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Hydrologic modeling: progress 
and future directions
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Abstract 

Briefly tracing the history of hydrologic modeling, this paper discusses the progress that has been achieved in hydro-

logic modeling since the advent of computer and what the future may have in store for hydrologic modeling. Hydro-

logic progress can be described through the developments in data collection and processing, concepts and theories, 

integration with allied sciences, computational and analysis tools, and models and model results. It is argued that with 

the aid of new information gathering and computational tools, hydrology will witness greater integration with both 

technical and non-technical areas and increasing applications of information technology tools. Furthermore, hydrol-

ogy will play an increasingly important role in meeting grand challenges of the twenty-first century, such as food 

security, water security, energy security, health security, ecosystem security, and sustainable development.
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Introduction
Hydrology has a long history dating back to several mil-

lennia (Biswas 1970). However, the birth of hydrologic 

modeling can be traced to the 1850s when Mulvany 

(1850) developed a method for computing the time of 

concentration and hence the rational method for com-

puting peak discharge which is still used for urban 

drainage design, Darcy (1856) who conducted experi-

ments on flow-through sands and developed what is now 

referred to as Darcy’s law which laid the foundation of 

quantitative groundwater hydrology, and Fick’s first law 

which states that under steady-state conditions the dif-

fusive flux is proportional to the concentration gradi-

ent (spatial) which laid the foundation of water quality 

hydrology. About half a century earlier, Dalton (1802) 

formulated the law of evaporation which states that the 

rate of evaporation is directly proportional to the dif-

ference between saturation vapor pressure at the water 

surface and the actual vapor pressure in the air. �is law 

constituted the foundation for developing the physics 

of evaporation. For a period of over a century until the 

1960s, many groundbreaking advances in modeling dif-

ferent components of the hydrologic cycle were made. 

Some of these advances were based on the laws of math-

ematical physics and some had their basis in laboratory 

and/or field experiments. �e current state of hydrologic 

science and engineering owes a great deal to the pre-1960 

advances. �e handbook of applied hydrology edited by 

Chow (1964) provided an up-to-date account of hydro-

logic advances until the 1960s, whereas the handbook of 

hydrology edited by Maidment (1993) and the encyclope-

dia of hydrology and water resources edited by Hershey 

and Fairbridge (1998) dealt with advances that occurred 

during the intervening period. Singh and Woolhiser 

(2002) provided a historical account of developments 

that occurred in modeling different components of the 

hydrologic cycle.

�e decade of the 1960s witnessed the birth of com-

puter revolution and hydrologic modeling took a giant 

leap forward. �e computer provided the power for 

doing computations that was not available before. As 

a result, a new branch of hydrology, called digital or 

numerical hydrology, was born. Another branch that 

came into being was statistical or stochastic hydrology 

that often required analyses of large volumes of data. 

�en, several major advances ensued. First, simula-

tion of the entire hydrologic cycle became a reality, as 
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illustrated by the development of the Stanford Watershed 

Model (Crawford and Linsley 1966) which was followed 

in the decades to come by umpteen watershed mod-

els that were developed all over the world (Singh 1995; 

Singh and Frevert 2002a, b, 2006). Second, optimiza-

tion or operations research techniques were developed, 

which formed the basis for reservoir management and 

operation as well as river basin simulation. Some of these 

techniques were also used for calibrating hydrologic 

models (Beven 2001; Duan et al. 2003). �ird, two- and 

three-dimensional modeling was made possible because 

of advances in numerical mathematics. Consequently, 

two- and three-dimensional models of groundwater as 

well as of infiltration and soil water flow were developed 

(Bear 1979; Pinder and Celia 2006; Remson et al. 1971). 

Fourth, simultaneous simulation of water flow and sedi-

ment and pollutant transport was undertaken; likewise, 

simultaneous simulation of different phases of flow, such 

as liquid and gaseous, was done (Bear and Verruijt 1987; 

Charbeneau 2000). Fifth, modeling at large spatial scales, 

such as a large river basin like the Mississippi, and that at 

small temporal scales, such as seconds or minutes, was 

undertaken (Molley and Wesse 2009; Sorooshian et  al. 

2008). Sixth, integration of hydrology with allied sciences 

became possible. For example, it was possible to couple 

hydrology with climatology for precipitation modeling 

and forecasting (Sorooshian et  al. 2008), with geomor-

phology for river basin geometric representation (Baker 

et al. 1988; Bates and Lane 2002; Beven and Kirkby 1993), 

with hydraulics for describing flow characteristics (Singh 

1996), with soil physics for quantifying soil texture and 

structure (Bohne 2005; Guymon 1994; Miyazaki 2006; 

Smith et al. 2002; Singh 1997), and with geology for aqui-

fer characterization (Delleur 1999; Fetter 1980; Singh 

2017a, b, c). �e coupling of hydrology with ecosystems 

gave rise to ecohydrology (Eagleson 2002; Gordon et al. 

2006; Rodriguez-Iturbe and Porporato 2004). Climate 

change and global warming became part of hydrologic 

analysis (Arnell 1997). A more detailed account of devel-

opments in different components of the hydrologic cycle 

is given in Singh (2013, 2014, 2015, 2017a).

In the decades that followed, computing prowess 

increased exponentially and hydrology began maturing 

and expanding in both depth (vertically) and breadth 

(horizontally). Tools from fluid mechanics, statistics, 

information theory, and mathematics were employed and 

became part of hydrology (Bras and Rodriguez-Iturbe 

1985; Clarke 1998; Gelhar 1993; Mays and Tung 1992; 

Singh et al. 2007; Tung and Yen 2005). Further, computer 

also made possible the development of user-friendly soft-

ware, and tools for date acquisition, storage, retrieval, 

processing, and dissemination (Croley 1980; Hoggan 

1989). Remote sensing tools, such as radar and satellites, 

came into being that made possible to acquire spatial 

data for large areas (Engman and Gurney 1991; Hogg 

et al. 2017; Lakshmi 2017; Lakshmi et al. 2015). Likewise, 

geographical information systems (GIS) were developed 

for processing huge quantities of raster and vector data 

(Maidment 2002). �e past two decades witnessed the 

development of artificial neural networks, fuzzy logic, 

genetic programming, and wavelet models (Kumar et al. 

2006; Ross 2010; Sen 2010; Tayfur 2012). New theories 

borrowed from other areas were introduced in hydrol-

ogy. Examples of these theories are entropy theory (Singh 

2013, 2014, 2015, 2016, 2017b), copula theory (Singh and 

Zhang 2018), chaos theory (Sivakumar 2017), network 

theory (Sivakumar et  al. 2017), and catastrophe theory 

(Poston and Stewart 1978; Zeeman 1978). �ese theories 

will find increasing place in hydrologic modeling in the 

years ahead.

Another area that mushroomed subsequent to the pre-

computer era is instrumentation. New instruments which 

were more accurate and sophisticated were developed 

for measuring all kinds of hydrologic variables, such as 

velocity, soil moisture, water and air quality parameters, 

fluxes in porous media, energy fluxes, and so on. Fur-

ther, instrumentation for data transmission from place 

of measurement to place of storage, processing, storage, 

retrieval, and dissemination became highly robust and 

accessible (Liang et al. 2013; Sivakumar and Berndtsson 

2010).

�e objective of this paper, therefore, is to provide a 

snapshot of major advances that have occurred for over a 

century and a half, discuss where hydrology is headed as 

a science and engineering, and conclude with a personal 

reflection on future outlook.

History of hydrologic developments
�ere have been a large number of developments in 

hydrology since the 1850s, so it will be difficult to do jus-

tice to describe all of them. �erefore, only a snapshot of 

some of the major developments from a personal per-

spective will be provided. For convenience of easy refer-

ence, these developments will be organized topic-wise 

rather than chronologically.

Watershed geomorphology

In 1945 Horton, derived a set of empirical laws that are 

now called Horton laws which laid the foundation of 

quantitative geomorphology. �ese laws were the law 

of channel numbers, law of channel lengths, and law of 

stream slopes. He developed a scheme for channel and 

basin ordering, called Horton ordering. Horton (1932) 

also defined drainage density and length of overland 

flow. He investigated landform development and stream-

flow generation dominated by overland flow. Strahler 
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(1952) modified Horton’s method for ordering channel 

networks which is now referred to as Horton–Strahler 

ordering scheme. Schumm (1956) developed the law of 

stream areas. Because discharge is highly correlated with 

drainage area, as shown by Hack (1957) for mean annual 

discharge and Leopold and Miller (1956), and Gray and 

Wigham (1970), a law of discharge can be formulated 

as shown by Singh (1992). Strahler (1957) formulated 

the law of drainage basin similarity, but Gray (1961) 

showed that not all basins possessed geometric similar-

ity. Gray (1961) established the relation between drain-

age area and length which was also investigated by Smart 

and Surkan (1967). Shreve (1966) developed a statistical 

law of channel numbers. Using the theory of minimum 

energy dissipation rate, Yang (1971) developed the law of 

average stream fall. Much of the progress made in sub-

sequent years draws heavily from these foundational con-

tributions. Fitzpatrick (2017) has reported on watershed 

geomorphologic characteristics. Smith (1974) derived 

hydraulic geometry of steady state channels from con-

servation principles and sediment transport laws. Using 

entropy theory and theory of minimum energy dissipa-

tion rate, Singh et  al. (2003a, b) derived a hierarchy of 

downstream hydraulic geometry and Singh and Zhang 

(2008a, b) upstream hydraulic geometry. Applications 

of channel network are included in Beven and Kirkby 

(1993) and flood geomorphology is presented in Baker 

et  al. (1988). Rodriguez-Iturbe and Rinaldo (2001) have 

described river basins using fractal geometry. �e water-

shed geomorphology has played a fundamental role in 

developing runoff prediction models for ungauged basins 

(Bloschl et al. 2013; Wagner et al. 2004).

Hydraulic geometry

Hydraulic geometry is of two types, at-a-station and 

downstream, and encompasses relations of channel 

width, depth, velocity, roughness, and slope each with 

discharge (Wolman 1955). Leopold and Maddock (1953) 

derived these hydraulic geometry relations which are 

of power form. Because of their great practical value 

in design of stable channels, river flow control works, 

river improvement works, and irrigation schemes, there 

is a large body of literature describing the derivation of 

these relations using different types of theories, including 

regime theory (Blench 1952), tractive force theory (Lane 

1955), minimum entropy production theory (Leopold 

and Langbein 1962), stability theory (Stebbings 1963), 

minimum variance theory (Langbein 1964), minimum 

channel mobility theory (Dou 1964), minimum energy 

degradation theory (Brebner and Wilson 1967), threshold 

geometry theory (Li 1974), hydrodynamic theory (1974), 

minimum stream power theory (Chang 1980), maximum 

sediment discharge and Froude number theory (Ramette 

1980), maximum sediment discharge theory (White et al. 

1982), maximum friction theory (Davies and Sutherland 

1983), minimum unit stream power theory (Yang and 

Song 1986), thermodynamic theory (Yalin and da Silva 

1997, 1999), minimum energy dissipation theory (Rodri-

guez-Iturbe et al. 1992), principle of least action (Huang 

and Nanson 2000), and entropy theory (Deng and Zhang 

1964; Singh et  al. 2003a, b; Singh and Zhang 2008a, b). 

Each theory leads to unique hydraulic geometry rela-

tions, meaning different values of exponents. Singh 

(2003) has discussed characteristics of these relations 

with regard to their basis, tendency to equilibrium state, 

limitations of the equilibrium assumption, validity of 

power relations, stability of exponents in power relations, 

effect of channel patterns, effect of stream size, depend-

ence of exponents on climatic and environmental factors 

and land use, extension to drainage basins, and impact of 

boundary conditions.

Surface runo�

In 1850, Mulvany developed a method, called rational 

method, for computing peak discharge due to a rain-

fall event with uniform intensity and duration equal to 

or greater than the time of concentration. �e method 

was meant for small urban watersheds which are in use 

for urban drainage design to date. St. Venant de (1871) 

derived equations for modeling surface flow and these 

equations are now called St. Venant equations. Two 

decades later, Manning (1895) developed an equation 

for computing flow velocity in open channels. Imbeau 

(1892) developed a relation between storm runoff peak 

and rainfall intensity. Sherman (1932) developed the unit 

hydrograph concept which laid the foundation of linear 

systems hydrology. Horton (1939) derived a semi-empir-

ical formula for overland flow. Barnes (1940) developed 

a technique for hydrograph separation. Applying hydrau-

lic principles, Keulegan (1944) showed the adequacy of 

simplified momentum equation for modeling overland 

flow. Izzard (1944) conducted experiments on over-

land flow on paved surfaces. Clark (1945) developed a 

unit hydrograph method for deriving the rainfall–run-

off hydrograph. �ese contributions laid the foundation 

for conceptual as well as physically based rainfall–runoff 

modeling. However, for application of these methods the 

amount of surface runoff was assumed to be known and, 

therefore, rainfall excess was known.

In 1956, the Soil Conservation Service (SCS) [now 

called National Resources Conservation Service (NRCS)] 

of the U.S. Department of Agriculture (USDA) devel-

oped a method, now called SCS-Curve Number (CN) 

method, based on a large amount of data, for computing 

the amount of runoff generated by a rainfall event, tak-

ing into account abstractions, antecedent soil moisture 
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condition, hydrologic condition of land use and land 

cover, and soil type through curve number. �is method 

is still quite popular for determining the amount of run-

off or rainfall excess from small and medium agricultural 

watersheds, and has been extended to urban and forested 

watersheds. Nielsen et al. (1959) investigated the source-

area contribution to runoff.

In 1956, the U.S. Army Corps of Engineers  published 

the summary report of the snow investigations as a 

book entitled “Snow Hydrology” that laid the founda-

tion for much of the work that has since ensued. �e 

book described virtually all aspects of the snow environ-

ment. Martinec (1960) developed a degree-day method 

for determining snowmelt. Anderson (1968) developed 

and tested snowpack energy balance equations. Colbeck 

(1972) developed a theory of water percolation in snow 

and Colbeck (1975) developed a theory of water move-

ment through a layered snowpack. Gray and Prowse 

(1993) provided an excellent discussion of different 

aspects of snow and floating ice. Singh et  al. (1997a, b) 

developed the kinematic wave theory of vertical move-

ment of snowmelt water through snowpack and of satu-

rated basal flow in a snowpack. Kuchment (2017) proved 

an excellent review of snowmelt runoff generation and 

modeling. Singh et al. (2011) prepared an encyclopedia of 

snow, ice and glaciers.

Nash (1957) developed a theory of instantaneous unit 

hydrograph (IUH) that led to what is now called the 

Nash model. Nash (1959) also developed the theory of 

moments for determining his model parameters. Dooge 

(1959) developed the generalized unit hydrograph the-

ory that included the Nash IUH theory as a special case. 

�ese IUH theories led to the development of systems 

hydrology detailed by Singh (1988, 1989) in which sys-

tems techniques can be applied to flow routing, base 

flow, water quality routing, erosion and sediment trans-

port. Combining laws of geomorphology with the IUH 

theory Rodriguez-Iturbe and Valdes (1979) developed the 

geomorphologic unit hydrograph that has since received 

a great deal of attention and is now frequently used in 

practice.

Physically based surface runoff modeling was based 

on the St. Venant equations and simplifications thereof 

whose solutions required the use of numerical algorithms 

and became popular in the 1960s and the ensuing dec-

ades. Depending on the simplification, these equations 

give rise to five types of waves: dynamic waves, steady 

dynamic waves, gravity waves, diffusive waves, and kin-

ematic waves, and hence five types of models. Using dif-

ferent techniques, Lighthill and Whitham (1955), Iwagaki 

(1955), Woolhiser and Liggett (1967), Ponce and Simons 

(1977), Menendez and Norscini (1982), and Ferrick 

(1985) analyzed the characteristics of these waves. �ey 

showed that diffusive and kinematic wave approxima-

tions would suffice for most cases. Singh (2017a, b, c) 

presented the kinematic wave theory of surface runoff. 

Woolhiser and Liggett (1967) derived the kinematic wave 

number which served as a criterion for the kinematic 

wave approximation. �is work gave the real impetus to 

the popularity of kinematic wave approximation. Morris 

and Woolhiser (1980) revised the kinematic wave num-

ber with the use of Froude number. Singh (1994) derived 

the error differential equation for judging the accuracy 

of kinematic and diffusive approximations. Moramarco 

et  al. (2008a, b) made a comprehensive analysis of the 

accuracy of kinematic wave and diffusion wave approxi-

mations. Kibler and Woolhiser (1972) developed the 

kinematic cascade. Smith and Woolhiser (1971) explic-

itly incorporated infiltration in overland flow modeling. 

Berod et  al. (1999) developed a geomorphologic kine-

matic wave model. �ese investigations established that 

the kinematic wave approximation would be sufficiently 

accurate for surface runoff modeling and has since been a 

standard technique. Singh (1996) prepared two treatises 

on kinematic wave modeling in surface water hydrology 

and environmental hydrology that comprehensively sum-

marize the kinematic wave literature.

Reservoir and channel �ow routing

Analogous to surface runoff modeling, both hydrologic 

systems and physically based techniques have been 

applied to route flows through reservoirs and channels. 

Puls (1928) presented a method for reservoir flow rout-

ing. MeCarthy and others (U.S. Army Corps of Engineers 

1936) developed the Muskingum method for routing 

of flow in channels. Kalinin and Miljukov (1957) devel-

oped a unit hydrograph model for channel flow rout-

ing. Cunge (1969) developed a method for estimating 

the Muskingum method parameters from hydraulic and 

channel geometry characteristics. Since then, the Musk-

ingum method has been a popular method and its several 

variants have been developed. Koussis (2009) provided 

an assessment and a review of the hydraulics of storage 

flood routing 70 years after the introduction of the Musk-

ingum method.

Stoker (1953) and Isaacson et al. (1954, 1956) used the 

complete St. Venant equations for flood routing in the 

Ohio River. Abbott (1976) and Grupert (1976) summa-

rized the flood routing models. Fread (1984) developed 

a one-dimensional dynamic wave model in a single or 

branched waterway. Linear forms of the St. Venant equa-

tions were employed since the work of Dooge (1967), and 

Dooge and Harley (1967). Kundzewicz (1986) discussed 

physically based flow routing methods. Abbott (1979) 

presented numerical methods for solving free surface 

flow equations.
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Hayami (1951) employed diffusion wave approximation 

for flood routing. Lighthill and Whitham (1955) showed 

that diffusion waves were described by a convection–dif-

fusion equation. Cunge (1969) showed the connection 

between Muskingum method and convection–diffusion 

equation. Huang (1978) used a finite difference solution 

of kinematic wave equation for routing flows in channels. 

Singh (1996) has given a full account of different routing 

methods. Perumal and Price (2017) have reviewed reser-

voir and channel routing.

Interception and depression storage

Interception loss in humid forested watersheds may 

account for as much as 25% of annual precipitation. 

Helvey and Patrick (1965) found that this loss might be 

of the order of 15 cm for such watersheds. Horton (1919) 

developed a series of empirical equations for computing 

storm interception for a variety of vegetative covers. Lin-

sley et al. (1949) developed an exponential type model for 

computing interception by vegetation. Merriam (1960) 

modified the Horton model. Bultot et al. (1972) derived 

empirical relationships for computing interception loss. 

Deguchi et al. (2006) computed the influence of seasonal 

changes in canopy structure on infiltration loss. Gash 

(1979) developed an analytical model for infiltration loss 

by forests. Gerrits et al. (2010) discussed the spatial and 

temporal variability of canopy and forest floor intercep-

tion in a beech forest.

Horton (1939) and Holtan (1945) empirically evalu-

ated depression storage. Turner (1967) derived curves 

for depression storage intensity as a function of time for 

different antecedent conditions. Using a digital surface 

model, Ullah and Dickinson (1979a, b) investigated geo-

metric properties of depressions for hydrologic modeling. 

Soil Conservation Service (1956) included interception 

and depression storage losses as a fraction of maximum 

soil moisture retention capacity in the SCS-CN model 

(Mishra and Singh 2010c). Linsley et al. (1949) presented 

an exponential model for computing surface depression 

storage for a given effective rainfall. Borselli and Torri 

(2010) discussed the relationship between surface storage 

and soil roughness and slope on impervious areas and 

suggested an empirical model.

Evaporation

Evaporation and evapotranspiration are amongst the 

most important components of the hydrologic cycle and 

their significance increases with the increase in timescale. 

Richardson (1931) and Cummings (1935) investigated 

evaporation from lakes. �ornthwaite (1948) developed 

an empirical model for computing monthly evaporation 

which is still used. Combining energy balance and mass 

transfer, Penman (1948) developed what is now referred 

to as the combination method for computing evaporation 

from saturated water bodies as well as vegetated surfaces. 

�e Penman method laid the foundation for subsequent 

developments in the evaporation field. Budyko (1955, 

1974) prepared an atlas of heat balance of Earth. Mon-

teith (1965, 1973, 1981) modified the Penman method 

which is now called the Penman–Monteith method. 

Morton (1965, 1969) developed a method, called com-

plementary method, for computing regional evapora-

tion. Priestley and Taylor (1972) developed an equation 

for computing evaporation. Doorenbos and Pruitt (1977) 

developed methods for computing evapotranspiration 

and hence crop water requirements. Jensen and Allen 

(2016) have comprehensively summarized methods for 

computing evaporation, evapotranspiration, and irriga-

tion water requirements. Hobbins and Huntington (2017) 

have provided an up-to-date account of evapotranspira-

tion and evaporative demand.

In�ltration and soil water �ow

Infiltration is fundamental for computing surface runoff 

modeling, groundwater recharge, and agricultural irriga-

tion. In 1911, using physical principles Green and Ampt 

developed a formula for computing infiltration capac-

ity rate which is one of the most commonly used infil-

tration formulae today. Richards (1931) derived what is 

now called Richards equation for modeling flow-through 

unsaturated soils (Richards 1931, 1965). �is equation 

laid the foundation for vadose zone hydrology. Kostia-

kov (1932) derived an empirical equation for computing 

infiltration capacity rate. Horton (1933, 1939) developed 

a theory of infiltration which was based on a hydrologic 

systems concept. Horton (1940) tested his infiltration 

theory on experimental plots. Philip (1957) developed a 

theory of infiltration that led to Philip infiltration equa-

tion. Mein and Larson (1973) developed a model for 

computing infiltration under steady rain. Fok (1987) sum-

marized developments in infiltration and its application. 

Singh and Yu (1990) developed a generalized framework 

for infiltration and derived several popular infiltration 

models as special cases. Smith et  al. (2002) prepared a 

treatise on infiltration theory for hydrologic applications. 

Corradini et  al. (2017) have reviewed the state of art of 

infiltration modeling.

Subsurface �ow

Subsurface flow is also referred to interflow and is some-

times divided into quick interflow and delayed interflow 

(Chow 1964) and generates subsurface runoff. Low-

dermilk (1934), Hursh and Brater (1944), Hursh (1936) 

observed subsurface flow as part runoff hydrograph in 

humid regions. Hoover and Hursh (1943), and Hursh 

(1944) showed that subsurface storm flow constituted a 
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significant portion of streamflow in humid areas. Rem-

son et al. (1960) and Hewlett (1961a, b) developed con-

cepts of source area and partial area that contributed 

to streamflow generation and showed that downslope 

unsaturated flow could contribute to streamside satura-

tion and hence generate streamflow.

Macropores and preferential flow paths can signifi-

cantly contribute to subsurface flow under certain condi-

tions. Germann (1985, 2014) reviewed preferential flow 

and has given a full account based on the kinematic wave 

theory. Macropores are pipe structures in soil matrix and 

result from physical processes, such as erosion due to 

desiccation cracking and biological activity such as ani-

mal burrows and decaying plant root channels. Tanaka 

et  al. (1988) found that more than 90% of runoff origi-

nated from below the ground mainly through pipe flow. 

Leaney et al. (1993) noted that winter stormflow reached 

the channel primarily through macropores. Newman 

et  al. (1998) inferred that most of the lateral subsurface 

flow occurred in B horizon through macropores. �us, 

subsurface flow-through macropores and other preferen-

tial flow paths can be a major contributor to streamflow 

generation.

Groundwater

In 1852, Darcy conducted experiments on flow-through 

sands and developed what is now referred to as Darcy’s 

law which laid the foundation of quantitative groundwa-

ter hydrology. �eis (1935) derived the relation between 

drawdown in piezometric head and pump discharge 

from a well. Muskat (1937) published a treatise on flow 

of homogeneous fluids in porous media. Hubbert (1940) 

described the theory of groundwater motion. Meinzer 

(1942) edited a book on hydrology. Jacob (1943, 1944) 

established the relationship between infiltration and 

groundwater. Dynamic changes in streamside ground-

water flow were reported by Roessel (1950). Hantush and 

Jacob (1955) derived equations for unsteady radial flow in 

leaky aquifers. Hantush (1960, 1964) revised the theory of 

leaky aquifers. Freeze (1975) presented a stochastic con-

ceptual analysis of one-dimensional groundwater flow in 

nonuniform homogeneous media. �e field of groundwa-

ter has since expanded dramatically. A large number of 

books have been published that detail hydrogeological, 

scientific, numerical, and engineering aspects of ground-

water. Freeze and Cherry (1979) discussed groundwa-

ter and contamination from a hydrogeology perspective 

(Fair and Hatch 1933), Bear (1979) hydraulics of ground-

water, Todd (1980) hydrology of groundwater, Domenico 

and Schwartz (1990) physical and chemical hydrogeology 

of groundwater, Gelhar (1993) stochastic aspects, and 

Delleur (1999) groundwater engineering. Pham and Tsai 

(2017) have reviewed groundwater modeling.

Erosion and sediment yield

Cook (1936) identified major factors that impact erosion 

by water. Considering the effect of slope steepness and 

slope length, Zingg (1940) developed an empirical equa-

tion for calculating field soil loss. Smith (1941) developed 

an equation considering additional factors, such as crop-

ping system and support practices. Browning et al. (1947) 

included soil erodibility and management factor in the 

Smith equation. Smith and Whitt (1948) developed an 

equation as product of average annual soil loss for clay-

pan soils for a specific rotation, slope length, slope steep-

ness, and row direction; slope steepness; slope length; soil 

erodibility; and support practice. Musgrave (1947) devel-

oped an equation considering factors reflecting the effect 

of rainfall and surface runoff as impacted by slope steep-

ness and length, and vegetative cover. Using 10,000 plot 

years of basic runoff and soil loss data, Wischmeier and 

Smith (1957, 1965, 1978) developed the Universal Soil 

Loss Equation (USLE) that has undergone several revi-

sions and its new incarnation is Revised USLE (Renard 

et  al. 1997). A comprehensive account of soil erosion 

prediction and prediction is treated in Soil Conservation 

Society of America (1977).

Soil erosion by water was also investigated using 

hydraulic equations. Foster and Meyer (1972) derived an 

equation for sediment transport under steady-state con-

dition for rill and inter-rill detachment and/or deposition. 

Hjelmfelt et al. (1975) considered the kinematic wave for-

mulation of erosion on a plane. Singh and Regl (1983a, b) 

developed the kinematic wave theory for erosion due to 

rainfall. Considering surface flow and rain-drop impact, 

Hairsine and Rose (1992a, b) derived a model for soil ero-

sion which was based on the equation developed by Rose 

et  al. (1983a, b). Both USLE and physically based equa-

tions of soil erosion have been included in a wide range 

of watershed hydrology or erosion models which have 

recently been reviewed by Pandey et al. (2016). Flanagan 

and Huang (2017) have provided a review of soil erosion.

Sediment transport

�ere is vast literature on sediment transport in reser-

voirs, rivers and channels that has culminated into a new 

field of sedimentation engineering. A number of for-

mulae have been developed for bed load and suspended 

load. �e earliest bed load formula was developed by 

DuBoys (1879) assuming uniform grains moving as 

series of layers. Shields (1936) developed a criterion for 

incipient motion of sediment particles. Assuming graded 

sediment, Meyer-Peter and Muller (1948) developed a 

formula for bed load sediment transport. With extensive 

analysis based on fluid mechanics and probability the-

ory, Einstein (1942, 1950) developed a bed load function 

for sediment transport in open channels. Brown (1950) 
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modified the Einstein formula. Parker et al. (1982) devel-

oped a bed load equation for coarse-bed material and 

gravel-bed rivers.

Einstein (1950) computed suspended sediment dis-

charge considering vertical variations in velocity and 

sediment concentration. Colby (1964) determined bed-

material discharge as a function of mean flow velocity, 

depth, mean sediment size, water temperature and con-

centration of fine sediment. Using physical laws, Bagnold 

(1966) developed an approach for transport of sediment. 

Engelund and Hansen (1967) derived a sediment trans-

port equation using the concept of stream power. Yang 

(1972) developed a bed-material load equation based on 

the rate of energy dissipation of flow. Ackers and White 

(1973) developed an equation to sediment transport in 

open channel flow as a function of mobility factor. �e 

state of art of sedimentation engineering was provided 

by Vanoni (1975). Simons and Senturk (1977) discussed 

sediment transport technology. An up-to-date account of 

sedimentation engineering, including processes, meas-

urements, modeling, and practice, was presented by Gar-

cia (2008). Papanicolaou and Abban (2017) have provided 

an up-to-date account of channel erosion and sediment 

transport, whereas Sarkar (2017) has discussed sedimen-

tation in floodplains, lakes and reservoirs.

Pollutant transport

Water quality has always been a major concern but in 

hydrology it started receiving attention since the 1970s 

with the establishment of Environmental Protection 

Agency (EPA). Tremendous work has since been done in 

the hydrology of surface water, vadose zone, and ground-

water quality. Both physical and biochemical aspects of 

water quality have been emphasized. Water quality has 

been investigated using both systems approach as well 

as science-based approach. In 1925 Streeter and Phelps  

derived a model for dissolved oxygen in surface waters. 

Taylor (1953, 1954) developed a theory of dispersion of 

matter in flow in pipes. Elder (1959) determined dis-

persion in turbulent open channels. Fisher (1967, 1968) 

described mixing in inland and coastal streams. Yot-

sukura and Sayre (1976) developed a model for transverse 

mixing in natural channels. Yotsukura (1977) derived 

equations for solute transport in turbulent natural flow. 

�omann (1972) provided a treatise on systems approach 

to water quality management. Rinaldi et  al. (1979) pre-

pared a treatise on river water quality modeling and 

control. Tchobanoglous and Schroeder (1985) compre-

hensively discussed water quality characteristics, mod-

eling and modification. �omann and Mueller (1987) 

presented principles of surface water quality modeling 

and control. Ji (2008) treated the hydrodynamic modeling 

of water quality of rivers, lakes, and estuaries.

De Josselin de Jong (1958) developed a random walk 

model for describing longitudinal and transverse disper-

sion in granular materials. (Scheidegger 1961) described 

the general theory of dispersion in porous media. Bear 

and Verruijt (1987) presented the theory and applications 

of transport in porous media. Palmer (1992) and Fetter 

(1999) discussed principles of contaminant hydrogeology 

(Fick 1855). Charbeneau (2000) discussed the hydraulics 

of groundwater and pollutant transport. Gelhar (1993) 

presented stochastic method in subsurface hydrology.

Agricultural chemicals, fertilizers, weedicides, and 

pesticides are applied to agricultural fields for increasing 

crop productivity. Many chemical compounds generated 

by industries are sometimes dumped on the soil surface. 

Sometimes there is a chemical spill on the surface. What-

ever the source or cause, some of the pollutants enter the 

soil, contaminant it, and percolate down to contaminate 

the ground water. Earliest attempts to model solute trans-

port in the unsaturated zone were made by soil scien-

tists. Nielsen and Biggar (1961) discussed a wide range of 

problems related to miscible displacement and pollutant 

transport. Knisel (1980) reported a field-scale model for 

chemicals, runoff, erosion from agricultural management 

systems, called CREAMS. Leonard et al. (1987) presented 

a model, called GLEAMS: groundwater loading effects 

of agricultural systems. Carlsel et  al. (1985) developed 

a pesticide root zone model (PRZM). Shaffer and Lar-

son (1987) reported a soil–crop simulation model for 

nitrogen, tillage, and crop-residue management, called 

NTRM. Smith (1990) described an integrated simulation 

model for transport of nonpoint source pollutant at field 

scale, called OPUS. In the 1980s, the U.S. Department of 

Agriculture-Agricultural Research Service reviewed the 

state of water quality modeling and started to develop 

a model that would address a wide range of agricul-

tural management practices. �e resulting model was 

Root-Zone Water Quality Model (RZWQM) (RZWQM 

Team 1992) which is a physical, chemical, and biologi-

cal process model and has since undergone a number of 

revisions. �is model is more advanced than any of the 

other models developed before. Zamani and Bombardelli 

(2014) presented analytical solutions for transport of 

non-reactive species in unsaturated soil. Zamani and 

Ginn (2017) reviewed the state of art of pollutant trans-

port in vadose zone as well as numerical models, includ-

ing SUTRA (Voss and Provost 2002), VS2DT (Healy 

1990), HYDRUS (Radcliffe and Simunek 2010), among 

others.

Reservoir operation

For reservoir design, operation, and management, water 

surplus, deficit, range, and storage are computed. Two 

different tracks, deterministic and stochastic, were 
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pursued for reservoir operation and management. �e 

deterministic track entailed various optimization tech-

niques. Indeed these techniques gave birth to the field 

of water resource systems engineering. One of the earli-

est studies in this field was by Mass et  al. (1962) under 

the Harvard water Program. Hall and Dracup (1970) 

authored a popular book on water resources systems 

engineering. With the advent of computers and their 

growing computational power, this field took a giant leap 

in the 1970s and 1980s. As a result, numerous popular 

books and other publications enriched the literature. A 

sample of books includes those by Haimes (1977), Loucks 

et  al. (1981), and Meta Systems, Inc. (1975). Lund et al. 

(2017) have provided reservoir operation design. �e 

optimization techniques employed for analysis and syn-

thesis of water resources systems allowed to integrate 

seemingly disparate areas, such as economics, politics, 

decision-making, environmental science, and ecology 

with hydrology, hydraulics, and water resources engi-

neering. �us, it was possible to undertake planning of 

water resources at the river basin scale.

�e stochastic track assumed that water surplus, defi-

cit, range, and storage needed for reservoir design, opera-

tion and management varies randomly. �erefore, the 

probability theory was applied to analyze them and com-

pute their probabilities. �ree methods have been used 

for design of reservoirs: empirical, experimental or data 

generation, and analytical. �e best example of an empir-

ical method is the mass curve or Rippl diagram applied 

in England in 1883. �e data generation method is also 

referred to as Monte Carlo method, synthetic hydrol-

ogy, or operational hydrology method. Range analysis is 

an example of the analytical method. Yevjevich (1972) 

discussed range analysis. Hurst (1951) investigated long-

term storage capacities of reservoirs which led to what 

is now known as Hurst coefficient. �omas and Fiering 

(1962) presented a mathematical synthesis of streamflow 

sequences for analysis of river basins. Matalas (1967) 

reported a mathematical assessment of synthetic hydrol-

ogy. Mandelbrot and Wallis (1969) performed computer 

experiments with fractional Gaussian noises. Valencia 

and Schaake (1972) presented disaggregation processes 

in hydrology.

�e probability theory of reservoir storage or storage 

theory was developed in the 1950s, although Saverens-

kiy (1940) computed probabilities of high and low flows 

through a probability routing method. Moran (1954) 

initiated the storage theory considering serially inde-

pendent reservoir inflows with a fixed probability dis-

tribution. Moran’s theory is based on Markov process. 

Gould (1961) incorporated failures within a year. Lloyd 

(1963) developed a probabilistic storage theory consider-

ing serially dependent flows. Kottegoda (1980) discussed 

stochastic methods for water resources systems, includ-

ing reservoirs.

Flood frequency analysis

Hazen (1930) presented a treatise on frequency analy-

sis of both maximum and minimum flood flows. Foster 

(1934) derived duration curves. Kendall (1938) derived 

a measure of rank correlation. Weibull (1939) presented 

a formula for plotting probability against its quantile. 

Gumbel (1941) derived a distribution, now called Gumbel 

distribution, for frequency analysis of annual maximum 

flows. �is distribution is the extreme value type one 

distribution (Boughton 1980). Langbein (1949) analyzed 

flood frequencies using partial duration series. Chow 

(1951) presented a general formula for frequency analy-

sis based on frequency factor. Jenkinson (1955) derived 

a general extreme value distribution for frequency analy-

sis of meteorological data. Gringorten (1963) presented a 

formula for plotting positions.

Hershfield (1962) prepared rainfall frequency atlas 

of the United States for durations from 30  min to 24  h 

and return periods from 1 to 100  years, published as 

U.S. Weather Bureau Technical Report 40, Washington, 

D.C. NERC (1975) presented a treatise of flood studies. 

Houghton (1978) presented the Wakeby distribution 

for modeling flood flows. Todorovic (1978) developed a 

methodology for frequency analysis using random num-

ber of random variables. Landwehr et  al. (1979, 1980) 

developed the probability weighted moments for distri-

bution parameter estimation. Cunnane (1978, 1989) pro-

vided a review of frequency distributions and presented 

a less biased plotting position formula. Hosking (1990) 

developed the L-moments method for estimating fre-

quency distribution parameters. Dalrymple (1960) devel-

oped a flood index method for regional flood frequency 

analysis. Kite (1988) presented different methods of flood 

frequencies and risk analysis. Rao and Hamed (2000) 

provided a comprehensive discussion of flood frequency 

distributions. Stedinger (2017) has presented an up-to-

date account of flood frequency distributions and Ouarda 

(2017) of regional flood frequency modeling. Vogel and 

Castellarin (2017) have discussed risk, reliability, and 

return periods for hydrologic design.

Drought analysis

Recent years have witnessed much interest in drought 

modeling, partly because of the uncertainty about water 

availability and supply triggered by climate change. 

Many areas in the world are experiencing drought or a 

drought-like situation or downright scarcity. Drought 

has been defined in different ways. �e World Mete-

orological Organization (WMO 1986) defined drought 

as a sustained, extended deficiency in precipitation. �e 
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Food and Agriculture Organization (FAO 1983) of the 

United Nations defined drought hazard as ‘the percent-

age of years when crops fail from lack of moisture. Gum-

bel (1963) defined drought as the smallest annual value 

of daily streamflow, whereas Palmer (1965) described 

drought as a significant deviation from the normal hydro-

logic conditions of an area. Linsley et  al. (1959) defined 

drought as a sustained period of time without significant 

rainfall. Clearly, the drought definition varies with the 

variable used to define it. Mishra and Singh (2010a) pro-

vided a comprehensive discussion of drought concepts.

Drought modeling encompasses characterization, 

space–time analysis, forecasting, and climate change 

impact. �e variables associated with drought are pre-

cipitation for hydrometeorological drought, streamflow 

or lake level for hydrologic drought, groundwater level 

for groundwater drought, and soil moisture for agri-

cultural drought. �e main drought characteristics are 

intensity, duration, severity, and spatial extent. Sev-

eral indices have been defined, based on combina-

tions of precipitation, temperature, soil moisture, and 

evapotranspiration, to characterize, assess, and forecast 

droughts. Commonly used indices are: Palmer sever-

ity drought index (PDSI) (Palmer 1965), Crop Moisture 

Index (CMI) (McKee et al. 1993), Soil Moisture Drought 

Index (SMDI) (Hollinger et  al. 1993), and Vegetation 

Index (VI) (Liu and Kogan, 1996). Also, climatic indices, 

such as El Nino Southern Oscillation (ENSO), South-

ern Oscillation Index (SOI), Sea Surface Temperature 

(SST), North Atlantic Oscillation (NAO), Pacific Dec-

adal Oscillation (PDO), Inter-decadal Pacific Oscillation 

(IPO), and Atlantic Multi-decadal Oscillation (AMO), 

are used for long-lead drought forecasting. Mishra and 

Singh (2010b) provided a review of drought models that 

include regression models, time series models, probabil-

ity models, artificial neural network models, and hybrid 

models; and spatio-temporal drought analysis; drought 

modeling under climate change scenarios. Mishra et  al. 

(2015) edited a special issue of Journal of Hydrology on 

drought processes, modeling, and mitigation. Hao et  al. 

(2018) reviewed seasonal drought prediction, advances, 

challenges, and future prospects.

Watershed models

It is seen that for a period of over a century until the 

1960s prior to the computer era, many groundbreaking 

advances in modeling different components of the hydro-

logic cycle were made. Some of these advances were 

based on the laws of mathematical physics and some had 

their basis in laboratory and/or field experiments. �e 

current state of hydrologic science and engineering owes 

a great deal to the pre-1960 advances. With the advent 

of computer, the digital revolution started in the decade 

of the 1960s and by the 1970s computers became acces-

sible to universities, government agencies and industry. 

�e resulting computing capability made possible the 

simulation of the entire hydrologic cycle and the birth 

of numerical hydrology. In 1966, Crawford and Lins-

ley reported the first watershed model, called Stanford 

Watershed Model (SWM) that became HSPF (Hydro-

logic Simulation Package-Fortran) in its latter incarna-

tion and BASINS (Better Assessment Science Integrating 

Point and Nonpoint Sources) in its current life. In subse-

quent years, a number of models were developed in the 

U.S. Examples of popular ones are HEC-1 (Hydrologic 

Engineering Center 1968) which in current form is HEC-

HMS (Hydrologic Modeling Simulation), SWMM (Storm 

Water Management Model) (Metcalf and Eddy et  al. 

1971), NWS-RFS (National Weather Service-River Fore-

cast System) (Burnash et  al. 1973), SSARR (Streamflow 

Synthesis and Reservoir Regulation) System (Rockwood 

1982), and USGS Rainfall–Runoff Model (Dawdy et  al. 

1970) which later became PRMS (Precipitation Runoff 

Modeling System) (Leavesley et al. 1983). A large number 

of other hydrology simulation models were developed in 

Australia, Canada, England, Sweden, and other countries. 

Many of these models are described in Singh (1995), and 

Singh and Frevert (2002a, b, 2006). Singh and Woolhiser 

(2002) appraised the state of art of mathematical mod-

eling of watershed hydrology. Borah (2011) reviewed and 

compared hydrologic procedures of storm-event water-

shed models. Donigian et al. (2017) have provided a com-

prehensive discussion of continuous watershed models, 

and Gupta and Sorooshian (2017) have discussed the 

calibration and evaluation of watershed models.

Data observation and tools

Empirical observations form the basis of much of what 

we know about hydrologic systems as well as for their 

operation and management. For hydrologic modeling, 

the types of data needed are hydrometeorologic, physi-

ographic, geomorphologic, pedologic, geologic, hydro-

metric, land/land cover, and agricultural. Local, state, 

and federal agencies have been collecting data that are 

relevant for their operational and management purposes, 

but the data so collected have also been and continue to 

be used for research and generating new knowledge. �e 

technology for data collection has undergone a revolu-

tionary change over the past three decades in four ways. 

First, data collection tools are much more accurate, such 

as velocity measurements by acoustic Doppler veloci-

metry (ADV). Second, it is now possible to collect data 

that was not possible before, such as direct measure-

ment of discharge. �ird, it is possible to collect spatial 

data rather than point data, such as spatial representa-

tion of rainfall field by radar. Fourth, it is now possible 
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to collect data in remote inaccessible areas using satellite 

technology.

Remote sensing tools, particularly satellites and radar, 

are becoming more popular these days (Engman and 

Gurney 1991). Since the launch of Landsat-1 [also known 

as the Earth Resources Technology Satellite (ERTS)], 

developed by NASA (National Aeronautics and Space 

Administration) and operated by USGS (United States 

Geological Survey), in 1972, six other satellites have been 

launched and land surface data have since been collected 

(Shen et al. 2013). �e next generation of satellites, called 

Landsat Data Continuity Mission (LDMC), was launched 

in 2013. Most NASA satellite land measurements can be 

found in the NASA Land Measurement Portal (http://

landp ortal .gsfc.nasa.gov) which includes data products 

in four categories: surface radiation budget, vegeta-

tion parameters, land cover/land use changes, and land 

hydrosphere. More specifically, one can obtain for hydro-

logic modeling synoptic data of meteorological inputs; 

soil and land use parameters; inventories of water bodies, 

lakes, reservoirs, rivers, etc.; snow cover and ice fields; 

and water quality parameters. Other agencies in Japan, 

China, and India have also launched spaceborne sensors/

missions for studying the terrestrial water cycle compo-

nents. Examples include Advanced Microwave Scanning 

Radiometer (AMSR) and Soil Moisture and Ocean Salin-

ity (SMOS) for estimating soil moisture; Tropical Rainfall 

Measuring Mission (TRMM) for precipitation; Moderate 

Resolution Imaging Spectroradiometer (MODIS) for veg-

etation; JASON-1 and JASON-2 and TOPEX-POSEIFON 

for surface water level; and Gravity Recovery and Climate 

Experiment (GRACE) for groundwater and evaporation. 

Lakshmi et al. (2015) presented a treatise on remote sens-

ing of the terrestrial water cycle. Lakshmi (2017) edited a 

book on remote sensing of hydrological extremes.

Weather radar is being employed for spatial mapping of 

rainfall field and daily weather forecasting. Both ground-

based and spaceborne radars are used. With the use of 

bias correction techniques, radar rainfall data are usually 

scaled to match data being observed at rainfall gauging 

stations. Even though radar rainfall data in many cases 

are available on web, their use with quality control/assur-

ance and bias correction is recommended. Pathak et  al. 

(2017) edited a special issue of Journal of Hydrologic 

Engineering on radar rainfall and operational hydrol-

ogy that contains papers dealing with radar rainfall data 

estimation, improvement, and validation; application 

of radar rainfall data; and use of radar rainfall for flood 

forecasting.

Geographical information systems

Geographical information systems (GIS) are a technology 

for stacking, analyzing, and retrieving large amounts of 

data (Singh and Fiorentino 1996). �e term geographi-

cal information here means the x-, y- and z-coordinates 

of land surfaces defined in a coordinate system. Because 

GIS is a data processing tool, tools that provide or record 

information, such as digital elevation model (DEM), 

topographic surveys, land use and land cover maps, can 

be dealt within the GIS environment (Maidment 2002). 

�ese days, global positioning systems (GPS) and GIS 

can be combined to provide more complete information. 

�e use of GIS permits integration of spatial, non-spa-

tial, and ancillary data into hydrologic models and thus 

significantly strengthens hydrologic modeling capabil-

ity (Mujumdar and Nagesh Kumar, 2012). Griffin et  al. 

(2017) have comprehensively discussed GIS and their 

applications.

Tools and methods for analysis

�e past half a century has witnessed an unprecedented 

development of new tools and techniques for analysis 

of hydrologic data. Many of these tools were developed 

outside of hydrology but they were appropriately tailored 

for hydrologic applications. Some of these tools include 

artificial neural networks (Tayfur and Singh 2017), fuzzy 

logic (Bogardi 2017), genetic algorithms (Kawamura and 

Merabtene 2017), relevance vector machines (Tripathi 

and Govindaraju 2017), wavelets (Labat 2017), outlier 

analysis (Panu and Ng 2017), time series analyses (Sveins-

son and Salas 2017), nonstationarity detection and analy-

sis (2017), geostatistical methods (Dwivedi et  al. 2017), 

generalized frequency distributions (Singh and Zhang 

2017), data assimilation methods (Todini and Biondi 

2017), calibration and validation methods (Todini and 

Biondi 2017), Bayesian methods (Kuczera et  al. 2017), 

optimization methods (Dozier et al. 2017), nonparamet-

ric methods (Lall and Rajagopalan 2017), uncertainty 

assessment and decision-making (Todini 2017), risk and 

reliability analysis (Tung and Mays 2017), scaling and 

fractals (Veneziano and Lepore 2017), chaos theory (Siva-

kumar 2017), copula theory (Genest and Chebana 2017), 

entropy theory (Singh 2013, 2014, 2015, 2016, 2017a, c), 

data mechanistic modeling (Young 2017), decomposition 

methods (Serrano 2017), and network theory (Sivakumar 

et al. 2017). �ese techniques have greatly contributed to 

not only the increased understanding of hydrologic sys-

tems but also hydrologic practice.

Emerging areas

Many new areas have merged during the past couple of 

decades and others will emerge in the decades ahead. 

Hydrology of global warming and climate change is an 

area that has been receiving a lot of attention in public 

fora, primarily because of increased frequency of hydro-

meteorologic extremes and significant variability in the 

http://landportal.gsfc.nasa.gov
http://landportal.gsfc.nasa.gov
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space–time distribution of precipitation (McCuen 2017). 

Ecosystem hydrology is another area that has recently 

emerged. Hydrologic impacts of hydraulic fracturing 

are in much public debate these days. Transport of bio-

chemical and microorganisms is receiving plenty of trac-

tion. Hydrology of hurricanes and typhoons is a newly 

emerging area. Atmospheric rivers are receiving much 

attention. Hydrology of long-distance water transfer is 

receiving global attention these days. Hydrology has a 

value to society and a new area, called social hydrology, 

has lately emerged and is getting traction in scientific 

discourses.

Integration of concepts and processes

Because of computing prowess and sophisticated instru-

mentation available these days, integration in and across 

hydrology is occurring rapidly. Hydrology and climatol-

ogy are being integrated and hydroclimatology is emerg-

ing with renewed emphasis. Ecology and hydrology have 

combined to give birth to ecohydrology. Likewise, coastal 

science and hydrology are being integrated leading to 

coastal hydrology. �e field of hydrology is broadening 

and the areas, such as social science, culture and religion, 

politics, economics, and health sciences are being inter-

faced with hydrologic sciences. Greater integration of 

concepts from intelligent systems, software engineering, 

information engineering, and humanities is envisioned in 

the years ahead.

Future outlook

With advances in data capturing and analysis capabilities 

and information technologies, it seems that the future of 

hydrology will be even brighter. It can be expected that 

new tools will be at the disposal of hydrology. For exam-

ple, drones will become commonplace for acquiring spa-

tial data. Hydrologic models will become so user-friendly 

that little hydrologic knowledge will be needed to oper-

ate them, just like one does not need to be an automobile 

engineer to drive a car or an electrical engineer to oper-

ate an electrical system. Each model, however, simple or 

complicated, will be associated with a statement of uncer-

tainty. New frontiers of hydrology will unfold with the 

use of cell phones and newly emerging information tech-

nologies. Hydrologic forecasting capability will multiply. 

�ere will be greater interaction between the user and 

the model and the modeler. �is has already started hap-

pening through what is now regarded as social hydrology. 

Hydrology will play an increasing role in meeting grand 

challenges of this century, such as water security, food 

security, energy security, environmental security, health 

security, food–water–energy nexus, and sustainable 

development. �ese grand challenges will also compel 

educators to revisit the delivery of hydrologic education 

and tailor it to produce leaders of tomorrow who will be 

well equipped to address the societal needs of tomorrow. 

Likewise, research funding agencies will have to rethink 

and reprioritize their direction of funding in concert with 

these grand challenges and pressing societal needs.

Social or rural hydrology, extraterrestrial water, water 

and food and energy security are newly emerging areas. 

For management of hydrologic systems, political, eco-

nomic, legal, social, cultural, and management aspects 

will need to be integrated. It is vital that both hydrologic 

science and engineering applications are equally empha-

sized. Hydrologic science must not be allowed to be over-

taken by data cranking methods borrowed from outside. 

At the same time, data analysis tools must be seamlessly 

integrated with hydrologic science.

Conclusions
�e following conclusions are drawn from this study:

1. Hydrologic modeling has come a long way from its 

modest beginning in the 1850s. Advances in mod-

eling have occurred at an increasing pace, primarily 

driven by easy access to almost limitless computing 

capability, sophisticated instrumentation, and remote 

sensing and GIS capabilities.

2. Integration of hydrology with allied areas is occur-

ring increasingly and will so continue.

3. �e role of hydrology is coming into sharper focus, 

because of global warming and climate change on 

one hand and water, food and energy security on the 

other hand.

4. Information technology is being assimilated in 

hydrology without much resistance.

5. Hydrology is receptive in adopting techniques being 

developed in mathematics, statistics, and sciences.
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