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Abstract. It was previously confirmed that hydrogen sulfide 
(H2S) has a neuroprotective effect, preventing homocys-
teine‑induced neurotoxicity. However, the exact molecular 
mechanisms underlying this protective effect remain to be fully 
elucidated. Endoplasmic reticulum (ER) stress contributes to 
homocysteine‑induced neurotoxicity. Silent mating type infor-
mation regulator 2 homolog 1 (SIRT‑1) can attenuate ER stress, 
exerting its neuroprotective effect. Therefore, the present 
study aimed to investigate whether H2S protects PC12 cells 
against homocysteine‑induced ER stress and whether SIRT‑1 
mediates this protective effect of H2S. Western blotting was 
used to detect the expression of SIRT‑1, glucose‑regulated 
protein 78 (GRP78), and cleaved caspase‑12 in PC12 cells. It 
was observed that sodium hydrosulfide (NaHS), an exogenous 
H2S donor, significantly attenuated the homocysteine‑induced 
ER stress responses, including increases in the protein expres-
sion levels of GRP78 and cleaved caspase‑12. Simultaneously, 
NaHS upregulated the expression of SIRT‑1 and reversed the 
homocysteine‑induced downregulation of SIRT‑1 in PC12 
cells. Sirtinol, a specific inhibitor of SIRT‑1, eliminated the 
protective effects of H2S in homocysteine‑induced ER stress. 
These data indicated that H2S prevented homocysteine‑induced 
ER stress via enhancing the expression of SIRT‑1. These find-
ings offer novel insight into the protective mechanisms of H2S 
against homocysteine‑induced neurotoxicity.

Introduction

Homocysteine, a thiol‑containing amino acid, is generated by 
the demethylation of methionine (1,2). It has been established 
that an elevated level of circulating homocysteine is an inde-
pendent risk factor for Alzheimer's disease (AD) (3-8), and 
there is increasing evidence that homocysteine directly causes 
neurotoxicity in multiple neuronal types (9-11). In addition, 
it is known that endoplasmic reticulum (ER) stress is closely 
associated with the development and pathology of AD, which 
has the typical characteristics of inclusion bodies, abnormal 
formation and misfolded protein aggregation (12-14). It has 
also been reported that homocysteine leads to ER stress in 
neuronal cells (15-18), which suggests that ER stress‑mediated 
homocysteine‑induced neurotoxicity may be vital in the patho-
genesis of AD. Therefore, the suppression of ER stress may 
provide a promising approach for the treatment of homocys-
teine‑dependent neurodegenerative diseases.

Hydrogen sulfide (H2S) is considered to be a novel 
endogenous neuroprotectant (19-23). Of note, data from 
our previous study demonstrated that the disturbance of 
endogenous H2S generation was involved in the neuro-
toxicity of homocysteine (24), and that H2S ameliorated 
homocysteine induced‑neurotoxicity (25), indicating the poten-
tial of H2S‑based prevention and treatment for neuronal injury 
induced by homocysteine exposure. Based on the importance 
of ER stress in the neurotoxicity of homocysteine, the present 
study aimed to expand on current understanding of the protec-
tive effects of H2S in homocysteine‑elicited neurotoxicity by 
examining the effects of H2S on homocysteine‑induced ER 
stress and the underlying mechanisms.

Sirtuins are nicotinamide adenine dinucleotide‑dependent 
histone deacetylases, which counter aging, having a broad spec-
trum of metabolic and stress‑tolerance functions. Emerging 
evidence has confirmed that silent mating type information 
regulator 2 homolog 1 (SIRT‑1), one of the seven mammalian 
sirtuins, is directly involved in the neuronal protective effect 
against cellular damage and stressful perturbations in neuro-
logical diseases, including AD (26-29), amyotrophic lateral 
sclerosis (28), Huntington's disease (30,31) and Parkinson's 
disease (32). Furthermore, it has been reported that SIRT‑1 
mediates the neuroprotective effect of paliperidone against 
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MK‑801‑induced neuronal damage (33) and hyperbaric 
oxygen preconditioning‑induced ischemic tolerance in the rat 
brain (34). Of note, previous studies have suggested that SIRT‑1 
exhibits its beneficial effects in neuroprotection via alleviation 
of the ER stress response (35,36). Therefore, the present study 
investigated whether SIRT‑1 contributes to the protective 
effects of H2S against homocysteine‑induced ER stress.

The results of the present study revealed that H2S 
prevented homocysteine‑induced ER stress and increased the 
protein expression of SIRT‑1 in PC12 cells. Sirtinol, a specific 
inhibitor of SIRT‑1, eliminated the inhibitory effects of H2S 
against homocysteine‑induced ER stress in the PC12 cells. 
These findings indicated that H2S protects PC12 cells against 
homocysteine‑induced ER stress via upregulating the expres-
sion of SIRT‑1.

Materials and methods

Materials. Sodium hydrosulfide (NaHS), an exogenous donor 
of H2S, homocysteine and sirtinol, a specific inhibitor of SIRT‑1, 
were supplied by Sigma‑Aldrich (cat. no. S7942; Merck KGaA, 
Darmstadt, Germany). Specific antibody against SIRT‑1 (cat. 
no. ab110304) was purchased from Abcam (Cambridge, UK). 
Specific antibody against glucose‑regulated protein 78 (GRP78; 
cat. no. S1931) was obtained from Epitomics (Burlingame, 
CA, USA). Specific antibody against cleaved caspase‑12 (cat. 
no. C7611) was supplied by Sigma‑Aldrich (Merck KGaA); 
β‑actin polyclonal antibody (cat. no. 20536‑1‑AP) and goat 
anti‑rat immunoglobulin (Ig)G (cat. no. SA00001‑2) or goat 
anti‑mouse IgG (cat. no. SA00001‑1) antibody were obtained 
from ProteinTech Group, Inc. (Chicago, IL, USA). RPMI‑1640 
medium, fetal bovine serum (FBS) and horse serum were 
obtained from Gibco; Thermo Fisher Scientific, Inc. (Waltham, 
MA, USA).

Cell culture. The PC12 cells (American Type Culture 
Collection; CRL‑1721), provided by Sun Yat‑sen University 
Experimental Animal Center (Guangzhou, China), were 
cultured in RPMI‑1640 medium supplemented with 10% (v/v) 
heat‑inactivated horse serum and 5% FBS (v/v) at 37˚C, in 
an atmosphere containing 5% CO2 and 95% air. The culture 
medium was replaced every 2‑3 days.

Western blot analysis. The PC12 cells, treated as described 
above, were homogenized in radioimmunoprecipitation 
assay buffer (Beyotime Institute of Biotechnology, Shanghai, 
China) containing phenylmethylsulphonyl fluoride (1 mM) for 
30 min 4˚C and the supernatants was obtained by centrifu-
gation at 5,000 x g for 10 min at 4˚C. Protein concentrations 
were determined using a bicinchoninic acid protein assay kit 
(Beyotime Institute of Biotechnology). Equivalent quantities 
of protein (50 µg) were separated by SDS‑PAGE on a 12% gel. 
The proteins were then transferred onto polyvinylidene fluo-
ride membranes, and the membranes were blocked with 5% 
skim milk in Tris‑buffered saline containing 0.1% Tween‑20 
(TBST) for 2 h at room temperature. The membranes were 
then incubated with primary antibodies specific for blocking 
solution, containing primary antibodies against SIRT‑1 
(1:2,000), GRP78 (1:2,000), cleaved caspase‑12 (1:2,000) and 
β‑actin (1:5,000) overnight at 4˚C. Following washing with 

TBST three times, the membranes with SIRT‑1 were incubated 
in peroxidase‑conjugated affinipure goat anti‑mouse IgG 
(1:5,000) and others were incubated in anti‑rabbit secondary 
antibodies (1:5,000) in blocking solution for 2 h at 25˚C and then 
washed in TBST buffer. The bands of protein were visualized 
using an enhanced chemiluminescence reaction solution (solu-
tion 1:0.1 M Tris‑HCl, luminol and p‑coumaric acid; solution 
2:0.1 M Tris‑HCl and hydrogen peroxide) for 2 min, and quan-
tified using an image analysis system equipped withBIO‑1D 
software (v4.62; VilberLourmat, Marne‑la‑Vallée, France).

Statistical analysis. Data are expressed as the mean ± stan-
dard error of the mean. The significance of differences in 
different groups was assessed using one‑way analyses of 
variance followed by the least significant difference test using 
SPSS version 19.0 (IBM Corp., Armonk, NY, USA). P<0.05 
was considered to indicate a statistically significant difference.

Results

Homocysteine induces ER stress in PC12 cells. To inves-
tigate whether homocysteine induces ER stress in PC12 
cells, the present study measured the expression levels of 
ER stress‑related proteins, including GRP78 and cleaved 
caspase‑12, in homocysteine‑treated PC12 cells using western 
blot analysis. It was found that treatment with homocysteine 
(1.25, 2.5 or 5 mM for 24 h) significantly increased the expres-
sion levels of GRP78 (Fig. 1A) and cleaved caspase‑12 (Fig. 1B) 
in the PC12 cells, which indicated that homocysteine‑induced 
ER stress in the PC12 cells.

H2S protects PC12 cells from homocysteine‑induced ER 
stress. To determine whether H2S protects PC12 cells against 
homocysteine‑induced ER stress, the present study examined 
the effects of H2S on the protein levels of GRP78 and cleaved 
caspase‑12 in homocysteine‑exposed PC12 cells. As shown 
in Fig. 2, cotreatment of the PC12 cells with NaHS (200 or 
400 µM) significantly downregulated the expression levels of 
GRP78 (Fig. 2A) and cleaved caspase‑12 (Fig. 2B), compared 
with the cells treated with 5 mM of homocysteine for 24 h. 
This indicated that H2S had a protective effect in homocys-
teine‑induced ER stress.

H2S upregulates the expression of SIRT‑1 in PC12 cells. As 
shown in Fig. 3A, treatment with homocysteine (1.25, 2.5 or 
5 mM, for 24 h) significantly decreased the expression levels 
of SIRT‑1 in the PC12 cells, which indicated that homocysteine 
downregulated the protein expression of SIRT‑1 in PC12 cells. 
Treatment with NaHS at concentrations of 200 and 400 µM 
for 24 h dose‑dependently increased the expression of SIRT‑1 
in the PC12 cells (Fig. 3B), and also significantly increased 
the expression of SIRT‑1 in the homocysteine‑exposed (5 mM 
for 24 h) PC12 cells (Fig. 3C), which indicated the promoting 
effect of H2S on the expression of SIRT‑1 in PC12 cells.

Inhibition of SIRT‑1 eliminates the beneficent effect of H2S 
against homocysteine‑induced ER stress in PC12 cells. To 
further investigate whether the protective effect of H2S on 
homocysteine‑induced ER stress in PC12 cells was through 
the upregulation of SIRT‑1, the present study used sirtinol, 
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a specific inhibitor of SIRT‑1, to examine the effect of H2S 
on ER stress under homocysteine treatment. The PC12 cells 
were pretreated with sirtinol (15 µM) for 30 min prior to 

the administration of NaHS (200 µM). The results demon-
strated that sirtinol (15 µM) treatment inhibited the NaHS 
(200 µM)‑induced suppression of GRP78 (Fig. 4A) and 

Figure 1. Hcy increases the protein expression levels of GRP78 and cleaved caspase‑12 in PC12 cells. PC12 cells were treated with Hcy (1.25, 2.5 and 5 mM) 
for 24 h. The protein expression levels of (A) GRP78 and (B) cleaved caspase‑12 in PC12 cells were measured using western blot analysis. β‑actin was used 
as a loading control. The results were normalized to the percentage of β‑actin and expressed as the fold of the control group. Values are expressed as the 
mean ± standard error of the mean of three independent experiments. *P<0.05 and **P<0.01, compared with the control group. Hcy, homocysteine; GRP78, 
glucose‑regulated protein 78; cas‑12, caspase‑12.

Figure 2. NaHS decreases endoplasmic reticulum stress in homocysteine‑treated PC12 cells. Following cotreatment with NaHS (200 or 400 µM) and homocys-
teine (5 mM) for 24 h, the protein expression levels of (A) GRP78 and (B) cleaved caspase‑12 in PC12 cells were detected using western blot analysis. β-actin 
was used as a loading control. The results were normalized to the percentage of β‑actin and expressed as the fold of the control group. Values are expressed 
as the mean ± standard error of the mean of three independent experiments. **P<0.01 and ***P<0.001, compared with the control group; #P<0.05, ##P<0.01 and 
###P<0.001, compared with the Hcy only group. Hcy, homocysteine; NaHS, sodium hydrosulfide; GRP78, glucose‑regulated protein 78; cas‑12, caspase‑12.
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Figure 4. Sirtinol, a specific SIRT‑1 inhibitor, reverses hydrogen sulfide‑induced endoplasmic reticulum stress in Hcy‑treated PC12 cells. PC12 cells were 
pre‑incubated with sirtinol (15 µM) for 30 min prior to cotreatment with NaHS (400 µM) and Hcy (5 mM) for 24 h. The protein expression levels of (A) GRP78 
and (B) cleaved caspase‑12 in PC12 cells were measured using western blot analysis, respectively. β‑actin was used as a loading control. The results were 
normalized to the percentage of β‑actin and expressed as the fold of the control group. Values are expressed as the mean ± standard error of the mean of three 
independent experiments. **P<0.01, compared with the control group; ##P<0.01, compared with the Hcy only group; $$P<0.01, compared with the NaHS and Hcy 
cotreatment group. Hcy, homocysteine; NaHS, sodium hydrosulfide; SIRT‑1 silent mating type information regulator 2 homolog 1; GRP78, glucose‑regulated 
protein 78; cas‑12, caspase‑12.

Figure 3. NaHS increases the protein expression of SIRT‑1 in PC12 cells. (A) PC12 cells were incubated with Hcy (1.25, 2.5 or 5 mM) for 24 h. (B) PC12 cells 
were pretreated with NaHS (100, 200 or 400 µM) for 24 h. (C) PC12 cells were co‑treated with NaHS (200 or 400 µM) and Hcy (5 mM) for 24 h. The protein 
expression levels of SIRT‑1 in PC12 cells were assessed using western blot analysis. β‑actin was used as a loading control. The results were normalized to 
the percentage of β‑actin and expressed as the fold of the control group. Values are expressed as the mean ± standard error of the mean of three independent 
experiments. **P<0.01, compared with the control group; ##P<0.01, compared with the Hcy only group. Hcy, homocysteine; NaHS, sodium hydrosulfide; SIRT‑1 
silent mating type information regulator 2 homolog 1.
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cleaved caspase‑12 (Fig. 4B) in the homocysteine‑exposed 
PC12 cells. Treatment with sirtinol alone did not affect the 
expression of these two proteins. These results indicated that 
the inhibition of SIRT‑1 eliminated the protective effect of H2S 
against homocysteine‑induced ER stress.

Discussion

In our previous study, it was demonstrated that H2S had a 
protective effect against homocysteine‑induced neurotox-
icity (25). In addition, the involvement of abnormal ER stress 
has been shown to be prominent in the neurotoxicity of homo-
cysteine (15,16). Therefore, the present study was designed to 
investigate whether the protective role of H2S in the neurotox-
icity of homocysteine was associated with regulating neuronal 
ER stress, and the underlying mechanisms were investigated. 
The main findings of the present study were as follows: i) H2S 
markedly inhibited homocysteine‑induced ER stress in the 
PC12 cells; ii) H2S enhanced the protein level of SIRT‑1 in the 
presence or absence of homocysteine treatment; and iii) sirtinol, 
an inhibitor of SIRT‑1, eliminated the inhibitory effect of H2S 
on homocysteine‑induced ER stress. These findings suggested 
the protective role of H2S against homocysteine‑induced ER 
stress by enhancing the expression of SIRT‑1.

Increasing evidence has confirmed the neurotoxic effects 
of homocysteine (37-40), which are associated with ER 
stress (15,16). It is known that GRP78 is an ER‑chaperone protein 
involved in the modulation of ER dynamic homeostasis (41,42). 
Pro‑caspase‑12 is located on the cytoplasmic region of ER and 
is proteolytically activated during excess ER stress (43-45). 
GRP78 and caspase‑12 are two important markers of ER stress. 
In the present study, the effects of homocysteine on the protein 
expression levels of GRP78 and cleaved caspase‑12 in PC12 cells 
were examined. It was demonstrated that homocysteine upregu-
lated the protein levels of GRP78 and cleaved caspase‑12 in the 
PC12 cells. These results indicated that homocysteine was able 
to elevate ER stress in the PC12 cells. It is known that ER stress 
is involved in the pathogenic effects of homocysteine in several 
diseases, including cardiovascular disease (46), apoptosis of 
osteoblastic cells (47), insulin resistance of adipose tissue (48), 
and type 2 diabetes mellitus (49). Therefore, ER stress may be 
a common intermediate pathway in the homocysteine‑induced 
pathogenic effects in tissues and cells.

H2S is a protective gaseous signaling molecule. In our 
previous study, it was demonstrated that H2S prevented 
homocysteine‑induced neurotoxicity in PC12 cells (25). To 
improve current understanding of the protective role of H2S 
in the neurotoxicity of homocysteine, the present study inves-
tigated whether H2S suppresses the homocysteine‑induced 
upregulatory effect on the expression levels of GRP78 and 
cleaved caspase‑12. The results showed that NaHS (the donor 
of H2S) downregulated the expression levels of GRP78 and 
cleaved caspase‑12 in the homocysteine‑exposed PC12 cells, 
which indicated that H2S was able to suppress homocys-
teine‑induced ER stress. Previous studies have demonstrated 
that H2S prevents ER stress in doxorubicin‑induced cardiotox-
icity (50) and 6‑hydroxydopamine‑induced neurotoxicity (51). 
These previous findings offer a reasonable explanation 
for the results obtained in the present study. Furthermore, 
Wei et al (46) revealed the protective effect of H2S against 

homocysteine‑induced cardiomyocytic ER stress. In the present 
study, the inhibitory role of H2S in homocysteine‑induced ER 
stress was further confirmed in the PC12 cells. Therefore, the 
regulation of ER stress offers insights into the protective effect 
of H2S against homocysteine neurotoxicity.

The present study also examined the possible underlying 
signaling mechanisms for the protective effect of H2S against 
homocysteine‑induced ER stress. SIRT‑1is involved in lifespan 
modulation (52-54) and orchestrates diverse biological processes, 
including cell survival, differentiation and metabolism (55,56). 
SIRT‑1 is considered to be a vital modulator of cellular defenses 
and survival in response to stress (57,58). SIRT‑1 is also 
expressed in the brain. Accumulating evidence has indicated that 
the upregulation of SIRT‑1 rescues neurons in acute and chronic 
neurological diseases (28,31,59). It has also been found that 
impaired SIRT1‑deacetylation induces ER stress (60) and that 
the overexpression of SIRT‑1 attenuates ER stress (35,36). This 
suggests that SIRT‑1 is important in counteracting ER stress, 
therefore, the present study focused on the effect of homocysteine 
on the expression of SIRT‑1, and the role of H2S in the expression 
of SIRT‑1 in PC12 cells treated with or without homocysteine. 
The results showed that the expression of SIRT‑1 was downregu-
lated in the homocysteine‑exposed PC12 cells, which indicated 
the involvement of downregulated SIRT‑1 in the increase of ER 
stress induced by homocysteine. In addition, NaHS was found 
to increase the protein expression of SIRT‑1 in PC12 cells. It 
was also found that NaHS inhibited the homocysteine‑induced 
decrease in the protein expression of SIRT‑1 in PC12 cells. These 
results suggested that the upregulation of SIRT‑1 contributed to 
the beneficent effects of H2S on homocysteine‑induced ER stress. 
To confirm whether SIRT‑1 mediates the protective effect of 
H2S against homocysteine‑induced ER stress, the present study 
examined whether the inhibition of SIRT‑1 eliminates the protec-
tive effect of H2S against ER stress induced by homocysteine. 
The results confirmed that the inhibition of SIRT‑1 inhibited the 
reversal effect of H2S on the homocysteine‑increased protein 
expression of GRP78 and cleaved caspase‑12 in PC12 cells. 
Taken together, these results suggested that the upregulation 
of SIRT‑1 mediated the H2S‑induced protective effects against 
homocysteine‑induced ER stress.

In conclusion, the present study demonstrated that H2S was 
able to overcome homocysteine‑induced ER stress and increases 
in the protein expression of SIRT‑1 in PC12 cells. Inhibiting 
SIRT‑1 reversed the protective effect of H2S against ER stress 
elicited by homocysteine in PC12 cells. These results suggested 
that H2S had the ability to inhibit homocysteine‑induced ER 
stress and that the upregulation of SIRT‑1 mediated this protec-
tive effect of H2S. These findings shed light on the molecular 
mechanism underlying the protective role of H2S in the neuro-
toxicity of homocysteine. Homocysteine is an independent risk 
factor for AD (3-7) and ER stress is a crucial process in the 
pathogenesis of AD (12-14). Therefore, the results of the present 
study suggested that positive intervention of SIRT‑1 may have 
profound therapeutic benefits against homocysteine‑dependent 
neurodegenerative diseases.
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