

HHS Public Access

Angew Chem Int Ed Engl. Author manuscript; available in PMC 2017 November 14.

Published in final edited form as:

Angew Chem Int Ed Engl. 2016 November 14; 55(47): 14638–14642. doi:10.1002/anie.201608052.

Hydrogen Sulfide (H₂S) Donors Activated by Reactive Oxygen Species (ROS)

Dr. Yu Zhao and Prof. Dr. Michael D. Pluth

Author manuscript

Department of Chemistry and Biochemistry, Institute of Molecular Biology, and Materials Science Institute. University of Oregon, Eugene, Oregon 97403, United States

Abstract

Hydrogen sulfide (H₂S) exhibits promising protective effects in many (patho)physiological processes, as evidenced by recent reports using synthetic H₂S donors in different biological models. Herein, we report the design and evaluation of **PeroxyTCM**, which comprises the first class of reactive oxygen species (ROS)-triggered H₂S donors. These donors are stable in aqueous solution and do not release H₂S until triggered by ROS, such as hydrogen peroxide (H₂O₂), superoxide (O₂⁻), and peroxynitrite (ONOO⁻). We demonstrate ROS-triggered H₂S donation in live cells and also demonstrate that **PeroxyTCM-1** provides protection against H₂O₂-induced oxidative damage, suggesting potential future applications of **PeroxyTCM** and similar scaffolds in H₂S-related therapies.

Graphical Abstract

 H_2S is an important biomolecule and H_2S donors are valuable research and pharmacological tools. We report the design and cellular evaluation of an H_2S donor that is triggered to release H_2S by exposure to reactive oxygen species (ROS).

Keywords

hydrogen sulfide; thiocarbamate; carbonyl sulfide; reactive oxygen species; oxidative stress

Hydrogen sulfide (H₂S) is now recognized as an important cellular signaling molecule due to its important functions in various aspects of human health and disease, and also as a member of the gasotransmitter family along with nitric oxide (NO) and carbon monoxide (CO).^[1] Biological H₂S is generated primarily from Cys and/or Hcy by cystathionine γ -lyase (CSE), cystathionine β -synthase (CBS), cysteine aminotransferase (CAT), and 3-mercaptopyruvate sulfur transferase (3-MST), which work either individually or in concert.^[2] In many cases, both endogenous H₂S production, as well as exogenous H₂S

Correspondence to: Michael D. Pluth.

administration, has been demonstrated to protect cells, tissues, and organs against damage associated with different (patho)physiological processes.^[3] For example, H₂S shows potent anti-inflammation effects in animal models^[5] and exhibits antioxidant properties and protective effects against reactive oxygen species (ROS).^[6] Additionally, H₂S provides protection against myocardial ischemia reperfusion (MI/R) injury by consuming ROS generated by dysfunctional mitochondria and thus preserving cardiac activity.^[7]

Many researchers use H₂S-releasing small molecules ("H₂S donors") as primary tools to modulate cellular H₂S levels (Figure 1).^[8] Although exogenous administration of Na₂S or NaHS provides a convenient source of H₂S, the instantaneous and uncontrollable H₂S release from these salts does not mimic endogenous generation and often result in acute side effects and contradictory results (i.e. pro- and anti-inflammatory effects).^[9] Two of the most commonly used H₂S donor classes include polysulfides derived from natural products, such as diallyl trisulfide (DATS),^[10] and hydrolysis-based donors, such as GYY4137,^[11] derived from Lawesson's reagent, both of which exhibit H₂S-related protective effects in a wide array of systems.^[8b-e] Additionally, dithiolethione (ADT) and its derivative ADT-OH have been used to develop a series of H₂S-hybrid nonsteroidal anti-inflammation drugs, which greatly reduce GI damage while maintaining NSAID activity.^[12] Synthetic thiol-activated H₂S donors have also been developed based on protected disulfides, with some exhibiting promising protective effects in animal models.^[13] More recently, donors based on esteraseactivation^[14] and pH-modulation^[15] have been reported, and demonstrated to influence inflammatory response factors and provide protection in oxidative stress models, respectively. In addition, other H₂S-donating motifs, such as thioamino acids,^[16] caged gem-dithiols,^[17] and caged ketoprofenate,^[18] are also being investigated for different applications. Despite the diverse palette of available donor motifs, two main challenges remain. First, many synthetic donors lack appropriate, H₂S-depleted control compounds, which complicates conclusions drawn from use of these donors. Second, few donors can be triggered by specific cellular species or events, thus limiting the tunability of available platforms. Based on these needs, H₂S donors that respond to specific stimuli and have suitable control compounds would provide a significant advance.

A viable platform to access such responsive H_2S donors stems from related H_2S sensing work recently report from our lab, in which a new class of analyte-replacement fluorescent probes was developed using the engineered release of carbonyl sulfide (COS) from thiocarbamates.^[19] Importantly, probe activation generated a fluorescence response and also released COS, which is quickly hydrolyzed to H_2S by carbonic anhydrase (CA), a ubiquitous enzyme in plants and mammals. Recognizing the potential utility that similar platforms could provide for triggered H_2S release, we envisioned that caged-thiocarbamates could also serve as a new and diverse class of H_2S donors that could be engineered to release H_2S in response to specific stimuli. Importantly, these donors would operate by mechanisms dissimilar to currently-available H_2S donors, and would enable access to viable H_2S depleted control compounds absent from most donor constructs, thus addressing major limitations in the field. Here we report the use of caged thiocarbamates, in combination with ROS-responsive arylboronate triggers, to access the first class of triggerable H_2S donors activated by cellular ROS (Scheme 1a).

To test our hypothesis that thiocarbamate functionalized arylboronates could function as ROS-triggered H₂S donors, we prepared three thiocarbamate donors (PeroxyThioCarbaMate: PeroxyTCM-1, PeroxyTCM-2, and PeroxyTCM-3) and two carbamate control compounds (ThioCarbaMates: TCM-1 and TCM-2). The PeroxyTCM compounds are stable in aqueous buffer (pH 5 – 9) and are not hydrolyzed by esterases. We also prepared the parent carbamate (PeroxyCarbaMate-1, PeroxyCM-1), which can also be activated by ROS, but releases CO_2/H_2O instead of COS/H_2S . Access to these simple control compounds provides useful tools to determine whether observed biological activities of the donors are H₂S-related or merely a product of the organic scaffold and/or byproducts.

To evaluate the H₂S release from the donor constructs in the presence of ROS, we used an H₂S-selective electrode to monitor H₂S release from **PeroxyTCM-1** (50 μ M) upon treatment with H₂O₂ (50 – 1000 μ M) in PBS buffer (pH 7.4, 10 mM) containing CA (25 μ g/mL). Consistent with our hypothesis, we observed H₂O₂-dependent H₂S release from **PeroxyTCM-1** with corresponding second order rate constant of 1.44 M⁻¹s⁻¹ (Figure 2a, S1). Quantification of H₂S release 50 μ M **PeroxyTCM-1** using electrode data demonstrated a H₂S release efficiencies of 80% and 60% in the presence of 250 μ M and 500 μ M H₂O₂, respectively, which are consistent with increased H₂O₂ scavenging by H₂S at higher ROS concentrations. We next evaluated **PeroxyTCM-2** and **PeroxyTCM-3** and demonstrated that the rate of H₂S release can be tuned by electronic modulation of the thiocarbamate (Figure 2b). By contrast, **TCM-1** and **TCM-2**, which lack the H₂O₂-reactive arylboronate trigger, failed to release H₂S upon treatment with H₂O₂ (Figure 2b). Taken together, these studies demonstrate that arylboronate-functionalized thiocarbamates provide a functional platform to access H₂O₂-mediated H₂S donors.

We investigated whether CA was essential to convert COS to H_2S by incubating **PeroxyTCM-1** with H_2O_2 (10 equiv.) in the absence of CA. Although COS can be hydrolyzed to H_2S under both acidic and basic conditions, this hydrolysis is much slower at physiological pH.^[20] Unexpectedly, a positive H_2S release response was observed, indicating that COS could react directly with H_2O_2 to generate H_2S in a CA-independent pathway (Figure S2a, red and blue lines). To further investigate these observations, we treated an aqueous solution (10 mM PBS, pH 7.4) of COS gas with H_2O_2 . No H_2S was observed prior to H_2O_2 addition, whereas H_2O_2 addition resulted in rapid H_2S generation (Figure S2b). Notably, these studies demonstrate that H_2O_2 alone can convert COS to H_2S directly, although this process was significantly slower than CA-catalyzed COS hydrolysis.

We next evaluated which specific reactive sulfur, oxygen, and nitrogen species (RSONS) resulted in donor activation by measuring H₂S release from **PeroxyTCM-1** after incubation with different RSONS (Figure 3). We found that incubation with H₂O₂, O₂⁻, or ONOO⁻ resulted in H₂S release, with H₂O₂ being the most active trigger. Other RSONS, such as hypochlorite (ClO⁻), hydroxyl radical (HO·), singlet oxygen (¹O₂), tert-butyl hydroperoxide (TBHP), tert-butoxy radical (tBuO·) cysteine (Cys), reduced glutathione (GSH), oxidized glutathione (GSSG), S-nitrosoglutathione (GSNO), nitrite (NO₂⁻), sulfate (SO₄²⁻), thiosulfate (S₂O₃²⁻), NO, or nitroxyl (HNO) failed to release H₂S.^[21] Taken together, this selectivity screening demonstrates that only specific ROS (H₂O₂, O₂⁻, and ONOO⁻) activate **PeroxyTCM-1** to release H₂S.

Before investigating different potential biological applications of the **PeroxyTCM** compounds, we first investigated to cytotoxicity of **PeroxyTCM-1**, **PeroxyCM-1** and **TCM-1** (10 – 100 μ M) in HeLa cells. No significant decrease in cell viability was observed after a 2 hour incubation, indicating that none of the three compounds exhibited appreciable cytotoxicity at the tested concentrations (Figure S3). We next investigated whether exogenous H₂O₂ could be used to release H₂S in cellular environments by incubating HeLa cells with **PeroxyTCM-1** (50 μ M) followed by treatment with H₂O₂ (25 μ M or 50 μ M). We used **HSN2**, a reaction-based H₂S fluorescent probe, to monitor H₂S accumulation by fluorescence microscopy.^[22] In the absence of H₂O₂, no **HSN2** fluorescence was observed, confirming that **PeroxyTCM-1** was stable and did not release H₂S in a normal cellular environment. By contrast, addition of H₂O₂ resulted in a H₂O₂ dose-dependent increase in **HSN2** fluorescence (Figures 4 and S5), confirming that **PeroxyTCM-1** can be activated by exogenous ROS in a cellular environment to release H₂S.

Having demonstrated activation by exogenous ROS, we next investigated the response of **PeroxyTCM-1** to endogenous ROS generation. RAW 264.7 cells were incubated with phorbol 12-myristate 13-acetate (PMA), which is a well-established method to induce ROS and H₂O₂ production in macrophages.^[23] ROS generation was confirmed using 2',7'- dichlorofluorescin diacetate (DCFDA) (Figure S6). **PeroxyTCM-1**-treated cells were stimulated by PMA, and H₂S release was monitored using **HSN2**. In the absence of PMA, no fluorescent signal from **HSN2** was observed. By contrast, addition of 500 nM PMA resulted in a significant increase in signal from **HSN2** corresponding to the released H₂S (Figure 5). These studies confirm that **PeroxyTCM-1** is sensitive enough to be activated by endogenous ROS, suggesting that it may provide a viable platform for ROS-related H₂S investigations.

In addition to cellular imaging experiments, we also investigated whether the developed ROS-activated donors could provide protection against ROS-related oxidative stress in simple cell culture models. Recent studies suggest that ROS play deleterious roles in various physiological and pathological systems ranging from aging to cardiovascular damage. In many cases, H₂S administration can provide partial protection or rescue from these different disease states. For example, ROS generated during mitochondrial dysfunction are responsible for a wide range of damages in the cardiovascular system, including MI/R injury, and that exogenous H₂S significantly preserved cardiac activity through a ROS scavenging pathways.^[7b, 24] On the basis of this H₂S / ROS relationship, we envisioned that **PeroxyTCM** compounds would exhibit similar cytoprotective effects toward ROS-induced damage due to H₂S release.

To simulate increased cellular oxidative stress, we incubated HeLa cells with H_2O_2 (50 – 400 µM) for 1 hour and observed a dose-dependent reduction of cell viability (Figure 6a). Since 100 µM of H_2O_2 led to ~70% of cell death, this dose was used to investigate protective activities of **PeroxyTCMs**. Although this dose of H_2O_2 does not represent physiological levels of H_2O_2 , it falls into the range of H_2O_2 concentrations used to induce oxidative stress in previous studies. In subsequent experiments, cells were treated with H_2O_2 (100 µM) in the presence or absence of **PeroxyTCM-1**, **PeroxyCM-1**, or **TCM-1** (10 – 50 µM) for 1 hour. As expected, **PeroxyTCM-1** exhibited a significant dose-dependent increase of cell

viability, suggesting that the released H_2S provided rescue from H_2O_2 -induced oxidative damage (Figure 6b). **PeroxyCM-1** showed an attenuated rescue from oxidative stress (Figure 6c) due to H_2O_2 consumption by the arylboronate and antioxidant effects of 4hydroxylbenzyl alcohol (HBA), one of the byproducts after H_2S generation (Figure S3),^[25] and the observed protection was significantly lower than that from **PeroxyTCM-1** (Figure S7). By contrast, **TCM-1** provided no protection against H_2O_2 -mediated oxidative stress (Figure 6d). Taken together, these results provide strong evidence that **PeroxyTCM-1** is a robust H_2S donor and provides cellular protection from oxidative stress. In addition, compared to other H_2S donors, specific ROS selectivity makes the targeting of ROStriggered H_2S donors to different subcellular locations feasible, which would greatly benefit the H_2S -related biological investigations and H_2S -based therapeutics development.

In summary, we provide the first example of ROS-triggered H_2S donors. These donors operate by mechanisms orthogonal to available H_2S donors and provide access to suitable control compounds for biological studies. Initial proof-of-concept studies reveal that **PeroxyTCM-1** exhibits promising cytoprotective activities against H_2O_2 -induced oxidative stress, suggesting future potential applications of these and similar constructs as prodrugs in H_2S -related therapies. Further applications of the present as well as related COS-related H_2S donors triggered by other mechanisms are currently ongoing in our laboratory.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Research reported in this publication was supported by Sloan Foundation and Dreyfus Foundation. Applications on H₂S sensing were supported by the NIH (R01GM113030). NMR and microscopy capabilities in the UO CAMCOR facility are supported by the NSF (CHE-1427987, CHE-1531189).

References

- 1. a) Szabo C. Nat. Rev. Drug Discov. 2007; 6:917–935. [PubMed: 17948022] b) Wang R. Physiol. Rev. 2012; 92:791–896. [PubMed: 22535897]
- a) Kabil O, Banerjee R. Antioxid. Redox. Signal. 2014; 20:770–782. [PubMed: 23600844] b) Paul BD, Snyder SH. Nat. Rev. Mol. Cell Biol. 2012; 13:499–507. [PubMed: 22781905]
- a) Polhemus DJ, Lefer DJ. Circ. Res. 2014; 114:730–737. [PubMed: 24526678] b) Wallace JL, Wang R. Nat. Rev. Drug Discov. 2015; 14:329–345. [PubMed: 25849904]
- 4. Zhao W, Zhang J, Lu Y, Wang R. EMBO J. 2001; 20:6008-6016. [PubMed: 11689441]
- 5. Wallace JL, Vong L, McKnight W, Dicay M, Martin GR. Gastroenterology. 2009; 137:569–578. [PubMed: 19375422]
- 6. a) Chang L, Geng B, Yu F, Zhao J, Jiang H, Du J, Tang C. Amino Acids. 2008; 34:573–585.
 [PubMed: 18071843] b) Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, Du J, Tang C. Biochem. Biophys. Res. Commun. 2004; 318:756–763. [PubMed: 15144903]
- 7. a) Calvert JW, Coetzee WA, Lefer DJ. Antioxid. Redox. Signal. 2010; 12:1203–1217. [PubMed: 19769484] b) Predmore BL, Lefer DJ. Expert. Rev. Clin. Pharmacol. 2011; 4:83–96. [PubMed: 21373204]
- a) Hartle MD, Pluth MD. Chem. Soc. Rev. 2016b) Kashfi K, Olson KR. Biochem. Pharmacol. 2013; 85:689–703. [PubMed: 23103569] c) Pluth MD, Bailey TS, Hammers MD, Hartle MD, Henthorn HA, Steiger AK. Synlett. 2015; 26:2633–2643.d) Zhao Y, Biggs TD, Xian M. Chem. Commun.

2014; 50:11788–11805.e) Zhao Y, Pacheco A, Xian M. Handb. Exp. Pharmacol. 2015; 230:365–388. [PubMed: 26162844]

- a) Tamizhselvi R, Moore PK, Bhatia M. Pancreas. 2008; 36:e24–e31. [PubMed: 18437075] b) Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL. FASEB J. 2006; 20:2118–2120. [PubMed: 16912151]
- Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW. Proc. Natl. Acad. Sci. U S A. 2007; 104:17977–17982. [PubMed: 17951430]
- Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK. Circulation. 2008; 117:2351–2360. [PubMed: 18443240]
- a) Caliendo G, Cirino G, Santagada V, Wallace JL. J Med. Chem. 2010; 53:6275–6286. [PubMed: 20462257] b) Sparatore A, Santus G, Giustarini D, Rossi R, Del Soldato P. Expert. Rev. Clin. Pharmacol. 2011; 4:109–121. [PubMed: 22115352]
- a) Zhao Y, Wang H, Xian M. J Am. Chem. Soc. 2011; 133:15–17. [PubMed: 21142018] b) Zhao Y, Bhushan S, Yang C, Otsuka H, Stein JD, Pacheco A, Peng B, Devarie-Baez NO, Aguilar HC, Lefer DJ, Xian M. ACS Chem. Biol. 2013; 8:1283–1290. [PubMed: 23547844] c) Zhao Y, Yang C, Organ C, Li Z, Bhushan S, Otsuka H, Pacheco A, Kang J, Aguilar HC, Lefer DJ, Xian M. J Med. Chem. 2015; 58:7501–7511. [PubMed: 26317692] d) Martelli A, Testai L, Citi V, Marino A, Pugliesi I, Barresi E, Nesi G, Rapposelli S, Taliani S, Da Settimo F, Breschi MC, Calderone V. ACS Med. Chem. Lett. 2013; 4:904–908. [PubMed: 24900583] e) Foster JC, Powell CR, Radzinski SC, Matson JB. Org. Lett. 2014; 16:1558–1561. [PubMed: 24575729] e) Zhao Y, Kang J, Park CM, Bagdon PE, Peng B, Xian M. Org. Lett. 2014; 16:4536–4539. [PubMed: 25141097] g) Roger T, Raynaud F, Bouillaud F, Ransy C, Simonet S, Crespo C, Bourguignon MP, Villeneuve N, Vilaine JP, Artaud I, Galardon E. Chembiochem. 2013; 14:2268–2271. [PubMed: 24115650]
- Zheng Y, Yu B, Ji K, Pan Z, Chittavong V, Wang B. Angew. Chem. Int. Ed. 2016; 55:4514–4518. Angew. Chem. 2016, 128, 4590–4594.
- Kang J, Li Z, Organ CL, Park CM, Yang CT, Pacheco A, Wang D, Lefer DJ, Xian M. J Am. Chem. Soc. 2016; 138:6336–6339. [PubMed: 27172143]
- Zhou Z, von Wantoch Rekowski M, Coletta C, Szabo C, Bucci M, Cirino G, Topouzis S, Papapetropoulos A, Giannis A. Bioorg. Med. Chem. 2012; 20:2675–2678. [PubMed: 22436388]
- Devarie-Baez NO, Bagdon PE, Peng B, Zhao Y, Park CM, Xian M. Org. Lett. 2013; 15:2786– 2789. [PubMed: 23697786]
- Fukushima N, Ieda N, Sasakura K, Nagano T, Hanaoka K, Suzuki T, Miyata N, Nakagawa H. Chem. Commun. 2014; 50:587–589.
- Steiger AK, Pardue S, Kevil CG, Pluth MD. J Am. Chem. Soc. 2016; 138:7256–7259. [PubMed: 27218691]
- 20. Andersen WC, Bruno TJ. Ind. Eng. Chem. Res. 2003; 42:971–974.
- 21. We note that previous reports suggest that arylboronates may also react with other ROS, such as OCI-, and that certain ROS react directy with the thiocarbamate core, preventing COS release. A detailed investigation of these possible mechanisms is beyond the scope of this communication, but will be the target of future investigations.
- 22. Montoya LA, Pluth MD. Chem. Commun. 2012; 48:4767-4769.
- 23. a) Abbas K, Hardy M, Poulhes F, Karoui H, Tordo P, Ouari O, Peyrot F. Free Radic. Biol. Med. 2014; 71:281–290. [PubMed: 24662195] b) Harry RS, Hiatt LA, Kimmel DW, Carney CK, Halfpenny KC, Cliffel DE, Wright DW. Chem. Res. Toxicol. 2012; 25:1643–1651. [PubMed: 22799741]
- 24. Nicholson CK, Calvert JW. Pharmacol. Res. 2010; 62:289–297. [PubMed: 20542117]
- Lee D, Park S, Bae S, Jeong D, Park M, Kang C, Yoo W, Samad MA, Ke Q, Khang G, Kang PM. Sci. Rep. 2015; 5:16592. [PubMed: 26563741]

Figure 1. Selected H_2S donating molecules and motifs.

Zhao and Pluth

Figure 2.

(a) H_2S release from **PeroxyTCM-1** (50 μ M) in the presence of H_2O_2 (50 – 1000 μ M) in PBS (pH 7.4, 10 mM) containing CA (25 μ g/mL). (b) H_2S release from thiocarbamates (50 μ M) in the presence of H_2O_2 (500 μ M) in PBS (pH 7.4, 10 mM) containing CA (25 μ g/mL).

Zhao and Pluth

Figure 3.

H₂S release response of **PeroxyTCM-1** (50 μ M) to various RSONS (5 mM for GSH, 500 μ M for all other RSONS) in PBS buffer (pH 7.4, 10 mM; 100 mM for GHS and ONOO⁻). Experiments were performed at r.t. for 20 min. The response is expressed as mean \pm SD (n = 3).

Zhao and Pluth

Figure 4.

 H_2S release from **PeroxyTCM-1** in HeLa cells. HeLa cells were co-incubated with **PeroxyTCM-1** (50 µM), **HSN2** (5 µM), and NucBlue nuclear dye for 30 min. After removal of extracellular **PeroxyTCM-1** and **HSN2**, cells were incubated in FBS-free DMEM in the absence (Top row) or presence (Bottom row) of H_2O_2 (50 µM) for 30 min.

Zhao and Pluth

Figure 5.

 H_2S release from **PeroxyTCM-1** in RAW 264.7 cells. Cells were co-incubated with **PeroxyTCM-1** (50 μ M), **HSN2** (5 μ M) and NucBlue dye for 30 min. After washing, cells were incubated in FBS-free DMEM in the absence (Top row) or presence (Bottom row) of PMA (500 nM) for 3 h.

Zhao and Pluth

Figure 6.

(A) Cytotoxicity of H₂O₂ (50 – 400 μ M) in HeLa cells. Cytoprotections of **PeroxyTCM-1** (B), **PeroxyCM-1** (C), and **TCM-1** (D) against H₂O₂-induced (100 μ M) oxidative stress in HeLa cells. Results were expressed by mean ± SEM (n = 5). *****P* < 0.0001 vs VEH group; ##*P* < 0.01, ###*P* < 0.001, and ####*P* < 0.0001 vs H₂O₂-treated group, respectively.

Zhao and Pluth

Scheme 1. Design (a) and synthesis (b) of ROS-triggered H₂S donors.