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Abstract. Gridded statistical downscaling methods are the
main means of preparing climate model data to drive dis-
tributed hydrological models. Past work on the validation
of climate downscaling methods has focused on tempera-
ture and precipitation, with less attention paid to the ulti-
mate outputs from hydrological models. Also, as attention
shifts towards projections of extreme events, downscaling
comparisons now commonly assess methods in terms of cli-
mate extremes, but hydrologic extremes are less well ex-
plored. Here, we test the ability of gridded downscaling
models to replicate historical properties of climate and hy-
drologic extremes, as measured in terms of temporal se-
quencing (i.e. correlation tests) and distributional proper-
ties (i.e. tests for equality of probability distributions). Out-
puts from seven downscaling methods – bias correction
constructed analogues (BCCA), double BCCA (DBCCA),
BCCA with quantile mapping reordering (BCCAQ), bias
correction spatial disaggregation (BCSD), BCSD using min-
imum/maximum temperature (BCSDX), the climate imprint
delta method (CI), and bias corrected CI (BCCI) – are used to
drive the Variable Infiltration Capacity (VIC) model over the
snow-dominated Peace River basin, British Columbia. Out-
puts are tested using split-sample validation on 26 climate
extremes indices (ClimDEX) and two hydrologic extremes
indices (3-day peak flow and 7-day peak flow). To charac-
terize observational uncertainty, four atmospheric reanaly-
ses are used as climate model surrogates and two gridded
observational data sets are used as downscaling target data.
The skill of the downscaling methods generally depended on
reanalysis and gridded observational data set. However, CI
failed to reproduce the distribution and BCSD and BCSDX
the timing of winter 7-day low-flow events, regardless of re-

analysis or observational data set. Overall, DBCCA passed
the greatest number of tests for the ClimDEX indices, while
BCCAQ, which is designed to more accurately resolve event-
scale spatial gradients, passed the greatest number of tests
for hydrologic extremes. Non-stationarity in the observa-
tional/reanalysis data sets complicated the evaluation of
downscaling performance. Comparing temporal homogene-
ity and trends in climate indices and hydrological model out-
puts calculated from downscaled reanalyses and gridded ob-
servations was useful for diagnosing the reliability of the var-
ious historical data sets. We recommend that such analyses
be conducted before such data are used to construct future
hydro-climatic change scenarios.

1 Introduction

Water resources infrastructure is designed to accommodate
hydrologic extremes such as floods and droughts (Cunder-
lik and Ouarda, 2009; Cunderlik et al., 2004; Ouarda et
al., 2006). The frequency and magnitude of extreme hydro-
logic events such as floods and droughts have changed with
climate and there is broad agreement that changes will con-
tinue with projected increases in greenhouse gases (IPCC,
2013). The direction and magnitude of change is not uni-
form across the globe, but is regionally specific, distinguish-
able by hydrologic regime and by local changes to tempera-
ture and precipitation (Cunderlik and Ouarda, 2009; Monk et
al., 2011; Sheffield et al., 2012; Stahl et al., 2010, 2012). For
example, in Canada, floods in snowmelt-dominated regimes
decreased in magnitude, while floods in rainfall-fed regimes
had no significant trend over 1974 to 2003 (Cunderlik and
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Ouarda, 2009). Conversely, Canadian annual low-flow in-
dices showed spatially uniform decreases over 1970 to 2005
(Monk et al., 2011). Thus, future changes in hydrologic ex-
tremes need to be estimated at regionally relevant resolutions
( ∼ 10 km) and consider both temperature and precipitation
effects.

Global climate models (GCMs) are one of our only tools
for projecting the future climate, but they operate at scales
too coarse (∼ 100 km) for use in regional studies. Hence, be-
fore projecting changes in hydrologic extremes, some inter-
vening steps are required. Approaches to converting coarse-
scale GCM simulations to project changes to peak flows
and low flows vary. Some examples include direct down-
scaling of streamflow extremes by sparse Bayesian learning
and multiple linear regression (Joshi et al., 2013), weather
generators combined with hydrologic models (Cunderlik
and Simonovic, 2007), regional frequency analysis of re-
gional climate model (RCM) projections (Clavet-Gaumont
et al., 2013), and, most commonly, statistical downscaling of
GCM or RCM projections run through a physically based
hydrologic model (Elsner et al., 2010a; Maurer et al., 2010;
Schnorbus et al., 2014; Shrestha et al., 2012; Bürger et
al., 2011). The uncertainty in hydrologic projections from
GCMs is greater than that from emissions scenarios or model
parameterizations (Bennett et al., 2012; Prudhomme and
Davies, 2008) and all GCMs represent the climate imper-
fectly in different ways (Gleckler et al., 2008; Knutti et
al., 2008); therefore, to fully characterize the uncertainty in
projected hydrological extremes, an ensemble of GCMs is
required.

Gridded statistical downscaling methods provide a com-
putationally efficient and effective means of producing plau-
sible hydro-climatology from a large ensemble of GCMs
(Salathe et al., 2007; Salathé, 2005; Wood et al., 2004). A
number of studies have compared multiple statistical down-
scaling methods for use in climatological or hydrologi-
cal projections. Maurer and Hidalgo (2008) compared con-
structed analogues (CA) and bias correction spatial disag-
gregation (BCSD) using the National Centers for Environ-
mental Prediction/National Center for Atmospheric Research
Reanalysis I (NCEP1) (Kalnay et al., 1996) as a surrogate
GCM. Methods were comparable in producing precipitation
and temperature at a monthly and seasonal level, but skil-
fully downscaled daily data depended on the ability of the
climate model to show daily skill. Bürger et al. (2012a) com-
pared five methods for their ability to represent climatic ex-
tremes including BCSD and expanded downscaling (XDS).
The fixed diurnal temperature range in BCSD was seen as a
shortcoming in Bürger et al. (2012a). XDS performed best,
passing 48 % of single tests on average for 27 Climate In-
dices of Extremes (ClimDEX), with BCSD close behind,
passing 45 % (Bürger et al., 2012a). Pierce et al. (2013) found
that projected increases in annual precipitation versus de-
creases in California were due to disagreements in the oc-
currence of the heaviest precipitation days (> 60 mm day−1)

amongst three dynamical and two statistical downscaling
methods (BCCA and BCSD). Maurer et al. (2010) compared
BCSD, BCCA, and CA for their ability to reproduce hydro-
logic extremes. BCCA, when combined with the Variable In-
filtration Capacity (VIC) model, consistently outperformed
the other methods in simulating 3-day peak flow and 7-day
low flow. BCCA is an improvement over CA because it in-
cludes bias correction and over BCSD because it includes
daily GCM anomalies (Maurer et al., 2010). An additional
method described as statistical downscaling and bias cor-
rection (Abatzoglou and Brown, 2012) and as asynchronous
regression (Gutmann et al., 2014), both of which interpo-
late from the GCM to a fine scale and then apply quantile
mapping bias correction (i.e. basically reversing the steps
of BCSD), was found to reproduce extreme precipitation
events at the grid scale but overestimate them on aggregate
scales (Maraun, 2013). Studies to date have not assessed the
strength of downscaling methods for use with climatic and
hydrologic extremes concurrently.

The first generation National Centers for Environment Pre-
diction/National Center for Atmospheric Research Reanal-
ysis I (NCEP1) reanalysis (Kalnay et al., 1996) is often
used as a surrogate GCM when testing downscaling tech-
niques (Bürger et al., 2012a; Gutmann et al., 2014; Maurer
et al., 2010), primarily because of its long record length.
Recently new reanalysis products have come online, bring-
ing to light possible issues with NCEP1, such as a spurious
pattern in precipitation fields at high latitudes (Sheffield et
al., 2012), and lack of skill in producing daily air temperature
at high altitudes versus other reanalyses (Hofer et al., 2012).
Reanalyses differ due to variations in assimilated observa-
tional data, assimilation methods, representations of surface
and boundary layer processes, physics packages, and dynam-
ical cores, and the resulting uncertainty in output fields can
be considerable, especially for climatic extremes (Sillmann
et al., 2013a). For instance, discrepancies between reanaly-
ses for some climate extreme indices, such as frost days in
some regions, are sometimes as large as the typical inter-
model spread of the Coupled Model Intercomparison Project
ensembles (Sillmann et al., 2013a). These differences arise
because near surface temperature and precipitation extremes
are calculated from variables that are relatively poorly con-
strained by observations in reanalyses. Additionally, non-
stationarity exists in some reanalysis products because they
amalgamate observational data sets from different sources
over time (Donat et al., 2014). In the context of historical
validation of downscaling methods, statistical downscaling
methods may perform poorly simply because reanalysis out-
puts are not stationary over the calibration and validation pe-
riods (Maurer et al., 2013). All of these factors suggest that
multiple reanalysis products should be used as GCM surro-
gates to ensure methods are not failing due to irreparable er-
rors in reanalyses, and also to explore the variability in results
due to reanalysis uncertainty.
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Gridded climate observations underpin hydrologic pro-
jections. They are used to calibrate the downscaling tech-
nique and the hydrologic model, serving as targets and in-
puts, respectively. Gridded observations are commonly eval-
uated via comparison with station observations (Hutchinson
et al., 2009; Werner et al., 2015), intercomparison with other
gridded observations (Eum et al., 2014), or by using them
to drive a hydrologic model and comparing outputs to ob-
served water balance fluxes and streamflow over large basins
(Livneh et al., 2013; Maurer et al., 2002). We know that
statistical downscaling methods perform poorly when non-
stationarity occurs between the calibration and validation pe-
riods (Maurer et al., 2013), but we have not evaluated how
apparent non-stationarity caused by natural climate variabil-
ity (Huang et al., 2014; Maraun, 2012) is amplified or di-
minished with methods used to create gridded observations,
which could also affect the success of downscaling methods.
Furthermore, stationarity in mean annual precipitation and
temperature does not dictate stationarity in climatic or hy-
drologic extremes. Not all, but some, previous studies have
included as many years as possible in the calibration, with the
goal of maximizing the available historical record available
for resampling in the temporal disaggregation step applied in
BCSD (Bürger et al., 2012a; Salathé, 2005; Werner, 2011).
This approach is also supported by other studies that found
bias correction is more robust for larger samples from longer
time series, especially for extremes such as flood events
(Huang et al., 2014; Themeßl et al., 2011). The pros and cons
of this extended calibration period have not been fully eval-
uated. This investigation will help the hydrologic modelling
community build a better evaluation system for gridded ob-
servations to ensure their strength not only for projections of
mean monthly changes over large basins ∼ 100 000 km2, but
also for extremes in basins as small as 500 km2.

When used to make climate change projections, dis-
tributed hydrologic models such as VIC are best driven with
gridded daily data, which is usually produced via gridded
statistical downscaling techniques such as BCSD, CA, and
BCCA, three gridded methods that have been tested to date.
Applying BCSD using minimum and maximum monthly
temperature instead of mean monthly temperature has not
been tested and may correct some issues with diurnal tem-
perature range (Bürger et al., 2012a). It is important to note
that the effect of BCSD on daily temperature range (DTR)
when used with daily data and ways to ensure minimum
temperature is less than maximum temperature has been
tested by Thrasher et al. (2012) and is not the focus of this
study. A few other methods have been developed recently
that warrant investigation. These include double bias cor-
rected constructed analogue (DBCCA), which is similar to
BCCA but applies a second quantile mapping bias correc-
tion as a post-processing step to correct drizzle and other
residual biases (Maurer et al., 2010). Additionally, the cli-
mate imprint delta method (CI) (Hunter and Meentemeyer,
2005) and the “reverse” BCSD (similar to SDBC in Ahmed

et al., 2013, and AR in Gutmann et al., 2014), which we
refer to as bias corrected climate imprint (BCCI) due to
its use of CI for interpolation, have not been explored for
their applicability to hydrology. A recently developed hy-
brid of BCCA and BCCI, referred to as BCCAQ (Cannon
et al., 2015; Murdock et al., 2014), has the potential to be
an improvement versus other gridded statistical downscaling
techniques and has not been tested with hydrologic extremes.
This work will also help to inform use of the resulting BCSD
and hydrologic model output provided by the Pacific Cli-
mate Impacts Consortium (PCIC; http://www.pacificclimate.
org/data). Finally, PCIC also makes available Canada-wide
downscaled climate change projections using both the BCSD
and BCCAQ methods (http://www.pacificclimate.org/data).
This study provides the first rigorous intercomparison of
these two methods.

The ClimDEX indices are recommended by the World
Meteorological Organization Expert Team on Climate
Change Detection and Indices (ETCCDI) (Zhang et
al., 2011) as a means of summarizing daily temperature and
precipitation statistics, focusing particularly on aspects of
climate extremes. They have been developed to allow seam-
less comparison of climate conditions on an international
basis. There are many projects applying the ETCCDI in-
dices to detect changes in extremes historically (e.g. Sill-
mann et al., 2013a), to project future changes (e.g. Sill-
mann et al., 2013b), and to provide future changes via data
portals to allow local analysis (http://www.cccma.ec.gc.ca/
data/climdex/). Two commonly investigated hydrologic ex-
tremes include 3-day peak flow, which represents potential
flood conditions, and 7-day low flow, which represents po-
tential drought conditions (e.g. Maurer et al., 2010). Floods
can be damaging to river and floodplain infrastructure, while
droughts can be detrimental for human water use and aquatic
habitat. We follow the framework developed by Bürger et
al. (2012a), evaluating methods for their abilities in produc-
ing the temporal sequencing and distributional properties of
climate indices and hydrologic extremes.

The objectives of this study are the following.

1. To compare several reanalyses in the study region
against two gridded observation data sets.

2. To test the ability of the BCCA, DBCCA, BCCI,
CI, BCSD (mean temperature), BCSDX (minimum
and maximum temperature), and BCCAQ downscaling
techniques to simulate 26 ClimDEX indices using four
reanalyses and two gridded observations.

3. To test the ability of the BCCA, DBCCA, BCCI,
CI, BCSD (mean temperature), BCSDX (minimum
and maximum temperature), and BCCAQ downscal-
ing techniques when used to force the VIC hydrologic
model, to simulate 3-day peak-flow and 7-day low-flow
indices using four reanalyses and two gridded observa-
tions.
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4. To learn more about the strengths and weaknesses of
two gridded observations for use with hydrologic mod-
elling.

5. To see whether the strength of a method to downscale
for climate extremes relates to abilities for use with hy-
drologic extremes.

2 Study area

The Peace River basin will be the focus of this work. The
snow-dominated regime of this basin makes the findings of
this work applicable to many mid-latitude areas. The Peace
River is located in interior north-eastern BC and encom-
passes the 101 000 km2 drainage area upstream of Taylor, BC
(Fig. 1). Elevations range from 400 to 2800 m. The region is
highly influenced by the Pacific Ocean and Arctic air masses.
The region has a continental climate (Demarchi, 1996), with
monthly average temperatures ranging from −12.0 ◦C in Jan-
uary to 12.3 ◦C in July, averaging 0.2 ◦C. Precipitation fol-
lows a seasonal pattern of summer maximum and spring min-
imum. The Peace River has a nival regime, with approxi-
mately 54 % of the annual precipitation (440 mm) falling as
snow (mostly during October–April) and 64 % of the natural
streamflow occurring during the freshet months of May–July.
Low flows occur during the winter and early spring in head-
water (INGEN) and downstream (BCGMS) basins (Fig. 2).
Due to the topographical complexity and strong climate gra-
dients this region provides a stringent test of downscaling
techniques. Additionally, the Peace River basin is the focus
of two studies that explore uncertainty in hydrologic projec-
tions, one due to GCMs, emissions scenarios, and parameter
sets (Bennett et al., 2012), the other due to statistically ver-
sus dynamically downscaled GCMs (Shrestha et al., 2014a).
This study provides a good complement to these by exploring
new sources of uncertainty in the same basin.

3 Methods

3.1 Gridded observations

Two daily, gridded observational data sets were available
over the study area. The first was generated for BC for appli-
cation with the Variable Infiltration Capacity (VIC) macro-
scale distributed hydrologic model following the methods of
Maurer et al. (2002) and Hamlet and Lettenmaier (2005).
Daily gridded surfaces of minimum and maximum temper-
ature and daily precipitation accumulation were produced at
the spatial resolution of 1/16◦, which is ∼ 6 km2 depend-
ing on latitude, for January 1950 to December 2005. Sta-
tion data were contributed from multiple networks includ-
ing those of Environment Canada, BC Ministry of Forests,
Lands and Natural Resource Operations, BC Hydro, and the
US National Weather Service Co-operative Observer Pro-

Figure 1. The Peace River basin (above Taylor, BC) study area
analysed for ClimDEX indices (black boundary) and the five sub-
basins investigated for hydrologic extremes, including the Finlay
River above the Akie River (FINAK), the Ingenika River above the
Swannell River (INGEN), the Parsnip River above the Misinchinka
River (PARMS), the Peace River above the Pine River (PEAPN),
and the Peace River at Bennett Dam (BCGMS).
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Figure 2. Annual daily hydrograph 1985–1995 for the (top) In-
genika and (bottom) BCGMS hydrometric sites.
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gram, each with a varying range of quality control. Stations
were interpolated to grids using the SYMAP inverse-distance
weighting algorithm (Shepard et al., 1984). The raw grid-
ded fields were temporally homogenized to remove inter-
polation artefacts introduced by using a temporally varying
mix of stations and corrected for topographic effects using
ClimateWNA, a 1961–1990 PRISM based high-resolution
climatology for western North America (Daly et al., 1994;
Wang et al., 2006). This data set is referred to as VIC Forc-
ings.

The second data set was created for all of Canada using the
Australian National University Spline (ANUSPLIN) imple-
mentation of trivariate thin plate smoothing splines (Hutchin-
son et al., 2009). The Canada-wide ANUSPLIN observa-
tional data set was created at a 1/12◦ grid spacing (∼ 10 km)
for daily minimum temperature, maximum temperature, and
precipitation amounts for the period 1950–2010 by Hopkin-
son et al. (2011) and McKenney et al. (2011). Station data
from Environment Canada observing sites were interpolated
onto the high-resolution grid using the ANUSPLIN smooth-
ing splines with elevation, longitude, and latitude as inter-
polation predictors. Precipitation occurrence and square-root
transformed precipitation amounts were interpolated sepa-
rately on each day, combined, and transformed back to orig-
inal units. Observed station data were quality controlled and
corrected for station relocation, changes in the definition of
the climate day, and trace precipitation amounts.

3.2 Reanalyses

Four atmospheric reanalysis products were selected to span
a range of complexity and spatial resolution. Chosen meth-
ods include NCEP1, European Centre for Medium-Range
Weather Forecasts (ECMWF) Re-Analysis 40 (ERA40),
ECMWF Re-Analysis Interim (ERAInt), and the National
Oceanic and Atmospheric Administration – Cooperative In-
stitute for Research in Environmental Sciences 20th Century
Reanalysis V2 (20CR). NCEP1 is a popular reanalysis prod-
uct applied in the validation of statistical downscaling tech-
niques (Bürger et al., 2012a; Maurer et al., 2010). It spans
the period from 1948 to the present, is ∼ 1.9◦ in resolution,
and includes a wide range of observations assimilated from
ship to satellite data (Kalnay et al., 1996). ERA40 is available
from 1958 to 2002 and is archived at the coarsest resolution
(2.5◦) of the four products selected for this study. It was the
first to assimilate satellite radiance data directly (Uppala et
al., 2005). ERAInt covers the satellite era from 1979 through
to the present. Data used here are archived at 1.5◦, although
the underlying forecast model runs at 0.75◦. It has an im-
proved atmospheric model and assimilation system over that
used in ERA40 (Dee et al., 2011). 20CR is one of the longest
reanalysis records available, starting in 1871 and running to
2012. At 2◦ resolution it assimilates only surface observa-
tions of synoptic pressure, monthly sea surface temperature
and sea ice distribution (Compo et al., 2011). Table 1 sum-

Table 1. Availability of gridded observations and reanalyses.

Start End Resolution Reference

Reanalysis product

NCEP1 1948 Present ∼ 1.9◦ Kalnay et al. (1996)
20CR 1871 2011 2◦ Compo et al. (2011)
ERA40 1958 2001 2.5◦ Uppala et al. (2005)
ERAInt 1979 Present 1.5◦ Dee et al. (2011)

Gridded observation

VIC Forcings 1950 2005 ∼ 6 km Schnorbus et al. (2014)
ANUSPLIN 1950 2005 ∼ 10 km Hutchinson et al. (2009)

marizes the availability of the gridded observations and re-
analyses.

3.3 Downscaling techniques

Seven statistical approaches are selected based on their wide
use and/or potential strength in downscaling coarse-scale
models to gridded observations for representing extremes.
BCSD has been applied across North America (Maurer and
Hidalgo, 2008; Salathé, 2005; Schnorbus et al., 2014; Wood
et al., 2002, 2004). Monthly minimum temperature, maxi-
mum temperature, and precipitation from GCMs or reanaly-
ses are bias corrected, using quantile mapping, against grid-
ded observations aggregated to the large-scale model grid.
Bias corrected, spatially disaggregated monthly data are tem-
porally disaggregated to a daily time step via random sam-
pling of historical months. Days in the selected month are
rescaled (multiplicative for precipitation and additive for
temperature) to match the bias corrected monthly precipi-
tation and average temperature (Fig. 3a). Two variations of
BCSD are tested; one derives minimum and maximum tem-
perature from mean temperature in the coarse-scale model
by assuming a uniform monthly diurnal temperature range
(BCSD); the other uses monthly minimum and maximum
temperature directly from the large-scale model (BCSDX).

Two constructed analogue downscaling approaches are
tested: BCCA and DBCCA (Maurer et al., 2010). BCCA bias
corrects the large-scale temperature and precipitation using
quantile mapping, as in BCSD, except on daily rather than
monthly large-scale data. In the constructed analogue (CA)
component, a library of observed daily coarse-resolution and
corresponding high-resolution climate patterns of the vari-
able to be downscaled is built (Hidalgo et al., 2008). Daily
data are downscaled by selecting 30 days from the coarse-
scale library that have the closest similarity to a given sim-
ulated day; optimal weights are determined via ridge regres-
sion and the 30 corresponding fine-scale library patterns are
combined using the same weights (Maurer et al., 2010). In
the DBCCA technique, a second quantile mapping bias cor-
rection is then applied at the fine scale to fix drizzle and other
biases caused by the linear combination of daily fields in the
CA step (Fig. 3a).

www.hydrol-earth-syst-sci.net/20/1483/2016/ Hydrol. Earth Syst. Sci., 20, 1483–1508, 2016
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Figure 3. (a) Diagram of the bias corrected spatial disaggregation (BCSD), bias corrected constructed analogues (BCCA), and bias corrected
climate imprint (BCCI) downscaling methods and a summary of adjustments made to these methods to create BCSD with monthly minimum
and maximum temperature (BCSDX), double BCCA (DBCCA), climate imprint (CI), and BCCA corrected to BCCI (BCCAQ). (b) Workflow
diagram for assessment of downscaling techniques in replicating ClimDEX and hydrologic extremes.

Two climate imprint methods are tested, the CI delta
method (Hunter and Meentemeyer, 2005) and bias corrected
CI (BCCI), which applies quantile mapping to the interpo-
lated series from CI (Fig. 3a). For the imprint methods, long-
term averages (i.e. 30 years) from the fine-scale data pro-
vide a “spatial imprint” that is used to represent environmen-
tal gradients. The ratio of daily to average monthly values
is multiplied by the fine-scale monthly values for a location
to get the daily precipitation. This is similar for minimum
and maximum temperature, except values are calculated as

the difference between the monthly mean and the daily value
(Hunter and Meentemeyer, 2005).

While BCCI applies quantile mapping as a post-
processing step to the interpolated fine-scale outputs from
the CI method, BCCAQ is a post-processed version of BCCA
where the final quantile mapping bias correction is based on
BCCI. First, the BCCA and BCCI algorithms are run inde-
pendently, and then BCCAQ corrects BCCA with BCCI. The
daily BCCI outputs at each fine-scale grid point are reordered
within a given month according to the daily BCCA ranks. Be-
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cause the optimal weights used to combine the analogues in
BCCA are derived on a day-by-day basis, without reference
to the full historical data set, the algorithm may be prone to
Huth’s paradox, wherein models that are calibrated based on
short-term variability may be biased and fail to produce re-
alistic long-term trends (Benestad et al., 2008; Huth, 2004).
Reordering data for each fine-scale grid point within a month
effectively breaks the overly smooth representation of sub
reanalysis-grid-scale spatial variability inherited from BCCI
(Maraun, 2013), thereby resulting in a more accurate repre-
sentation of event-scale spatial gradients; this also prevents
the downscaled outputs from drifting too far from the BCCI
long-term trend. Over longer timescales, the spatial variabil-
ity of BCCAQ converges to that of BCCI.

Statistical methods are calibrated from 1950 to 1990 for
20CR and NCEP1, and from 1958 to 1990 and from 1979
to 1990 for ERA40 and ERAInt, respectively (Table 2). Cal-
ibration periods were selected to include the longest over-
lapping record between the gridded observation and reanal-
yses to replicate the approach taken in Werner et al. (2011).
Thus, the 20CR and NCEP1 reanalyses results will serve to
evaluate the gridded observations and these two reanalyses,
and also to validate the calibration–validation approach taken
with BCSD for a series of studies conducted in this region
(Bürger et al., 2012a, b; Schnorbus et al., 2014; Shrestha
et al., 2012; Werner et al., 2013). The resulting modelling
framework for these two gridded observations, four reanaly-
sis products, and seven gridded statistical downscaling tech-
niques is displayed in Fig. 3b. All statistical downscaling
methods use precipitation and temperature as predictors and
predictands.

3.4 ClimDEX

ClimDEX is a common climate indices package that com-
putes values for 27 core indices based on daily precipi-
tation and minimum and maximum temperature (Karl et
al., 1999; Peterson, 2005; and http://etccdi.pacificclimate.org
or http://www.clivar.org/panels-and-working-groups/etccdi/
etccdi.php/). These indices describe events such as the num-
ber of heavy precipitation days denoted as days where pre-
cipitation is greater than 10 mm or percentage of days when
maximum temperature is greater than the 90th percentile.
They do not usually represent the most extreme events con-
ceivable, but instead represent “the more extreme aspects of
climate”, which are known to be relevant to a broad range
of impact fields and are still statistically manageable, so
that they can be reliably estimated from current data for the
present and future. ClimDEX has been adopted as a standard
for extremes by the World Climate Research Programme
(http://www.clivar.org/organization/extremes). Indices were
computed from downscaled temperature and precipitation
from seven statistical downscaling methods used with four
reanalyses and two gridded observations for a total of 56
estimates of each index. The index of the annual count

Table 2. Calibration and validation periods for downscaling meth-
ods by reanalyses.

Reanalysis Calibration No. of Validation No. of
product years years

NCEP1 1950–1990 41 1991–2005 15
20CR 1950–1990 41 1991–2005 15
ERA40 1958–1990 33 1991–2001 11
ERAInt 1979–1990 12 1991–2005 15

when daily minimum temperature is > 20 ◦C, tropical nights
(tr), was dropped for this analysis because this temperature
threshold is not exceeded in the Peace River basin. See Ta-
ble 1 in Bürger et al. (2012a) for a description of indices ex-
plored in this study.

3.5 Hydrologic modelling

Hydrologic projections for the Peace River basin are de-
rived using the Variable Infiltration Capacity (VIC) model
(Liang et al., 1994, 1996). The VIC model is a spatially dis-
tributed macro-scale hydrologic model that was originally
developed as a soil–vegetation atmosphere transfer scheme
for general circulation models. It has been used to evalu-
ate climate change impacts on global river systems (Nijssen
et al., 2001) and in the mountainous western United States
and BC (Elsner et al., 2010b; Hamlet and Lettenmaier, 2005,
2007; Schnorbus et al., 2014; Shrestha et al., 2012). Its spa-
tially distributed nature makes it suitable for capturing re-
gional variation in the hydrologic cycle due to topographic,
physiographic, and climatic controls. The VIC model is also
process based, allowing for a more plausible extrapolation of
hydrologic processes into future climate regimes (Leavesley,
1994). The VIC model is applied at a resolution of 1/16◦ (ap-
proximately 27–31 km2, depending upon latitude) and run at
a daily time step (1 h time step for the snow model). Surface
routing between grid cells is done using the linearized Saint-
Venant equations (Lohmann et al., 1996).

The Finlay River above Akie River, Ingenika River above
Swannell River, Parsnip River above Misinchinka River, and
Peace River above Pine River sub-basins of the Peace River
were calibrated to observations from Water Survey of Canada
(Fig. 1). Peace River at Bennett Dam was calibrated to natu-
ralized flow provided by BC Hydro. The sub-basins range in
drainage area from 4200 to 83 900 km2 and from a minimum
elevation of 392 m to a maximum of 2799 m (Table 3). All se-
lected basins had strong calibration results over 1990–1995
for both the VIC Forcings and ANUSPLIN gridded observa-
tions based on the Nash–Sutcliffe efficiency score (Nash and
Sutcliffe, 1970), the Nash–Sutcliffe efficiency score of the
log-transformed discharge, and the percent volume bias error
(Table 4). Nash–Sutcliffe efficiency score values improved,
Nash–Sutcliffe efficiency score of the log-transformed dis-
charge stayed roughly the same, and percent volume bias er-
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Table 3. Metadata for five select sub-basins of the Peace River basin.

Basin Water Survey of Canada Drainage area Elevation
ID (km2) (m)

Mean Min Max

BCGMS – 72 078
FINAK 07EA005 16 000 1452 693 2799
INGEN 07EA004 4200 1503 674 2289
PARMS 07EE007 4900 1128 645 2343
PEAPN 07FA004 83 900 1126 392 2799

Table 4. Calibration and validation statistics for five select sub-basins of the Peace River basin under the under VIC Forcings and ANUSPLIN
gridded observational data sets including the Nash–Sutcliff efficiency score (NS), the Nash–Sutcliff efficiency score of the log-transformed
discharge (LNS), and the percent volume bias error (%VB).

VIC Forcings ANUSPLIN

Basin Calibration Validation Calibration Validation
1990–1995 1985–1989 1990–1995 1985–1989

NS LNS %VB NS LNS %VB NS LNS %VB NS LNS %VB

BCGMS 0.64 0.81 −1 0.75 0.83 −12 0.72 0.82 3 0.82 0.84 3
FINAK 0.66 0.85 0 0.83 0.88 −14 0.76 0.81 11 0.73 0.81 30
INGEN 0.76 0.82 0 0.82 0.78 −15 0.69 0.83 10 0.72 0.85 26
PARMS 0.78 0.71 0 0.81 0.66 −9 0.78 0.62 10 0.75 0.63 8
PEAPN 0.65 0.79 −2 0.76 0.87 −10 0.71 0.80 2 0.82 0.85 2

ror differences became larger in magnitude in the 1985–1989
split-sample validation period, negative in VIC Forcings, and
positive in ANUSPLIN.

There are several daily streamflow metrics that are useful
for water resources design and management, which are also
ecologically relevant (Monk et al., 2011; Richter et al., 1996;
Shrestha et al., 2014b). A recent intercomparison of statis-
tical downscaling techniques for use with daily streamflow
investigated the hydrologic extremes 3-day peak flow and 7-
day low flow (Maurer et al., 2010). To build on that study we
investigate the strength of seven downscaling methods for the
same metrics using 3-day peak flow to represent flood and,
7-day low flow, drought. Two low-flow periods are investi-
gated because the lowest discharge takes place in the months
of October–April in sub-basins of the Peace River (Fig. 2)
and summer low flows (July–September) are of interest to
agriculture and ecology. Hydrologic models can have low
flows in different seasons than observations due to their poor
parameterization of baseflow conditions and because calibra-
tion approaches favour good performance for peak flow (Na-
jafi et al., 2011). This issue can be exaggerated by down-
scaling approaches (Shrestha et al., 2014b). Thus, narrowing
the window over which low flows are accessed is important
to prevent low flows in one season being compared to low
flows in another. Peak flows are analysed between May and
July.

3.6 Statistical tests

The seven statistical downscaling methods vary in their ap-
proach, which can result in differing strengths and weak-
nesses. We chose our statistical tests to fully evaluate these
downscaling techniques for the climate and hydrologic re-
sults and to follow the framework of Bürger et al. (2012a).
The time period for calibration of the downscaling tech-
niques was selected to match Bürger et al. (2012a) (pre-1991,
depending on the availability of the reanalyses). Longer cal-
ibration periods available for NCEP1 and 20CR were also
seen as favourable when applying bias correction based
downscaling methods, especially when working with ex-
tremes (Huang et al., 2014; Themeßl et al., 2011), and as-
sisted with evaluating the two gridded observations. Vali-
dation was set to 1991–2005 to accommodate the overlap
of available reanalyses, gridded observations, and observed
streamflow records. ERA40 is an exception, with the last
full year of available record for 2001. Validation results for
ERA40 are provided for 1991–2001.

All statistical tests used in this study are conducted at the
5 % significance level, meaning that the tests are conducted
in such a way that rejection of the null hypothesis is expected
to occur in 5 % of tests when the null hypothesis is true.
Statistical hypothesis testing with absolute certainty is im-
possible. The choice of significance level reflects a balance
between the rate at which false rejection of the null hypoth-
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esis is expected to occur (so-called type I error) and the rate
at which a given test will correctly reject the null hypothe-
sis when it is false (the so-called power of the test), with the
choice of a more conservative significance level, such as 1 %,
leading to lower power in exchange for a lower type-I error
rate (e.g. von Storch and Zwiers, 1999).

Two statistical tests are applied to the ClimDEX results
over the Peace River basin: the Kolmogorov–Smirnov (KS)
test and the test for Pearson’s correlation. The KS test is used
to see how well the distribution of climate indices for the
statistically downscaled reanalyses matches the distribution
of those calculated from the gridded observations used as
downscaling targets. The KS test is a nonparametric test of
the equality of continuous one-dimensional probability dis-
tributions. Here, it is used to compare two samples, namely
annual climate indices for the statistically downscaled re-
analyses and the associated gridded observation. The KS test
statistic is used to quantify the distance between empirical
distribution functions of these two samples. The null hy-
pothesis is that the two samples are drawn from the same
distribution. The distributions considered under the null hy-
pothesis have to be continuous distributions, but are other-
wise unrestricted. While some of the climate indices are not
strictly continuous (e.g. frost days), asymptotic critical val-
ues may still be used in the presence of a small number of
ties (Janssen, 1994). Pearson’s correlation is used to test the
temporal correspondence between the annual climate indices
for the statistically downscaled reanalyses and the associated
gridded observation. Pearson’s product moment correlation
coefficient is used to measure the linear correlation between
climate indices from downscaled reanalyses and indices from
observations. The null hypothesis is that the downscaled and
observed samples are not linearly correlated.

The 101 000 km2 Peace River basin is represented by 3975
grid cells at the 1/16◦ resolution used to run the VIC hydro-
logic model. The KS test and Pearson’s correlation are eval-
uated on each of the grid cells in the Peace River basin for
each climate index. The statistical significance of the KS test
and Pearson’s correlation results over the basin as a whole
are measured using a field significance test: the Walker field
significance test (Wilks, 2006), where the evaluation of field
significance is done by using the minimum local p value as
the global test statistic. The Walker field significance test
was selected because it is relatively insensitive to correla-
tions among local tests, allowing global tests based on data
exhibiting both spatial and temporal correlations to be con-
ducted. Temporal and spatial correlations between climate
indices grids would require a cumbersome procedure to ad-
dress correctly with conventional resampling tests. Walker’s
test can be seen to be closely related to the conventional field
significance test (Storch, 1982) based on counting significant
local results, except that Walker’s test statistic is based on the
smallest of the K local p values, rather than the number of
K local tests that are significant at some level.

The KS test and the test for Pearson’s correlation were ap-
plied to the 3-day peak flow and 7-day low flow in winter and
summer for hydrologic data from the five sub-basins of the
Peace River. In this case, with the KS test the null hypothe-
sis is that the distribution of the hydrologic extremes created
by driving the VIC model with the statistically downscaled
reanalyses are drawn from the same sample as those derived
from driving the VIC model with the two gridded observa-
tions. The null hypothesis for Pearson’s correlation is that
the hydrologic extremes created by driving VIC with down-
scaled reanalyses versus gridded observations are not linearly
correlated.

4 Results

4.1 Gridded observations and reanalyses

Four reanalyses (NCEP1, ERA40, ERAInt, and 20CR) are
compared to two gridded observations (VIC Forcings and
ANUSPLIN) over the Peace River basin. Daily precipitation,
minimum temperature, and maximum temperature are con-
verted to total monthly precipitation and average monthly
temperatures over the 1950–2005. Average minimum and
maximum temperatures in ANUSPLIN and VIC Forcings are
similar from year to year in most months (Figs. 4 and 5).
However, prior to 1970, ANUSPLIN can be up to 5◦ cooler
than the VIC Forcings and reanalyses from December to
February. Precipitation totals are similar from year to year for
all months in the two gridded observations, except October,
when precipitation difference can be up to 50 mm (Fig. 6).
This could be because there is greater station coverage in the
VIC Forcings and an elevation adjustment is made with Cli-
mateWNA. Differences in these two products resulting from
these factors might be more apparent in the shoulder season.

There is a warm bias in minimum temperature in 20CR
and ERA40 from May to November and a cool bias in
NCEP1 from March to October relative to gridded obser-
vations (Fig. 4). The biases in NCEP1 tend to be greater
over part of the record in some months, such as from 1970
to ∼ 1995 in June. ERAInt is closest to gridded observa-
tions for minimum temperature, but is only available after
1979. Some of the patterns seen in minimum temperature
are repeated in maximum temperature (Fig. 5). NCEP1 val-
ues are noticeably cooler than observations and other reanal-
yses in May, June, July, September, and October in some
years. In April, maximum temperatures in 20CR and NCEP1
are close to each other and roughly 5 degrees less than the
other reanalyses and gridded observations. Maximum tem-
peratures for ERA40 and ERAInt are closest to gridded ob-
servations from year to year in all months. Monthly precipi-
tation in the NCEP1 and ERA40 reanalyses has similar mag-
nitudes and variability as the gridded observations (Fig. 6).
ERAInt is close to observations in the autumn and winter
months, but has higher precipitation values in March through
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Figure 4. Monthly average minimum temperature by gridded observations (VIC Forcings and ANUSPLIN) and reanalysis (NCEP1, ERA40,
ERAInt, 20CR) over the Peace River basin.

to August. 20CR stands apart from the other reanalyses and
both gridded observations with consistently larger precipita-
tion amounts, roughly twice the magnitude as observations in
September through to April. However, sequencing of events
is similar between 20CR and observations.

This confirms that near surface temperature and precipita-
tion values from the selected reanalyses have different char-
acteristics due to their different resolutions, model physics,
and contributing data in the Peace River basin. The two grid-
ded observations also displayed some dissimilarity in time.
Differences between these four reanalyses in this particular
region should act as a stringent test of the downscaling tech-
niques applied. However, we expect that the time-dependent
differences between gridded observations and NCEP1 for
minimum and maximum temperature, and precipitation, will
reduce the success rate of any of the downscaling techniques
(Maurer et al., 2013). Nevertheless, we carry NCEP1 through
the analysis to quantify the impacts of using a potentially
flawed reanalysis and also to evaluate VIC Forcings and

ANUSPLIN over their full record (1950–2005) with two re-
analyses (NCEP1 and 20CR).

4.2 Impact of the downscaling approach and

reanalyses on ClimDEX results

Downscaled minimum temperature, maximum temperature,
and precipitation from seven gridded downscaling methods,
two gridded observations, and four reanalyses were used to
generate 26 ClimDEX indices. Results were compared to the
indices generated from the respective gridded observations at
their native resolution (VIC Forcings (∼ 6 km) and ANUS-
PLIN (∼ 10 km)) for their ability to match the timing (Pear-
son’s correlation) and distribution (KS test) of values over
the Peace River basin using the Walker field significance test
(Wilks, 2006).

In the calibration (1950–1990) and validation (1991–
2005) periods, the VIC Forcings and ANUSPLIN data sets
are similar for most temperature based indices and show
some large differences for precipitation based indices (Ta-
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Table 5. Mean annual ClimDEX values for VIC Forcings and ANUSPLIN averaged over the Peace River basin.

Index Calibration (1950–1990) Validation (1991–2005) Units Indicator name

VIC Forcings ANUSPLIN VIC Forcings ANUSPLIN

cdd 20 19 18 19 Days Consecutive dry days
csdi 5 9 5 6 Days Cold spell duration
cwd 9 10 11 12 Days Consecutive wet days
dtr 11 11 10.6 10.3 ◦C Diurnal T range
fd 239 238 233 230 Days Frost days
gsl 136 131 140 138 Days Growing season
id 109 122 102 106 Days Ice days
prcptot 703 578 742 585 mm Annual total wet-day
r1mm 133 142 150 153 Days Precipitation days
r10mm 17 8 17 8 Days Heavy prec. days
r20mm 4 1 4 1 Days Very heavy prec.
r95p 145 97 142 100 mm Very wet days
r99p 42 28 38 32 mm Extremely wet days
rx1day 32 22 31 23 mm Max 1-day prec.
rx5day 63 46 64 46 mm Max 5-day prec.
sdii 5 4 5 4 mm day−1 Simple daily intense
su 7 6 7 7 Days Summer days
tn10p 11 13 7 8 % Cool nights
tn90p 10 9 12 14 % Warm nights
tnn −37 −41 −35.5 −37.6 ◦C Min monthly Tn
tnx 11 11 11.5 11.8 ◦C Max monthly Tn
tx10p 11 11 9 8 % Cool days
tx90p 10 10 11 14 % Warm days
txn −27 −29 −24.9 −25.8 ◦C Min monthly Tx
txx 27 27 27.9 27.4 ◦C Max monthly Tx
wsdi 4 5 8 12 Days Warm spell duration

ble 5), Namely, PRCPTOT, annual total wet day precipi-
tation (> 1 mm), in ANUSPLIN is 18 and 21 % less than
VIC Forcings in the calibration and validation periods, re-
spectively. The events on a given day are larger in VIC
Forcings than ANUSPLIN as shown by the higher R95p,
RX1day, RX5day, R10mm, and R20mm values. Between the
validation and the calibration period, PRCPTOT increases
more in VIC Forcings than in ANUSPLIN. The increase
in VIC Forcings comes from an increase in precipitation
days (R1mm) rather than an increase in intensity. Magni-
tudes of the larger precipitation events actually decrease for
VIC Forcings, while they increase for ANUSPLIN, although
these events are still larger in VIC Forcings than ANUSPLIN
in the validation period. The percentage of cool nights de-
creases and the duration of warm spells increases somewhat
equally for both gridded observations. However, increases in
the percentage of warm days and warm nights, and decreases
in the percentage of cool days and duration of cold spells, are
greater in ANUSPLIN than VIC Forcings, which suggests
that the warming signal in ANUSPLIN is stronger. Statisti-
cally significant increases in annual minimum temperatures
were found by Rodenhuis et al. (2009) in this region. Dif-
fering trends in climate extremes are common in gridded ob-
servations due to differences in stations, interpolation tech-

niques, and potential corrections for temporal inhomogene-
ity. Donat et al. (2014) found that decadal trends in maxi-
mum 5-day precipitation amounts (Rx5day) over 1979–2008
ranged from −15 to 5 mm decade−1 in the Peace River basin
region, depending on the gridded observations they studied.
VIC Forcings included a monthly temporal adjustment to in-
crease homogeneity (Hamlet and Lettenmaier, 2005), while
ANUSPLIN did not. Additionally, stations were allowed to
drop in and out on a daily bases in ANUSPLIN, whereas sta-
tions had to be available for a minimum of 1 year of consec-
utive days and 5 years over the record to be included in VIC
Forcings. Hence, trends in some climate extremes differ for
these gridded observations and may or may not match those
of “reality” and/or reanalyses.

Irrespective of downscaling method or reanalysis, those
methods calibrated and validated against the ANUSPLIN
gridded observations were more successful versus those
based on VIC Forcings overall (Table 6), although there
were some cases where VIC Forcings passed more tests
than ANUSPLIN (Table 8). For example, under the BCCA
method, precipitation amounts on extremely wet days (R95p)
for all reanalyses based on VIC Forcings failed the Walker
field significance test for the Pearson correlation, while those
for ANUSPLIN passed (Fig. 7). (Note: time series shown are
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Figure 5. Monthly average maximum temperature by gridded observations (VIC Forcings and ANUSPLIN) and reanalysis (NCEP1, ERA40,
ERAInt, 20CR) over the Peace River basin.

averages of all of the VIC Forcings or ANUSPLIN cells in
the Peace basin, while the significance of results was based
on the Walker field significance of the correlation tested
on each grid cell in the basin.) The largest differences in
the number of tests passed primarily occur for precipita-
tion based indices where ANUSPLIN passes more than VIC
Forcings. VIC Forcings passes 29 more tests than ANUS-
PLIN for DTR (Table 7). This result is not unexpected be-
cause the differences between the calibration and the vali-
dation period are precipitation related in VIC Forcings and
temperature related in ANUSPLIN (Table 5). Step changes in
daily temperature range (DTR) from 1950 to 2005 are appar-
ent in ANUSPLIN (Fig. 8). DTR is a strong driver of snow-
pack generation and melt, and errors in simulating realistic
DTR could affect hydrologic modelling results.

The sequencing of precipitation indices, such as CWD,
PRCPTOT, R10mm, R20mm, R95p, R99p, Rx1day, Rx5day,
and SDII, is most difficult to replicate for all methods, espe-
cially under VIC Forcings. VIC Forcings has a higher station
density than ANUSPLIN because it includes stations from

BC Hydro, the BC Ministry of Forests Lands and Natural
Resource Operations, and the Ministry of Environment’s BC
River Forecast Centre Snow Survey Network in addition to
those from Environment Canada (Werner et al., 2015). The
BC Hydro network provided a large number of stations in
the Peace River basin, most of which were not available
until the 1980s (Werner et al., 2015). The increase in the
number of stations after 1980 in the VIC Forcings likely
resulted in more complex spatial patterns in precipitation,
despite the monthly temporal adjustment, because it is de-
signed to maintain spatial variability (Hamlet and Letten-
maier, 2005). Increased spatial variability in the validation
period, coupled with a different interpolation method in VIC
Forcings, could have made precipitation patterns harder to
replicate with downscaling. If we are going to rely on these
data sets to investigate changes to extreme climate and hy-
drology, we should develop a way to maintain temporal and
spatial homogeneity for daily values while allowing data sets
to reflect natural trends. Minimizing homogeneity problems
throughout the record is favourable when using gridded ob-
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Figure 6. Monthly total precipitation by gridded observations (VIC Forcings and ANUSPLIN) and reanalysis (NCEP1, ERA40, ERAInt,
20CR) over the Peace River basin.

servations to calibrate statistical downscaling methods (Gut-
mann et al., 2014; Livneh et al., 2013; Maurer et al., 2002).

Considering results for all downscaling methods and both
gridded observations, results based on ERAInt had the high-
est score of all four reanalyses for the Pearson correlation
and KS tests combined (Table 6). ERAInt results matched
sequencing of events most often, as indicated by frequent
rejection of the null hypothesis for the Pearson correlation
test (Fig. 7; Table 8), and ERA40 results matched distribu-
tions most often according to the KS test (Fig. 9; Table 8).
The zero-correlation null hypothesis was rejected when com-
paring ERAInt for the ANUSPLIN and VIC Forcings grid-
ded observations for the number of heavy precipitation days
(R10mm), but was not rejected with other reanalyses (Fig. 7).
ERA40 and ERAInt monthly average minimum and maxi-
mum temperature and total precipitation matched those of the
gridded observations most closely (see Sect. 4.1). ERAInt is
the highest resolution (1.5◦) and both ERAInt and ERA40
excluded 1950–1958 in their calibration when NCEP1 and
20CR did not (Table 2), which may have avoided potential

problems with the gridded observations caused by lower sta-
tion availability earlier in the record and with reanalysis data
from the pre-satellite era (1979–) and before the expansion
and standardization of a global radiosonde network (1958–
). Results for SDII for VIC Forcings and ANUSPLIN under
all seven downscaling methods show large differences be-
tween gridded observations and downscaled NCEP1 prior to
1958 (Fig. 10). Gutmann et al. (2014) tested four downscal-
ing methods with NCEP1 focusing on the period contain-
ing satellite microwave and infrared atmospheric soundings
(1979–) and still found that temporal instabilities in NCEP1
contributed to failure in downscaling techniques for some
metrics. Root mean square error in sea level pressure de-
creases from 1950 to 2008 strongly in NCEP1, somewhat
in ERA40, and minimally in 20CR (see Fig. 10 in Compo
et al., 2011). Assimilating only surface pressure reports and
using observed monthly sea surface temperature and sea ice
distributions as boundary conditions to create 20CR has re-
sulted in a more temporally consistent product. However, it
has still improved over time. Changes in 20CR in combina-

www.hydrol-earth-syst-sci.net/20/1483/2016/ Hydrol. Earth Syst. Sci., 20, 1483–1508, 2016



1496 A. T. Werner and A. J. Cannon: Hydrologic extremes

Table 6. Summary of the number of tests passed for Pearson’s corre-
lations and similarity in distributions (KS test) based on the Walker
field significance test between ClimDEX indices for downscaled
reanalyses versus target gridded observation over the Peace River
basin for 1991–2005 (1991–2001 ERA40), summarized by gridded
observation, reanalysis, and the downscaling method. Max indicates
the maximum possible tests to pass in that category.

Pearson’s correlation KS test Combined

Gridded observation

VIC Force 367 578 945
ANUSPLIN 388 628 1016
Max 728 728 1456

Pearson’s correlation KS test Combined

Reanalyses

NCEP1 159 284 443
20CR 147 287 434
ERA40 201 340 541
ERAInt 248 295 543
Max 364 364 728

Pearson’s correlation KS test Combined

Downscaling method

BCCA 130 171 301
DBCCA 139 174 313
BCCI 131 176 307
CI 139 154 293
BCSD 56 175 231
BCSDX 48 173 221
BCCAQ 112 183 295
Max 208 208 416

tion with changes in the gridded observations over 1950–
2005 have resulted in fewer passed tests for 20CR than
ERA40 or ERAInt. Thus, choice of reanalysis, calibration
period, and the gridded observation data set can influence the
measured success of the downscaling approach being tested,
irrespective of the method’s inherent strengths and weak-
nesses.

The highest ranked downscaling method based on the
combined results for field significance of Pearson’s correla-
tion and the KS test for all gridded observations, reanaly-
ses, and ClimDEX indices was DBCCA (Table 6). It tied for
highest rank with CI for correlation, while BCCAQ super-
seded all other methods for distribution. Bias remains in re-
sults of the BCCA method for precipitation due to the linear
combination of fine-scale analogues and uncorrected “driz-
zle” and related biases (Guttmann et al., 2014). All down-
scaling methods, except CI, include a quantile mapping bias
correction step and are expected to do well in matching distri-
butions with their respective gridded observation. All meth-
ods except CI pass 86 % or more of the tests for distribu-

Table 7. Number of tests passed for each ClimDEX index for VIC
Forcings and ANUSPLIN for 1991–2005 (1991–2001 in ERA40).

VIC Forcings ANUSPLIN Difference

cdd 48 44 4
csdi 54 54 0
cwd 19 31 −12
dtr 32 3 29
fd 51 48 3
gsl 54 52 2
id 55 47 8
prcptot 24 33 −9
r10mm 28 31 −3
r1mm 24 36 −12
r20mm 26 42 −16
r95p 11 28 −17
r99p 24 41 −17
rx1day 14 35 −21
rx5day 30 33 −3
sdii 2 15 −13
su 51 50 1
tn10p 52 52 0
tn90p 48 43 5
tnn 42 39 3
tnx 30 32 −2
tx10p 52 52 0
tx90p 50 50 0
txn 43 44 −1
txx 41 42 −1
wsdi 40 39 1

tion (KS test), while CI passes 78 %. The correlation of DTR
was a problem for all the downscaling methods and both
gridded observations (Fig. 8) and for distribution based on
ANUSPLIN (except BCCAQ), but not when based on VIC
Forcings. BCCAQ in combination with ANUSPLIN matched
DTR distributions for ERAInt, ERA40, and 20CR when all
other methods failed, which points to the success of its ap-
proach of post-processing BCCA with a final quantile map-
ping bias correction based on BCCI. As mentioned above,
DTR is an important driver in snowpacks. Additionally, it
plays a key role in evaporation (Sheffield et al., 2012). Rates
of evaporation are an important component of projecting fu-
ture water availability and drought (Sherwood and Fu, 2014).
Therefore, accurately downscaling DTR should be a priority.
Including minimum and maximum monthly temperature pre-
dictors in BCSDX did not improve the correlation of DTR as
was hypothesized in previous studies (Bürger et al., 2012a).

4.3 Impact of the downscaling approach and

reanalyses on hydrologic extremes

The previous section shows how raw reanalyses and obser-
vations differ in the Peace River basin and how downscaled
reanalyses can differ in their representation of climate ex-
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Table 8. Summary of the number of tests passed for Pearson’s correlations and similarity in distributions (KS test) based on the Walker
field significance test between ClimDEX indices for downscaled reanalyses versus target gridded observation over the Peace River basin for
1991–2005 (1991–2001) for reanalysis (ERA40) versus the downscaling method for each gridded observation.

Pearson’s correlation KS test

NCEP1 20CR ERA40 ERAInt Sub NCEP1 20CR ERA40 ERAInt Sub Total

V
IC

Fo
rc

in
gs

BCCA 14 14 14 17 59 19 21 24 18 82 141
DBCCA 15 14 15 18 62 20 22 24 18 84 146
BCCI 14 14 16 20 64 20 21 24 22 87 151
CI 13 14 17 22 66 16 14 24 18 72 138
BCSD 4 6 6 12 28 20 20 24 20 84 112
BCSDX 4 5 7 11 27 20 20 24 20 84 111
BCCAQ 15 13 14 19 61 20 21 24 20 85 146

Subtotal 79 80 89 119 135 139 168 136

A
N

U
SP

L
IN

BCCA 17 11 23 20 71 22 23 24 20 89 160
DBCCA 17 13 23 24 77 21 20 24 25 90 167
BCCI 14 12 18 23 67 21 21 24 23 89 156
CI 15 14 20 24 73 15 19 24 24 82 155
BCSD 5 4 8 11 28 24 21 25 21 91 119
BCSDX 3 3 5 10 21 24 20 25 20 89 110
BCCAQ 9 10 15 17 51 22 24 26 26 98 149

Subtotal 80 67 112 129 149 148 172 159
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Figure 7. Field significant correlations based on the Walker field
significance test over the Peace River basin between ClimDEX in-
dices for downscaled reanalysis versus target gridded observation,
VIC Forcings (left) and ANUSPLIN (right), by the downscaling
method for 1991–2005 (1991–2001 ERA40). Dark grey boxes indi-
cate cases in which the null hypothesis is rejected at the 5 % signif-
icance level.

tremes when calibrated to one gridded observation versus
another. NCEP1 has routinely been used to compare the per-
formance of statistical downscaling methods in terms of cli-
mate and hydrologic extremes (e.g. Bürger et al., 2012a and
Maurer et al., 2010). We thus continue our comparison of
multiple gridded observations, reanalyses, and downscaling
techniques for hydrologic extremes. Results are compared
for 15 years from 1991 to 2005 (inclusive) for the five sub-
basins, except for ERA40 (11 years; 1991–2001). We evalu-
ate methods for their ability to replicate the timing (Pearson’s
correlation) and distribution (KS test) of the 3-day peak flow,
7-day low flow in summer, and 7-day low flow in winter.

Irrespective of reanalysis or downscaling method, VIC hy-
drologic model simulations based on the VIC Forcings grid-
ded observations passed 8 % more tests than those based on
the ANUSPLIN gridded observations (Table 9), whereas for
the ClimDEX indices ANUSPLIN passed 7 % more tests
than VIC Forcings (Table 6). The difference in the number of
tests passed is not great. Therefore, the success of the down-
scaling methods does not depend strongly on which of the
gridded observations is applied overall. However, the greater
number of tests passed for hydrologic modelling with the
VIC Forcings gridded observations could relate to VIC Forc-
ings being created at the native resolution of the VIC hydro-
logic model (1/16◦), whereas the ANUSPLIN data were cre-
ated at 1/12◦ and remapped to 1/16◦ using bilinear interpola-
tion. Additionally, a larger precipitation bias correction was
required during calibration with the ANUSPLIN data than
the VIC Forcings data, suggesting that ANUSPLIN precip-
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Figure 8. Time series of average DTR from VIC Forcings (left) and ANUSPLIN (right) for NCEP1 (top), 20CR (second), ERA40 (third),
and ERAInt (bottom) downscaled using BCCA, DBCCA, BCCI, CI, BCSD, BCSDX, and BCCAQ over the Peace River basin.

itation is less representative than VIC Forcings. Out of the
two statistical tests and three metrics the only case where
ANUSPLIN passed more tests than VIC Forcings was for
correlation in summer 7-day low flow (Table 10), especially
when driven with NCEP1 and 20CR downscaled via BCCA
and DBCCA. Similar results were found for ANUSPLIN and
BCCA and DBCCA with the ClimDEX indices (Sect. 4.2).

This suggests that there is potential for ClimDEX results to
act as a predictor of hydrologic extremes.

When considering results regardless of gridded observa-
tion or downscaling technique, the number of tests passed
under ERA40 was the highest overall (Table 9). Addition-
ally, the number of tests passed for Pearson’s correlation and
the KS test were both highest for ERA40. The truncated val-
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Figure 9. Field significant similarities in distributions based on the
Walker field significance test over the Peace River basin between
ClimDEX indices for downscaled reanalysis versus target gridded
observation, VIC Forcings (left), and ANUSPLIN (right), by the
downscaling method for 1991–2005 (1991–2001 ERA40). Dark
grey boxes indicate cases in which the null hypothesis is not re-
jected at the 5 % significance level.

idation period for ERA40, 1990–2001 versus 1990–2005 for
other reanalyses, could have avoided some challenging hy-
drologic extreme events in 2002–2005. However, ERAInt,
which was validated over 1990–2005, passed nearly the same
number of tests as ERA40. Thus, the shorter calibration pe-
riod in ERA40 and ERAInt avoids step changes in the grid-
ded observations and reanalyses prior to 1958. Peculiarities
with the gridded observations were apparent from 1950 to
1958 for the monthly average minimum and maximum tem-
peratures (Figs. 4 and 5) and for the DTR and SDII ClimDEX
indices (Figs. 8 and 10). Avoiding these years could have
reduced artefacts in the downscaled products and hydro-
logic model results. Nevertheless, many studies have demon-
strated that ERA40 and ERAInt are superior products ver-
sus NCEP1 (Donat et al., 2014; Ma et al., 2008, 2009; Sill-
mann et al., 2013a). In our own analysis ERA40 and ERAInt
have similar timing and magnitude in minimum and maxi-
mum temperature and precipitation (Figs. 4, 5, and 6) to the
gridded observations when NCEP1 and 20CR do not. These
results confirm that downscaling methods will succeed when
applied to reanalyses that have correct timing, magnitude,
and trends such as ERA40 and ERAInt, more so than when
applied to reanalyses such as NCEP1 and 20CR that have ir-
regular step changes (Maraun, 2013). We should be able to
assume that although the biases in GCMs will be greater than

Table 9. Summary of the number of tests passed for Pearson’s corre-
lations and similarity in distributions (KS test) based on the Walker
field significance test between hydrologic extremes for downscaled
reanalyses versus target gridded observation over the Peace basin
for 1991–2005 (1991–2001 ERA40), summarized by gridded ob-
servation, reanalysis, and downscaling method. Max indicates the
maximum possible tests to pass in that category.

Pearson’s correlation KS test Combined

Gridded observation

VIC Force 309 404 713
ANUSPLIN 310 350 660
Max 420 420 840

Pearson’s correlation KS test Combined

Reanalyses

NCEP1 135 188 323
20CR 125 181 306
ERA40 180 196 376
ERAInt 179 189 368
Max 210 210 420

Pearson’s correlation KS test Combined

Downscaling method

BCCA 102 96 198
DBCCA 104 111 215
BCCI 107 111 218
CI 99 87 186
BCSD 49 119 168
BCSDX 48 119 167
BCCAQ 110 111 221
Max 120 120 240

those found in reanalyses, they are consistent over time. The
strength of downscaling methods when downscaling ERA40
and ERAInt versus NCEP1 and 20CR was also found with
the ClimDEX indices.

The BCCAQ method was the best overall performer for the
three hydrologic extremes. It was the best method accord-
ing to Pearson’s correlation and tied for second place with
DBCCA and BCCI, after BCSD and BCSDX, for the KS
test. BCSD and BCSDX passed the fewest number of tests
for correlation, while CI passed the fewest for distribution.
In the case of ClimDEX, BCCAQ ranked third after BCCA
and BCCI. The strength of the BCCAQ method when tested
in terms of basin-wide hydrologic modelling and hydrologic
extremes, rather than in terms of ClimDEX indices at indi-
vidual grid cells, comes from the maintenance of daily spatial
patterns resulting from the combination of BCCA and BCCI
methods. Event-scale spatial gradients and magnitudes are
preserved by reordering the BCCI outputs based on the rank
order structure from BCCA. In effect, this removes the overly
smooth representation of sub reanalysis-grid-scale variability
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Table 10. Number of basins where the null hypothesis that the downscaled and observed (VIC Forcings and ANUSPLIN) derived 3-day peak
flows are not linearly correlated was rejected and the number of basins where the null hypothesis that the downscaled and observed based
distributions are drawn from the same sample was not rejected, by downscaling method/reanalysis combinations for 1991–2005 (1991–2001
ERA40).

Pearson’s correlation KS test

NCEP1 20CR ERA40 ERAInt Sub NCEP1 20CR ERA40 ERAInt Sub Total

V
IC

Fo
rc

in
gs

BCCA 2 2 5 5 14 5 5 5 1 16 30
DBCCA 1 3 5 5 14 5 5 5 5 20 34
BCCI 2 5 5 5 17 5 5 5 5 20 37
CI 5 2 5 5 17 5 5 5 5 20 37
BCSD 3 2 4 2 11 5 5 5 5 20 31
BCSDX 3 3 4 2 12 5 5 5 5 20 32
BCCAQ 3 5 5 5 18 5 5 5 5 20 38

Subtotal 19 22 33 29 103 35 35 35 31 136

A
N

U
SP

L
IN

BCCA 5 0 5 5 15 4 4 4 1 13 28
DBCCA 5 1 5 5 16 5 2 4 5 16 32
BCCI 5 2 4 5 16 5 2 4 5 16 32
CI 4 0 5 5 14 5 2 4 5 16 30
BCSD 2 0 3 3 8 5 5 5 5 20 28
BCSDX 2 0 3 3 8 5 5 4 5 19 27
BCCAQ 5 3 5 5 18 5 2 5 5 17 35

Subtotal 28 6 30 31 95 34 22 30 31 117

from BCCI (Maraun, 2013) and largely corrects remnant bi-
ases in magnitude from BCCA (Guttmann et al., 2014). Spa-
tial covariability is much more relevant in hydrologic mod-
elling than the comparison of climate indices between prod-
ucts on a grid cell to grid cell basis. This method is also better
at maintaining long-term trends, which might explain failed
tests in some of the sub-basins when downscaling NCEP1
and 20CR, which, as shown earlier, exhibit inhomogeneities
between calibration and validation periods. BCCAQ could be
failing for the “right reason” when the trend in VIC Forcings
or ANUSPLIN for a given metric is opposite that in NCEP1
or 20CR. BCCAQ is the only method to pass the Pearson cor-
relation and KS test in all five sub-basins when downscaling
ERA40 or ERAInt to VIC Forcings or ANUSPLIN for all
three hydrologic extremes. BCCAQ has overcome some of
the challenges of BCCA that Maurer et al. (2010) would not
have been able to find using NCEP1 alone as surrogate GCM.
It is also more successful than the BCCI method, which is
analogous to the statistical downscaling and bias correction
(SDBC) method in Ahmed et al. (2013) and asynchronous re-
gression (AR) in Gutmann et al. (2014), by avoiding overesti-
mates of extreme events at aggregate scales (Maraun, 2013).

The BCSD methods pass the most tests for distribution
for all basins and reanalyses, while they fail more tests than
any other downscaling method for correlation due to their re-
liance on random sampling of historical months when tempo-
rally disaggregating from the monthly to daily time step (Ta-
ble 6). Thus, these methods will get the frequency and mag-
nitude of events correct, but will get the timing of when these

events occur wrong. Again, including the minimum and max-
imum temperatures from the large-scale model (reanalysis)
does not improve the number of tests passed with BCSDX
versus BCSD. For 3-day peak flow (Table 11; Fig. 11) and
7-day low flow in summer (Table 10; Fig. 12) these methods
pass the majority of tests for correlation. Very few tests are
passed for correlation in 7-day low flow in winter (Table 12;
Fig. 13). Winter low flows are challenging to monitor and
to model. There could be ice on the river causing the stage–
discharge relationships to be incorrect. Also, as mentioned,
models are not parametrized or calibrated to best represent
base flow. However, BCSD and BCSDX have more trouble
than any of the other downscaling methods. Due to the re-
sampling of daily events from the historical gridded obser-
vations there can be precipitation occurring in combination
with temperatures warm enough to generate runoff (Fig. 14).
This is because of the stochastic resampling of the historical
precipitation, but is also related to temperature since runoff
is occurring when conditions should be near freezing. Addi-
tionally, the random selection of months from the historical
record can lead to large discontinuities across month bound-
aries, such as in December–January (Fig. 14). This is when
it is important to get daily events from the GCM or reanaly-
ses (e.g. as in the CI, BCCI, BCCA, DBCCA, and BCCAQ
methods). As calibrated, the VIC model is known to have
limited performance for low flows and additional errors were
suspected to have been contributed by BCSD in downscaled
20C3M GCM results (Shrestha et al., 2014b). Some sharp
spikes on the rising limb of the hydrograph suggest rain-on-
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Figure 10. Time series of average SDII from VIC Forcings (left) and ANUSPLIN (right) for NCEP1 (top), 20CR (second), ERA40 (third),
and ERAInt (bottom) downscaled using BCCA, DBCCA, BCCI, CI, BCSD, BCSDX, and BCCAQ over the Peace River basin.

snow events caused by the downscaling-driven results that
are not displayed in the runs based on gridded observations.
The CI method is the closest to the delta method that we have
investigated. The median and ranges for CI are much lower
for winter 7-day low flow (not shown). The poorer perfor-

mance of the CI method for the KS test is due to the lack of
quantile mapping bias correction in this method.
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Figure 11. Boxplots, time series, and distributions of 3-day peak flow in the spring months (May–July) for NCEP1, 20CR, ERA40, and
ERAInt in the BCGMS basin based on VIC Forcings (top) and ANUSPLIN (bottom). Legend same as Fig. 9.
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Table 11. As in Table 10 but for summer 7-day low flow.

Pearson’s correlation KS test

NCEP1 20CR ERA40 ERAInt Sub NCEP1 20CR ERA40 ERAInt Sub Total

V
IC

Fo
rc

in
gs

BCCA 3 2 5 5 15 5 5 5 5 20 35
DBCCA 3 2 5 5 15 5 5 5 5 20 35
BCCI 3 4 5 5 17 5 5 5 5 20 37
CI 2 4 5 5 16 5 5 5 5 20 36
BCSD 2 3 3 4 12 5 5 5 5 20 32
BCSDX 2 2 3 4 11 5 5 5 5 20 31
BCCAQ 4 3 5 5 17 5 5 5 5 20 37

Subtotal 19 20 31 33 103 35 35 35 35 140

A
N

U
SP

L
IN

BCCA 5 4 5 5 19 5 5 5 1 16 35
DBCCA 5 5 5 5 20 5 5 5 5 20 40
BCCI 3 5 5 5 18 5 5 5 5 20 38
CI 1 5 5 5 16 5 5 5 5 20 36
BCSD 1 2 4 5 12 5 5 5 5 20 32
BCSDX 1 2 4 5 12 5 5 5 5 20 32
BCCAQ 3 5 5 5 18 5 5 5 5 20 38

Subtotal 19 28 33 35 115 35 35 35 31 136
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Figure 12. Time series of 7-day low flow in the summer months (July–September) for NCEP1, 20CR, ERA40, and ERAInt in the BCGMS
basin based on VIC Forcings (top) and ANUSPLIN (bottom). Legend same as Fig. 9.

5 Conclusions

We have tested the applicability of seven techniques
for downscaling coarse-scale climate models in terms of
ClimDEX indices and hydrologic extremes. The seven ap-
proaches investigated include several methods commonly
used in hydrologic modelling. Some of these had been ex-
plored before (i.e. BCSD and BCCA), but not using mul-
tiple reanalyses. Choice of reanalysis was found to affect
the number of tests passed for a given downscaling tech-
nique. Downscaling methods were more successful under
ERA40 or ERAInt than they were under NCEP1 or 20CR.

The quality of reanalyses and gridded observations changed
over the calibration period due to changes in availability of
satellite/radiosonde data and station observations. NCEP1,
the reanalysis used as a surrogate GCM in many previous
downscaling intercomparisons, had an obviously erroneous
step change in temperature over the Peace River basin. Be-
tween the calibration and the validation period, changes in
ClimDEX indices were greater for precipitation with VIC
Forcings but greater for temperature with ANUSPLIN. Thus,
trends in ClimDEX indices differed in these gridded observa-
tions. ANUSPLIN passed 5 % more tests than VIC Forcings,
mostly for precipitation-related ClimDEX indices. Through
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Table 12. As in Table 10 but for winter 7-day low flow.

Pearson’s correlation KS test

NCEP1 20CR ERA40 ERAInt Sub NCEP1 20CR ERA40 ERAInt Sub Total

V
IC

Fo
rc

in
gs

BCCA 5 5 5 5 20 5 5 5 5 20 40
DBCCA 5 5 5 5 20 5 5 5 5 20 40
BCCI 5 5 5 5 20 5 5 5 5 20 40
CI 5 5 4 5 19 4 2 2 0 8 27
BCSD 0 0 2 0 2 5 5 5 5 20 22
BCSDX 0 0 2 0 2 5 5 5 5 20 22
BCCAQ 5 5 5 5 20 5 5 5 5 20 40

Subtotal 25 25 28 25 103 34 32 32 30 128

A
N

U
SP

L
IN

BCCA 5 5 4 5 19 1 3 4 3 11 30
DBCCA 5 5 4 5 19 2 3 5 5 15 34
BCCI 5 4 5 5 19 2 3 5 5 15 34
CI 5 5 3 4 17 0 0 0 3 3 20
BCSD 0 0 2 2 4 4 5 5 5 19 23
BCSDX 0 1 2 0 3 5 5 5 5 20 23
BCCAQ 5 4 5 5 19 1 3 5 5 14 33

Subtotal 25 24 25 26 100 15 22 29 31 97
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Figure 13. Time series of 7-day low flow in the winter months (November–April) for NCEP1, 20CR, ERA40, and ERAInt in the BCGMS
basin based on VIC Forcings (top) and ANUSPLIN (bottom). Legend same as Fig. 9.

this work we learned a lot about these gridded observations
and discovered evaluation procedures that will be useful for
future studies.

BCSDX, DBCCA, and BCCAQ downscaling methods had
not been evaluated in terms of ClimDEX indices and hydro-
logic extremes before now. The BCSDX method included
minimum and maximum temperature from the reanalyses in-
stead of mean as is done in BCSD, but this did not improve
its ability to resolve temperature indices, such as diurnal tem-
perature range or hydrologic extremes. DBCCA was an im-
provement over BCCA and passed the greatest number of
tests for the ClimDEX indices. The double bias correction

proved capable of reducing some of the drizzle and remnant
bias in precipitation amounts found in BCCA. The BCCAQ
method, which combines BCCA and BCCI, performed well
in terms of number of tests passed for the ClimDEX indices,
but it really shone for use with modelling hydrologic ex-
tremes. In this context, it exceeded all other methods. BC-
CAQ provides a more accurate representation of event-scale
spatial gradients, removing the overly smooth representation
of sub reanalysis-grid-scale variability inherited from BCCI
and correcting biases from BCCA. These attributes are im-
portant for simulating the climate events that occur over a
basin that drive runoff. All methods passed correlation and
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Figure 14. Time series of daily streamflow in the BCGMS basin
as driven by ANUSPLIN (base) and ERA40 downscaled to ANUS-
PLIN with the BCCA, DBCCA, BCCI, CI, BCSD, BCSDX, and
BCCAQ methods over 1991–2005.

distribution tests for 3-day peak flow and 7-day low flow in
summer for the majority of sub-basins and reanalyses. BCSD
and BCSDX failed all or most correlation tests and CI failed
all or most distribution tests for 7-day low flow in winter.
Based on results from this study, use of a daily downscal-
ing method, such as BCCAQ, in conjunction with a rigor-
ously constructed and validated observational data set, is rec-
ommended to supplement the existing hydrologic modelling
efforts at PCIC and improve projections of hydrologic ex-
tremes.

We can build on this work to develop tools that predict
changes to hydrologic extremes from changes in climate ex-
tremes without the direct application of a hydrologic model.
Similar emulations have been made by drawing on the re-
lationship between GCMs and hydrologic model projections
(Schnorbus and Cannon, 2014) and by identifying relation-
ships between GCMs and RCMs (Li et al., 2011). The next
step is to identify which of the 26 ClimDEX indices are pre-
dictors of 3-day peak flow and 7-day low flow and avoid
those downscaling methods that simulate them poorly.
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