R> Bs n, n, qbﬁqb> qcsqc>

«—m m M’ m m M =m(’:m M’ =-m];m M

(X11. 4)
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Egs. (IV.16), (IX.1) and (X.1). This relation simplifies sig-

nificantly in case of no lower state interaction in which case we need the

matrix elements

2
<nqub‘£(/_\wop)inqama> = = dpr E\w»[\wi(n, qb) e}

M m

_55;4? <nqub‘ m’amaxmama nqama> %n&amc nqcmc%

i ) XII,
lu(AwR, B, m, q, qc) (XIL. 5)

Due to the delta function the matrix of the operator § is then block
diagonal in m, which reduces the size of the matrices to be inverted

ton x nor {n-1) x {(n-1) depending on the quantum numbers n and m,
Furthermore, Eq. (XII. 2) simplifies in case of no lower state interaction.
After transforming the dipole matrix elements from parabolic to spherical
states, applying the Wigner-Eckart theorem (see Eq. (XI. 4)) and using

Eqg. (VIIIL 8) one obtains
qa+ qb

5 T ntm-1- ~= n;‘ = Lo
Haw,8) = Wntlzliop]” 2 o (-1)
99y ™ m-q, b, _
2 z

n-1 n=1 1\

2 2 o
Im

! — <nqul EAwop-x(AwOp)} gnqam> . {XIL 6)

{ m-gq_ mtq

i b b m

Vo2 2

In order to keep the mathematics simpler we concentrate in the
following on the case of no lower state interaction, because it covers the
experimental situations of case A and B and is also a good approximation

to the higher Balmer lines of case C (see the list of references at the
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end of Sec. IX). Including lower state interactions means at this stage
only a more extensive summation over 3j-symbols because the crucial

function i{pw , 8), the Fourier transform of the thermal average, has

R
already been evaluated for the general case of upper and lower state
interactions.

Using the unitary transformation of Eq. {(VIIL 8), Eq. {XII. 5}

may be rewritten as

qa+qb
ntm-=1- 5
<nqui£(/,\wop)inqam> = - dr(-1)
n-1 n-1 n=-1 n-1
2. —_ —_
N 2 2 a 2 2 a
Aw=pw (0,9, ) B p

) m-q m+qg " m-qb m+qb )

2 2 2 2 m

n-1 n-1 ' 2

z 2 a (XII. 7)

m_
Cilm -g m +qg
c cC c ¢C
-m

pa P c

where we have used the fact that lu(AwR’ B, n, 9 qc) = 1u(AwR, 8, n, EH »qc)
and that i {Aw.~, B, n, q,, @ = 0)= 0. We also realize that
u R b’ e

- - = X1l
(nqb ml,SS(Awop)!nqa m) (nquig([gwop)!nqam) {X1I. 8)
A computer program (FORTRAN IV), which evaluates I{pw, B) according

to Eqs, (XII. 6) and (XIL. 7) and also performs the final ion field average
according to Eq. (II.1) is presented in Appendix C. The ion microfield



distribution function employed is the one given by Hooper, 1968a, 1968b,
which differs less than about 1% from the values determined independ-

ently by Pfennig and Trefftz, 1966,

For the experimental parameters of case C, Figs., 9§ and 10
show numerical results of I{pAw, B = 10) for n= 6 and n= 10, The fat
vertical lines indicate the relative inteunsities and the positions of the
Stark components for the static field {ion field) 8 = 10 and it demon-
strates the electron broadening.

Figures 11 to 13 show the final line profiles I{pw) after per-
forming the ion field average for the experimental cases A, B and C
{see end of Sec., IX). As a first result it turns out that for numerical
accuracies of about 2% it is in all 3 cases sufficient to consider only

Gl(t) meaning that i(pw B, n, Ay qc) may be replaced by

R’
i}i(AwR’ R, n, Ay s qc) as given in Eq. (X. 17). Although according to
Table I, Gl(t) may differ from f(‘t) for some components of case C

by up to 13%, it turns out that after summing over all Stark components

and averaging over ion fields this difference F(t) - G, (t) is apparently

1
smeared out over the entire line profile and affects the final line
profile by not more than about 2%. This is very convenient for
practical calculations, because it no longer requires an extensive
evaluation of the thermal average anymore, but for most practical
situations it is sufficient to calculate the line intensities directly on

the basis of G_{t) whose specifying constants 2, and b, are given

1
immediately by the Egs. (X. 8) and (X. 5).

1

This is even more true in view of the fact that the final line
profile is partially affected by an uncertainty in the constant B as

defined in Eq. (IX.31) or {B.19). As summarized in Table II of
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Appendix B its actual value depends on the cutoff procedure applied,
a problem, which has not yet been solved satisfactorily. The upper

cutoff parameter 2 = p x/D {see Appendix B} and therefore also the

m
limits on the integral jPVC(t') dt’ can in principal be decided within

the frame work of the classical path theory {see also Chappell, J.
Cooper and E. Smith, 1969). The lower cutoff parameter, however,
which essentially replaces the dynamic strong coilisions not amenable
in a classical path theory, can only be determined conclusively from a
guantum mechanical theory which is also able to handle strong collisions
and which does not yet exist. The constant B adopted here is based on
a lower cutoff parameter P nin = X+ —%— nzao, which specifies approxi-
mately the region of validity for the classical path theories (see paper
I}, Numerical results based on other values for the constant B as
used in the literature {see summary of Appendix B} are also included
in Figs. 11 and 12 for the cases A and B. The largest value B = 1.27
is the one adopted in the recent calculations of Kepple and Griem,

1968, while the smallest value of B is obtained for pmin =X + %—nzao
and choosing an upper cutoff of P nax = 0. 606D as proposed by Chappell,
J. Cooper and E., Smith, 1969, For case C this variation of the con-
stant B does not show up in Fig. 13 and amounts to an intensity change
of at the most about 4%. These variations indicate the reliability of

the classical path theories and demonstrate that for some cases the
error estimates given in the literature are too optimistic. The effect

on the final line profile due to the uncertainty of the constant B will

be small if either according to Eq. (IX. 31)

=2 In (2C)>> 1 {X11. 9)
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or if like for the higher series members)the number of Stark com-
ponents is large which tends to smear out the influence of the constant
B. It should be pointed out again that the unified theory is intrinsicly
normalized independen‘t of the value of the specifying constants of a
particular line. Hence, any variation of the constant B does not affect
the normalization of the line prefile,

In comparing the numerical results for case C, with the
experiment it has to be kept in mind that we are comparing the higher
Balmer lines with calculations for the higher Lyman lines, because
our final line profile calculations have not yet taken into account lower
state interactions, This means that in a plot of the intensity versus the
wavenumbers Ay, which is essentially an energy scale, the line profiles
cannot be expected to coincide because of the difference in the Stark
effect, This gives rise to different static wings as explained in detail
by Vidal, 1965. Hence, we have to rescale the Lyman profiles preserv-
ing normalization in order to be able to compare the measured profiles
of the Balmer lines with the calculated profiles of the Liyman lines.
This means that in a plot of log I versus log AY we can compare the
line shape of the corresponding lines directly. The agreement is
remarkable. For the higher lines, n > 8, where Doppler broadening
was shown to be negligible and where lower state interactions no
longer affect the line shape noticeably, the agreement is better than
2% over the entire measured line profile, which for n = 8 extends over
3 orders of magnitude in intensity. In particular, the calculations show

5/2

to 1/10 of the maximum intensity, This fact is not explainable by a

also the surprisingly large range of the pw ) - wing, which extends

purely static theory considering also shielding effects., For the lower

lines the calculated profiles have to be folded into a Doppler profile in

order to achieve similarly good agreement. For the lower line we
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also expect in the line center some influence due to lower state inter-
actions on the line shape, which is partially removed again by Doppler
broadening.

-5/2

interesting facts. In Fig. 13, the dashed lines indicate the asymptotic

-5/2

A more detailed study of the pAw -wings reveals some other
Aw_j/zuwings; except for n= 5 and n= 6, what appears to be a Aw
~-wing in the measurements and calculations is not the asymptotic
Holtsmark [\wm5/2—wing in the region of interest. If one extends the
calculations to even larger frequencies pAw, all the wings will eventually
coincide with their asymptotic limit, In the paper of Vidal, 1965,

Table II gives a list of the electron densities, which were evaluated

-5/2

the asymptotic Holtsmark wing; it was stated that for H to H]‘4 the

under the erroneous assumption that the measured Aw -wing was
electron densities coincide within + 4%. A more careful analysis of
the values, which have been plotted again in Fig. 14 reveals a syste-
matic trend. For large and very small principal quantum numbers the
electron density values rise above the average value, while the min-
imum value was obtained for n= 7. From Fig. 13, it now becomes
apparent that the electron densities based on the asymptotic
Holtsmark wing will go up for increasing n. For smaller n the
quantum number dependence of the electron density is masked by
Doppler broadening which raises the wings again and explains the
increasing values of electron density for small n. Another important
~ result can be seen from Fig, 13, For small principal quantum numbers
the line intensities are much smaller than predicted by a quasistatic
theory. This was observed first by Schliter and Avila, 1966 and the
effective electron densities for a quasistatic theory as a function of A)

show the qualitative behavior measured by them after unfolding the
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Doppler broadening. This observation together with the measurements
of Boldt and Cooper, 1964 suggested the semiemperical procedure
proposed by Edmonds, Schliter and Wells, 1967. A detailed quantitative
comparison requires for the first series members a consideration of
lower state interactions, which is in process.

For the parameters of case C, Kepple and Griem, 1968, have
already calculated the lines H, and H_ . These calculations have been

6 7
extended to H, , by Bengtson, Kepple and Tannich, 1969, using identically

2
the same com];Juter program. The results are plotted in Fig. 15 and
comparing the line shape for the higher series members, for which
lower state interaction becomes negligible, with our results in Fig, 13
one realizes a significant difference. In particular, their calculations

5/2

smaller than about 1/10 of the maximum intensity at aw= 0 which is

do not reveal the A\ decay in the near line wing for intensities
discussed above. It should be pointed ocut that the ion field dependent
cutoff, which has been introduced by Kepple and Griem, 1968, to account
for the usually neglected exponential in Eq. (VI. 4) cannot be responsible
for it., This has been tested in our calculations. One can understand
this by realizing that for the higher series members the effect of
dynamic broadening due to the electrons as described roughly by the
constants P, in Eq. (X, 5) turns out to be much smaller than the half-
width of the total line, which is essentially determined by quasistatic
broadening.

As another interesting result, Fig. 16 shows a plot of a calculated
Lyman-g profile for two different values of the constant B(B = 1.27 and
B for pmin =X + % nzao), which allows also some qualitative state-
ments concerning HBB We realize that changing B affects the very line
center, where the profile shows the two humps and the near line wing,

but it does not change the intensity around the halfwidth significantly,
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which may be understood as an effect of the normalization. This is in
agreement with experimental observations of Wende, 1967, which show
that the calculations of Griem, Kolb and Shen, 1962 overestimate the
near line wing. It also explains the good agreement of experimental and
theoretical halfwidths in high density plasmas (see Gerardo and Hill,
1966) because the line intensity around the half width is rather insensitive
to the exact value of B.

Finally in Fig, 17 to 19, we compare the unified theory cal-
culations {solid curves) with calculations based on the one-electron
theory in order to see how far into the line center the asymptotic
wing expansions as given in Eq. (XI1.10) or (XI.12) may be used. In
all Figures the short vertical line indicates the position of the outer-
most, unperturbed Stark component for an average ion field Bav’
which is given by Aw = Bav Awi {n,q = n-1) where Awi is defined in
Eq. {(V.14). The dashed lines correspond to the one-electron theory
calculations for 8 = 0 according to Eq. (XI.12), while the dash-dotted
lines give the results for B:Bav according to Eq. (XI.10). First of
all we realize that, as expected, the one-electron result for 8 = Bav
diverges when Aw approaches BavAwi(n, g = n-1)., However, in all three

the one-electron theory calculations according to Eq. (XI.10) coincide
with the unified theory calculations to within 1% and better. For slightly
released accuracy requirements one may also apply the simpler one-
electron theory calculations based on Eq. (XI.12) with g = 0. In
particular we see that for small principal quanturm numbers the useful

range is very much larger than for the one-electron theory calculations
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with g = Bav because, for g8 = 0, the one-clectron theory diverges only
at Aw = 0. We also realize that for the line intensity range of practical
interest both asymptotic wing expressions with g = 0 and g = @

av
become less useful with increasing principal quantum number,
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APPENDIX A
PROGRAM FOR CALCULATING THE THERMAL AVERAGE F(t)

This section gives a complete listing of the program which was
used to calculate the thermal average F(t) as discussed in Sec. IX. In
order to understand the program the following explanations may be of
help.

1. Calculation of @k {s,v,x,u)

Function PHI{ K,AY) calculates @1, ) and & , as defined by

2’ 4

the Eqgs. {IX.17)-(IX.21). In order to assure sufficient numerical
accuracy for computing @k {s,v,x,u), series expansions have been
applied whenever one of the different gk (s, v, %, u) becomes very small.

The following expansions have been used abbreviating

{A.1)
and
(a) g (s,v, %, u)
a<0.01 and y>0
s (44y) 2 y(16+80yv+40y>+7y) 4
r {1+y) 8(1+y) 128(1+y)
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2 3 4
(96+448y+1024y +1520y +880y +zsz£+33y63a6 s
1024(1 + y)é
(A.2)

a< 0.0l andy < - 2

2 3, 3 2 3
: - 2 gl S 2, (16—5:4() 4y (32-192y+112y g21l£6+
*u 8(1-vy) 128(1~y) 1024 (1-v)
(A.3)
v < 0.01
s 2 _Xf 2 WYy 3
g = rz g I - wey = (3-11w ) g +{9-17w ") - 3
2 4, 2
+ (31-350w" +447w )ﬁﬁg o § (A. 4)
v > 100
N A 2
N 2{1-w} {i+w} S5w-1 (3+4w-15w )
8 7 s S e el R v )
y y 8y
(11-83w-59w>+195w°)
P )] s
64y

() gz(s, y, %, u)

yA
(x/y) < 0.0002 andy> 0

2 2 4
o f1-yi . (O4y)8-y) [x } 2, (1ty) (=
g, = —— gl 3 (y) + (31-42y+7y ) 5.6 <Y>
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3
- (187=443y+297y2a33yg} Ay fEN
128 xy

(x/y)Y% 0.0002 andy< 0

¢, 2 §1 #(1-x7) (1oy) + (1-x7) (1= ) (1-y)
2, 3
+(1-x") (1= 2 ) (1ey) o+ é (A.8)

2. Calculation of Gis, x, u)
Function GN{AX, AXS) calculates G(s, %, u) as defined by the
. (IX.22) and (IX,24). This integral has been solved by rewriting

it in the following way.

Gis,x,u) = Gl(s, %, u) + Gz(ssx, u) + G4(s, %, u) (A.9)

The new integrals Gk(s, x,u) are only functions of @k(s, v, x,u} and

turn out to be

R 1-R

i-

Gl Ulx> x )U(Z>R)} & dy+U(x > x) U(1>R+P)jﬂ
R P
z (

A.103)
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1- § Pif x< x

G, = U(L-R>K) [ &, dy with K= © {A.10b)
K ~-—%= if x> XO
1 +1
GZ = Ulx > xo) gU{Z >R) j ézdy + U(R > Z)j @Z d’yj
1-R 1 -1 1
+U(x_> %) Euu > R+P)j 3,dy + U(R+P >1)j @Zdy}
1R b (A.11a)

1 .

-1 if x>x0

G2 =f §2dy with B = MAX {1-R, K} and K=
B

Pifx<x
o)
{A.11b)

and
G4=U(X>XO)-U<§->1> <—§-> §4 {A.12)

The first integral is split up at most into three parts

-X + 32 i-R
G1 =j éldy+j §1dy +j §1dy {A.13)
K ~X bie

if every upper limit is larger than the lower limit using a different
convenient change of variables in every part. The integration is per-
formed in all cases by means of Weddle's rule {(subroutine WEDDLE}.
The number of points besides the initial point is firstly taken to be 6 .

and is doubled in every iteration by calculating only the values in between
the old values until the integral changes less than a preset relative

value called DG.
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3. Function GUS (AU) calculates the x-integral and is defined by
GQUS(ATU} = His, u) {A.14)

where

H{s,u) = Zj x¥Yl-x  Gs, x,u) dx {A.15)

The integral is performed in two parts
2

X ==4’.n(xo)
His, u) =fﬁf1-z"c;(s,{%‘?u) dz + z{ e"ZZ ,u) dz
o ) {(A.16)

by means of Weddle's rule again using a technique as described before
for G{s, x,u). The new test parameter, which determines the number
of iterations, is called ACC and is given in the main program. The
old test parameter DG has been made a function of ACC, x and u in
order to calculate those values of G{s, x, u) with the highest accuracy
which give the largest contribution in the final velocity integral. For

very small values of u-s the integral has been approximated by

Ha(s,u) = - C2= s2 E—l;-— - } {A.17)

X
o

This limit does not lead to the static wing, as F(t) in Eq. (IX.28)

-
does because of the lower cutoff X . As explaineé if Sec, IX, this cut-
off is necessary in order to avoid rapid fluctuations in the integrals
which require more integration steps and longer computer time. For
practical calculations x is chosen small enough so that over at least
one order of magnitude in { the calculated f(t) comes as close as

i

required to the asymptotic limit F(t)t -0
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For wus > 2 the following relation is applied

1 e SRR R w
Zf waG {s,x,u)dx= - C. sj _sin (b 2) dz
I+=
o o
(A.18)
2 2
+ Y {1-b Kl(b) +b Ko(b} )
where
b = 2C
u

For simplicity x has been set to zero for this relation without
affecting the final result noticably. For very large s Eq. (A. 1{8)
leads to Eq. {IX.31). However, Eq. {A.18) does not require C to be
small as Eq. ( IX. 31) does. The Raabe integral is calculated by the
function SNZ and the modified Bessel functions KO and Kl by the
subroutine BESMOD,

4. The final thermal average (s, B, T) as defined in Eq.
(IX.23) is calculated in the main program FSTEST., The best results
for the velocity integral have been obtained by Gauss's quadrature

formula {function GLQUAD). The values FS in the program are given

by

—t F(sn.n. T . (A.19)

S
k e

3
Znn D
e
The main program reads in the temperature T, the electron density

n_ the quantum number . two cutoff parameters, which specify

the lower and upper cutoff of the x-integral by

0 tnin = STRONG - o
(A.20)

0 = CUT - D
max
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where e, is given by Eq. {IX.5). Finally the main program reads in
the initial value of s for computing the thermal average and the number

of values which proceed according to s s, 10 . The program also

K+l k

gives the asymptotic thermal average leading to the static wing which
is called GS and calculates the relative thermal average in units of
this asymptotic value. Furthermore, the function KLOCK provides

a means to test the computer time for every individual value of F'S.

The results are shown and discussed in Sec. IX.
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PROGRAM FSTEST
CALCULATION OF THE THERMAL AVERAGE FS
INTEGRAL FS OVER U IS TESTED FOR DIFFERENT L IN GAUSS QUADRATURE
COMMON/PDS/S/PDCON/C12C2sCONsBCON/PDRAD/BRAD/PDACC/ACC sDGoNGN
COMMON/PDSTR/STRONG
EXTERNAL GUS
500 READ(60:2100) TEMPsDENSTYsQNUMsQeCUTsSTRONGs S5s K
IF{DENSTY«EQs0Oe) CALL EXIT
WRITE(615104) TEMPs DENSTYs QNUMs Qs cUTs STRONG
T = TEMP®1l.E~4
RELDEN = DENSTY*1.E~-18
Cl = 1.5 % Q % QNUM
C2 = 0.03043 * SQRT(RELDEN) /(T % CUT)
WRITE (615105) ClsC2
NKK = QNUM % Q + 0.01
CON = C1 * C2
BCON = 1.414213562 % CON

CT3 = CUT ** 3
BRAD = 7e6TE=3%¥SQRT(RELDEN/T ) #QNUM*#2¥STRONG/CUT
NUM = 0
ACC = 3.E~4
7 D01 1 = 15K

NUM = NUM + 1]
5§ = 55 #® 1060
S = 85 /7 CUT
FSOLD = 0.0
GS = ~1.671085516 # (CON#CUT#5S) ¥*%* 1,5
GSAS = —(CON#*55)##2% (1,1283791671/(C2*STRONG) — 1) * CUT
PRINT 200+55s GSs GSAS
DO 20 L = 35
LLL = KLOCK(0)
FS = GLQUAD (GUS3s0s095,05L) #* (T3
FFGG = FS/GS
DACC = ABS((FSOLD - FS5)/FS)
LLL = KLOCK(O0) -~ LiL
PRINT 300s FSs FFGGe DACCs LLL
IF(DACCeLT-ACC) GO TO 50
20 FSOLD = FS
50 PUNCH 400s55s FSs DACCs NKs CUT» STRONGse DENSTYs TEMPs NUM
1 CONTINUE
GO TO 500
100 FORMAT( 2E10e2s 4F10els E1De2s 15)
104 FORMAT {(1H1e%* TEMPERATURE = *Fl4e5s 10Xs % DENSITY = ¥El4.5//
1 * QUANTUMNUMBERS N = #F6,1510Xs%* (N1 — N2} = #F6e¢1//
2 * DEBYE CUTOFF FACTOR ¥FBe3910Xs* STRONG COLLISION FACTOR = #*
3 F8e.3)
105 FORMAT (//% C1 = % El4s6 s 10X ¥ C2 = * ElL,6!
200 FORMAT (///% S = ¥E15,7s9Xs¥* GS = ¥E17.9:9Xe% GSAS = #E17.9/)
300 FORMAT (% FS = ¥[£17,9s% FS/GS = ¥E17,9% DACC = #E17e9
1 ¥ LLL = *[8/)
400 FORMAT (E10e3s E15+7s E10e2s I5s FT7ols F7e3s 2E11e3s I4)
END
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20

30

FUNCTION GUS(AUY
COMMON/PDS/S/PDCON/Cl9C2sCONsBCON/PDU/U/PDXM/ XML s XM2
COMMON/PDRAD/BRAD/PDACC/ACCsDGsNGN/PDSTR/STRONG
DIMENSION F(192)s H{192)

GUS = 0.0

U = AU

IF{S:EQe0e0) RETURN

XM1 = C2¥STRONG/U

IF(XMI@GEeln) XMl = 1 = 1eE~-G

XM2 = XM1 + BRAD

IF(XM2sGEels) XM2 = 16 - leoE-9

CONS = CON * &

Uz = U = U

FU = 2.2567583342 # U2 % EXPF{-U2)
Us = U # S

IF({US/STRONG) «GTo2eE~-8) GO TO 5
GUS = =CONS # CONS # {1/XM1 - 1.) * FU
RETURN

NGN = 0

GD = Ooo

IF{USLTe2e) GO TO 8

NGN = 1

PA = 26 # CON/U

AMM = XM2 % XM2

SXM = SQRT(le - XMM)

CALL BESMOD (PAs FIOeFI1sFKOsFK1)
GD = ~CONS % SNZI(PA) + 2.%(1+PAX*{PA*FKO ~ FK1))/3,
GUOLD = 060

G1OLD = 0.0

G20LD = 0.0

N = 3

DO 100 K = 156

GUS = GD

DG = ACC/FU

N = 2 % N

NN = 2

IF{KsFQal) NN = 1

AN = N

ANN = NN

IF{(K:EQel}) GO TO 10
DACC = ABS(DG1/GUOLD)

IF{DACC.LT<ACC) GO TO 40

GO TO 20

FO = GN(0Os091.0}
DQ1 = XM1 * XMl
DQo = Dn1/AN

DQ = DQO * ANN
0 = DOO - DQ
DO 30 J = 1sNsNN

Q = Q + DQ

X = SQRT{(Q!

XS = SQRT(1l. -~ Q)
F{J) = GN{XsesXS) * X§
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CALL WEDDLE (DQOsNsFsGUSTFO!
40 GUS = GUS + GUS1
IF{KsGEss) GO TO 50
DG1 = GUSI = GLOLD
G10LD = GUS1
IFI(DG1eEQsQe) GO TO 50
DO 45 J = 15N
L =N+1-1J
45 F(2 * L) = F{L)
50 IF({XM1:sGFe0e999999999) GO TO 90
IF(KoEQs1l) GO TO 60
DACC = ABS(DG2/GUOLD)
IF{DACC.LT-ACC) GO TO 80
GO TO 65

60 XO = SQRT(le — DQ1)
HO = GN(XM1lsX0O} % XO 3% DQI
DYl = -~LOGF(XM1)
65 DYO = DY1/AN
DY = DYO * ANN
Y = =-DY1 + DYO - DY
NI = N -1
DO 70 J = 1sN1sNN
Y = Y + DY
X = EXPF{Y)
X2 = X % X
XS = SQRT(le = X2}
DG = ACC/XS
70 HOJ) = GN{X»XS5) * X§& % X2
H{N) = 0.0

CA'.L WEDDLE (DYOsNsH+CUTsHOI
GUS2 = 2,0 * 0UT
80 GUS = GUS + GUSZ2
IF(KeGEes6) GO TO 90
DGz = GUSZ2 - GZ0LD
G20LD = GUS2
IF(DG2eEQe0e) GO TO 90
DO 85 J = 19N
L= N+1-4J
85 H{2 = L) = H{L)
90 DACC = ABS((GUS - GUOLD)/GUS)
IF{DACCsLT-ACC) GO TO 120
100 GUOLD = GUS
120 GUS = GUS * FU
RETURN
END

FUNCTION GN{AXsAXS)
COMMON/PDS/S/PDU/U/PDCON/C1sC2sCONSRCON/PDXD/XeXSsX2sDX2
COMMON/PDACC/ACCsDGsNGN/PDXM/ XML » XM2

DIMENSION F(768),s G(768)s H(768})s D(768)

GN = Q60

X = AX
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10

13

15
18
20

XS5 = AXS

X2 = X #* X

DX2 = 1l = X2
GNOLD = 060
G10LD = 080
G20LLD = 0.0
G30LD = 0.0
G40OLD = 0.0

R = U #* & / XS
Rl = 1 - R

R2 = peb # R

Pl = ~1.

P2 = -1

N = 3

DO 100 K = 1.8
GN = Qe0

N = 2 % N

NN = 2
IF{KeEQal) NN =
AN = N

ANN = NN

QA = =R2
IF(XeGEoXM1) GO
IF(KOEQ@I) P1 =
QA = Pl
IF(R1.LEsP1) GO
QB = -X
IF(R1.LTe=X) @B
IF(QA-GE.QB) GO
IF(KeEQel) GO TO
DGG = ABS{(DG1l/GN
IF({DGGeLTDG) GO
GO TO 8

DQ1 = (@B + R2)
DQO = DQ1/AN

DQ = DQO * ANN

Q@ = DQO -~ DQ

DO 10 J = 1sMNsNN
Q@ = Q + DQ

Q2 = Q ®* Q

Y = QR - Q * Q2
FOJy = PHI(1.Y)
CALL WEDDLE

Gl = 3.0 % OUT
GN = G1
IF{KeGEs8) GO TO
DGl = G1 -~ G1OLD
GloLb = 61
IF(DGl1eEQe0e) GO
DO 15 J = 1sN
L=N+1-J
Fi2 * L) = F{L)
QA = =X

QB = X

1

T0 5
SQRT(XM1#XM1

To 50
= R1
TO 20
7
oLD)
TO 13

*% (le/30)

* Q2

{DQOsNsFsOUTs0.0)

18

TO 18

X2)Y/XS
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23

25

30

31

32
33

36

37

40

42

45
50

55

IF(RI«LEWX
IF{QA-GE-Q

IFIKeEQs1)

bQ
Bl
GO

B = R1
GO TO 35
TO 23

DGG = ABS{DGZ2/GNOLD!

IF{DGGeLTe
GO TO 25

DG}

GO 7O 31

FO = PHI(1sQA)

Dy2
DYO

QB -
Dyz/

[

QA
AN

DY = DYO * ANN
Y = QA + DYO - DY

DO 30 J = 1¢NsNN

Y = Y + DY

G{J}y = PHI{1lsY}

CALL WEDDLE (DYOsNsGsG2sFO!
GN = GN + GZ
IF{KeGEs8) GO TO 33
DG2 = G2 - G20LD

G20LD = G2
IF{DG2+EQeDe) GO TO 33
DO 32 J = 13N

L =N+1-J

G{2 % L) = G(L}

QA = X

IF{QALGFE.R1} GO TO 50
IF{KeFEQel) GO TO 36
DGG = ABS{DG3/GNOLD)
IF{DGGaLTDG) GO TO 42
GO TO 37

HO = PHI{1sR1) % R1 # R1
Q0 = 1le/R1

DQ3 = 1«/QA - QO

DQO = DQ3/AN

DQ = DQO * ANN

Q
DO 40 J =
Q@ = Q + D@
Y = 1/Q

1sN

Q0 + DQOC - BQ

s NN

H{J) = PHI(1sY) * Y %Y

CALL WEDDL
GN = GN +
IF{KsGE-8)
DG3 = G3 -
G30LD = G3
IF{DG3+EQe
DO 45 J =
L =N+ 1
H{2 * L} =

E (DQOsNsH3sG3 sHO)

G3
GO
G

Qe
1sN
- J
H{(

TO 50
30LD

GO TO 50

L)

IF{RsLTeleE-6) GO TO 80

QA = R1

IF{XasGE o XM
IF(KeEQs1l)
IF(R1.LT.P
IF{KeEQsl)

2}
P2

2)
GO

GO TO 55

= SQRT(XM2#XM2 - X21/XS

QA = P2
TO 57
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57

58

60

63

65

70

80

100
120

[aNaXa!

DGG = ABS{DG4/GNOLD)
IF(DGGsLT«DG) GG TO 63
GO TO 58

DA = PHI(2:QA)

DY4 = 1. — QA

DYO = DY4/AN

DY = DYO % ANN

Y = QA + DYO - DY

DO 60 J = 1eNsNN

Y =Y + DY

D(J) = PHI(2ZsY)

CALL WEDDLE (DYOsNsDsG4sDA)
GN = GN + G4
IF{KGEL8) GO TO 70
DG4 = G4 — G40LD

G4OLD = G4
IF({DG4eENQNsDe} GO TO 70
DO 65 J = 19N
L=N+1~-J

D(2 * L} = D(L)
IF{R2eLEsle!) GO TO 80
IF{KeEQel) G5 = (R2-1e1%¥PHI(4sY)

GN = GN + G5
DGG = ABS{{GN - GNOLD)/GN}
IF(DGGsLT-DG) GO TO 120

GNOLD = GN

IF{NGN«EQe1l) GN = GN - G5
RETURN

END

FUNCTION PHI(KsAY)

COMMON/PDS/S/PDU/U/PDCON/C15C2sCONsBCON/PDXD/XsXS9X23DX2

Y = AY
PHI = 060
FAC = 0.0

IF(KeGT=2) GO TO 30

RI = 1e/SQRT(XZ + Y % Y ¥ DX2)

IF{K«GTe1) GO 7O 10

C X # RI

W XS % Y * RI

G = U % § % RI

IF({CsGTe0s01) GO TO 3

IF{YelTe0e) G = -G

AG = 1./ABS(1l. + G)

IF(AGeGTe2s) GO TO 70

GI = (C # AG) %% 2

IF{GelLTe-1s) GO TO 1

FAC = CON ® S *® RI # RI % AG

ARG = FAC * (le + GI % G ¥ 00125 % (4o + G))
[F(Cel.TeleE~=3) GO TO 40

AG ={((0e0546875%G+0s3125)%G+06625)#G+06125) ¥G*GI*GI

GO TO 35

o
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FAC 2s0 # CON/UXxU]

ARG FAC # (1ls = GI * 06125 * G * G}
[F(CelTal2E-3) GO TO 40

AG = —~(0s125+0.0390625%G) * Gl * GI * G¥¥3
GO TO 35

IF{GeGTs0s01) GO TO 5

FAC = CON % RI * RI % §

W2 = W % W

1 R

ARG = FAC ¥ (((1e375%W2 ~ 0.375)%G ~ W)*G + 1e!
IF{GelLTe3aE~4) GO TO 40

AG = (3e4921875%W2~-2,734375)%¥W2+02421875

AG = [(AGHG — (2:125%W2 — 1.125)%W) % G *¥* 3

GO TO 35

IF(GelLTe100e) GO TO 8

FAC = BCON ¥ SQRT{1s — W)/ (X*U)

GI = 1/G

ARG = FAC # ({{0.625%W~0e125)%¥GI~0e5)%¥GI*¥{1lat+W)+1le)
IF{GIaLTe3sE=4) GO TO 40
AG=((1e5234375%W~06,4609375)*¥W-0.6484375)%#W+0,0859375
AG = (AG¥GI+(({0625-0s9375%W)*W+01875) )% (Lla+W)RGI*¥3
GO TO 35

A = (le + G*¥W)/SQRT(1le + G¥{2e¥W + GI))
GO TO 20
AG = ABSI(Y)

BY = ABS{le - Y]}

IF(AGeLLTs1<E-10) GO TO 15

GI = (X/Y) *% 2

IF(GIleGTa2eE~4) GO TO 15

IF{YelLTe0s! GO TO 13

FAC = CON * BY / (AG * U)

ARG = FAC ¥ (1a-06125%(1e+Y)*(3.-Y)*GI)
IF{GIelLTeleE=-6) GO TO 40

AG = ((0s05468T75%¥Y-06s328125)%Y+062421B751%¥(GI*{1e+Y)]) ¥¥2
GO TO 35 '

FAC = 2.0 % CON/{X*U)

ARG = FAC * (1le—0e125%GI®BY**¥2}
IF(GIsLTeleE-6) GO TO 40

AG = ((26~Y1%06s0390625%¥Y+0,0859375)1#(GI*BY)*¥#2
GO TO 35

IF(BY«GTe3sE-3) GO TO 18

IF(BYoLTeleE-11) RETURN

FAC = CON * XS * RY / U

ARG = FAC * {le+((1le=1e375%*X2)%¥RY + 1e)*DX2%RY)
IF(BYelLTe2sE—-4) GO TO 40

AG = (le — 20125¥X2)%BY*(BY*DX2) *x 2

GO TO 35 ,

A = (X2 + Y % DX2) # RI

[F(AaGEele) RETURN

ARG = BCON * SQRT({1. - A)/1X*¥U)

GO TO 40

IF{XeFQs0e) RETURN

ARG = CON % 2.0 * XS /7 (X * U}

GO 70 40

ARG = ARG + FAC * AG
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A Na!

O NANS!

ANORe!

40 IF{ARGeLTs0e) GO 7O 60
IF{ARGeGT. 0.05) GO TO 50

PHI = —-{0e5 — ARG®*ARG/244)*ARG*ARG
RETURN

50 PHI = COS({ARG}) = 1.0
RETURN

60 WRITE (61s100) ARGe FACs Ks Xo Us Ys S
100 FORMAT (% ERROR NEGATIVF VALUE OF ARG IN PHIs ARG = ¥E17.9s

1 # FAC = ¥E17.9/% K = ¥[1le% X = ¥F17.9¢% U = ®¥E17.95

2 ¥ Y = #¥E17e9¢% S = ¥E17.9)

RETURN
70 WRITE (61s200) G
200 FORMAT (% PHI NOT ACCURATE ENOUGH » G = #*E17.9)

CALL EXIT

END

SUBROUTINE WEDDLE (DXs Ns Fs As FO!

F IS THE FUNCTION TO BE INTEGRATED BY WEDDLES RULE

FO IS THE VALUE OF THE FUNCTION TO BE INTEGRATED AT SOME STARTING
POINT WHICH IS NOT INCLUDED IN THE INPUT ARRAY F

DIMENSION F({N)

A = 060

K =N -1

DO 15 T = 196
SUM = 0.0

DO 6 J = Is Ks 6

SUM = SUM + F(J)

GO TO (8s 1Us 129 10s 89 14)s I
A= A + 5,0 ¥ SUM

GO TO 15

10 A = A + SUM

11 GO TO 15

12 A = A + 6.0 % SUM

13 GO 70 15

14 A = A 4+ 2.0 % SUM

15 CONTINUE

16 A = 063 * DX * (A + FO + F{N))
17 RETURN

END

NeRe BEN o NNV BN RN CVIN S I

FUNCTION SNZ(X)
SNZ(X) CALCULATES RAABES INTEGRAL OVFR SIN(X#Z}/(1le.+Z%*7Z) DZ
DIMENSION AA{6)s BB(4)s CC(4)

DATAL(AA(I)sI= 156) = =0e57721566s 0999991935 ~0.249910555

1 0055199685 ~0.00976004s 000107857}

DATAUIBB(I)sI= 1s4) = 865733287401s 1860590169730s 8.6347608925,
1 062677737343

DATA((CC(IYsl= 1e4) = 9657332234545 2563295614865

1 21.0996530827s 3.9584969228)

SNZ = Qe
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aNaNe!

[ala!

IF(XeEQaOol RETURN

A = ABS{X]
IF{AeGT<40s! GO TO 100
Az = A ®* A

EMA = EXPF(-A)
IF{AGT=0-2) GO TO 10

EEA = ({{{A2/72:+10)%¥A2/0620+1e)%A2%#0,05+16)%A2/66+1s)*A
GO TO 20
10 EEA = 065 * (EXPF{A) - EMA)
20 IF(AGTele) GO TO 30
SUM = AA(1)
Z = A

DO 25 J = 236
= SUM + AA(J) * Z
25 2 = 7 % A

EIT SUM ~ LOGF (A)
SNZ EEA * EIT
GO TO 40
30 SUM = {(((A+BB(1))*A+BB(2))*A+BB(3))*A+BB(4)
SUMM = ([ (A+CC1) ) #A+CC{2) ) ¥A+CCI3) )1 %A+CC L4
EIT = SUM/(SUMM * A)
SNZ = 0.5 # EIT * (1, — EXPF(=2.%A))
40 PROD = A
SUM = A

DO 45 J = 15200
A = 2 % J + 1
PROD = PROD * A2/(AJ*(AJ-1-1))
SUM = SUM + PROD/AJ
PT = PROD % 1.E+10
IF{SUMeGTPT) GO TO 50
45 CONTINUE
50 PT = SNZ + SUM % EMA
SNZ = SIGNF{PTsX)
RETURN
100 PROD = 1./X
A2 = PROD * PROD

S5UM = PROD
DO 110 J = 1,100
Ad = 2 % J

PROD = PROD * A2 # AJ #* (AJ — 1.)
SUM = SUM + PROD
IF(AJeGEsA) GO TO 150
PT = ABS(PROD % 1,E+10}
IF{ABS({SUMI «GTePT) GO TO 150
110 CONTINUE
150 SNZ = SUM
RETURN
END

SUBROUTINE BESMOD(XsFIOsFILlsFKO:FK1)
BESMOD CALCULATES THE MODIFIED BESSELFUNCTIONS I0s 11, KO AND K1
BY MEANS OF POLYNOMIAL APPROXIMATIONS AS GIVEN IN THE
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10

20

30

40

60

1

1
2

1

1
2

1

1

1

1

NBS HANDBQOK OF MATHEMATICAL FUNCTIONSs PAGE 378
DIMENSION A(T7)sB{9}sCl{T7)eDIO9)sE{T)sF{T7)eG(T)asH(T}
DATA {((A{I)sI = 197) = 0,0045813s 0,0N360768s 0:2659732,
1:2067492s 3,0B99424s 3651562295 1.0)
DATA ({(B(I)sI = 149) = 0,00392377s =0,01647633s +0:02635537,
, =0a02057706s 0,00916281¢ —0:00157565s 000225319, 0,01328592,
0639894228 |
DATA {({ClIVsl = 1s7) = 0,000324119s 0,00301532, 0,026587335
0150849345 0651498869 0878905945 065
DATA ({D{I)sl = 1+9) = —-0004200599 0017876545 —-0.02895312>»
0e02282967s —0601031555s 0001638019 —0.003620185-0,03988024
039894228)
DATA ((E(TI}sI = 1s7) = 724E~6s 1s075E~4s 000262698s 0.0348859,
0230697565 042278425 ~-0s57721566)
DATA ({F{I)sI = 1s7) = 0,00053208s ~0s00251540s 000587872
~0010624469 002189568y ~0,078323589 1253231414}
DATA {({G{I)sl = 157) = —4,686E~55 =0,00110404, -0,019194025
~0.18156897s —0667278579s 06154431445 1.0}
DATA {((H{I}sI = 157) = =0,00068245% 0-00325614s —-0,007803535
0015042685 -0.0365562s 023498619 1:25331414)
XS = 00
XE = Nel
IF{XslLTe2e}! GO TO 10
X& = SQRT{X)
XE = EXPF(X)
IF{XeGTe3s75) GO TO 20
Y = X/3.75
Y2 = Y ¥ Y
FIO = ({U0{Y2HRALLY4+AL2)IRY2+A(3) Y2404 ) Y RY2H+A(5) ) ¥Y2+A(B) ) *Y2+16
FI1 =000 0Y2¥CL1)+C{2) ) #Y2+C 31 )Y ¥Y2+C L)) FY24C{5)1*Y2+C{61)*¥Y24+0.5
FI1 = FI1 # X
GO TO 40
Y = 3.75/X
FIO = B{1)}
FI1T = D(1)
DO 30 K = 299
FIO = FIO # Y <+ B{K)
FI1 = FI1 * Y + D{K)
XEX = XE/XS
FIO = FIO * XEX
FI1 = FI1 # XEX
IF{XeGTs2e)} GO TO 60
Y = X/2e
Y2 =Y ® Y
FKO = E{(1)
FK1 = G{1)
DO 50 K = 237
FKO = FKO * Y2 + E(K)
FK1 = FK1 # Y2 + G{K}
XEX = LOGF(Y]
FKO = FKO - XEX # FIO
FK1 = FK1/X + XEX % FI1
RETURN
Y = 260/X
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OOy

70

1

1
1

1
2

1
2

1
2
3
4

1
2
3
4

1
2
3
4
5
6
-
8

1
2

FKO = F(1}

FK1 = H(1}

DO 70 K = 247

FKO = FKO % Y + F (K]
FK1 = Fk1 * Y + HIK)
XEX = 1e/({XS % XE)
FKO = FKO ¥ XEX

FK1 = FK1 * XEX
RETURN

END

FUNCTION GLQUADI(F,AsBsL)
GAUSSTIAN-LEGENDRE QUADRATURE OF F FROM A TO B WITH 4569109205

40 OR 80 NODES FOR L =

1

29 35 4s 54 6

COMMON/GLADAT/X1(2)sW1(2)sX2(3)sW2(3)5X3(5)5W3(5)sX4{10)sWa{10),
X5{20)sW5(20) sX6{40) sWE6(40)

DATA  {(X1(1)>»
DATA  ({wl(l)s
DATA  {{X2(1) s
DATA ((wW2(1)>
DATA {((X3(1)s
9739065285
DATA ((w3({Il)s
« 0666713443
DATA {({X&4{1}s

09931285992
«6360536807
DATA ({wWal(lys
«0176140071,
21181945320,
DATA ({X5(1)>s
e 9982377097
9020988070
«6719566846»
3419940908,
DATA  ((W5(1)s
«0045212771s
+0334601953 5
20574397691
s07288658245
DATA ({x6i{l1}s
s99955382275
e 9749091406
e9132631026
«8169541387>5
«HBI96376443
5361459209
3623047535,
017471229185
DATA ({welllos
«00114495005
«0086839453,

I 1s2) =
102)
1¢3)
1s3)
= 1ls5) =
« 8650633667
I = 195} =
e1494513491 5
I = 1410) =
09639719273
+51086700205
I = 1510) =
20406014298
21316886384,
I = 1520) =
299072623875
«e 8659595032
e61255388975
26815218505
I = 1420) =
00104982845,
20387821680
00613062425,
0747231691 s
I = 1s40) =
e 9976498644
096548508905
e 89667557%4
0 7938327175
26608598990
e50280411195
03256643707
21361640228
I = 1540} =
20026635336
«0101617660

ononon

I
I
I
I

+8611363116:
83478548451 s
e 93246951425
e 17132449245

« 6794095683
«2190863625

091223442835
«e3737060887

s 06267204835
¢ 1420961093,

e 9772599500
«8246122308>
« 5494671251 s
«19269758075

0164210584
«e0438709082>s
206480401355
«07611036195

« 9942275410
29545907663 5
s 87872256775
e 1695024201 »
«63107577305
e 46869661525
22885280549,
20974083984 5

+0041803131
«0116241141
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+3399810436)
«6521451549)
«6612093865
« 3607615730

«4333953941
s 2692667193,

«8391169718>
e 22778585115

« 0832767416
e1491729865,

29579168192
e 77830565145
24830758017
1160840707,

00222458492
s 0486958076
e 0679120458,
«0770398182>

29892913025,
09422427613
e8594314067
e 7440002976
26003306228,
e4338753708,
«25095235845
« 05850443725

« 0056909225,
201306876165

«2386191861)
2 4679139346)

«1488743390)
«2955242247)

e 7463319065,
s 0765265211

+1019301198,
«1527533871)

09328128083,
e 7273182552
e 841377920044
20387724175

e 0279370070,
s05322784705
s 0706116474,
«0775059480)

09828485727,
s 9284598772
«83883147365
s 1173651854,
«e568B6712681 s
«e3983934059,
22129945029,
20195113833

«0071929048,
« 0144935080,



100

@~ O W

«s 0186268142,
e 0249225358
« 03027232185
« 03447312055
« 0373654902
«03883965115

2019950610C9,
« 0260752358,
«03121017425
+s0351605290,
20377763644
« 0389583960,

«0158961836s 01727465215
e0225050902: 0237218829
e0282598161ls 0292883696
20329419394 s o,0327332150>
«e0363737499s 0368977146
«038424993Us 03866175985
TO = (A + Bl/2e
Tl = (B - Al/2e
Y = Qe
GO TO (1e2s3s4s556) L
DO 10 K = 192
YeY+WI(KI*{F{TO-T1#X1{K)Y)+F{TO+T1I#X1(K} )}
GO TO 100
DO 20 K = 13
YeY+W2 (K ¥ {F{TO-T1#¥X2(K))+F(TO+T1%X2(K)} 1)
GO TO 100
DO 30 K = 15
YeY+W3 K ¥(F(TO=T1#¥X3 (K )+F(TO+T1I%#X3(K}})
GO TO 100
DO 40 K = 1510
Y=Y+Wa (K #{F(TO-TI#XG(K)4F{TO+T1%¥X4 (K]
GO TO 100
DO 50 K = 1+20
YeY4+WS (K)#{F{TO-T1#X5(K))+F(TO+TI¥X5(K) )}
GO TO 100
DO 60 K = 1540

Y=Y+We (K)*¥(FITO~TI#X6{K)I+FITO+TLI*X&6 (K1)

GLQUAD=Y#*T1
RETURN
END

91

«02126440261 5
s 0271882275,
20321004987
«0357943940,
«0381297113,
0390178137



APPENDIX B
THE LARGE TIME LIMIT OF THE THERMAL AVERAGE F(t)
In Eq. (IX.31) the large time limit of the thermal average has

been given, which is of the form

Flt), = At (B-tn (ac?y). (B.1)

This form has been obtained by most modern impact theories, The
additive constant B varies ‘depending on what type of cutoff has been
used. In the following we derive the different constants B for the
different cutoff procedures which have been used and compare them
with the numbers given in the literature.

The various methods to evaluate ‘i‘—'ﬁm,the large time limit of
f‘(t, nk, ne, T), differ essentially in three respects, namely by the
upper and lower limits of the p-integral and by the limits of the t’-
integral in Eq. (VIIL 4). Based on the completed collision assumption
(Baranger, 1962), the limits of the latter integral are usually extended
from -» to + », This approach, however, is not quite consistent with
the cutoff at the Debye length, which would rather require the integral
to go from -T to + T as done in this report (T is defined by Eq. (IX, 7)).

We therefore have to investigate the following integrals:

t +T
a.) forf PVC(t’) At PVC(t’) dt’ {case a}
o) -T

92



and

t +o0

b. ) foi{ PVC(t’) dt’ mj P’\/’C(t’) dt’ {case b}
o) ,‘M“ -0 2 f’
— 2 Joo4 3 -u®
F =2mm {a-D)v_tfdu=su e v ! dx x [cos {_%@_ -1 {B. 3)
& e av § .o ax
. o
x
min
where
*min " pmin/ {a- D). (B.4)

The factor a = pmax/D is usually taken to be one and has in some

papers {e.g., Griem et al., 1962) been varied to 1.1. or to 0. 606

as proposed by W. R. Chappell, J. Cooper and E. Smith, 1969,

As a lower cutoff we consider in particular the three cases of

=0 = = -n’qg’ = i
P nin ' P onin X and P rnin 3{ng-n"q’)x = 2CD/u by setting
« =2 . 2C (B.5)
min~ a u

In the following we will set a=l. In order to recover the dependence
on the upper cutoff parameter a, we only have to replace in all the

following relations C by C/a.

First of all, one realizes that with x in < 1 the lower limit on the
m

u-integral is given by

u = b 2C. (B. 6}
o}

Hence, we have to evaluate the following two in‘ﬁ:egrais

ol

a i 3 2
I:j du.ueuj
u
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and

» 1
2
3
}Tb: duueu} dx x %526‘% . (B. 8}
L XX’M; ‘%
u u/u

The second integral can be simplified after a change of variables and

a partial integration to

oo} 2 g—
Ib = %f u,egu E'cos (%C;i} - E du {B.9)

u
o
After expanding the cosine and another change of variables we have
UZ fe's) k o "'U,ZZ
.. (1) facyE e " 4 (B.10)
T 4 (2k}! ‘{u k ’
O i Z

which can be expressed in terms of exponential integrals

2k

Z [o9]
b C 2C 2
T - P, ——
I = > Ei( O L Zk)g <u0> Ek<u0> . {(B.11})

k=2

With the lower cutoff parameters stated above (b < 1) and typical
densities and temperatures of interest one usually has u_ < 0.1 (see
Fg. (IX.21})). Since for k= 2 Ek(ui }= 1/(k-1) + G(ui} one obtains

2
to lowest order in u
o

, k 2k-2

§ - 5 T (~1) 7 ZC} )

o B 1 (B.12)
2 E o (2K}t %5 k-1

c” .

el Ve
{2k-1}1 7 (Zk- Z)(Zk 2y 2
O

}
e 2 ay’ 2C 2\
- [t () f e () 15T
it o é \ o, “Ru

o]

]



o
o
P ™

)]
o
]
ST,
el
S IO
"
]
Pl
[l o)
" |3
R S
et <TRize”
N
R e
O
et
P
ol 1
o 1O
pa
=
&
o]
ol
o IO
W
e, o
I |

2
* {zc
which yields

b C2 2 1 2

I = T [3(y~1)+&n (46 )+ZK(_‘E%+O(UO)E (B-l?’)

where K is defined as

K(z)= ~22902 4 B2 g (g) (B.14)
zZ

and Ci is the cosine integral. Eq. {B.13) was obtained already by Shen

and Cooper, 1969, Their constant A is identical with our constant 2C.

The other integral 1% of Eqg. {B.7) one can obtain by evaluating

A =j du u3e—u }-cos é—ZEF}]
ux

u
© (B.15)
so that
S (B.16)
If we again expand the cosine functions, Al can be given by
- if 2 pt
T k! (-1) 3.2k -u 1-2;
AL = jg(k_“"‘“j)gf du u e j < dx
"o v/ (B.17)
2
-~ E ‘“Z)j
1o
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which gives us to lowest order in ui
2
2
AT= 2 él + 0(u )E (B.18)
2 ls)

This means that for the same lower cutoff case a. ) and b. )} as defined

in the Eqgs. {B.2) and (B. 3) differ only by a constant 1 in their additive
constants B, As a result we have

2
?mz - <—% (nqmn'q’?%é n, Z)E (B.19)

where the constant B for the different cutoff parameters is compiled in

the following Table 2,

Table 2. The constant B for different cutoff parameters,

+T +oo
j PV {t’) at’ jﬁ PV (t’) dt’
C C
- T -0
p_ . =0 0.27 1.27
min
p . =% 0.23-0.27 1.23 - 1.27
min
P rmin = 3nk?( -1.66 - 0. 66
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In order to compare our results with the numbers given in the it~

erature we rewrite Eqg. {B.19) as

F o= - At EZB “-pn{y . )} {B.20)
o min

where Ymin as introduced by Griem, Kolb and Shen (Griem et al., 1959)

is given by
2

I 0 R T A ac®. (B.21
Yain © 3m kT T3 3{ng-n’q’) - (B.21)

Consequently, B and Bo are related by the following relation

2 %
B = B+y+in E— 2 . (B.22)
o} 3 n

Comparing Egs. (B.19) and {B. 20) one notices that for a particular

line the value of the square bracket as derived here depends on the

guantum number n, for that particular state, This is also true for the

k
paper of Shen and Cooper, 1969, who consider our case {b} with infinite
limits on the t’-integral, Otherwise the constants given in the literature

are independent of n, because the lower cutoff parameter is usually

k
2

based on an average Stark splitting. If we set ng-n’q’ = n /2, which

corresponds approximately to the average Stark splitting and also

gives the results for the Stark shifted component of Lyman-g, we have

B_=B-0,64 . (B.23)

This yields directly for n = nZ/Z the BO values corresponding to the

B wvalues in Table 2.
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The following constants B have been given in the literature:

o
Griem, Kolb, Shen, 1959; {Eq. 29} : B =0
o
Griem, Kolb, Shen, 1962; (Eq. 2} : B =1.0
o
Griem, 1965 {neglecting quadrupole term)}: B = 0,58
Kepple, Griem, 1968 ©
Shen, Cooper, 1969; BO:: 0.58

Recently the time development operator (S-matrix) has been evaluated
for Lyman=-q including time ordering by solving the differential equations
for the S-matrix elements {(Bacon, 1969). Again the square bracket
depends on (ng-n’q’) and the average value BO = 1.1 considering only
the dipole term. It should, however, be stressed that one should not
overinterpret these numbers because within the classical path approxi-
mation there is always some uncertainty about the "correct' constant
B because of the ambiguous lower cutoff. This is due to the fact

that the classical path approximation breaks down roughly for p< x

(for details see Paper I). For most cases this has no significant effect
for the Stark broadening of hydrogen because the dynamic broadening is
primarily due to weak collisions. More details are given with the
discussion at the end of Chap. XII. The situation is quite different for
the broadening of ionized lines where strong collisions are very im-
portant and where the uncertainty of the classical path approximation
accounts for part of the still existing discrepancies between theory

and experiment, which are large compared with the Stark broadening
of hydrogen.

So far we have considered ¥ _, which is the basis of the un-
modified impact theory. In order to extend the range of validity beyond
the plasma frequency the modified impact theory introduces the Lewis
cutoff by considering only those collisions for which the duration of a
collision, which is typically p/v, is smaller than the time of interest
being typically 1/pw. For this reason the modified impact theory

introduces an upper cutoff
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Pornay = MIN (D, VaV/Aw) (B.24)

or

P ay/D = MIN (1, 1/ )

It should be noted at this stage that in the following relations we not

only have to replace C by C/a but also paw., by 2 Aw in order to obtain

R R’
the dependence on the upper cutoff parameter a., Considering the us-
ually applied case (b) (Eq. {B.3)}) we have to evaluate the following

integral for pw, > 1

R
e 1/Aw
b 3 -’ R 2C
I = duu e ds xtcosf——} - (B.25)
L xu
quwR uo/u

where the lower limit on the u-integral is determined by the condition

uo/u < l/AwR. After a change of variables and a partial integration

one obtains similar to Eq. (B.9)

b 2 2CAw
I N we ™ Jeos|——2) -1 du (B.26)
L 2 u
2w
R

u AW
o R
Expanding the cosine again and performing another change of variables

the result is

(B.27)
k=1

This gives us then
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mvaluating the exponential integrals E,_ for small arguments only we

k

‘nally have

2 3
= Copnawo + i (B.29)

““~h gives us for Aw_ > I the log-dependence of the @a -matrix elements

R b
in the modified impact theory. A more appropriate way for applying the

Lewis cutoff, which avoids the discontinuity at paw = 1, is to take as

R
an upper cutoff
Prnx = MIN (D, v/pw)
or pmaX/D: MIN (1, u/AwR) | (B. 30)
which for case b leads to the following integral.
MR 209/ Mg
b 3 ~u 2C
I = du u e dx x jcos -1
L xu
uO[\mR u /u
(B.31)
i} 3 —1,12 ! 2C ~1
+ du u e dx e cos . _1j
xu
Z,\UUR u /e
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These integrals are identical to

. “u/,/’,\wR .
uj dx x {cos iii;@ mlj
"‘*0/“ (B.32)
o > u/[\wR .
3 ~u 2C -1
- duu e dx x cos —a—_xu .
o 1

and after a partial integration we have

AW
R
Expanding the cosine functions, IL can be evaluated in a similar

manner as above with the result

2
b C 2

= < _2
L= 2 gEl(AwR) EI(uO/_\wR)j

{B.34)
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For A(,QJR'@E 1 with 2C<<1 and b2 1 the latter result may be simplified

to give

2
, C 2 b
I = ~5 {EI(A(DR} +vyv +2sn (AwR)} + 1 {B. 35)

which for Mg = 0 reduces down to 12 = Ib and which has no discontinuity

at A(“R = 1. Furthermore, we see that for pw . — » Eq. (B.34) goes over

R
to

(B. 36)
which does not lead to the static limit,

Similar results can be obtained for case a, which are not
included because they are no longer required. The derivation for case
b has been included, in order to obtain consistent relations which allow
a comparison with the calculations done in this paper. The results for
case b as given here differ slightly from the results in the literature
which also vary from paper to paper depending on the average matrix
elements used and on what lower cutoff and average velocity has been

applied.
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APPENDIX C
PROGRAM FOR CALCULATING THE FINAL LINE PROFILE I{pw)

In the following a complete listing of the program is given which
was used to calculate the final line profile I{pw} on the basis of the unified
theory for the case of no lower state interactions.

1. The Fourier transform of the thermal average
The complex function FOUTR calculates essentially the Fourier

transform of the thermal average as defined by
FOUTR =1 2 i | B, n ) (C.1)
- A(”R u [\w R: ) 9 qbz qC °

where

DOM = Awp = (/\w-[\wi( n, qb) 8)/wp. (C.2)

It uses the Egs. {X.17) and (X.22) for calculating il(AwR) and iz([\wR)
1’ Yo and Yl are
evaluated by the subroutine BSJY0l. For large and small arguments

respectively. The required Bessel functions JO N

AW these relations are replaced by their asymptotic expansions (X.18),

R
(X.23) and (X.26). The specifying constants Pys Py b, a, and b,

(P1, P2, Bl, A2, BZ2) are set in the function AIIM andl ari calculated
once for all the Stark components in the main program STBRHY. The
function FOUTR can be replaced by another short function FOUTR listed
at the end of the program, which then makes the program calculate

line profiles according to the modified impact theory.
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2. Calculation of I{Aw, @A)
The function AIIM calculates {Aw, B) as defined by Eq. {XII 6}.
It establishes first of all the matrix of the {-operator according to

Eg. {XII. 7} and calculates the array

AMATR (NB NAN) = w.,={x .
(NBN, NAN) =8 twp-(nq mlslpw lng m) (C.3)
a’b

for the m values 0 and +1. The required 3j-symbols are calculated
once in the main program and their values are stored in three different

arrays according to the following definitions

SAR (NLA, NQC)=(21_+1)) 2 2 2 e, 4)
Sorommed m - q m . + q
2 2 "M
where NLA = “a“a and NQC = qc,
n-1 n-1
2 A 4’a
SIQL (MCT, NBN, NLA) = {C.5)
mnqa n*vqua
=i

2 2

and

SSIJ (MCT, NBN, NAN)
q_+q,
2

ntm-1-

(-1}

[ACR AN
NI

m-q m+q -

//‘”““" . 0
WY
Y
B
C"‘D
5
+
U‘bﬁ
:
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where MCT = m and NAN and NBN are numbering indices specifying
the qa and qb. The matrix AMATR is then inverted by the subroutine
CGAUSSEL, which is able to solve systems of linear, complex equations
by Gaussian elimination. Multiplying the inverted matrix by the 3j-
symbols according to Eq. (XII. 6} yields finally I{pw, 8).

3. The final line profile KAw)

The main program STBRHY calculates the final line profile by
performing the ion field average according to Eq., (II.1). It first of
all reads in the ion microfield distribution function for 0 < R < 30 in
steps of 0.1, which has been calculated in a separate program for the
particular shielding parameter rO/D, It then reads in the density n_s
the temperature T, the upper principal quantum number n, the wave-
length ), the average value of the static ion fields Bav’ the initial
value Aw, the logarithmic stepwidth, the total number of points, a
parameter which specifies the number of ion field integration points

)

and finally 6 numbers, which specify the Gz—function and hence :TLZ([\&)R
for all Stark components and which may in practically all cases be set
to zero. These 6 numbers are obtained from the thermal average

described in Appendix A,

The program then calculates the constants pl, pZ, bl’ a2 and bZ
for all Stark components and stores them in the array FPAR. Py is
calculated according to Eq. {X.5). P, is determined on the basis of
Eq. (B.19) where the constant B is given by

B= 0. 27- ZK(—%-) . (C.7)
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The K-function is defined in Eq. (B. 14) and is calculated for a lower

3 2
cutoff P in = * + S noag by setting

3 2 |
b=& +-—T2:;- n ao)/Snkﬂ {C.8)

The necessary cosine integral is calculated by the function COSINT,.

As a next step the main program evaluates all the requiread
3j-symbols by means of the function S3J, which in turn uses the function
FCTRL to calculate all the necessary factorials, The numbers are
stored in arrays according to the definitions in {(C.4), (C.5) and (C. 6).

In performing the ion field average the microfield distribution
function is calculated by the function WFLD, which uses a 5 point
interpolation on the values read in initially for 8< 30 and otherwise
uses the asymptotic expansion given by Hooper, 1968b. As a function
of Aw and 8, which determine the shape of the ion field integrand, the
ion field integral is subdivided in intervals, which are integrated
separately by means of Weddle's rule (subroutine WEDDLE) using a
convenient change of variables in every interval. Furthermore, the
program calculates the asymptotic wing expansion according to
Eq. {XI,12) and the unified theory for 8 = 0 and R = Bav performing
not the ion field integral, All three values are normalized with

-5/2

respect to the asymptotic Aw -wing.
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[aNeEa!

100
120
150

170
180

190
577
200

230

PROGRAM STBRHY

PROGRAM FOR CALCULATING THE STARKBROADENING OF HYDROGEN ON THE
BASIS OF THE UNIFIED THEORY FOR NO LOWER STATE INTERACTION
DIMENSION FFL1000}s PFAC{6)s 5S5J(20)s STRONG(20)
COMPLEX FOUTR
COMMON/FDAT/P1sP2+sB1sA2.+82sPPFF
COMMON/PSTR/NNNsNML sBETsFPAR(&:20)
COMMON/PSJID/S5SJJ(2:20520)s SJQLI2320520)s SAR{20:20)
COMMON/PFW/FIELD{30L)
FIELD(1) = 0e0
READ 100, (FIELD(I)s I = 25301)
FORMAT (6E12e4)
READ 150¢DENTEMP sNNNs ALAMsBAV2GINDGGsNTOToNFAC{PFAC(TIsI=1l96)
FORMAT {2E1062s 15s 4F10s2s 215/6F1065)
IF (EQF+60) 577s 170
PRINT 1809 DENe TEMPs» MNNNs ALAM
FORMAT (1H1l2% DENSITY = #E12¢4% TEMPERATURE = #E12.4%40
* QUANTUMNUMBER =%]2% WAVELENGTH =#FB8e.2% ANGSTROM#®//
13X s #P IR 18X o ¥P 2% 1B s #BL¥*1BX o HAZHIBX s ¥B2# 17X s *STRONGH® /)
IF (NNNesLEo20) GO TO 200
PRINT 190
FORMAT (% PROGRAM NOT EXECUTED BECAUSE N IS LARGER THAN 20%)
CALL EXIT
SDEN = SQRTI{DEN)
FAC = 20640936 % TEMP % SQRT(TEMP/DEN!
NM1 = NNN - 1
NEVODD = MOD({NMN.2!
AN = NNN
ANZ = AN #® AN
AN1M O0e5 #* (AN - 1)
CFAC = 4,5645E~7 * AN * SDEN/TEMP
DEBROG = 201027E~6/5QRT(TEMP)
RMIN DEBROG + AN®AN®T7:9376E-9
DO 230 K = 1s NNN
AK = K - 1
SSJUKI={AN2+( (~1o ) ¥ *MOD{NMI+Ks2) 1 ¥ (AN2= 2 FAKEAK Y ) / (2 *AN¥ (AN2=-1 .} )
BET = B5¢6558E-5 % AN # DEN¥#{1./66)

i}

ARRAY FOR G-FUNCTION CONSTANTS

ASY = 0.0

DO 270 K = 1sNM1

QC = K

C = CFAC ® QC

Pl = =1s671086 * FAC # C #* SQRT(C)

BS = 3, # AN ¥ QC % DEBROG/RMIM
STRONG(K) = 02269=2%{{{1e=COSF{(BS}))/BS+SINF(BS)1/BS~COSINT(BSI))
PPFF = =16128379 % FAC # C ¥* (

P2 = PPFF # (STRONG(K! = 2e%LOGF(2+%C)!
FPAR(1sK}) = Pl

FPAR{2+K) = P2

FPAR(3sK) = 05 % (P2/P1i%%2

FIN = LOGF(AN¥*QC!
FPAR(4sK} = P2 * ((PFAC(3)®FIN + PFAC(2)) * FIN + PFAC(1)}
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270
240

280

325
450

350
375
650

630
720
780

FPAR(5sK]) (PFACI6I#FIN + PFACISII#FIN + PFAC(4)
FPAR(& sK) PPFF

ASY = ASY + 2o ¥ FPAR{1sK! % SSJIK+1!}

PRINT 240s{(FPAR(KsI sl = 1+5}:STRONG(I}s I = 1sNM1)

FORMAT (&E20.4)

PRINT 280s FACs CFACs BETs ASYs DEBROGs NFAC

FORMAT (/% FAC =XE12.4s% CFAC =%FE12.4s% BET =%#E12.4s% ASY =%F12.4,
1 * DEBROG =%E12.49% INTEGRATIONFACTOR =%12//
2 SX#DOMEBX¥DLAM* X R I TOT¥EX* IHOLTS*XFASY* JOX*W ING* TX*¥WHOL TS# 7%,
3 *WSTATHTX*WWOOHBXFWWBB* S X FWWNGH*/ )

ADLFAC = 4¢23538E~15 % SDEN #* ALAM # ALAM

HoH

3JSYMBOL~ARRAYS SSJJIMCTsNBNsNAN) AND SJOLI{MCTsNBNsNLAJ
DO 650 MCT = 1s2

AMA = MCT - 1

NLIM = NNN + 1 - MCT

NQB = —~NLIM - 1

DO 450 NBN = 1sNLIM

NQB = NQB + 2

QB = NQB

FMB1 = {(AMA - QB) # 0.5

FMB2Z = [AMA + QBl} % Q65

DO 325 NLA = 1sNRNN

ALA = NLA - 1

SJQLIMCTsMBNoNLA) = S3JIANIMoANIMesALASFMBLSFMB2s—AMA)

CONTINUE

DO 375 NBN = 1sNLIM

DO 350 NAN = 1sNLIM

AABB = (=1o!%*MOD(NAN+NBN92) ¥ SJUQLIMCTsNBNs2) * SJQLIMCTsNANs2)
SSJJIMCToNBNsNAN) = AABB

CONTINUE

CONTINUE

3JSYMBOL-ARRAY SAR{NLAsNQC)
DO 780 NQC = 1-NM1

QC = NQC

DO 720 NLA = 1sNNN

ALA = NLA - 1

FBB = 0@

DO 680 NMC = 1sNLA

IFINEVODD«NE s MOD{NMC+NQCs2!)) GO TO 680

AMC = NMC - 1

FCF = 2,

IF{NMCeEQel? FCF = 1,

FMC1 = 0e5 * (AMC - QC!}

FMC2 = 0e5 * (AMC + QC!

FBB = FBB + FCF # (S3J(ANIMsANIMsALASFMCL sFMC2s~AMC) J%%2
CONTINUE

SAR(NLASNQC! = FBB # (2%ALA + 1e!

CONTINUE

CALCULATION OF THE IONFIELD INTEGRAL

NN&é = 6 * NFAC
ANNG = MNN&
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N1Z = 12 % NFAC

AN1Z = N12
N30 = 30 % NFAC
AN30 = N30

G = GIN -~ DGG

DO 950 MM = 1sNTOT
G = G + DGG

DOM = 10e *% G

DLAM = ADLFAC % DOM

WINGS2 = =002992067103 * ASY/ISQRT(DOM! ¥ DOM * DOMI
FHOLTS = Qe

AWING = Qe

DO 815 NQC = 1sNMi1

P1 = FPAR{1:NQC)

P2 = FPAR(2eNQC)

Bl = FPAR(3sNQC)

A2 = FPAR(&4sNQC)

B2 = FPAR{5sNQC!

PPFF = FPARI&sNQC)
AWING = AWING + SSJINQC+1LIFAIMAGIFOUTRIDOMI ) #2,/{DOM¥DOM ]
QC = NQC
BETFAC = BET # QC
BCRIT = DOM/BETFAC
815 FHOLTS = FHOLTS + SSJINQC + 1) # WFLD(BCRIT) /7 BETFAC
AIRES = Qe
IF(DOMeGTel~3#¥P2)) GO TO 840
BCRIT = (DOM = P2)/{(AN - 1s)%BET)
DB = BCRIT/ANNG

B = Qe
DO 820 J = 1lsNNe
B =B + DB

820 FF(J} = AIIM{DOMsB) # WFLD(B)
CALL WEDDLE (DB:NN6sFFsAIIIs0e)
AIRES = AIII
DY = 1¢/{BCRIT®AN30)

Y = Qe

DO 830 J = 1eN30
Y = Y + DY

B = 1le/Y

830 FF(J) = B # B % AIIM(DOMSB! * WFLD(BR!J
CALL WEDDLE (DYsN30sFFsAIII1s0s)
AIRES = AIRES + AIII
GO TO 980

840 BCRCR = DOM/BET
EPSPS = ~P2/BET
DO 957 NQ = 1sNM1
ANQ = NQ@
BCR = BCRCR/ANQ
EPS = EPSPS/ANQ
IFI{NQ.EQs.1} GO TO 907
SL1 = 1e/(GAM = BCR)
GO TO 908

907 SL1 = Qe

908 SL2 = 1./EPS

i
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913
914

917

927

937

957

967

SL3 = 1./(BCR + EPS!
Sta = 1./(BCR - EPRSI
GAM = 065 # (BCR ~ EPS + (BCRCR + EPSPSI/(ANGQ + lel)

IF(NQsEQeNM1) GAM = (+5 % (BCR - EP5S!
SLS = 1o/(BCR — GAM)

CRIT = SL2 - SL5

Y = SL1

IF({NQeEQel) GO TO 913

B = BCR + 1le/Y

FA = AIIM(DOMsB) # WFELDIBI/(Y * Y)

GO TO 914

FA = Qe

DY = {SL2 - SL1J/ANNG

DO 917 J = 1sNN6

Y = Y + DY

Y1 = 1e/Y

B = BCR + Y1

FFLJ) = ¥1 % Y1 ¥ AIIM(DOMsB) # WFLD(B!

CALL WEDDLE (DYsNN&sFFesAIIIoFA)
AIRES = AIRES + AJIII

Y = 503

B = 1e/Y

FA = B % B % AIIM{DOMsB) * WFLDI(B])
DY = {S5L4 — SL31/ANNG

DO 927 J = 1sNNé

Y = Y + DY

B = le/Y

FF(J) = B * B % ATIIM(DOM,B) # WFLD(B!
CALL WEDDLE (DYoNN6sFFoAIIIsFAI

AIRES = AIRES + AIILI

IF(CRITsLESDO) GO TO 977

Y = SL5

B = BCR = 1le/Y

FA = AIIM{DOM«B) # WFLD(BI/LY % Y)

DY = CRIT/AN1Z2

PO 937 J = 1eN12

Y = Y + DY

Y1 = 1eo/Y

8 = BCR - Y1

FF(J) = v1 % Y1 ® AIIM(DOMsB) * WFLD(B!

CALL WEDDLE (DYeN1ZsFFsAIIIsFA)

AIRES = AIRES + AIIl

IF{GAM«LTs Bel GO TO 9468

Y = 1le/GAM

FA = GAM % GAM * AIIM{DOMsGAM! #* WFLD(GAM)

DY {02 = YI/AN12

DO 967 J = 1sN12

Y = Y + DY

B = le/Y

FF(J} = B *# B ¥ AIIM(DOMB) # wFLD(B!

CALL WEDDLE (DYsN12sFFsAIIISFAI
AIRES = AIRES + AIII

SLd = Q0.2

GO TO 977



[ARS!

968 5SL4 = 1./7GAM
377 B = 0.
DB = lo/{SL4 * AN3O)
DO %47 J = 1lsN3Q
B = 8 + DB
947 FF{J) = AILIM{(DOMsB} % WFLDI(B!

CALL WEDDLE (DBoMN30«FFsAII1:20s)
AIRES = AIRES + AIII
980 WING = AIRES/WINGH2
WISTAT = AIRES/FHOLTS
WINHOL = FHOLTS/WINGS2

WWOO = (ATIMI{DOM: O.) + FHOLTS!/WINGS2
WWBB = (ATIMIDOMsBAV) + FHOLTS)I/WING52
WWNG = (AWING + FHOLTS!/WING52

950 PRINT 978sDUMsDLAMsAIRES sFHOLTS sWINGS2sWINGeWINHOL s WISTATS
2 WWOOs WWBBs WWNG

978 FORMAT (11E12e4)
GO TO 120
END

FUNCTION ATIIM{DOMsB)

CALCULATION OF I{(DOM.B!
COMPLEX DFTRI2U) s AMATR{20540)sFQUTRsAREF
COMMON/FDAT/P1sP2:B1lsA2:B2sPPFF
COMMON/PSTR/NNNSsNML sBET«FPARI6:20)
COMMON/PSJD/SSJJ12:20520)s SJQL{2520520)s SAR(20420)
ALIM = Qe
DO 800 MCT = 12
AMCT MCT
NLIM NNN + 1 ~ MCT
NL2Z 2 ® NLIM
NQB = -NLIM - 1
DO 750 NBN = 1sNLIM
NQB = NGB + 2
QB = NGB
DOMRE = DOM —- BET % QB * B
DO 220 NQC = 1oNM1
PL FPAR{1sNQC)
P2 FPAR{2sNQC)
Bl FPAR{3sNQC)
A2 FPAR (4 s NQC!
B2 FPAR(5sNQC)
PPFF = FPAR(6sNQCH
220 DFTRINQC) = FOUTR{DOMRB!
DO 700 NAN = 1sNLIM
AREF = (0690}
DO 600 NQC = 1sNM1
FAA = 0.0
DC 500 NLA = 1sNNN
500 FAA = FAA + S5JQLUIMCTsNANSNLAY % SJUQUIMCTsNBNSNLAY #* SARINLASNQC)
600 AREF = AREF + FAA #* DFTR{NQC!
AMATR (NBNsNAN + NLIM) = (Qss0e!
700 AMATR{NBNsNANI = 6.2831853072 * ((~1,)%%MODINAN+NBN,2)) #* AREF

[ .
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OO

AMATRINBN s NBN+NLIM! = (1e90s!
750 AMATR{NBNsNBN} = AMATR({NBN.NBN) + DOMRB
MATRIX INVERSION
CALL CGAUSSEL (AMATR 20 sNLIMsNL22 s NRANK)
DO 795 NBN = LlsNLIM
DO 793 NAN = 1sNLIM
793  AIIM = AIIM + AMCT#SSJJIMCTsNBNsNAN)#AIMAGIAMATR (NBNsNAN+NLIM))
795 CONTINUE
800 CONTINUE
ALIM =-ATIM % 0,3183099
RETURN
END

THE FOLLOWING FUNCTION FOUTR MAY BE REPLACED BY THE FUNCTION FOUTR
AT THE END OF THE LISTING TQ OBTAIN THE MODIFIED IMPACTTHEORY
FUNCTION FOUTR (DOM)

FOURIERTRANSFORM OF THERMAL AVERAGE FOR UNIFIED THEORY
COMPLEX FOUTR

COMMON/FDAT/PLlsP2sBLlsA25B2PPFF

ARG = ABSF{DOM)

Z = Bl % ARG

IF (2+,LE-0.001} GO TO 600

IF (Z2,LE-40.) GO TO 300

FACl = =0.2992067103 % P1/(SQRT{ARG) % ARG * ARG}
CC = FAC1T % (({le = 103125/Z)%0.625/2Z + 1o}

SS = FACL % ({~le= 103125/21%06625/Z + 1lo)

GO TO 500

300 CALL BSJYO1 (Zs AJOs YO» AJls Y1)

FACL = Y1/(2e%2Z) + AJLl - YO
FACZ = AJO + Y1 — AJL/{2.%Z)
CINE = COSF{Z}
SINE = SINF(Z)

CC = p2 *= Bl # Bl * (CINE * FACI + SINE #* FAC2)
$5 = P2 # Bl #* Bl % (CINE * FAC2 = SINE * FAC1)
IF (A2eEQe0e! GO TO 500

Z = B2 % ARG

IF (Z.GT»10e) GO TO 400

CALL BSJYOL (Zs AJOs YOs AJls Y1}

FACL = {{AJI-YOI#16,%Z~36e%AJO~28sRYL)RZ+15.%Y0~3o%AJ]
FAC2 = ({AJO+Y LI H16,¥2~36,%YO+28#AJ1 1 HL~15,%AJO-3,,%Y]
CINE = CQSF(Z)
SINE = SINF(Z)

CC = CC + AZ¥BZ¥UCINE # FACL + SINE ¥ FAC2)/6.
5SS = 55 + A2#B2¥{CINE * FAC2 ~ SINE % FACl)/6.

GO TO 500
400 FACL = 001322319336 % A2 # B2 * Z¥%#(=3,5]
CC = CC + FACL ® {1le = (3e9375/Z + 1ol*4e375/2)
SS = 85 ~ FACL # {(le ~ (3e9375/Z — 1e)%4.375/2)
500 IF (DOMoeLTe0e} 5§ = =85
FOUTR = ARG * ARG * CMPLX{=SS.CC)
RETURN
600 S5S = (P2%B1 - A2} * DOM

FOUTR = 003183099 * CMPLX(SS5s=P2)
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RETURN
END

SUBROUTINE WEDDLE (DXe N2 Fs As FOI

INTEGRATION SUBROUTINE
DIMENSION F(NI

A = 0.0

K=N~1

DO 15 I = 1s 6

SUM = 060

DO 6 J = 1e: Ks 6

SUM = SUM + F{J)

GO TO (8s 1Us 125 10 8s 1l4)s 1
A= A + 5,0 % SUM

GO 70O 15

A = A + SUM

GO 70 18

A= A + 6.0 ¥ SUM

GO TO 15

A= A + 2,0 % SUM

CONTINUE

A = 0s3 * DX #® (A + FO + F(N))
RETURHN

END

FUNCTION WFLD(B)

CALCULATION OF THE ION MICROFIELD DISTRIBUTION FUNCTION USING A
S5POINT INTERPOLATION FOR THE DATA READ INTO THE MAINPROGRAM
COMMON/PFW/FIELD(301)

WFLD = Oeo

IF {BeLE230e0) GO TO 200

SBS = 1./{(B ¥ SQRT{B))

WFLD = ({216 #* SBS + 7.639) % SBS + 1.496) ¥ SBS/B
RETURHN

IF (BelLEec0eC) RETURN

J = (B + De2) # 1060

L= Jd -1

IF (JeGTe2) L = J - 2

IF (JeGTe3} L = J = 3

IF (JeGTe300) L = 297

LLL = L + 4

DO 75 K = LsbLLL
AK = K = 1

TERM = 140

DO 74 M = Lsbil

IF (KeEQeM! GO TO 74

AM = M - 1

TERM = TERM % (10o%B — AMI/{AK - AM)
CONTINUE

TERM = TERM ¥ FIELD(K)

WFLD = WFLD + TERM

RETURN

END
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FUNCTION S$3J (FJlse FJ2s FJ3s FMLs FM2s FM3 )

CALCULATION OF 3J-SYMBOL
53J=0.0
IF(ABSIFM1 + FM2 + FM3) &GTe 0,001) GO TO 153
FM3=FM1+FM2
A=F J24FJ3+FM1+.005
B=FJl1-FM1+s005%
C=aF Jl+FJ2+FJ3+,005
D=FU3+FM3+.005
E=FJ1-FJ2~FM3+005
FeFJl=-FJ2+FJ3+:0065
G=FJ1+FJ2~FJ3+005
H=FJ1+FJ2+FJ3+1e0+005
E2=FCTRL{BI*FCTRL{FJ1I+FMLI#FCTRLIFJ2-FM2) ®FCTRL(FJ2+FM2)
IF (E2) 15321235145
145 E1={FCTRLICI¥FCTRLIFI/FCTRLIHII#FCTRLIGI®FCTRLID)I*FCTRLI(FJ3~FM3)
IF (E1) 1535 153 150
150 E1=SQRTI(E2!/SQRT(EL)
I1=XMAX1F{0e0s —-E+0+01}
I2=XMINIF(As Cs D}
IF {I2-111 153s 151s 151
151 DO 152 I=11s12
Fl=1
E2=FCTRLIFI}#FCTRLIC-FII#FCTRLID=FII/FCTRL{A~FTI!
1582 S3J=53J+({{=10)%¥#XMODF(Ie2)}/E2)#FCTRLIB4+FII/FCTRL{E+FI)
U=zABS{FJ1+FM2+FM3)+0.001
53J=S3J#({~1.0) ¥ XMODF{XFIXF{U)s2)I/E1

FM3=-FM3
153 RETURN
END

FUNCTION FCTRL{A!

CALCULATION OF FACTORIALS REQUIRED BY FUNCTION S53J
DIMENSION FCTI(20)

DATA ((FCTI(I221=1520}) =1e092002620:2%4602120,0:720,055040605
40320.0236288000:3628800,0939916800s0+479001600605
6227020800,0-8717829120060513076743680C0605
200922789888E13,s 3.55687428096E149 6.402373705728E15s
12164510040883 E17» 2.4329020081766 E18)

B CVIE SIS

IF(A) 50560970

50 IF{AGEa{—-0e1} ) GO TO 60
FCTRL = 0.0
RETURN

60 FCTRL = 1.0
RETURN

70 1 = A + 0ol
IF { 1 «EQe 0} GO TO 60
IF {(I-20) 1406140,+130

130 FSZOeO
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FCTRL=FCTI{20)
DO 131 J=21s1
F2F+1c0
131 FCTRUL=FCTRL*F
GO TO 150
140 FCTRL=FCTI(I)
150 RETURN
END

SUBROUTINE CGAUSSEL{CsNRDsNRRoNCCsNSF)

DIMENSION C{(NRDsNCC)sL(12852)

TYPE COMPLEX CsDETsPoDeQsR

DATA (BITS = 1755 4000 0000 0000 B!

CALL ROLLCALL(48HCGAUSSEL 6/5/68 1-BANK BITS=2%%-18
NR=NRR $ NC=NCC
IF(NCoLTeNRoeORNR,GTo128s0ReNRoLE-O) CALL QS8QERROR(0s9HBAD CALL.!
INITIALIZE,

NSF=0

NRM=NR~1 $ NRP=NR+1 % D={les0s} $ LSD=1

DO 1 KR=1sNR

L{KRs1}=KR

L{KRs21) =D

CALL Q9EXUN(EXUN)

IF({NR«EQes1l) GO TO 42

ELIMINATION PHASES

DO 41 KP=1sNRM

KPP=KP+1 $ PM=0e $ MPN=Q

SEARCH COLUMN KP FROM DIAGONAL DOWNs FOR MAX PIVOT.
DO 2 KR=KP,sNR

LKR=L {KRs1!

PT=CABS{CILKRsKP!)

IF(PToLEsPM!) GO TO 2

PM=PT $ MPN=KR $ LMP=LKR

CONTINUE

IF MAX PIVOT 1S ZEROs MATRIX IS SINGULAR
IF(MPNeEQ.Q! GO TO ¢

NSF=NSF+1

IF{MPN.EQeKP) GO TO 3

NEW ROW NUMBER KP HAS MAX PIVOT.

LSD==L5D
LIKPs2 =l (MPNsl)=L{KPs1)

LIKPs1)=LLMP

ROW OPERATIONS TO ZERO COLUMN KP BELOW DIAGONAL.
MKP=L(KPs1)

P=C{MKPsKP) & D=D#pP

DO 41 KR=KPPsNR

MKR=L {KR)

Q=C{MKR.KP)/P
IF(REALIQ!oEQoeCs e ANDLAIMAGIQ) sEQa0e) GO TO 41
SUBTRACT Q@ ¥ PIVOT ROW FROM ROW KR,

DO 4 LC=KPPsNC

R=Q#*C{MKPLC)

CIMKRsLC)=C{MKRsLC)~R
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41

42

[aNaXa! oy

IF(CABS{CIMKRSLC) oL ToCARS(RI*BITS) C(MKRsLCI=(0s505)
CONTINUE

LOWER RIGHT HAND CORNER

LNR=L{NRs1) & P=C{LNR:«:NR?
IF(REALIP} oEQeQo e ANDSAIMAGIP) cEGe0e) GO TO 9
NSF=NSF+1

D=D#P*LSD

IFINREQeNC) GD TO 8

BACK SOLUTION PHASE.

DO 61 MC=NRPsNC

C{LNReMCY=CILNRMC) /P

IF(NR.EQs1) GO TO 61

DO 6 LL=1sNRM

KR=NR~LL % MR=L(KRs1) $ KRP=KR+1

DO 5 MS=KRPsNR

LMS=L (MSe1)

R=C (MR sMS ) #C(LMSsMC)

C{MRMC}=CI{MRsMC) =R
IF{CABSICIMRsMC) ) LT CABSIR)I#BITS) CU{MRsMC}I={0,504)
CIMRsMC)=CI{MRsMC} /CI{MR KR}

CONTINUE

SHUFFLE SOLUTION ROWS BACK TO NATURAL ORDER.
DO 71 LL=1sNRM

KR=NR-LL

MKR=L {KR» 2}

IF{MKREQe0O’) GO TO 71

MKP=L{KRs1)

DO 7 LC=NRPsNC

Q=C{MKRsLC!

CIMKRsLCI=CIMKPsLC)

CIMKP,LC)=Q

CONT INUE

NORMAL AND SINGULAR RETURNS. GOOD SOLUTION COULD HAVE D=0.
C{1:1'=D 3% GO TO 91

C(191)=(0990@)

CALL SO9FAULTIEXUN) % RETURN

END

SUBROUTINE BSJYO1l (Xs AJOs YOs AJLls Y1}

CALCULATION OF THE BESSEL FUNCTIONS JOs YOs Jls AND Y1 FOR AN

ARGUMENT X

DIMENSION Al7)s B(T7)s C{T7)se D(T)s E(T7)e F{T7)s G(T7)s H(T)

DATA ({(A{I}s I = 1s7) = 0,00021s —0.0039444s 0,0444479

1 ~0631638665 126562089 —~202499997, 1.0)

DATA ((B(I)s I = 157) = =0,000248465 0.,004279165 —0.04261214>
1 0025300117 -0674350384s 0605593669 De36746691)

DATA ((C(I)e I = 157} = 0,00014476, ~0,00072805s 0,001372375
1 =0+00009512s =0e0055274s —0.00000077s 079788456

DATA ((DII)s I = 157) = 0.00013558, ~0,000293335s —0,00054125>
1 0.00262573¢ -0.0000395%4s —0.04166397s —0,78539816)

DATA ((E{Ils I = 17} = 0,00001109,; ~0,00031761s 0.00443319,
1 ~0603954289s 00210935735 ~0.56249985s 0e5)

DATA ((F(I)s I = 1s7) = 000278735 —-0,0400976s 0,31239515
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10

20

50

60

1

1

1

DAT

~1:3164827»2 201682709,

De2212091, —0.6366198]

A LIG{IYe T = 197} = =0,00020033s 0,001136%3: ~0,00249511
0000171055 0201659667 0000001565 079788456)
DATA ((H{I}s I = 157) = =0,00029166s 0,000798249 0,00074348;

-0.006378795 0,0000565,

012499612,

A¥ = ABSFIX!

IF {AXeGTeD=0) GO TO 10
AJO = 1.0

YO = =1.E+030

AJ]. = (00

Y1l = —-1.E+030

RETURN

IF (AXeGTe3e0} GO TO 50
XX = (AX/3.0) #%x 2

AJO = Atl1)

YO = B{1)

AJl = E(1)

Yl = F(1)

DO 20 M = 27

AJO = AJD # XX + AiM)

YO = YO # XX + B(M)

AJl = AJ1 # XX + E(M)

Y1 = Y1 ¥ XX + E(M)

AJl = AJ1l * X

ALF = 006366197724 ¥ LOGF(0e5 #* AX)
YO = YO + ALF # AJO

Y1 = YI/X 4+ ALF % AJ1
RETURN

X3 = 3.0/AX

FO = Cl(1)

THO = D(1)

F1 = Ggl1}

THL = H(1)

DO 60 M = 2s7

FO = FO # X3 + C(M)

THO = THO # X3 + D(M)

Fl = F1 # X3 + G(M)

THLT = TH1 * X3 + H(M)
THO = THO + AX

TH1 = TH1 + AX

XS = le/SQRT{AX)

AJD= XS # FO ¥ COSF({THO)
YO = XS # FO # SINF{THO!
AJl= XS ¥® F1 % COSF{(TH1)
Y1 = XS % F1 # SINF(TH1)
RETURN

END

FUNCTION COSINTI{X)

CALCULATION OF THE COSINE INTEGRAL
TYPE DOUBLE Y2sPRODsSUMsPT sDK
IF{XslEaQs!

X2

X # X

GO TO 50
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10
20

30

40
45

50
100

IF{XeGTe200! GO TO 30

Y2 = DBLE(XZ2}

PROD = -Y2 # Qa5

SUM = PROD * 065

DO 10 K = 23950

DK = 2 * K

PROD = ~PROD #* Y2/({DK®(DK - 1lel}}
SUM = SUM + PROD/DK

PT = ABS(PROD #* 1,D+10!
IF{ABS(SUM) sGT=PT) GO TO 20
CONTINUE

55 = SNGL{(SUM)

COSINT = SS + 0a5772156649 + LOGF(X)

RETURN

FA = 1le

FB = 1

PO = je

X2 = 1e/K2

DO 40 K = 1510

AK = 2 # K

PO = =P0O % AK ® X2

FA = FA + PO

PO = PO # (AK 4+ 16!
FB = FB + PO

Pa = ABS(PO #* 1.E+10}
IF{PASLE-FB) GO TO 45
CONTINUE

FX = FA/X

GX = FB % X2

COSINT = FX ® SIN(X) - GX #* CO5(X)
RETURRN

WRITE (612100} X

FORMAT (* X LESS OR EQUAL TO ZEROs X = ¥E17.9)
RETURN
END

FUNCTION FOUTR (DOM}

FOURIERTRANSFORM OF THERMAL AVERAGE FOR MODIFIED IMPACTTHEORY
COMPLEX FOUTR

COMMON/FDAT/P1lsP2+sB1lsA2sB2 s PPFF

ARG = ABSF{DOMI

CC = P2

IF (ARGeGTele226474) CC = P2 = 2.*LOGF{ARG/122474)*PPFF

FOUTR = 003183099 # CMPLX(0es—CC!

RETURN

END
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Figure 1. Schematic picture of the collision sphere showing the
Debye sphere, a strong collision sphere and a straight line classical
path trajectory.
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Figure 2. The thermal average F of the time development operator
normalized with respect to the static, small interaction time asymp-
tote F_as a function of the normalized time s = _<t. The two curves
are obtained with two different lower futoff paran?eters in the p-

integral, Ponin = 0 and P rnin = X+n a .
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Figure 3. The thermal average F of the time development operator
normalized with respect to the static, small interaction time asymp-
tote FO as a function of the normalized time s =’E"Dpt. The two sets of

curves are obtained with two different lower cutoff parameters in the

p-integral, Dmin = 0 and pmin =X 4+ n ao

The three different curves

in every set correspond to different Stark components characterized by

the quantum number n = ng-n’q’.
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Figure 5, The Fourier transform of the thermal average i, normalized
with respect to the static, large frequency limit i as a function of the
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correspond to different =~ Stark compone:?ts characterized by the quan-
tum number n, = ng-n'q’,
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Figure 14. Plot of the electron density values as a function of the
principal quantum number n, which have been evaluated by Vidal,
1965, under the assumption that the [_\)\"5/2' -wing revealed by the
experiment is identical with the asymptotic Holtsmark A\ ™7/ - wing
for electrons and ions.
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