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ABSTRACT

Soil moisture controls the partitioning of moisture and energy fluxes at the land surface and is a key variable
in weather and climate prediction. The performance of the ensemble Kalman filter (EnKF) for soil moisture
estimation is assessed by assimilating L-band (1.4 GHz) microwave radiobrightness observations into a land
surface model. An optimal smoother (a dynamic variational method) is used as a benchmark for evaluating the
filter's performance. In a series of synthetic experiments the effect of ensemble size and non-Gaussian forecast
errors on the estimation accuracy of the EnKF is investigated. With a state vector dimension of 4608 and a
relatively small ensemble size of 30 (or 100; or 500), the actual errors in surface soil moisture at the final update
time are reduced by 55% (or 70%; or 80%) from the value obtained without assimilation (as compared to 84%
for the optimal smoother). For robust error variance estimates, an ensemble of at least 500 members is needed.
The dynamic evolution of the estimation error variances is dominated by wetting and drying events with high
variances during drydown and low variances when the soil is either very wet or very dry. Furthermore, the
ensemble distribution of soil moisture is typically symmetric except under very dry or wet conditions when the
effects of the nonlinearities in the model become significant. As aresult, the actual errors are consistently larger
than ensemble-derived forecast and analysis error variances. This suggests that the update is suboptimal. However,
the degree of suboptimality is relatively small and results presented here indicate that the EnKF is a flexible
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and robust data assimilation option that gives satisfactory estimates even for moderate ensemble sizes.

1. Introduction

Near-surface soil moisture is a key variable in the at-
mospheric and hydrologic models that are used to predict
weather and climate. Since soil moisture controlsthe par-
titioning of moisture and energy fluxesat theland surface,
it has an important influence on the hydrologic cycle over
timescales ranging from hourly to interannual. Land sur-
face fluxes in turn affect the evolution of vertical buoy-
ancy in the atmospheric column and aso affect the bar-
oclinicity that develops in the horizontal plane (Pan et
al. 1995; Paegle et a. 1996). The formation and growth
of clouds aswell asthe evolution of precipitating weather
systems over land are affected by surface fluxes and sur-
face soil moisture (Shaw et al. 1997). In fact, the time-
scale of soil moisture anomalies is at least on the order
of severa days, which is the forecast-lead horizon of
operational weather forecasts.

At seasonal to interannual timescales, predictability
of climatic variables such as precipitation is dependent
on the land surface boundary conditions of the climate
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system. Koster et al. (2000) show that over the United
States and other large continental regions soil moisture
rivals sea surface temperature in explaining the variance
in seasonal precipitation anomalies. Increasingly soil
moisture and the memory associated with it are rec-
ognized to have important roles in the feedback mech-
anisms that intensify and prolong climate anomalies.

Despite the importance of soil moisture in weather
and climate prediction there are currently no operational
networks of in situ sensors that provide data suitable
for these applications. Since such networks are logis-
tically infeasible and prohibitively expensive, the focus
has turned to remote sensing techniques that provide
additional information about the land surface at large
scales. In particular the L-band (1.4 GHz) microwave
brightness temperature of the land surface is correlated
with surface soil moisture because of the sharp contrast
between the dielectric constants of water and soil min-
erals (Njoku and Entekhabi 1995).

Interpretation of remotely sensed passive and active
microwave measurements is complicated by the effects
of canopy microwave optical thickness, surface micro-
roughness, and physical temperature. Remote sensing
measurements are only one of many data sources that
provide valuable information about soil moisture. Pre-
cipitation, soil texture, topography, land use, and a va-
riety of meteorological variables influence the spatial
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distribution and temporal evolution of soil moisture. We
can gain additional information from a coupled model
of the soil-vegetation—atmosphere system that relates
the measured variables to one another and to soil mois-
ture. Yet uncertainties in the forcing data, the hetero-
geneity of the land surface at various scales, and the
nonlinear nature of land—atmosphere interactions limit
our ability to accurately model and predict the state of
the land surface and the associated fluxes.

Modern data assimilation theory provides methods
for optimally merging the information from uncertain
remote sensing observations and uncertain land model
predictions (Errico 1999; Errico et al. 2000). Among
the prior work on large-scale soil moisture assimilation
are studies by Bouttier et a. (1993) and Rhodin et al.
(1999) who assimilate low-level air temperature and rel-
ative humidity to estimate soil moisture. This approach
aims at improving numerical weather prediction and
treats soil moisture as a tuning parameter. Houser et al.
(1998) focus on the four-dimensional assimilation of in
situ observations and soil moistureretrievals. Theweak-
constraint variational method of Reichle et al. (2001b)
yields near-optimal estimates of the land surface states
from direct assimilation of microwave observations.
Reichle et al. (2001a) prove the concept of optimal
downscaling for the case where soil moisture estimates
are required at scales smaller than the scale of the mi-
crowave observations. They also show that soil moisture
can be satisfactorily estimated even if quantitative pre-
Cipitation estimates are not available.

In this paper we examine the feasibility of using the
ensemble Kalman filter (EnKF) for soil moisture data
assimilation. The EnKF is an attractive option for land
surface applications because (i) its sequential structureis
convenient for processing remotely sensed measurements
in real time, (ii) it provides information on the accuracy
of its estimates, (iii) it is relatively easy to implement
even if the land surface model and measurement equa-
tions include thresholds and other nonlinearities, and (iv)
it is able to account for a wide range of possible model
errors. On the other hand, the EnKF relies on a number
of assumptions and approximations that may compromise
its performance in certain situations.

The EnKF and variants have been successfully ap-
plied to meteorological and oceanographic problems of
moderate complexity in small- to medium-sized do-
mains (Evensen and van Leeuwen 1996; Houtekamer
and Mitchell 1998; Lermusiaux 1999; Madsen and Can-
izares 1999; Keppenne 2000). Hamill et al. (2000) pro-
vide an excellent discussion of the state of the art of
ensemble forecasting and assimilation methods in the
meteorological and oceanographic context. The models
of geophysical flow used in most of these studies are
chaotic in nature and typically have dominant modes
that can grow rapidly within a certain subspace. Most
such models also have an attractor and sample only a
small subdomain of their phase space (Anderson and
Anderson 1999). This greatly increases the potential to
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successfully apply ensemble filtering methods. By con-
trast, typical land surface models are dissipative in na-
ture. Perturbations in the initial conditions tend to die
out after a certain time rather than amplify. Conse-
quently, the soil moisture ensemble filtering problem
has certain distinctive aspects that merit closer inves-
tigation.

This paper evaluates the performance and computa-
tional burden of the EnKF for a synthetic experiment.
Asabenchmark for the EnKF we use avariational meth-
od that solves the optimal smoothing problem. We begin
in section 2 with abrief review of the EnKF. The bench-
mark variational method is discussed in the cited ref-
erences, including (Reichle et al. 2001b). In section 3
we briefly describe the land model and the setup of the
synthetic experiments we use to investigate design is-
sues. In section 4 we discuss the results of these ex-
periments and compare the EnKF with the variational
method. We conclude in section 5 with a summary of
major findings.

2. The ensemble Kalman filter

The standard Kalman filter (KF) is the optimal se-
guential data assimilation method for linear dynamics
and measurement processes with Gaussian error statis-
tics (Gelb 1974). For nonlinear dynamics, the extended
Kaman filter (EKF) can be used, although it is noto-
riously unstable if the nonlinearities are strong (Miller
et al. 1994). Both the KF and the EKF explicitly prop-
agate error information with a dynamic equation for the
state error covariance matrix. However, the integration
of thisequation isnot computationally feasiblefor large-
scale environmental systems. To overcome these limi-
tations, Evensen (1994) uses an ensemble of model tra-
jectories from which the necessary error covariancesare
estimated at the time of an update. The technique has
since become known as the ensemble Kalman filter. The
method uses the nonlinear model to propagate the en-
semble states. Some of the linearizations that make the
EKF prone to failure are thereby avoided.

The nonlinear land surface model used for the assim-
ilation can be expressed in ageneric formif we assemble
the spatially discretized state variables of interest (e.g.,
the soil moisture and soil temperature) at all compu-
tational nodes and at time t into the state vector Y (t) of
dimension N,. The resulting model equation is

d—Y=T(Y)+W.

dt @)
The nonlinear operator #( -) includes all deterministic
forcing data (e.g., observed rainfall). Uncertainties re-
lated to errors in the model formulation or the forcing
data are summarized in the model error term w.

The observations used for the assimilation are re-
motely sensed measurements of the microwave bright-
ness temperature of the land surface. These observations
are sparse in time and space and only indirectly related
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to soil moisture and temperature. If we collect all ob-
servations taken at time t, into the measurement vector
Z, of dimension N, we can express the measurement
process as

Z, = MY ()] + Vi 2

The nonlinear operator 94, ( - ) relatesthe true state (e.g.,
soil moisture) to the measured variable (e.g., brightness
temperature). The uncertainties of the measurement pro-
cess are reflected in the measurement error v,.

We adopt a probabilistic interpretation of uncertainty
and assume that w and v, are zero mean random vari-
ables with covariances C,, and C,,, respectively. This
provides a full statistical description if these random
variables are normally distributed. To keep the notation
simple, we assume that w and v, are mutually uncor-
related and white (uncorrelated in time). In the appendix
we show how temporally correlated model error can be
accomodated with the technique of state augmentation.
These various statistical assumptions collectively con-
vey our prior knowledge about the measurement and
model errors.

The EnKF moves sequentially from one measurement
time to the next and divides naturally into two steps: a
forecast step and an update (or analysis) step. We ini-
tialize the ENKF by generating an ensemble of initial
condition fields Yi(t = 0),i = 1, ..., N,, around amean
Y(t = 0) with covariance C,,. This reflects our prior
knowledge of the state at the initial time. In the forecast
step, the ensemble is propagated forward in time with
the nonlinear model Eq. (1) using a corresponding en-
semble of N, (synthetic) model error fields wi. To gen-
erate these spatially correlated random fields, we use a
fast Fourier transform method that is very computation-
aly efficient (Robin et al. 1993). The state estimate Y (t)
is computed as the mean of the ensemble states Y'(t). If
full dynamic consistency isarequirement, one could also
define the estimate as the particular ensemble member
that is closest to the mean in some sense.

At each measurement timet,, k= 1,2, ..., when one
or more observations become available we update each
ensemble member (Evensen 1994):

L= Y04 KJZE - (YL ©)

Here, Y. and Y. are the state of the ith ensemble mem-
ber (at timet,) before and after the update, respectively.
The state estimate just before and just after the update
are also known as state forecast and analysis, respec-
tively. The perturbed data Z, = Z, + vj are particular
to each ensemble member. They are obtained from the
original data by adding a (synthetic) random realization
vi of the measurement error. This ensuresthat the spread
of the updated ensemble is consistent with the true (pos-
terior) estimation error covariance (Burgerset al. 1998).
The matrix of weights (or Kalman gain) K, for the op-
timal update is given by

Ke = [CYM(CM + Cu)il]tztk! (4)
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and depends on the forecast error covariances, which
are obtained directly from the ensemble prior to the
update. In particular, C,,(t,) is the (forecast) error co-
variance matrix of the measurement predictions
MY (t)], and C,,(t,) isthe (forecast) cross covariance
between the state Y (t,) and the measurement predictions
MY (t)]. Theseforecast error covariancesvary intime
because they depend on the dynamics and all the data
included in the previous updates. In the EnKF the state
error covariance C, is never explicitly needed, but parts
or al of it can be computed at any time from the en-
semble.

There are various slightly different approaches for
propagating and updating the ensemble. Houtekamer
and Mitchell (1998) suggest splitting the ensemble into
two parts and updating each part with error covariances
derived from the other part. This helps to prevent the
collapse of the ensemble for small ensemble sizeswhen
no model error is added. Lermusiaux and Robinson
(1999) combine the ensemble approach with a dynamic
rotation and compression of the state space. We follow
the implementation of Keppenne (2000), who builds on
Evensen (1994) and Burgers et al. (1998).

3. Land model and synthetic experiments

By its design the EnKF can easily be used with a
variety of land surface models. In this paper, we use the
land surface model of Reichleet al. (2001b). Thischoice
allows us to use the variational method described by
Reichle et al. (2001b) as a benchmark against which we
can compare the EnKF

To assess the merits of the EnKF we conduct a series
of experiments with synthetically generated L -band mi-
crowave data. These tests are based on the 1997 South-
ern Great Plains (SGP97) Hydrology Experiment (Jack-
son et al. 1999) to ensure realistic conditions. Figure 1
shows the model domain, which covers an area of 80
km by 160 km with 16 by 32 pixels at 5-km resolution.
The micrometeorological inputs to the model are inter-
polated from the Oklahoma Mesonet station data. The
stations are shown in Fig. 1 together with the land cover
and soil texture classes. The synthetic experiment covers
atwo-week period from 18 June 1997 (day of year 169)
to 2 July 1997 (day of year 183). Time steps in the
nonlinear model are adaptive and vary from a few sec-
onds up to 30 min depending on soil conditions and
forcing data. The tangent—linear and adjoint models of
the benchmark variational method use a basic time step
of 30 min.

Our model of coupled moisture and heat transport is
a typical soil-vegetation—atmosphere transfer scheme.
Vertical soil moisture and temperature dynamics are
modeled with Richards equation and the force-restore
approximation, respectively, while the vegetation layer
is treated with diagnostic variables, and fluxes through
the canopy are described with aresistance network. The
L-band brightness temperatureis related to the land sur-
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FiG. 1. Area for the synthetic experiment (from Reichle et al. 2001a).

face states with a graybody radiative transfer model. For
details, see Reichle (2000) and Reichle et a. (2001a).
Here, we use six vertical nodes at 0, —5, —15, —30,
—55, and —90 cm for the soil moisture and a single
layer of 5-cm thickness for the soil temperature. We
assume that lateral moisture and heat fluxes in the un-
saturated zone are negligible. As a result, horizontal
structure in our soil moisture estimates reflects structure
in micrometeorological inputs, land cover, soil texture,
and spatial correlation of the respective errors.

We start the synthetic experiment by generating one
set of ““true” initial condition fields for soil moisture and
temperature as well as time-dependent random model
error fields. The corresponding model trgjectory is de-
fined to be the set of true system states. The ** open loop™
or ‘“‘prior’” stateis the solution of Eq. (1) obtained when
the initial conditions and model errors are set to their
prior values Y(t = 0) and w(t) =0, respectively. This
open loop (or prior) solution can be viewed as a “first
guess’ of the true states available without the benefit of
microwave measurements. Recall that the forcing data
(including observed precipitation) are represented in the
deterministic part of the model Eq. (1). The model errors
account for uncertainties in the forcing data.

The spatial and temporal correlation functions of the
uncertain inputs are unknown a priori and very difficult
to characterize. Their determination for a given model
and field setting constitutes a research project in itsown
right and is well beyond the scope of this paper (but
see section 4c). Here, we only aim to prove the concept
of soil moisture assimilation with the EnKE This does
not critically depend on the exact shapes and scales of
the correlation functions, and we specify conditions that
in our experience are appropriate for the experiment area
and our model.

The initial condition and model errors generated in
our synthetic experiments are normally distributed ran-
dom fields with Gaussian and exponential correlation
functions for space and time, respectively. While the
total amount of water that is stored across the column
at the initial time is uncertain, we prescribe the shape
of theinitial soil moisture profile. This makesthe bench-
mark variational estimation more robust (Reichle et al.
2001b). The shape of the initial profile can be specified
arbitrarily. For convenience, we choose a hydrostatic
profile (no vertical moisture flow, pressure gradient bal-
ances gravity). In this experiment, the initial condition
of the top node saturation has a sample standard devi-
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ation of 0.084 and a horizontal correlation length of 10
km. The initial upper-layer soil temperature is set equal
totheinitial air temperature and is assumed to be known
perfectly. The memory of the upper-layer soil temper-
ature is only a few hours and its initial condition has
little impact on longer-term estimates.

Model errors are represented as unknown fluxes in
the near-surface soil moisture and soil energy balance
equations. We assume that each of these errors is zero
mean with a standard deviation of 50 W m~2. We further
assume that the model error has a Gaussian spatial co-
variance with a horizontal correlation length of 15 km
and an exponential temporal covariance with a corre-
lation time of 3 days. Note that we use the state aug-
mentation technique described in the appendix to take
these temporal correlations into account. In each pixel
we have six soil moisture nodes, one soil temperature
layer, and two temporally correlated model error com-
ponents, resulting in an augmented state vector dimen-
sion of 9 X 512 = 4608.

The true brightness temperatures are obtained by run-
ning the true states through the radiative transfer model.
The vectors Z,, of synthetic brightness temperature mea-
surements are obtained by adding random measurement
errors. A daily synthetic brightness temperature value
is generated at every pixel in the model domain at 1000
local time for a total of 14 observation times (days
169.67, 170.67, ..., 182.67). This yields 7168 scalar
data points. The random measurement errors added to
the brightness temperature values are spatially and tem-
porally uncorrelated with a standard deviation of 5 K.
This observation time and level of uncertainty are typ-
ical of the SGP97 field experiment. Note that measure-
ment errors of satellite observations are likely to be
spatially correlated. The absence of such spatial cor-
relations in our synthetic experiment is not a constraint
imposed by the algorithm but is a simplification adopted
for convenience.

4. Results and discussion

The performance of the EnNKF may be measured in
a number of ways. One of the most straightforward is
to compare the estimate to the “‘true’” state, which is
known in the synthetic experiment. Figure 2 shows the
true (top row), open loop (second row), and estimated
(third row) top node saturation across the domain just
after selected updates. The estimates are derived with
the ENKF using 500 ensemble members. Note that in
our definition the soil saturation varies between zero
and one. Volumetric soil moisture (volume of water per
unit volume of soil) can be obtained from the saturation
through multiplication by the porosity of the soil.

A comparison of the first and third rows in Fig. 2
shows that the EnKF is able to recover the true top node
saturation from the observations and the prior infor-
mation. The prior information includes the microme-
teorological data and the correct statistics for the initial
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condition and the model errors. The corresponding prior
fields (second row in Fig. 2) are poor estimates of the
true conditions. This indicates that auxiliary data alone
(soil texture, land cover, micrometeorology) are not suf-
ficient for soil moisture estimation. It should aso be
noted that the excellent estimates obtained in our syn-
thetic experiment reflect the fact that the model error
statistics (mean values and covariances) supplied to the
filter are identical to those used to generate the true
errors. Sincethisisunlikely to occur infield applications
the actual performance will probably not be as good as
observed here (see also section 4c). The synthetic ex-
periment serves primarily to establish alower bound on
the estimation error and to provide a controlled envi-
ronment for testing the effect of ensemble size and dis-
tributional approximations.

The ensemble provides useful statistical information
about the filter's internal assessment of the accuracy of
its estimates. In particular, Fig. 2 shows the forecast
(fourth row) and analysis (bottom row) estimation error
standard deviations for the top node saturation as de-
rived from the ensemble just before and just after the
update, respectively. The estimation error standard de-
viations are typically on the order of afew percent sat-
uration, or about 1%—2% in volumetric soil moisture.
We discuss the relationship between the actual errors
and the error standard deviations generated within the
filter later in this section.

The forecast and analysis error standard deviations
also demonstrate the value of dynamic covariance prop-
agation. Figure 2 indicates that the forecast error stan-
dard deviation varies significantly acrossthe domain and
with time. It is also anticorrelated with the saturation.
The smallest standard deviation occurs just after rain-
storms and generally in wet areas. The standard devi-
ation increases as the soil dries out. For extremely dry
conditions, the standard deviation decreases again asfor
most ensemble members the soil moisture reaches the
lower bound. Although the details depend on the actual
model error statistics (which we prescribe) the general
behavior is mostly governed by nonlinearities in the
hydrologic model. For agiven uncertainty intherainfall,
for instance, the uncertainty in surface soil moisture is
greater for dry conditions, when a small amount of rain-
fall has a greater impact on surface soil moisture.

The results presented in Fig. 2 indicate that the forecast
error standard deviation depends in a complex way on
soil moisture, previous observations, and recent forcing.
All of these vary over both time and space. The full
forecast error covariance needed for the optimal update
Eq. (4) is even more complex than the forecast error
standard deviation. This suggests that it is unrealistic to
expect that forecast error variances can be specified a
priori (i.e., without dynamic propagation), as is required
in statistical interpolation algorithms (Daley 1991).

a. Convergence with ensemble size

It is useful to consider how the EnKF estimates
converge both to the true state and to the benchmark
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day 169.67 day 172.67 day 175.67 day 177.67 day 178.67 day 179.67 day 182.67

FORECAST STD EST TOP NODE SAT PRIOR TOP NODE SAT TRUE TOP NODE SAT
y [km]

ANALYSIS STD

0 40 B0 0 40 80 O 40 80 O 40 80 O 40 80 O 40 80 0O 40 80
X [km] X [km] X [km] x [km] X [kmn] X [km] X [km]

FiG. 2. Top node saturation. (first row) True, (second row) open loop, (third row) EnKF estimate with 500 ensemble
members, and corresponding (fourth row) forecast and (bottom row) analysis error standard deviation (std dev). The
arrows indicate the temporal order of the error std dev plots.

solution as the ensemble size increases. The bench- equations as well as the error statistics used in this
mark variational approach (Reichle et al. 2001b) uses optimal smoother are identical to those used in the
the iterated indirect representer method to solve the EnKF experiments.

weak-constraint optimal smoothing problem over a The conceptual differences between the variational
specified time period. The state and measurement optimal smoother and the EnKF are (i) the smoother
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uses past and future measurements to estimate the state
at any time t within the assimilation interval while the
EnKF uses only past measurements obtained through
timet, (ii) the EnKF estimate depends on the ensemble
size and convergesto an optimum only when the number
of ensemble members is large, and (iii) in nonlinear
problems the variational approach yieldsthe conditional
mode while the EnKF yields an approximation to the
conditional mean (McLaughlin and Townley 1996).
Since the optimal smoother relies on more information
than the filter (except at the final time) and its perfor-
mance is not limited by sampling considerations, we
can effectively use it as abenchmark. Moreover, we can
isolate the effects of nonlinearity and non-Gaussian
forecast errors by comparing the EnKF and variational
estimates at the final measurement time (when they both
use all the data) and for a large ensemble size.

Our basic measure of estimation error isthe difference
between the true states and the estimate at any given
time and location. A convenient spatially aggregated
version of this measure is the root-mean-square (rms)
error averaged over al pixels in the study area. The
algorithm’s estimation error should be compared to the
open loop (or prior) error, which is the difference be-
tween the true and open loop (or prior) states. As can
be expected from the estimation error standard deviation
plotted in Fig. 2, the actual estimation errors depend
strongly on the state of the system, with errors generally
increasing as the soil dries out. This applies even in the
open loop case when there is no assimilation. We can
filter out the influence of precipitation transients on es-
timation error if we normalize by the open loop error.
More precisely, Fig. 3 shows the rms error of the es-
timated top node saturation divided by the open loop
rms error for 10, 30, 100, 500, and 10 000 ensemble
members and for the optimal smoother.

Figure 3 indicates that the actual errors decrease and
converge with increasing ensemble size. The area av-
erage error for the EnKF with only 30 ensemble mem-
bers is less than half of the open loop error at the fina
time. An ensemble of 500 or more yields estimates that
are very close to the optimal smoothing result. More
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quantitatively, for a relatively small ensemble size of
10 (or 30; or 100; or 500) the actual errors in the top
node saturation at the final update time are reduced by
42% (or 55%; or 70%; or 80%) from the value obtained
without assimilation (as compared to 84% for the op-
timal smoother).

The actual error of the smoothing estimate remains
fairly constant throughout the assimilation interval, be-
cause the smoother processes all observations at once
for all times. In contrast, the error of the EnKF (filtering)
estimates shows an overall decrease with time as more
and more observations are assimilated. While the
smoothing error does not change predictably between
update times, the error of the EnKF estimates typically
increases after the update. In other words, the EnKF
forecast deteriorates until a new observation becomes
available. Since the smoothing estimate relies on both
past and future observations it is better able to inter-
polate between measurement times. As expected, the
smoother errors are nearly always smaller than thefilter
errors.

It is useful to examine the effect of the ensemble size
on the spatial distribution of the rms estimation errors.
This is done in Fig. 4, which shows contour plots of
the actual errors for the top node soil saturation at the
final update (day 182.67) for 10, 30, 100, and 500 en-
semble members. The area average (rms) error is0.087,
0.068, 0.046, and 0.030, respectively, compared to an
open loop error of 0.15 and an optimal smoothing error
of 0.024 (recall that the saturation varies between zero
and one). For 100 ensemble members, the errors are
confined to afew small areas that are evenly distributed
across the domain and the EnKF estimates capture most
of the large-scale features of the soil moisturefield. The
contour plots for more than 500 ensemble members (not
shown) are amost identical to the case with 500 en-
semble members.

For yet another diagnostic of the filter's performance
we can look at the innovations sequence v, = Z, —
MY (t)] (actual minus predicted measurements). This
sequence must be white (uncorrelated in time) if the
filter operates in accordance with its underlying statis-
tical assumptions. We have conducted a test for white-
ness based on the autocorrel ation function of v, (Jenkins
and Watts 1968). For small ensemble sizes (N, = 10,
30), we must reject the null hypothesis that the v, se-
guence is white. For larger ensembles (N, = 100), there
is no indication that the v, are temporally correlated.
Although we have a limited sequence with only 14 up-
date times, we believe that the result isindicative of the
near-optimal behavior of the EnKF for modest ensemble
sizes.

b. Nonlinearities and deviations from Gaussian
distributions

It is instructive to note that the optimal smoother
generates slightly better estimates even at the final up-
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FiG. 4. Actual top node saturation error at the final update (day 182.67) for 10, 30, 100, and 500 ensemble
members.

date, when the EnKF and the smoother have both used
all observations. The question arises whether this dif-
ference is due to the effect of nonlinearities (difference
iii in section 4a) or whether it is just statistical noise
owing to the finite ensemble size (differenceii in section
4q). If for a moment we suppose that the smoothing
estimates are ultimately optimal estimates, we can ex-
trapolate the errors of the EnKF estimates to get arough
idea of the number of ensemble members that would be
necessary to eliminate the statistical noise as the source
of the discrepancy. Figure 5 plots the difference of the
mean-square-errors (mse) of the EnKF and the optimal
smoothing estimates versus ensemble size, where the
mse is the area average square error of the top node
saturation at the last update.

Figure 5 shows two regression lines to the error data.
The first line applies for small and medium ensemble
sizes (the first six data points) and has a slope of —0.81
(R? = 0.99). For larger ensemble sizes, however, the
error difference does not decrease any further, suggest-
ing that the EnKF estimates at the final time do not
converge to the optimal smoothing solution when the

top node saturation: mean-square-error (mse) difference at last update [-]
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Fic. 5. Difference of the actual mse of the EnKF and the smooth-
ing estimates at the final update vs ensemble size.

ensemble size becomes very large. Thisis confirmed by
the second regression line, which applies for large en-
semble sizes and includes the last three data points. The
slope of this line is 0.034 (R? = 0.97), which is not
significantly different from zero.

Since the effects of smoothing versus filtering and
the limited ensemble size have been eliminated, we at-
tribute the residual difference between the optimal
smoothing and EnKF errors to the nonlinear nature of
the model and measurement processes. The difference
could reflect the combined influence of two factors.
First, the variational method is designed to estimate the
conditional mode while the EnKF is designed to esti-
mate the conditional mean. These two distributional
properties are generally different if the conditional prob-
ability density function (pdf) of the forecast is not sym-
metric. Second, the EnKF estimate may be an inaccurate
approximation of the conditional mean because the up-
date step Eq. (3) (viathe weights K, ) relies on only the
first two moments of the conditional forecast pdf. This
leads to estimates that are less than optimal (in the sense
that they do not use all the information available in the
ensemble).

Further insight on this issue can be gained if we ex-
amine the performance of the EnKF by comparing actual
area average errors of the top node saturation with the
error variances computed internally by the filter. For
500 ensemble members the filter yields forecast and
analysis error variances that are consistently lower than
the corresponding actual errors (Fig. 6). In other words,
the filter is too optimistic about the quality of the es-
timates. While the actual area average errors decrease
with increasing ensemble size, the forecast and analysis
error variances (i.e., the ensemble spread) increase with
increasing ensemble size. But the discrepancy between
the actual and the expected errors does not disappear
even when 10 000 ensemble members are used (not
shown). The likely reason for this behavior is again the
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Fic. 6. Area average of the actual top node saturation error and
corresponding forecast and analysis error standard deviations for 500
ensemble members.

effect of model nonlinearities, which produce non-
Gaussian conditional pdf’'s. As mentioned above, the
EnKF update is suboptimal in this case. Consequently,
the actual errors are larger than expected.

We can further examine the significance of non-
Gaussian behavior by looking at the distribution of the
saturation across the ensemble at a particular location
just before and just after each update. Figure 7 shows
corresponding box plots for the top node saturation at
a representative pixel. Each box shows the lower quar-
tile, the median, and the upper quartile, while the whis-
kers show the minimum and the maximum. For refer-
ence, the time series of precipitation is sketched in the
top of Fig. 7. In general, the boxes (and distributions)
appear to be reasonably symmetric. For dry conditions,
however, the distribution becomes skewed because of
the lower bound of the saturation. For very dry con-
ditions, the ensemble practically collapses. While the
EnKF is able to fully propagate any asymmetry that
might arise between update times, the update step ig-
nores this asymmetry and relies on only the first two
moments of the distribution. This eventually results in
estimates that are less than optimal. To remedy the sit-
uation, a fully nonlinear filter would have to be used.
One could, for instance, compute a Bayesian update of
the conditional pdf (Anderson and Anderson 1999).
Such an approach, however, is not computationally fea-
sible for large-scale applications.

c. Model error estimates and model error covariance

Throughout this paper, we have used temporally cor-
related model error and modified the filter by aug-
menting the state in order to take the temporal corre-
lations into account (appendix). This implies that we
can also estimate the time series of the model error w
from the ensemble. Figure 8 shows the model error es-
timates for the moisture flux upper boundary condition
at arepresentative pixel. Although the optimal smoother
clearly produces a better estimate of the model error,
the ENKF model error estimates are quite reasonable.
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Fic. 7. Box plot of the ensemble distribution of the top node sat-
uration for a representative pixel and 500 ensemble members. Each
box shows the lower quartile, the median, and the upper quartile,
while the whiskers indicate the minimum and the maximum. Precip-
itation is sketched from the top (right-hand scale).

At each observation time, the EnKF model error esti-
mate is updated, but after that the estimate necessarily
tends toward zero (the mean model error) until the next
observation becomes available.

Any data assimilation approach that provides for
model error (including the two approaches considered
in this paper) faces the serious challenge of determining
the true model error covariance C,, in operationa ap-
plications. The task of deriving an appropriate model
error covariance is complicated by the scarcity of val-
idation data. Since the model error partly represents
uncertainties in the observed forcing data (such as pre-
cipitation), measurement and interpolation errors in
these data can be incorporated into the model error co-
variance. But the key to this problem is more likely the
innovations sequence v, of actual minus predicted mea-
surements, which can be computed in an operational
setting. Through close examination of the innovations
we may be able to derive and validate estimates of the
model error covariance in a field setting (Dee 1995).
Encouraging results on the sensitivity of the soil mois-
ture estimates to the quality of the model error covari-
ance can be found in Reichle, (2000) and Reichle et al.
(20014).
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TaBLE 1. Computational effort of the EnKF relative to the optimal smoother for our soil moisture example.
Ensemble size N, 10 30 100 250 500 1250 2000 3000 10000
Relative effort [—] 0.014 0.034 0.11 0.29 0.59 16 2.8 4.7 22

d. Operational prospects of the EnKF and the
representer method

Since we have used a four-dimensional variationa
approach to benchmark the performance of the EnKF
it is reasonable to ask how the two methods are likely
to compare in an operational setting. It is obviously
difficult to generalize from a particular synthetic ex-
periment. However, the EnKF and the variational (rep-
resenter) approach each have distinctive features that
can be expected to apply over arange of different prob-
lems. These are summarized in the following para-
graphs.

The EnKF is an inherently sequential algorithm that
is easy to use in real-time forecasting applications be-
cause measurements are processed asthey becomeavail-
able. Reinitialization of the algorithm at measurement
times is an inherent part of the EnKF and does not
require any special treatment. In contrast, the variational
approach simultaneously processes measurementstaken
at different times. In a long-term application the time
period of interest must be partitioned into shorter
smoothing intervals, which are processed as separate
datasets. In order to obtain optimal estimates at the final
time, each interval must be initialized with the correct
initial condition error covariance, which is equal to the
estimation error covariance at the final time of the pre-
ceding interval. Unfortunately, the computational effort
required to obtain these covariances with the variational
approach is overwhelming for problems of realistic size.
Therefore, the reinitialization of the intervals must in-
clude approximations that can compromise the opti-
mality of the variational estimates.

The analysis presented in section 4b suggests that the
variational method may be better able to deal with non-
linearities in the state and measurement equations be-
cause it does not assume that the forecast conditional
pdf is Gaussian. The EnKF is limited by its assumption
that the first two moments adequately characterize the
conditional forecast pdf. The practical consequences of
this limitation can be expected to be application depen-
dent. In our application, they probably have greatest
impact when the soil is very dry and the forecast error
distribution is highly skewed.

The EnKF offers great flexibility with respect to the
form of model error that can be included. Such errors
may be additive, multiplicative, or state dependent. Er-
rors in model structure can even be accommodated if
different ensemble members are generated from differ-
ent models. The variational method can include model
error but is less flexible because errors other than the
additive errors generally complicate the formul ation and
considerably increase computational effort.

The EnKF has a number of implementation advan-
tages that are worth mentioning. Since the EnKF does
not rely on any linearizations, it does not require der-
ivation of an adjoint equation or computation of model
or measurement operator derivatives. Thisisin contrast
to the extended Kalman filter and variational techniques,
which rely on derivatives that need to be recomputed
at each time step or iteration. The EnKF's freedom from
an adjoint code is particularly important in soil moisture
assimilation because thereis no adjoint availableto date
for any of the commonly used land models. Deriving
the adjoint of aland surface scheme is difficult because
of the nonlinearity of the land processes and the many
switches and discontinuities that are typically used (but
not always well documented) in land models.

One of the attractive aspects of the EnKF is the com-
putational advantage it may offer if the number of en-
semble members can be kept sufficiently small. The
computational load for the EnKF experiments is sum-
marized in Table 1. Theeffort for each EnKF experiment
is given relative to the effort for the optimal smoother,
which reflects an equivalent of 1323 integrations of the
tangent-linear or adjoint model (Reichle et al. 2001b).
Table 1 shows that the EnKF with 100 ensemble mem-
bers is more than nine times faster than the optimal
smoother. With 500 ensemble members, the EnKF is
still almost twice asfast asthe smoother, whilethe EnKF
with 3000 ensemble members takes about five times as
long as the smoother. Approximately 10% of the com-
puter time for the EnKF is taken up by the generation
of model error replicates.

Computational requirements for the EnKF with mod-
erate numbers of ensemble members are considerably
lessthan for the variational smoother. However, it isstill
unclear how the ensemble size that is required for ad-
equate estimates scales with the size of the problem. A
similar comment appliesto the representer method (Rei-
chle et al. 2001b). The memory requirements for both
methods are substantial. For the EnKF memory demand
scaleswith N, X N,. The memory use of the representer
approach is typically higher and scales with N, X N,,
where N, denotes the number of time steps within each
smoothing interval.

Both methods are well suited for parallel implemen-
tation, especially in the soil moisture application where
the land surface model is divided into many parallel
one-dimensional columns. The advantages of parallel
computation are likely to be even greater when updates
are regionalized over space (Keppenne 2000; Reichle
2000). For the EnKF, there could be additional gains by
developing very efficient methodsfor selecting (** breed-
ing”) ensemble members. If the statistical information
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needed to obtain accurate estimates can be captured by
a small ensemble of informative members, the EnKF
may be very attractive.

5. Summary and conclusions

In this paper, we discuss the application of the en-
semble Kalman filter to hydrol ogic dataassi milation and
in particular to the estimation of soil moisture from L-
band microwave brightness temperature observations.
We also compare the performance of the EnKF to an
optima smoother (weak-constraint variational algo-
rithm). Both methods are applied to the same problem
and useidentical state and measurement equations, error
statistics, and synthetically generated measurements. We
conclude that with relatively few ensemble membersthe
EnKF yields reasonable soil moisture estimates. For a
state vector dimension of 4608 and a relatively small
ensemble size of 30 (or 100; or 500), the actual errors
in surface soil moisture at the final update time decrease
by 55% (or 70%; or 80%) from the value obtained with-
out assimilation (as compared to 84% for the optimal
smoother).

The EnKF significantly underestimates the forecast
error variances for 100 ensemble members. However,
the error variance estimates derived by the filter are
reasonably good when the ensemble size is increased
to 500 members. Our results indicate that the forecast
error variances vary strongly with time and space. This
implies that it is very important to account for dynamic
error covariance propagation. Assimilation schemesthat
use static forecast error covariances (e.g., statistical in-
terpolation) are unlikely to produce the desired near-
optimal estimates.

More research is required to better understand the
EnKF anditsvariants. In particular, better understanding
is needed of the role of nonlinearities and related asym-
metries in the conditional forecast probability density
function. We have found that nonlinearitiesin the model
and measurement processes contribute to differencesin
the filtering and smoothing estimates even at the final
update. In our application the state (soil moisture) is
bounded above and below and its distribution cannot
aways be well approximated by a Gaussian pdf. For
very wet or dry conditions, in particular, the soil mois-
ture pdf exhibits considerable skewness. It islikely that
the variational smoother is superior to the EnKF when
dealing with nonlinear and non-Gaussian effects. How-
ever, it is important to recognize that the variational
approach is designed to estimate the mode of the con-
ditional forecast density while the EnKF is designed to
estimate the mean. So even if both approaches work as
intended their estimates at the end of the smoothing
interval can be expected to differ when the density is
asymmetric.

Inapractical application of the EnKF, it will probably
be necessary to model the forecast covariance rather
than to compute it in an exact sense. In the EnKF, co-
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variance modeling could include smoothing out the en-
semble-derived covariances before the update or apply-
ing the update to subregions of the computational do-
main. Ultimately, a hybrid filter that combines empirical
forecast error covariances with dynamic error propa-
gation via the EnKF (Hamill and Snyder 2000) may be
the best approach.

A task that is closely related to the determination of
the model error covariance is to find a good way to
select or **breed” the members of the ensemble. In this
paper, we have simply used a standard random field
generator that produced synthetic model error fields
based on our specified C,,. In operational applications,
one might also perturb key parameters of the model such
as soil hydraulic parameters or even use a number of
different models for different subsets of the ensemble.
It may also be possible to reduce the ensemble size by
using model compression or rank reduction techniques
to generate ensemble members that effectively span an
appropriate subspace of the state space.

There is no doubt that one of the most attractive fea-
tures of the EnKF is its flexibility. It can be tested with
many different state and measurement equations with no
need to compute adjoint models or derivatives. It can
handle a wide range of model errors. Users can readily
trade off estimation accuracy and computational effort
by simply adjusting the number of ensemble members.
However, it istoo early to say how the ensemblefiltering
approach will scale with problem size. It isalso too early
to make a definitive comparison between the ensemble
and variational approaches. However, it islikely that the
“best” approach to a given data assimilation problem
will be application dependent and will combine aspects
of ensemble and more traditional methods.
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APPENDIX

Model Error and State Augmentation

If the error w of the hydrologic model Eq. (1) is
correlated in time, the EnKF described in section 2 must
be modified with a technique known as state augmen-
tation (Gelb 1974). Here, we assume that w is a first-
order Markov process with covariance w(t + nw(t) =
C. exp(— p|]), where p~tisthe correlation time. This
process can be represented with the differential equation
dw/dt = —pw + u, where u is white with appropriate
spatial covariance. By augmenting Eq. (1) we get

d
dt
which serves as the new state equation with [Y w]™ as

Y
w

FY) +w N

0
u

, (A1)
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the new state vector and [0 u]™ as the new (white) model
error. Obviously, the dimension of the state vector has
increased. This requires additional computational effort
when the update is computed. Note, however, that tem-
poral correlations in the model error entail little addi-
tional effort for the propagation of the ensemble.
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