Hydrogenation of Single Walled Carbon Nanotubes

Anders Nilsson

Stanford Synchrotron Radiation Laboratory (SSRL) and Stockholm University

Coworkers and Ackowledgement

A. Nikitin¹⁾, H. Ogasawara¹⁾, D. Mann²⁾, Z. Zhang³⁾, X. Li³⁾, H. Dai²⁾, KJ Cho³⁾

¹⁾ Stanford Sync hrotron Radiation Laboratory

- ²⁾ De partment of Chemistry, Stanford University
- ³⁾ De partment of Mechanical Engine ering, Stanford University

Physical Review Letters 95, 225507 (November 2005)

Highlights:

http://www-ssrl.slac.stanford.edu/research/highlights_archive/swcn.html http://www-als.lbl.gov/als/science/sci_archive/129nanotube.html

FUNDING:

Global Climate & Energy Project STANFORD UNIVERSITY

Chemisorption of H atoms on Carbon Nanotubes

Idea: to store hydrogen in the chemisorbed form on the nanotube surface

Investigation strategy

Hydrogenation: in situ atomic hydrogen treatment

- elimination of H₂ dissociation step from hydrogenation process
- well controlled environment (base pressure < 1 10⁻⁹ Torr)

Samples: "as grown" CVD SWCN films

- low defect / amorphous carbon concentration (small D to G band intensity ration)
- low concentration of contamination (*in situ* annealing up to 900 C)

Probing tools: X-ray photoelectron spectroscopy (XPS) and X-ray adsorption spectroscopy (XAS)

- XPS and XAS allow to observe the formation of C-H bonds through the modification of the carbon nanotube electronic structure around specific carbon atoms

Probing tools

X-ray photoelectron spectroscopy (XPS)

C1s XPS spectra of n-octane and graphite (Weiss et al., 2003, Bennich et al., 1999)

X-ray absorption spectroscopy (XAS)

Carbon K-edge XAS spectra of graphite and diamond (Garo et al., 2001)

Hydrogenation induced changes in XAS and XPS spectra

C1s XPS spectra of the clean and Carbon K-edge XAS spectra of hydrogenated SWCN films clean and hydrogenated SWCN films decrease of π^* resonance peak due to C-H bond formation clean SWCN C1s XPS C1s XAS H treated SWCN σ* π* chemical shift of C1s peak due to C-H bond formation C-H* increase of resonance peak due to **C-H bond formation** clean SWCN H treated SWCN 286 284 287 285 283 285 290 289 288 282 280 295 300 photon energy (eV) binding energy (eV)

The hydrogenation degree determination from XPS spectra

Decomposition of C1s XPS for hydrogenated SWCN film

(n,m) D, nm Shift, eV

(a)	(10,0)	0.78	0.65
(b)	(12,0)	0.94	0.77
(c)	(15,0)	1.16	0.74
(d)	(22,0)	1.72	0.76

Hydrogenation = $I_{peak 2}/(I_{peak 1}+I_{peak 2})*100$ at %

Samples

"as grown" chemical vapor deposition (CVD) SWCN films

- prominent RBM band relatively narrow SWCN diameter distribution
- •small D to G band intensity ration low defect/ amorphous carbon concentration
- most of SWCN are in the bundles

The influence of SWCN diameter on hydrogenation process

Hydrogenation sequence of SWCN, type 1 Hydrogenation sequence of SWCN, type 2

For the SWCN, type 2 under H treatment **etching of the material** starts before reaching high degree of hydrogenation in comparison with SWCN, type 1

The influence of SWCN diameter on hydrogenation process

•theoretical prediction of H induced "unzipping" for the small (d < 1.2 nm) SWCN (Lu et al PRB 68, 205416)

•experimentally observed selective H⁺ plasma etching for different types of SWCN (Zhang et al JACS 2006, 128, 6026)

For SWCN with **different diameters** H induced etching of the material starts at **different degree of hydrogenation**

The morphology of SWCN film

SEM picture of studied film

TEM picture of SWCN bundle

(Terrones et al Science 228, 1226)

0.31 nm [•]

"wall-to-wall" distance ~0.31 nm

How does bundling morphology influence on hydrogenation ?

The hydrogenation depth of SWCN film

Hydrogenation sequence for SWCN, type 1 measured at different excitation energies

Hydrogenation is **not uniform** across the SWCN bundle

Structure of XPS C1s spectrum for highly hydrogenated SWCN

Hydrogenation sequence of SWCN, type 1

The electron screening in photoionization process

The presence of delocalized electrons in the system leads to the **different final state** in the photoionization process and **peak shift** in the XPS spectrum

The electron screening in hydrogenated SWCN

Hydrogenation induced band gap increase in SWCN

Calculated DOS of clean (12,0) SWCN

Calculated DOS of hydrogenated (12,0) SWCN

Hydrogenated SWCN with intercalated K

C1s XPS spectra of hydrogenated SWCN with (right) and without (left) intercalated $\ensuremath{\mathsf{K}}$

Calculated Values of the C1s shift due to the influence of the delocalized electron donated by adsorbed K atom

atom	shift, eV	
C ₁	-0.483	(
C_2	-0.403	
$\overline{C_3}$	-0.372	
C_4	-0.739	

The hydrogenation degree of SWCN

Decomposition of C1s XPS for hydrogenated SWCN film

The interaction of atomic H with SWCN

Hydrogenation sequence of SWCN, type 1

1. uniform hydrogenation of SWCN bundle up to 50 - 60 at %

2. almost 100 at % hydrogenation of outer SWCN in the bundle

3. etching of outer 100% hydrogenated SWCN in the bundle

Hydrogen desorption temperature

C1s XPS spectra measured during annealing of H treated SWCN, type 1

Hydrogen desorption is observed in the range from 300 °C to 600 °C

Hydrogenation cycling

C1s XPS spectra of SWCN, type 1 exposed to two cycles of hydrogenation / dehydrogenation

Hydrogenation cycling

Hydrogenation leads to the increase of the defect number in SWCN

Refining H-SWCN interaction

• to exclude the SWCN bundle influence on the observed results and to figure out the diameter range of SWCN which are stable at high degree of hydrogenation

Step 1: to perform XAS and XPS spectroscopic study of H interaction with SWCN material using SWCN monolayers with known diameter distribution using AFM

The AFM image of SWCN monolayer prepared by Langmuir - Blodgett technique

Control of thermodynamics

• technologically acceptable temperature range of H release is from 70 °C to 120 °C.

Step 2: to perform TP XPS measurements of fully hydrogenate SWCN films with two different diameter distribution.

Activation barrier?

Dependence of the C-H bond energy on the size of the SWCN according to the numerical modeling (KJ Cho, 2003).

Structural changes

- the role of defects in the SWCN hydrogenation process
- nanotube coalescence due to induced defects
- presence of CH₂ groups in hydrogenated SWCN

Step 3: to study SWCN material during several cycles of hydrogenation/ dehydrogenation using IR and Raman spectroscopies and STM

The defect induced coalescence of SWCN (Nikolaev, 1997, Terrones, 2000)

Dissociation of molecular hydrogen

• hydrogenation of SWCN with molecular hydrogen

Hydrogenation via spillover mechanism (A.Lueking, 2002, A.Lueking, 2004)

Step 4: to study *in-situ* the interaction of SWCN with metals (Pt, Pd, Ni etc) capable to catalytically split H₂

Step 5: to study interaction of H₂ with SWCN - metal complexes.

Increased capacity

• chemisorption of hydrogen in Li-SWCN network

Step 6: to perform spectroscopic study of H interaction with SWCN with intercalated Li

- binding energy of H 0.457 eV
- dissociation barrier for H_2 around 0.529 eV
- molecular hydrogen adsorption on Ti-SWCN complex

Step 7: to perform spectroscopic study of H₂ interaction with Ti-SWCN complexes

Theoretical model of $C_4 \text{TiH}_8$ with 7.7 wt% of H storage capacity (T. Yildirim, 2005)

Conclusions

• SWCN with different diameters can reach different hydrogenation degree before "unzipping" and etching

•for specific SWCN it is possible to hydrogenate **almost 100 at %** of the carbon atoms in the walls to form C-H bonds which corresponds to **7.7 weight %** of hydrogen capacity

 the hydrogenated SWNT are stable from ambient temperature to 300 °C

hydrogenation/dehydrogenation process can be
cycled.