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This paper describes the hydrographic observations in the southeastern Arabian Sea (SEAS) during
two cruises carried out in March–June 2003 as part of the Arabian Sea Monsoon Experiment. The
surface hydrography during March–April was dominated by the intrusion of low-salinity waters
from the south; during May–June, the low-salinity waters were beginning to be replaced by the high-
salinity waters from the north. There was considerable mixing at the bottom of the surface mixed
layer, leading to interleaving of low-salinity and high-salinity layers. The flow paths constructed
following the spatial patterns of salinity along the sections mimic those inferred from numerical
models. Time-series measurements showed the presence of Persian Gulf and Red Sea Waters in
the SEAS to be intermittent during both cruises: they appeared and disappeared during both the
fortnight-long time series.

1. Introduction

The southeastern Arabian Sea (SEAS) became
the focus of the second phase of the Arabian
Sea Monsoon Experiment (ARMEX) (Anonymous
2001) because it hosts the core of the warm pool
that engulfs the north Indian Ocean prior to
the onset of the summer monsoon (Joseph 1990;
Vinayachandran and Shetye 1991; Anonymous
2001). It had been hypothesised that the warm
pool plays an important role in the process of mon-
soon onset over the Indian sub-continent (Joseph
1990; Shenoi et al 1999; Rao and Sivakumar 1999).
To study the processes that lead to the formation of
the core of the warm pool, two month-long cruises
were carried out on board ORV Sagar Kanya dur-
ing March–April and May–June 2003. The first
cruise, SK-190, was conducted during 14th March

to 10th April (28 days) and the second cruise, SK-
193, during 15th May to 19th June (36 days).

A total of 547 profiles of temperature and salin-
ity were collected using a CTD (SeaBird SBE 9/11
Plus) during the two cruises; see figure 1 for the
cruise tracks and table 1 for a summary of the
observations. Five sections – two cross-shore sec-
tions (A and C), one alongshore section on the
continental slope (D), one meridional section along
71◦45′E (B), and one zonal section along 7◦54′N
(E) – were covered during SK-190; sections A–D
were covered at the beginning of the cruise, and
section E at the end. Two cross-shore sections (C, a
repeat of the SK-190 section C, and G, a repeat of
the section made off Goa during the summer mon-
soon of 2002 (Shankar et al 2005)) and one long
alongshore section (F) were covered during SK-193;
section C (sections F and G) was (were) covered
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Figure 1. Map showing the hydrographic stations occupied
during 14th March to 10th April 2003 (sections A to E; open
triangles), and during 15th May to 19th June 2003 (sec-
tions C and F; open circles). Section C was repeated during
both cruises (triangles overlap the circles). The time series
location occupied for about 15 days during both cruises is
marked as TSL.

Table 1. Days on which the sections and time series were
covered. Some stations on the sections are common to two
sections; hence, the number of profiles shown in figures 2 and
3 may differ from the number of stations listed below. The
time-series location (TSL) lies on section C.

Section/ Number
time series of

Cruise location profiles Start date End date

A 8 14/03/03 15/03/03

B 5 16/03/03 17/03/03

C 5 18/03/03 19/03/03

D 5 20/03/03 22/03/03

E 5 08/04/03 09/04/03

TSL 179 23/03/03 07/04/03

SK-190
(14th March–
10th April
2003)

�
��������
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C 6 21/05/03 22/05/03

F 10 07/06/03 14/06/03

G 7 15/06/03 16/06/03

TSL 173 22/05/03 07/06/03

SK-193
(15th May–
19th June
2003)

�����
����

near the beginning (end) of the cruise. About half
the time during each cruise, however, was devoted
to a fortnight-long, two-hour-interval time series
at 74◦30′E, 9◦13′N. The time-series location (TSL)
was selected after examining a climatology of sea
surface temperature (SST) constructed from the
weekly data set of Reynolds and Smith (1994) to
ensure that the time series would sample the core
of the warm pool (Shenoi et al 1999; Rao and
Sivakumar 1999; Anonymous 2001) while staying
clear of the regime of coastal dynamics: the TSL is

about 220 km offshore; this is more than the local
Rossby radius of deformation.

Part of the time-series data have already been
analysed to delineate the processes leading to the
formation and collapse of the warm pool (Shenoi
et al 2004, 2005). We first describe the hydrography
and circulation in the upper ocean (section 2) and
then the deeper water masses (section 3). Section
4 concludes the paper.

2. Hydrography and circulation

in the upper ocean

In this paper, we define the upper ocean to be lim-
ited to the regime of influence of the high-salinity
Arabian Sea High Salinity Water (ASHSW) and
the low-salinity Bay of Bengal Water (BBW). We
first describe the hydrography and circulation as
seen in the sections; then we describe the time-
series observations.

2.1 Sections

Vertical sections of temperature and salinity for
SK-190 are shown in figure 2. There was no sign
of coastal upwelling in sections A and C in mid-
March; weak upwelling in the top 100 m was evi-
dent in section E in early April. The low-salinity
surface layer was thicker (∼40m) in the south (sec-
tions C and E) than in the north (∼15m in sec-
tion A). The surface salinity increased poleward
(compare sections C and E with section A). This
was also evident in sections B and D, there being
an abrupt change in salinity at 10◦N in the for-
mer. The increase in salinity is particularly rapid
near the northern limit of section B; a similar tran-
sition around 13◦N is seen in an analogous section
during March 1977 (Babu et al 1980). The high-
salinity layer below the surface low-salinity layer
was thicker and saltier in the north. These patterns
are consistent with the idea of low-salinity BBW
intruding into the SEAS during winter (see, for
example, Wyrtki 1971; Shenoi et al 2004; Shankar
et al 2004).

There was also strong cross-shore variation in
salinity on these sections. The surface salinity was
lowest at the eastern and western ends of sections
A and C, appearing as two low salinity blobs (fig-
ure 2). Two blobs of low salinity were seen in sec-
tion E also, one in the middle of the section and
the other at the offshore end. However, except in
section A, where it is spread across the section, the
high-salinity water below the low-salinity surface
layer hugs the coast.

Vertical sections of temperature and salinity
for SK-193 are shown in figure 3. By mid-May,
upwelling had strengthened along section C; the



Hydrography of southeastern Arabian Sea 477

Figure 2(a). Vertical sections of temperature (◦C) and salinity (PSU) during March–April 2003. (a) Section A, (b) section
B, (c) section C, (d) section D, and (e) section E. The inverted triangles mark the station locations. Note the change in
vertical scales.

isotherms bent up from 120 m and the 30◦C
isotherm surfaced near the coast from 50 m. In
general, water warmer and saltier compared to
March, occupied the top 200 m along section C.
The surface isothermal (isohaline) layer was also
warmer (saltier) than in March by one unit. The
intense upwelling brought up the high-salinity core,
which was at 85 m in March (figure 2), to 40 m
(figure 3). Contrary to the observation of lowest
surface salinities on either ends of section C in

March, the highest surface salinities were observed
on the ends, with waters of lower salinity in the
middle.

The alongshore section (section F) showed very
little variation in temperature in the isothermal
layer (figure 3). As expected, the salinity increased
from south to north. The increase was prominent
above ∼60m. The lowest salinity (< 35.8PSU)
occurred in pockets in the south, one near 11◦N and
the other near 9◦N. As in the alongshore section
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Figure 2(b). (Continued)

during August 2002 (Shankar et al 2005) and in
the section during March 1977 (Babu et al 1980),
the strongest salinity gradient was around 13◦N.

The spatial distribution of salinity, with a ten-
dency for low (high) salinity waters to hug the
extremes of the sections during March (May–June),
with high (low) salinity in the middle, is con-
nected to the flow field that results from the annual
cycle of sea level in the SEAS (figure 4). In early
December, an equatorward East India Coastal Cur-
rent (EICC) sets along the east coasts of India
and Sri Lanka. The EICC feeds the westward

Winter Monsoon Current (WMC) south of Sri
Lanka which ultimately feeds into the poleward
WICC along the west coast of India (Shankar
et al 2002), bringing low-salinity water from the
northern Bay of Bengal into the SEAS (Shetye
et al 1991; Han and McCreary 2001). Model stud-
ies show that these currents are associated with
a downwelling Kelvin wave triggered along the
Indian east coast with the collapse of the summer
monsoon (McCreary et al 1993, 1996; Shankar et al
2002). The Kelvin wave turns around Sri Lanka to
propagate poleward along the Indian west coast,
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Figure 2(c). (Continued)

radiating westward propagating Rossby waves and
leading to the formation of the Lakshadweep High
(LH) in the SEAS (Bruce et al 1994, 1998; Shankar
and Shetye 1997). As the LH extends and prop-
agates westward, sometime during February, the
high sea level pinches off the coast and a clockwise
circulation develops around it with a poleward flow
on the western side and an equatorward flow on the
eastern side. Later, in June, the LH is replaced by
the Lakshadweep Low (LL). Embedded in the LH
and LL are smaller eddies (figure 4). The schematic
in figure 5 depicts the evolution of circulation in

the SEAS. The WMC, the WICC, and the LH and
LL contribute to and alter the flows in the SEAS,
and, as a consequence, the spatial distribution of
salinity. The salinities along section C were lower
than those along section A because of the advection
from the south. Noteworthy however, is that the
lowest salinity along these sections occurred at the
eastern and western ends (figure 2). Along sec-
tion B, salinity was low in the south, but increased
abruptly north of 10◦N. Along section D, the low-
est salinity was seen at 10◦N. This observation
can be explained qualitatively by linking it with
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Figure 2(d). (Continued)

the schematic for March (figure 5). A schematic of
flow paths constructed based on the spatial pattern
of salinity is shown in figure 6. The WICC that
carried the low-salinity waters poleward along the
coast initially in November, along with the part of
the flow that winds around the LH to flow equator-
ward on its eastern flank, lowers the salinity at the
eastern end of section A. This equatorward flow at
the coast, which develops once the high sea level
pinches off the coast, also lowers the salinity at sta-
tions on section D and at stations on the eastern

end of section C. The WMC that branched off on
the west of the LH lowers salinities at stations on
the southern end of section B and at the western-
most stations on section C (see the tracer snap-
shots in the numerical simulations of Bruce et al
1994 and Plate 3a in Han and McCreary 2001).
The converse holds during the summer monsoon,
with high-salinity blobs replacing the low-salinity
blobs observed during the winter monsoon because
the circulation around the LL is opposite to that
around the LH (Shankar and Shetye 1997).
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Figure 2(e). (Continued)

2.2 Time series

Time-series measurements of temperature and
salinity at the TSL are shown in figure 7. Since the
measurements were made at 2-hour intervals, the
effects of internal waves at diurnal and semi-diurnal
tidal frequencies are prominent. The harmonic
analysis (Anonymous 1996) for the temperature
field (figure 8) shows that for SK-190 (SK-193)
the amplitudes of the semi-diurnal components M2

and S2 were about 0.4◦C and 0.3◦C (0.2◦C and

0.3◦C) at 100 m for SK-190 (SK-193); the corre-
sponding amplitudes of the diurnal components
O1 and K1 were 0.2◦C and 0.38◦C (0.45◦C and
0.5◦C). The most striking change from March–
April to May–June is in the decrease in the depth
range over which the components are significant
and the increase in the amplitude of the diur-
nal components. The former change is due to the
decrease in the depth of the surface mixed layer and
isothermal layer from March–April to May–June;
the amplitudes obtained for the tidal components
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Figure 3(a). Vertical sections of temperature (◦C) and salinity (PSU) during May–June 2003. (a) Section C and
(b) section F. The inverted triangles mark the station locations. Note the change in vertical scales.

depend on the stratification. The latter change is
more complicated because the analysis is incapable
of separating the diurnal variability due to the
tides from that due to the winds. A Fast Fourier
Transform (FFT) of the winds measured on board
shows that amplitude at the diurnal (semi-diurnal)
period increased by a factor of 2.4 (1.4) from the
first time-series to the second. That the winds also
exhibit a diurnal variation aliases the tidal signal
in the harmonic analysis. Though a more rigorous

analysis of the internal tides is beyond the scope
of this paper, it is worth noting that they con-
tribute to an error of 4–6 dyn-cm in the 0/1000
dynamic height, comparable to that observed far-
ther north during the summer monsoon of 2002
(Shankar et al 2005). This dynamic-height oscil-
lation due to internal tides is also comparable
to the dynamic height difference across the sec-
tions described above (considering only stations
deeper than 1000 m), implying a signal-to-noise



Hydrography of southeastern Arabian Sea 483

Figure 3(b). (Continued)

ratio of ∼1; hence, geostrophic computations have
not been shown for the sections.

The mean depth of the thermocline, identified
with the 25◦C contour, decreased from 105 m on
22nd March to 70 m on 7th April, and then to 60 m
on 7th June. The rate of upwelling accelerated on
a few occasions. One among them was during 3rd–
7th April; this upwelling burst was forced remotely
rather than by the local winds (Shenoi et al 2004).
The effects of this upwelling were, however, not felt
at the surface because of the high temperature of
the mixed layer (> 30◦C).

The temperature and salinity in the upper
layer (40 m) were much lower during March–April
than during May–June (figure 7). Salinities as
low as 34.0 PSU were found near the surface in
March–April. The intrusion of low-salinity water
in the surface layer displaced the native water, the
ASHSW (salinity > 36.0PSU). The low-salinity
BBW glided over the ASHSW and mixed with
it rapidly, leaving no discontinuity in salinity at
the bottom boundary of the upper layer; patches
of ASHSW, however, remained unmixed on 28th–
29th March and 2nd–3rd April (at ∼80m), when
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Figure 4. Maps of monthly mean winds, SST, and sea level anomaly in the SEAS during January to June 2003. The
satellite derived winds, Quikscat (ftp://ftp.ssmi.com), gridded at quarter-degree interval, were used to construct the monthly
mean winds (vectors, m s−1). Gridded (one-third degree interval) mean sea-level anomalies available from a LAS server
(http://las.aviso.oceanobs.com) were used to construct the monthly mean anomalies of sea level (colour fill, cm). Optimally
interpolated weekly SST (Reynolds and Smith 1994) available from ftp://podac.jpl.nasa.gov/pub/sea-surface-temperature/
reynolds/oisst/data was used to construct the monthly mean SST (contours, ◦C).

blobs of low-salinity water (∼34PSU) appeared
at the surface. In the absence of local rains
(no rain was recorded on board the ship or at
nearby coastal stations during the time series or
immediately before it), the possible causes are

advection or redistribution within the SEAS by
the smaller eddies that constitute the LH (see fig-
ure 4); it is unlikely that low-salinity BBW are
still brought into the SEAS during March–April
because the WMC weakens considerably by then
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Figure 5. Schematic showing the evolution of circulation in the SEAS during November–June. The acronyms are as follows:
EICC, East India Coastal Current; WMC, Winter Monsoon Current; WICC, West India Coastal Current; LH, Lakshadweep
(sea level) high and LL, Lakshadweep (sea level) low. In November, the EICC feeds into the WICC through the westward
WMC south of India. The shaded regions are where the ocean loses heat to the atmosphere owing to air–sea fluxes. The
westward radiation of Rossby waves, depicted by the wiggly arrow, leads to the formation of the LH by January. The LH
pinches off the coast by February; the WICC then flows equatorward off the southwest coast of India, forcing upwelling in
a narrow band hugging the coast, but it flows poleward along the rest of the west coast. By March, the LH spreads farther
west and a high in SST forms over the LH. In May, the WICC reverses its direction all along the west coast of India and
flows equatorward, bringing high-salinity water from the northern Arabian Sea. The upwelling that appeared near the coast
in February spreads farther west and results in the formation of the LL. The LL and the influx of high-salinity water from
the north hasten the annihilation of the barrier layer, leading to the collapse of the high in SST and the warm pool early
in June.

Figure 6. Schematic of flow paths constructed based on
the spatial distribution of salinity along the sections during
March–April 2003. Note the similarity in the flow paths with
the schematic for March in figure 5.

(Shankar et al 2002). The presence of the low-
salinity blobs increases stratification and inhibits
mixing. The mixing of these two water masses of
widely varying salinities left behind layers of saltier
water interlaced with fresher water at the bound-
aries of mixing. This is more evident in the TS
diagram, in which two maxima (at σt = 23 and
24.4 kg m−3), separated by a minimum, are seen
(figure 9a). Similar interleaving of water masses
was observed in a CTD time series in 100 m water
depth off Kochi during April 1991 and May–June
1992 (Hareeshkumar et al 1995; Hareeshkumar and
Mohankumar 1996); the appearance of pockets of

low-salinity water coincided in these time series
with reversals in the currents.

The May–June time series also showed lower
salinity in the upper layer (∼40m deep), but
the salinity was higher than during March–April.
The salinity increased abruptly on 26th May, and
remained more or less the same till 4th June, when
another abrupt increase in salinity occurred. The
second increase lasted only for two days. Simi-
lar changes occurred in the ASHSW layer that
existed below the low-salinity layer. The ASHSW
was present at shallower depths (∼50–60m) than
in March–April. Also seen again were the dou-
ble maxima (figure 9b; see also Kumar and
Prasad 1999) and the streaks of low-salinity water
interlaced with layers of high-salinity water. The
upper maximum, which coincides with the core
of ASHSW, is the more prominent of the two
(figure 9b).

3. Deep water masses

In this paper, we identify ‘deep water masses’
to be those below the regime of the near-surface
high-salinity ASHSW and low-salinity BBW. The
water masses known to occur between these sur-
face water masses and 1000 m are the Persian Gulf
Water (PGW) and Red Sea Water (RSW), which
are embedded in the Indian Central Water.

The temperature structure below 200 m was sim-
ilar for all sections during March–April (figure 2).
The salinity structure, however, showed patches of
higher salinity (35.4–35.6 PSU) hugging the shelf-
break and slope in the depth range 180–600 m. The
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Figure 7(a). Time series of vertical profiles of temperature (◦C) and salinity (PSU) during 22nd March–7th April (a) and
23rd May–7th June 2003 (b) at TSL (74◦30′E, 9◦13′N in the SEAS). The measurements were made every two hours. The
25◦C and 35.0 PSU contours are marked in the top panels. The contours in the bottom panels are marked every 1◦C and
0.1 PSU.

alongshore sections (sections B and D) also showed
such patches, but with a poleward increase in salin-
ity. The σt levels of these patches correspond
to 26.0–27.4 kg m−3, the range of the PGW
and RSW: the PGW (RSW) spreads between
the σt levels 26.3–26.5 kg m−3 (27.0–27.3 kg m−3)
(Rochford 1964; Shenoi et al 1993). During March–
April, the core of the RSW was at 27.15 kg m−3

(figures 2, 9, and 10). The PGW signal is more
prominent than the RSW. This was also true
during May–June on section C (figure 3).

PGW and RSW were also conspicuous at the
TSL during both cruises (figure 9). The PGW,
having temperature and salinity in the ranges
13–14◦C and 35.2–35.25 PSU, was present between
200 and 300 m and was centred at the σt surface
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Figure 7(b). (Continued)

26.4 kg m−3. Its temperature varied between 13
and 14◦C and salinity from 35.2–35.25 PSU. The
RSW, having temperature and salinity in the
ranges 10–12◦C and 35.2–35.3 PSU, was present
between 600 and 700 m and was centred at
σt = 27.15 kg m−3 during March–April. During
May–June, the core of the RSW was at
σt = 27.05 kg m−3, but RSW was also present at
its more normal level of σt = 27.20 kg m−3. Sig-
nals of the Arabian Sea Salinity Minimum (ASSM;
Shenoi et al 1993) and PGW were stronger during

May–June, when it was spread over a larger σt

range (24.50–25.75 kg m−3) between the depths
100 and 200 m (figure 7).

Like the ASHSW and BBW, the deep water
masses also exhibited considerable intermittency
(figure 9). Not all profiles at the TSL showed the
salinity maxima associated with PWG and RSW;
often, they showed even salinity minima at those
density levels. For example, the salinity maximum
associated with RSW concentrated between the σt

levels 27.05 and 27.25 was evident during 4th April
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Figure 8. Semi-diurnal (M2 and S2) and diurnal (O1 and K1) components of the temperature (◦C) field for the SK-190
(left) and SK-193 (right) time series.

2003 in the profiles made at 14:00, 16:00, and 18:00
hours (figure 10, the red curves), and it continued
to be seen till 6th April 22:00 hours (the green
curves for 6th April 18:00, 20:00, and 22:00 hours).
Subsequent profiles, starting from 00:00 hours on
7th April (figure 10, black curves), however, started
showing the disintegration of the maximum, lead-
ing to a minimum within a few hours (blue curves
at 07:00, 09:45, and 13:00 hours on 7th April).
This implies that the flow of RSW to the TSL
occurred intermittently rather than continuously;
also, there was considerable temporal variability
in the volume of RSW seen here. Similar inter-
mittency was seen in the PGW and ASSM (see
figure 9).

4. Discussion

Most of the features and the overall structure of
temperature and salinity across the sections were
similar to climatology (Levitus and Boyer 1994;
Levitus et al 1994; Rao and Sivakumar 2003),
except for the warmer (by ∼0.5◦C) and saltier
(by ∼0.5PSU) waters in the upper ocean observed
in the two cruises. The higher temperature and

salinity are not surprising because the summer
monsoon of 2002 saw one of the worst droughts
recorded in India (Gadgil et al 2002); a weak mon-
soon is known to leave the ocean warmer and
saltier, but also contributing was the delayed onset
of the summer monsoon in 2003 (Vinayachandran
2004). That the hydrography is in accordance with
climatology is also not surprising because the sea-
sonal cycle is known to be very strong and repe-
titive in this region (Banse 1968; Sharma 1968;
Johannessen et al 1981; Schott and McCreary
2001).

The CTD time-series measurements brought out
the considerable intermittency that is present in
the water-mass signals. The major water masses
of the Arabian Sea, ASHSW, PGW, and RSW,
were all observed at the TSL. On several occa-
sions (within a span of a few hours), however,
the salinity maximum associated with them was
replaced by a minimum and vice versa (figures 9
and 10). Such appearances and disappearances
cannot be associated with the variability due to
internal waves because the changes are neither
gradual nor periodic. These changes, which occur
in a short span of time, are due to the inter-
mittency in the appearance of water masses at
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Figure 9. Temperature–salinity (TS) diagram for all profiles collected at TSL during (a) 22nd March–7th April and
(b) 23rd May–7th June 2003.

the TSL. Similar intermittency can therefore be
expected in the rest of the SEAS and has also
been observed earlier on the continental shelf in the
SEAS (Hareeshkumar et al 1995) and in the rest
of the eastern Arabian Sea (Shankar et al 2005).
Hareeshkumar et al (1995) and Hareeshkumar and
Mohankumar (1996) noted that such pockets of
waters of different salinity coincided with reversals
in currents. Shankar et al (2005) argued that the
intermittency of the RSW in the eastern Arabian
Sea may be due to the occurrence of the RSW
even in the northwestern Arabian Sea in the form
of patches or lenses (Shapiro et al 1994; Beal et al
2000), which are advected to the northern end of
the Indian west coast; since the RSW moves south-
ward along the Indian west coast (Babu et al 1980;
Shankar et al 2005), an intermittent RSW signal
is not surprising in the SEAS. Since the PGW sig-
nal is much stronger farther north along the Indian
west coast because of the increasing proximity to
the source, this signal did not exhibit as much
intermittency as the RSW in the time-series obser-
vations of Shankar et al (2005); in the SEAS, how-
ever, the PGW signal is weaker, and shows much
more intermittency.

This intermittency, and that these water mass
layers are often thin, has implications. The earlier
technology of sampling with bottles was very likely

to miss the signal because the water samples were
collected only at certain depths. Hence, the often
20–40 m thick cores of the PGW or RSW between
200 and 700 m, where water samples were col-
lected usually at intervals of over 100 m, would
have missed the signal, and this is the likely rea-
son for the noted ‘absence’ of the PGW, and often
of the RSW, in the SEAS (Babu et al 1980; Shetye
et al 1990; Shenoi et al 1993; Prasad et al 2001);
some bottle casts, however, did show the presence
of RSW (Varkey et al 1979). Another salinity signal
that needed CTD measurements for its elucidation
is the interleaving of high and low-salinity layers
where the high-salinity ASHSW and low-salinity
BBW mix; these interleaved layers are also as thin
as 20 m (figure 7) and are subject to considerable
vertical movement owing to internal tides.

Does this mean that these signals will be cap-
tured only if the timing of sampling is right? A
larger data set will be required to answer such
questions, and to analyse this intermittent signal
for hidden periodicities. In conclusion, however,
we note that even though the ARMEX cruises
described here were designed to study the warm
pool and its possible role in monsoon onset, imply-
ing a focus on observations relevant to air–sea
interaction, the CTD time-series measurements,
the first such measurements in this region, will help
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Figure 10. TS diagram for some of the profiles collected at
TSL during March–April 2003. To highlight the variability
of RSW, only a part of the TS diagram is shown. The three
red curves represent the profiles at 14:00, 16:00 and 18:00
hours on 4th April, green curves profiles at 18:00, 20:00 and
22:00 hours on 6th April, black curves profiles at 20:00 and
22:00 hours on 6th April and at 00:00 hrs on 7th April,
and blue curves profiles at 07:00, 09:45, 13:00 hours on 7th
April.

to reinterpret some of the earlier observations on
deeper water masses.
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