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Exploring new perspectives for green tech-
nologies is one of the challenges of the
third millennium, in which the need for
non-polluting and renewable powering has
become primary. In this context, the use
of hydrogen as a fuel is promising, since
the energy released in its oxidation per
unit mass (~142 MJ/kg) is three times
that released, on average, by hydrocar-
bons, and the combustion product is water
(Ramage, 1983). Being hydrogen a vector
of chemical energy, efficient conservation,
and non-dispersive transportation are the
main goals. Three issues must be consid-
ered to this respect: (i) storage capacity,
(ii) storage stability, and (iii) kinetics of
loading/release. Commercial technologies
are currently based on cryo-compression
or liquefaction of H2 in tanks. These ensure
quite a high gravimetric density [GD, point
(i)], namely 8–13% in weight of stored
hydrogen, and a relatively low cost (Züttel,
2003). However, concerning points (ii) and
(iii), these technologies pose problems of
safety, mainly due to explosive flammabil-
ity of hydrogen, and consequent unprac-
tical conditions for transportation and
use (Mori and Hirose, 2009). Therefore,
research efforts are directed toward solid-
state based storage systems (energy.gov,
Bonaccorso et al., 2015).

Interactions of hydrogen with materi-
als are classified as physisorption, occur-
ring with H2 by means of van der Waals
(vdW) forces, or chemisorption, i.e., chem-
ical binding of H leading to the for-
mation of hydrides (Mori and Hirose,
2009), requiring dissociative(associative)

chemi(de)sorption of H2. Intermedi-
ate nature interactions, sometimes called
“phenisorption,” can also occur between
hydrogen electrons and the electrons of
external orbital of metals. Indeed, stable
and robust (light) metal hydrides (Sak-
intuna et al., 2007; Harder et al., 2011)
are currently considered an alternative to
tanks. Their main drawback is their high
chemisorption and chemidesorption bar-
rier, both many times the typical thermal
energy, implying slow operational kinet-
ics, which becomes acceptable only at
very high temperature. Physisorption, con-
versely, generally results in barrierless and
weak binding. It was considered as a stor-
age mechanism in layered (Zhirko et al.,
2007) or porous (Sastre, 2010) materials,
and shown to be effective at low tem-
peratures and/or high pressure. Therefore,
it generally seems that if storage stability
(ii) is improved then the loading/release
kinetics (iii) is worsened.

Graphene shows good potential to
be an efficient hydrogen-storage medium
(Tozzini and Pellegrini, 2013): carbon
is among the lightest elements form-
ing layered and porous structures, and
graphene is probably the material with
the largest surface to mass ratio. These
two conditions are in principle opti-
mal to produce high GD [point (i)].
In addition, the chemical versatility
of carbon allows it to interact with
hydrogen both by physisorption (in
sp2 hybridization) and chemisorption
(Goler et al., 2013a) (in sp3 hybridiza-
tion). [“Phenisorption is also obtained in

graphene by functionalization with metals
(Mashoff et al., 2013)].

On the other hand, concerning points
(ii) and (iii), pure graphene does not per-
form dramatically better than other mate-
rials. H2 easily physisorbs onto graphene
layers or within multilayers, but it was
theoretically shown (Patchkovskiim et al.,
2005) that large GD (6–8%) are reached
within multi-layered graphene at cryogenic
temperatures, while the room temperature
value is at best ~2–3%. This was con-
firmed by measurements (Klechikov et al.,
private communication), which also indi-
cate that graphene does not perform bet-
ter than other carbon based bulk mate-
rials, such as nanoporous carbon or car-
bon nanotubes. In all cases, a key para-
meter determining GD is the specific sur-
face to volume ratio. Theoretical works
also show that stability can be improved
(and GD optimized) at specific inter-
layer spacing (~7–8 Å), due to a cooper-
ative effect of vdW forces (Patchkovskiim
et al., 2005). A similar effect is responsi-
ble for the accumulation of physisorbed
hydrogen within graphene troughs at low
temperatures (~100 K) observed in sim-
ulations (Tozzini and Pellegrini, 2011).
On the other hand, hydrogen chemisorp-
tion on graphene produces graphane (Sofo
et al., 2007), its completely hydrated alkane
counterpart, stable at room temperature
[point (ii)] and with 8.2% GD [point
(i)]. Graphane, however, shares with other
hydrides high chemi(de)sorption barrier
(~1.5 eV/atom). As in other materials,
physisorption has good kinetics (iii), and
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FIGURE 1 | Hydrogen interaction with rippled and buckled graphene.

(A) From top to bottom: graphene with buckling mimicking that of

graphene on SiC; variation of stability vs. curvature, measured by means of

the out of plane displacement of a C site with respect to the neighbors, d

(blue and negative value of d = concave, red and positive value of

d = convex); hydrogen (shown in orange) binds on concavities. (B) From top

to bottom: coherent flexural phonon of nano-sized wavelength; hydrogen is

initially attached on the crest of the ripples, but after half a period troughs

replace crests, hydrogen destabilizes and desorbs in molecular form.

(C) From top to bottom: flexural phonons excited in counterphase in

subsequent multilayers generate traveling cavities; hydrogen is transported

by phonons within those cavities.

bad storage capacity (i), and stability (ii),
while chemisorption has good (i) and (ii),
and bad (iii).

Graphene, however, displays extremely
peculiar properties: a unique combination
of strength and flexibility, and its bidi-
mensionality. Therefore, it can be buck-
led on different scales down to nanometer
(Fasolino et al., 2007; Wang et al., 2011),
either statically, i.e., forming stable ripples
as an effect of external constraints [i.e.,
compression or interaction with a sub-
strate (Goler et al., 2013b)], or dynamically,
sustaining traveling ripples, i.e., coherent
transverse out-of-plane acoustic modes,
also called ZA or flexural phonons (Lind-
say and Broido, 2010; Xu et al., 2013).
We explored the possibility of exploiting
these properties in the context of hydrogen
storage.

We first evaluated the dependence of
chemisorbed H stability on the local cur-
vature by means of a density functional
theory (DFT) based study (Tozzini and Pel-
legrini, 2011). This revealed a linear depen-
dency of the binding energy on the local
curvature, leading to an over-stabilization

of the adsorbate of up to 1–2 eV on crests
and corresponding destabilization within
troughs (Figure 1A),which is also modified
by the presence of already chemisorbed
hydrogen (Rossi et al., submitted). Theo-
retical evaluations were confirmed by Scan-
ning Tunneling Microscopy performed on
naturally corrugated graphene grown on
SiC (Goler et al., 2013a), which demon-
strated the presence of hydrogen preva-
lently on the convexities. These obser-
vations lead to the idea that an inver-
sion of curvature (from concavity to con-
vexity) could detach chemisorbed hydro-
gen. As a matter of fact, this mecha-
nism was demonstrated in a simulation
in which the curvature inversion was real-
ized dynamically by the passage of a ZA
coherent phonon of ~2 nm wavelength
and ~THz frequency (Figure 1B). The
simulation shows that hydrogen under-
goes associative desorption at room tem-
perature upon curvature inversion, which
can be called a “mechanical catalysis”:
the energy barrier is overcome by means
of the energy provided by the traveling
phonon.

Once detached, H2 finds itself in contact
with a graphene sheet with traveling rip-
ples. If sheets are at appropriate distances
and if ZA phonons are excited with appro-
priate relative phases in subsequent sheets,
the traveling ripples enclose traveling
nano-cavities (Figure 1C). We showed
by means of classical molecular dynam-
ics (MD) simulations using empirical force
fields (FF) (Camiola et al., 2014) that these
nano-cavities can include and transport
H2 at velocities near to the phase veloc-
ity of the phonon for almost micrometric
distances before the phonon damps. This
effect could be used to transport and pump
hydrogen through multilayers, improving
the GD of physisorbed hydrogen at room
temperature and the kinetics of loading
and release.

The existence of ripples and flexural
phonons, therefore, offers specific strate-
gies – unique to graphene – to overcome
issues (i), (ii), and (iii). The proof of prin-
ciple of the effectiveness of these strate-
gies was given by means of a multi-scale
approach, combining DFT and empirical
FF based MD simulations, in order to
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couple high accuracy in the representa-
tion of interactions to the large time and
size scales needed to represent the process.
However, the realization of these processes
relies on the practical possibility of finely
manipulating the local curvature and gen-
erating and sustaining coherent flexural
phonons. In fact, our current efforts are
along that route: we are exploring sev-
eral possibilities for static and dynamic
curvature manipulation, including exter-
nal electric fields (Cavallucci, 2014), func-
tionalization with optically active molec-
ular pillars (Burress et al., 2010), electro-
mechanical pulling, coupling to piezo-
electric substrates (Camiola et al., 2014).
In this phase, a multi-scale simulation
approach will be even more necessary:
in the route toward the practical realiza-
tion of possible devices, one must ana-
lyze also macroscopic effects of thermody-
namic nature, in addition to the physical
phenomena at the sub-nano scale and the
dynamical behavior at the nano-to-micro
scale. Therefore, we intend to add a con-
tinuum representation, where graphene is
modeled as a membrane with mechano-
elastic properties (Zang et al., 2013) to
the DFT and to the MD with empiri-
cal FF. Consistency between the repre-
sentations will be obtained by appropri-
ate bottom-up parameterization and top-
down transfer of macroscopic information,
and will ensure a complete and accurate
representation of the system properties and
behavior.
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