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Abstract In ungauged or data-scarce watersheds, systematic analyses of a6

set of proximate watersheds (for example, selected based on locational prox-7

imity or similarity in climate, morphometry, lithology, soils, and vegetation)8

have been shown to lend significant insights regarding hydrologic response and9

prediction. Current approaches often rely on: (a) statistical regression mod-10

els that use measurable watershed attributes, such as area, slope, and stream11

length; and (b) comparative hydrology that considers watershed characteris-12

tics to assess hydrologic similarity to select analogous gauged watersheds as13

proxies. Newer conceptions regarding hydrologic similarity focus on hydrologic14

response and therefore emphasize the use of dynamical measures of the stream15

network and watershed terrain. For example, the width function and hypso-16

metric curve can be readily estimated using the available global digital terrain17

datasets and represented as functional forms involving a small set of parame-18

ters, thus achieving significant data reduction. In this study, a new approach to19

hydrological similarity in watersheds, one that utilizes these functional forms20

to identify dynamically similar watersheds, is presented. Dissimilarity matri-21

ces are created based on divergence measures, and watersheds are classified22

using hierarchical clustering. The joint analysis of watershed width functions23

and hypsometric curves allows for the classification of watersheds into a re-24

duced number of dynamically-similar groups. An illustrative case study for the25

Narmada River, with 72 sub-watersheds, is presented.26
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1 Introduction3

Flow regimes and hydrologic response in watersheds are tied to the spatial4

pattern and distribution of a number of biogeophysical variables, including5

but not limited to topography, soil, vegetation, and built structures. In wa-6

tersheds where streamflow data is available, hydrologic models can be readily7

deployed and calibrated for the purposes of hydrologic prediction. However,8

in ungauged or data-scarce watersheds, current approaches to flow estima-9

tion rely on: (a) statistical regression models that use measurable watershed10

attributes, such as area, slope, and stream length; and (b) comparative hydrol-11

ogy that considers watershed characteristics to assess hydrologic similarity to12

select analogous gauged watersheds as proxies. Newer conceptions regarding13

hydrologic similarity focus on hydrologic response and therefore emphasize14

the use of dynamical measures of the stream network and watershed terrain15

(Bajracharya and Jain, 2020, 2021). Dynamical measures–width function and16

hypsometric curve–can be readily estimated using the available global digital17

terrain datasets. The computational burden, while significant, can be reduced18

by functional estimation and machine learning approaches (Bajracharya and19

Jain, 2020, 2021).20

In hydrological sciences, machine learning has been used in applications21

such as precipitation analysis (Sun and Tang, 2020), rainfall-runoff processes22

(Hsu et al., 1995; Minns and Hall, 1996; Dawson and Wilby, 1998; Abrahart23

and See, 2000; Duan et al., 2020; Oppel and Mewes, 2020), ground water hy-24

drology (Karandish and Šimnek, 2016; Sahu et al., 2020), reservoir hydrology25

(Bai et al., 2016; Mital et al., 2020), hydraulic networks (Dibike et al., 1999),26

river basin management (Solomatine and Ostfeld, 2008), and flow mapping27

(Zhu and Guo, 2014). Applications to the problem of hydrologic prediction in28

ungauged or data-scarce environments presents an attractive opportunity to29

meld machine learning approaches with the knowledge of watershed dynamics.30

In this study, we propose an approach that employs unsupervised classifi-31

cation to group similar basins based on distribution properties of hydrological32

basins. This provides a means for efficiently organizing a sea of data by sub-33

setting it into a smaller fraction of similar basins based on relevant physical34

characteristics that can then be further analyzed at a finer detail. We used35

the width function as a metric since it is a building block of the geomorpho-36

logical instantaneous unit hydrograph concept (Gupta and Waymire, 1983;37

Mesa and Mifflin, 1986; Bras, 1990), along with a hypsometric function to38

incorporate elevational information to complement the areal stream network39

topology encapsulated by the former. As a result, the clusters based on width40

functions and hypsometric curves on their own provide hydrological analogues41

based on unit rainfall response characteristics and elevation distribution, re-42

spectively, while a bivariate grouping can provide a synergistic combination of43
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the streamflow path characteristic alongside elevational profiles. This approach1

enables a computationally efficient means for finding hydrological analogues2

that can have large-scale applications, including at national and global scales,3

with minimal expert supervision.4

In what follows, we first briefly review some common approaches to similar-5

ity assessment. Next, we discuss the study area and the dataset used. We then6

discuss the background information about hierarchical clustering, before pre-7

senting our methodology. Next we illustrate the results of the width function-8

and the hypsometric function-based clustering.9

2 Background10

2.1 Common approaches to hydrological similarity11

Comparative hydrology is an approach to the prediction in ungauged basins12

(PUB) that examines a large number of catchments to distinguish patterns of13

hydrological behavior using common catchment and climatic characteristics.14

While there is no universal basis for hydrological classification of catchments15

(Blöschl et al., 2013), they are self-organizing systems whose hydraulic be-16

havior result from adaptive geomophological processes (Sivapalan, 2006) and17

there are discernible patterns that form the foundations for understanding18

their hydrological nature. In general, catchments can be considered hydrologi-19

cally similar if they have similar response to climatic variability (Blöschl et al.,20

2013). Proximity is a commonly used, reliable metric for determining similar21

catchments, however this measure is limited in that it does not allow for the22

use of catchments are not closer to each other (Patil and Stieglitz, 2012). Since23

climate strongly impacts catchment characterisitcs and hydrological behavior,24

the hydro-climatic region where a catchment is located provides another basis25

for catchment classification (Budyko et al., 1974; L’vovich, 1979; Abrahams,26

1984; Milly, 1994; Sankarasubramanian and Vogel, 2002; Woods, 2006; Yadav27

et al., 2007). Similarly, readily observable spatial patterns in the catchment28

structure that affect the temporal response can be used as signatures to de-29

termine possible co-evolution of basin dynamics (Blöschl et al., 2013), and can30

be utilized to transfer hydrological information from data-rich catchments to31

ungauged basins to predict physical phenomenon such as hydrologic response32

(Burn and Boorman, 1993; Tung et al., 1997; Aryal et al., 2002; McIntyre et al.,33

2005; Wagener et al., 2007; Reichl et al., 2009; Archfield and Vogel, 2010; Oudin34

et al., 2010; Patil and Stieglitz, 2011, 2012; Razavi and Coulibaly, 2013; Athira35

et al., 2016; Brunner et al., 2018). The mostly commonly used technique in-36

volves the transfer of lumped characteristics such as catchment shape and size,37

Strahler ratios, drainage density, average slope, etc. that are used to explain hy-38

drogeomophological characteristics (Horton, 1932, 1945; Strahler, 1957; Bras,39

1990; Rodŕıguez-Iturbe and Rinaldo, 2001). An issue with this is the possibil-40

ity of the loss of information in simplifying complex catchment properties into41

a single number (Wooldridge and Kalma, 2001; Wagener and Wheater, 2006;42
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Tetzlaff et al., 2009; Chang et al., 2014). Alternatively, distribution curves can1

be used to assess hydrological similarity. Examples of this include the use of2

the distribution of topographic index, height above nearest drainage, reduced3

dissipation per unit length index (Loritz et al., 2019), the distribution of ripar-4

ian and hillslope effects on streams, the riparian-area change along the stream5

network (McGlynn and Seibert, 2003), the hypsometric curve (Booij et al.,6

2007; Ssegane et al., 2012; Hailegeorgis et al., 2015; Bajracharya and Jain,7

2021), and the width function (Moussa, 2008; Bajracharya and Jain, 2020).8

Furthermore, various mathematical models that link catchment structure to9

hydrological response based on underlying physics or statistical relationships10

have been used to explore catchment similarity and to develop similarity pa-11

rameters (Hebson and Wood, 1982; Sivapalan et al., 1987; Larsen et al., 1994;12

Milly, 1994; Reggiani et al., 2000; Aryal et al., 2002; Woods, 2003).13

2.2 Dynamical representation of watershed morphometry14

2.2.1 Width function15

The width function represents the travel distance distribution of a stream16

network (Lashermes and Foufoula-Georgiou, 2007). For a given drainage basin,17

the width function, N(x), denotes the areal extent between x and x+dx, where18

x represents the total distance along the flow path to the outlet (Veneziano19

et al., 2000), termed here as the hydrological distance. As we do not distinguish20

between the hillslope and channel network distance in this study, the width21

function becomes synonymous with the area function. Under the assumption22

of constant velocity, the width function represents the probability distribution23

of travel times or the instantaneous unit hydrograph, reflecting the topological24

features of a basin’s stream response (Lashermes and Foufoula-Georgiou, 2007;25

Moussa, 2008). The width function is strongly linked to the peak and shape26

of the hydrograph (Kirkby, 1976; Gupta and Waymire, 1983; Troutman and27

Karlinger, 1984, 1989).28

The width function is most commonly represented by a histogram with29

the hydrological distance in the x-axis and the frequency or density of the30

areal extent of streams in the y-axis (Figure 1). Bajracharya and Jain (2020)31

demonstrated the use of a truncated skew-Normal (SN) mixture model to32

analytically represent the width function with the x-axis normalized by scal-33

ing between 0 and 1, and demonstrated its utility in finding hydrologically34

analogous drainage basins using divergence measures such as the L2 distance35

(Tsybakov, 2008). The SN distribution is a three-parameter probability dis-36

tribution formed by adding a skewness element to the Normal distribution.37

For a continuous random variable, X, the SN distribution is represented as:38

f(x; ξ, ω2, α) =
2

ω
φ

(

x− ξ

ω

)

Φ

(

α
x− ξ

ω

)

, x ∈ (−∞,∞) (1)



Hydrologic similarity based on width function and hypsometry 5

where φ(x) denotes the standard Normal density function of x, Φ(x) denotes1

the cumulative distribution function (cdf) of the standard Normal, and ξ, α,2

and ω are the location, scale, and shape parameters, respectively. The domain3

of the SN distribution is then truncated to [0, 1] using a correcting factor to4

guarantee the validity of the normalization condition (Thomopoulos, 2017):5

g(x) =

{

f(x)
F (1)−F (0) , x ∈ [0, 1]

0 , x ∈ (−∞, 0) ∪ (1,∞)
(2)

where F (x) denotes the cumulative density function. Finally, a finite mixture6

model of n truncated SN distributions is represented as:7

h(x) =

n
∑

i=1

wig(x; ξi, ω
2
i , αi) (3)

where wi denote the non-negative mixing proportions that sum to one. Fur-8

thermore, the L2 distance used by Bajracharya and Jain (2020) to measure9

similarity between two width functions is computed as:10

L1 =

√

∫

(N1 −N2)2dx (4)

where N1 and N2 represent the two width functions. A value of zero indicates11

identical width functions, while larger values reflect a larger difference.12

2.2.2 Hypsometric function13

The hypsometric curve reflects the area-altitude distribution of a basin (Hor-14

ton, 1932; Langbein, 1947) and reflects the distribution of landmass as a func-15

tion of elevation (Harlin, 1984). The shape of the hypsometric curve indicates16

Fig. 1 (a) Drainage network, with color gradations based on flow path distances to the
outlet denoting hydrological distances, and (b) width function with corresponding color
gradation. The upper x-axis shows the hydrological distance in absolute units (km), while
the lower x-axis presents the corresponding scaled hydrological distance.
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the geomorphic maturity of catchments, with a concave up shape indicating1

relatively mature basins with a high degree of erosive activity, and a con-2

cave down shape indicating relatively young basins with a large proportion of3

uneroded topography or creep-dominated hillslopes (Strahler, 1952; Moglen4

and Bras, 1995; Pedrera et al., 2009; Willgoose, 2018). Furthermore, studies5

have linked the hypsometric curve with various drainage basin features such6

as the hydrograph time-to-peak, head-ward drainage development, regional7

basin slopes (Harlin, 1984), average channel gradient (Howard, 1990), stream8

network branching (Willgoose and Hancock, 1998), ground water interaction,9

water table fluctuation (Marani et al., 2001), and surface and subsurface runoff10

properties (Vivoni et al., 2008). Willgoose and Hancock (1998) further divided11

the hypsometric curve into three regions: the ’head’ (upper left-hand side),12

the ’toe’ (lower right-hand side), and the ’body’ (between the head and the13

toe), and linked the shape of the toe to stream branching characteristics of14

the basin. Furthermore, hillslopes with active fluvial erosion and creep exhibit15

concave down head and concave up tail (Willgoose, 2018). In long skinny catch-16

ments and hillslopes with parallel flow lines, the hypsometric curve reflects the17

hillslope long profile and can be used as an indirect test of the slope-area re-18

lationship, while in more rounded catchments, the stream network branching19

also affects the shape of the hypsometric curve (Willgoose, 2018).20

The hypsometric curve can be plotted in absolute units, with elevation21

in meters and area in square kilometers, or in relative units, with relative22

elevation plotted against the relative area above said elevation (Figure 2). The23

latter, termed as the percentage hypsometric curve, allows for the comparison24

of basins of different altitudes and sizes (Strahler, 1952).25

Fig. 2 The scaled hypsometric curve showing the relative elevation plotted in relative to
the proportion of area above this elevation.

Various functional forms have been developed to represent the hypsometric26

curve (Strahler, 1952; Harlin, 1978; Sarkar and Patel, 2011; Vanderwaal and27

Ssegane, 2013; Bajracharya and Jain, 2021). Bajracharya and Jain (2021) de-28

veloped a three-parameter model named the Generalized Hypsometric function29
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by modifying the equation developed by Strahler (1952). The model places an1

emphasis on the curvatures of the head, body, and the toe. The function is2

defined as:3

y =

(

1− xm

1 + βxm

)z

(5)

4

where β, z, and m denote the three parameters. Furthermore, Bajracharya5

and Jain (2021) illustrated the use of hypsometry to find analogous basins6

using the discordance index (DI), defined as the total absolute area between7

two hypsometric curves.8

3 Data and methods9

3.1 Case study10

The Narmada River basin (NRB) is located in central India between latitudes11

21°22’ 0” N and 23°46’ 30” N, and longitudes 73°4’ 0” E and 81°45’ 30” E.12

The drainage area is 95, 000 km2 (Figure 3). The elevation ranges from nearly13

zero to over 1000 m above sea level, with an average slope of 1.1°. The basin14

is bounded on the north, east, and south by hills, and on the west by the15

Arabian sea. The lower middle reaches are comprised of fertile plain lands.16

A number of reservoirs have been constructed in the basin for a variety of17

purposes including water supply, irrigation, and hydropower generation. The18

Narmada River passes through three states that face water shortages during19

non-monsoon seasons (Ray and Goel, 2019).20

Fig. 3 Map of Narmada river basin and its location. Delineated sub-basins are shown along
with their identifier ids.
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The elevation data for the region was obtained from GTOPO30, a global1

digital elevation model (DEM) developed by the United States Geological2

Survey (USGS). It was derived from several raster and vector sources of to-3

pographic information (USGS, 1996). The dataset has a spatial resolution of4

30-arc seconds and a vertical accuracy of around 30 m. It is based on several5

sources of elevation information, including various vector and raster datasets,6

merged together, with a priority given to the data with a greater topographic7

detail and accuracy. With extensive accuracy checks, GTOPO30 data are suit-8

able for numerous regional and continental applications, including the extrac-9

tion of drainage features for hydrologic modeling (USGS, 1996).10

The stream network was derived from the DEM in ESRI ArcGIS 10.5.111

through standard Geographic Information System (GIS) procedures. First el-12

evation grids with undefined drainage directions, known as sinks, were filled;13

then the flow direction was determined based on the direction of steepest14

descent; followed by the computation of accumulated flow at each grid. A15

threshold of 396 km2 was used to delineate the stream grids. This threshold16

was chosen to ensure a dense stream network, resulting in fourth order streams.17

This allowed for a delineation a considerable number of sub-basins to test the18

fits for diverse width function and hypsometric curve shapes. Finally, outlets19

were places at the confluences of first order and higher order streams to create20

72 non-overlapping sub-basins.21

3.2 Methodology22

Clustering is a descriptive unsupervised data mining technique for creating23

subsets by grouping similar data together based on some measure of similarity24

or dissimilarity (Veyssieres and Plant, 1998; Rokach and Maimon, 2005). The25

clustering structure is represented by a set of subsets, C = C1, ..., Ck of S,26

such that S =
⋃k

i=1 Ci and Ci ∩ Cj = ∅ for i 6= j. Hierarchical clustering is a27

clustering method that creates clusters by recursive partitioning, resulting in28

a dendrogram structure that represents the nested grouping of instances and29

similarity levels at which the groupings change. The recursive algorithm could30

be bottom-up, starting from every element in their individual cluster, with31

similar elements then grouped into a single cluster in each successive step32

(agglomerative clustering); or top-down, starting from all elements grouped33

in a single cluster, followed by the most dissimilar elements being separated34

into another cluster at each iteration (divisive hierarchical clustering). Vari-35

ous methods have been developed based on the manner in which the similarity36

measure is calculated and optimized, most of which are variants of single-link,37

complete-link, and minimum-variance algorithms (Jain et al., 1999). These al-38

gorithms consider the distance between two clusters to be equal to the shortest,39

longest, and average distance between a member of one cluster to a member40

of the other, respectively. Single-link methods are more versatile (Rokach and41

Maimon, 2005) but are susceptible to the ”chaining effect”, where a few points42

that form a bridge between two poorly separated, but distinct clusters lead to43
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them being merged at an early stage (Guha et al., 1998). On the other hand,1

complete-link methods usually produce more compact clusters (Rokach and2

Maimon, 2005). On the other hand, average-link clusters may cause the split-3

ting of elongated clusters and the merging of portions of neighboring elongated4

clusters (Guha et al., 1998).5

In this study, we used the ”agnes” function (Kaufman and Rousseeuw,6

2009) from the ”cluster” package (Maechler et al., 2021) in R programming7

language (R Core Team, 2019) for the clustering analysis. This function pro-8

vides the agglomerative coefficient (ac) which measure the amount of cluster-9

ing structure. For a set of observations, ac is the average of 1 − m(i), where10

m(i) is the ratio of dissimilarity of each observation, i, to the first cluster it is11

merged with to the dissimilarity of the final merger of the algorithm. ac varies12

between zero and one, with larger values indicating more balanced cluster-13

ing structures and values closer to zero indicating less well-formed structures.14

For the given dataset, the Ward method (Ward, 1963), a type of minimum-15

variance algorithm, was found to have a better ac value compared to the other16

methods.17

The width functions and hypsometric curves were first transformed to their18

functional forms to facilitate efficient computation of dissimilarity matrices19

(Figure 4). Width function clustering was done with the fitted SN functions,20

using the L2 distance as the dissimilarity measure. This lead to width func-21

tion analogues that share similarities in hydrological responses based on stream22

network structures. Similarly, hypsometric clustering was done with the fitted23

Generalized Hypsometric functions, using the DI as the dissimilarity measure.24

These clusters are likely to share common hypsometric signatures in terms of25

erosional/ depositional properties. While hypsometric curves are more closely26

related to the erosional status of the basin, studies have indicated links between27

hypsometric curves and hydrodynamic properties of basins (Harlin, 1984; Will-28

goose and Hancock, 1998; Marani et al., 2001; Vivoni et al., 2008) due to the29

topographic controls on stream generation and flow.30

Fig. 4 Flowchart of the study methodology.

The gap statistic was used to determine the optimal number of clusters31

(Tibshirani et al., 2001). For a dataset with k clusters based on distance mea-32

sure d, the gap statistic is defined as33

Gapn(k) = E∗

n[log(Wk)]− log(Wk) (6)
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1

where E∗

n represents the expected value for a sample size of n from the reference2

distribution and Wk is the pooled within-cluster sum of squares around the3

cluster means, defined as Wk =
∑k

r=1
1

2nr

∑

Dr. This statistic measures the4

deviation of the observedWk from its expected value under the null hypothesis.5

The optimal number of clusters, k̂, can be chosen based on various algorithms,6

including global maximum method, which maximizes Gapn(k), signifying the7

farthest deviation from uniform points distribution. Due to the lack of clear8

group demarcations in both width function and hypsometric curve shapes, we9

chose k̂ based on local maxima, where the increase in Gapn(k) first tails off.10

There is a level of subjectivity in the choice of the number of clusters, with11

more groups leading to more homogeneity within the group members but a12

smaller number of members per group.13

We also demonstrated the process of outlier detection to reduce intra-14

cluster variance with a simple algorithm based on similarity measures with15

the nearest neighbors. We used a minimum threshold approach where mem-16

bers exceeding a minimum similarity index with a selected number of nearest17

neighbors were classified as outliers and removed from the study. However,18

care was taken not to omit members with important and distinct physical19

characteristics. Finally, the sub-basins with common width function clusters20

and hypsometric function clusters were identified.21

4 Watershed similarity22

4.1 Width function clusters23

4.1.1 Hierarchical clustering24

First, the optimal number of clusters was determined using the gap statistic.25

Figure 5 shows the gap statistic as a function of the number of clusters (k). The26

graph shows that a larger number of clusters results in a higher gap statistic,27

and consequently, a better clustering. The continued increase in gap statistic28

with increasing number of clusters indicates that the different cluster regions29

are not sharply delineated. However, a large number of clusters impedes the30

interpretability of the width function shapes in each cluster. As such, the choice31

of optimal k involves some subjectivity. We based the choice on where the the32

rate of increase in the gap statistic first sharply decreases. The change in the33

gap statistic has a sharp decrease when k > 6, and as such, the optimal number34

of clusters for the width functions was chosen as six. The width functions35

in each cluster are shown in Figure S1. While there are some considerable36

variances in the width function shapes within each cluster, different clusters37

do exhibit noticeably different overall shapes.38
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Fig. 5 Determination of the optimal number of width function clusters using gap statistic.
The optimal number of clusters was chosen based on the change in the rate of increment of
the gap statistic.

4.1.2 Analysis of outliers1

Outliers can cause chaining effects, leading to dissimilar objects being drawn2

into the same cluster (Everitt et al., 2011). Removal of outliers can help reduce3

intra-cluster variance. However, different outlier detection algorithms can lead4

to different data points being classified as outliers. Moreover, outlier detection5

can mistakenly classify small clusters as outliers and remove valuable informa-6

tion from the data. Thus, outlier detection involves a degree of subjectivity.7

Here we use a simple algorithm to analyze, detect, and remove outliers based8

on similarity measures with nearest neighbors. Figure 6 shows the L2 distance9

to fifteen closest neighbors for each width function. Based on this measure,10

a threshold can be chosen subjectively to delineate outliers based on specific11

goals. In this study, width functions with the L2 distance greater than 0.4512

for up to 15 closest neighbors were marked as outliers. This lead to only three13

width functions being classified as outliers. Intra-cluster uniformity can be fur-14

ther improved by lowering this threshold. While rigorous methods for removal15

of outliers exist in the literature (Almeida et al., 2007; Fan et al., 2013; Krleža16

Fig. 6 L2 distances between 15 closest neighbors for each width function.
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et al., 2021), we employed this basic outlier detection algorithm as a proof of1

concept, one that is easy to understand and can be readily applied.2

4.1.3 Analysis of clusters3

After the removal of the outliers, the width functions were reclassified into4

six clusters (Figure 7). With a removal of only three outliers, there is minimal5

improvements in intra-cluster uniformity, as seen by the removal of two notable6

outliers in cluster 3. To closely examine the properties of each cluster group,7

representative width functions in each cluster have been highlighted in Figure8

7. Representative width functions were chosen based on the lowest L2 distances9

with the mean width functions within each cluster. Mean width functions were10

calculated by averaging y values between all members of a given cluster at11

each x value. Cluster 5 has a slightly higher peak in the first SN component,12

while all other clusters have higher peaks in the second SN component, which13

could indicate a difference in hydrograph peak locations. Among them, cluster14

3 does not have a prominent peak, whereas cluster 6 has a prominent peak15

towards the right end of the width function. Furthermore, the shape of the left16

rising side and the right falling side of the curves differ between clusters. For17

instance, the right side of the curves for clusters 2 and 6 are steeper compared18

to other clusters. It should be noted that while the overall shape of the curves19

are similar within clusters, there is still a considerable degree of heterogeneity20

in the size and location of the peaks.21

Fig. 7 Width functions in each cluster after removing the outliers. The representative width
functions for each cluster are shown as thick grey lines.

Hierarchical clustering can be best denoted using dendrograms. The den-22

drogram notation of the width function clusters are shown in Figure 8, along23

with the mean width functions and the location of the sub-basins. Figure 824

(b) further highlights the diversity in the shape of the width functions in25
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Fig. 8 (a) Dendrogram of watershed width functions using hierarchical clustering using Ward’s method. (b) Mean width functions for each cluster.
(c) Map of sub-basins grouped by cluster.
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each cluster. The width function shapes seem mostly independent of the loca-1

tion of the sub-basin along the watershed as well as the sub-basin areas (Figure2

8 (c)). Cluster 4 seems to be concentrated at the mid region of the watershed3

and cluster 6 seems to be concentrated mostly in the bottom half, where as4

all other clusters are spread across different regions. Interestingly, a number5

of sub-basins within same cluster groups appear alongside each other.6

4.2 Hypsometric function clusters7

4.2.1 Hierarchical clustering8

Similar to width functions, the gap statistic was used to determine the optimal9

number of hypsometric function clusters (k) by evaluating the change in gap10

statistic with the change in k (Figure 9). The change in the gap statistic sharply11

decreases when k > 8, and hence, the optimal number of clusters was chosen12

as eight. The classified hypsometric functions along with the corresponding13

representative curves are shown in Figure 10. There is a clear distinction in14

the shapes of the hypsometric curves in each cluster. Clusters 1, 2, 3, 6, and15

8 comprise of concave up shapes, while cluster 7 comprises of concave down16

shapes. The similarity in hypsometric curves could indicate similarity in ge-17

omorphological characteristics within the clusters. Furthermore, hypsometric18

curves in clusters 4, 5, and 8 have prominent tail regions following inflections19

in the curve, where as other clusters lack prominent tail regions. However, it20

is notable that there is some appreciable variability in the head and toe curva-21

tures within each group. For instance, while the majority of curves in cluster22

2 do not have an inflection point near the tail, there are a few curves with23

prominent tail regions. On the other hand, some hypsometric curves with no24

prominent tail curvatures are classified into clusters 4 and 5.25

Fig. 9 Determination of the optimal number of hypsometric function clusters using gap
statistic. The optimal number of clusters was chosen based on the change in the rate of
increment of the gap statistic.
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Fig. 10 Basin hypsometric curves. Corresponding representative curves for each cluster are
shown as thick grey lines.

Similar outlier analysis algorithm was applied to these clusters, with a1

DI of 0.65 chosen as the threshold. However, this led to both sub-basins in2

cluster 7 being classified as outliers. While this is computationally valid, cluster3

7 is the only cluster comprised of concave down curves. Consequently, this4

group carries an important geomorphological distinction as compared to other5

clusters, and as such, should not be classified as an outlier or be removed6

from the study. This indicates a shortcoming of the earlier outlier analysis7

algorithm, and indicates that a degree of subjective choice may be necessary8

in the outlier analysis so as to not omit important cluster groups. However,9

lowering the number of nearest neighbors being considered to just one leads10

to no member being classified as outliers. This matches visual inspection since11

the intra-cluster variance in each group is already low. As a result of this, no12

outlier was removed.13

Cluster dendograms are shown in Figure 11 (a), along with the mean hypso-14

metric curves for each cluster group (Figure 11 (b)), and their locations (Figure15

11 (c)). Mean hypsometric curves are computed by averaging the relative ele-16

vations of each cluster member along the relative areas above the elevations.17

The mean hypsometric curves indicate a gradual change from concave up to18

concave down shapes along the clusters. There is no clear relationship between19

the hypsometric curve shapes and the locations of the sub-basins along the wa-20

tershed or the size of the sub-basins. Sub-basins in cluster 4 are concentrated21

in the lower half of the watershed, while those in cluster 3 are concentrated22

in the upper half. However sub-basins in other clusters are spread throughout23

the watershed.24

4.3 Joint analysis of hierarchical clustering of width functions and25

hypsometric curves26

Next, we discuss the potential to combine the width function and the hyp-27



1
6

B
a
jra

ch
a
ry
a
,
J
a
in
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sometric clustering to represent watershed analogs that take into account both,1

the planar stream network geometry as well as the elevational characteristics2

of the basin (Figure 12). This provides a framework for bivariate clustering3

that incorporates multiple metrics that supplement each other. For instance,4

sub-basins 14, 21, 30, 33, 35, and 60 fall in hypsometric cluster 4 and width5

function cluster 5, with these members indicating mildly mature hypsome-6

try and width functions with the peak considerably skewed to the right. As7

such, these sub-basins could potentially be analogues with similar hydrologi-8

cal response properties. Sub-basins 17 and 53 have concave-down hypsometric9

curves (hypsometric cluster 7), but have considerably different width function10

shapes (width function clusters 2 and 5), indicating that the hydrological re-11

sponse behaviour of these two sub-basins might be considerably different. As12

such, width function and hypsometry can provide complementary properties,13

Fig. 12 (a) Bivariate cluster groups based on the width function and the hypsometric
function. The mean curve for each cluster has been shown. (b) Map of sub-basins highlighting
the bivariate groups with at least four members.
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which results in a fuller description of basin processes. In Figure 12, we explore1

the spatial relationships between members in the bivariate groups. Group 5-2,2

with an early width function peak and a relatively linear hypsometric curve,3

is predominantly formed at the upstream region of the watershed. Group 4-5,4

with a highly steep falling limb of the width function and a relatively linear5

hypsometric curve, exhibited relatively smaller accumulation areas. However,6

in general, the spatial relationship within the highlighted bivariate groups was7

found to be weak.8

5 Discussion and concluding remarks9

New understandings and a sound physical basis for the prediction in ungauged10

basins has great theoretical and practical importance. To that end, this study11

provides an additional tool through the use of unsupervised learning and func-12

tional data reduction to derive dynamical measures of hydrologic response in13

watersheds. We demonstrated that the classification of basins through clus-14

tering when applied using dynamical measures of watershed behavior allows15

for the partitioning of watersheds into groups with consistent functional forms.16

We proposed a four-step approach for forming hydrologically similar analogues.17

This first step involves the functional estimation of two dynamic features, the18

width function and the hypsometric curve. Next, divergence measures are ap-19

plied across all basin pairs to form dissimilarity matrices, which are then used20

for hierarchical clustering. The clusters based on width functions and hypsome-21

tries on their own provide groups of basins with similar drainage topology and22

elevation distribution, respectively. Finally, groups of basins with common23

width function and hypsometric function clusters serve as analogous basins24

with similar hydrological response characteristics. With the wide availability25

of terrain information, this method can be applied at large scales (national or26

global) to find a sizeable number of similar hydrological basins at low data and27

computational costs. This allows for a large number of catchments to be in-28

cluded in the donor pool and thus, provides a means for the statistical analysis29

of uncertainty in the hydrological signatures being transferred.30

Our study illustrated this framework in the context of the Narmada River31

basin in India. The following observations and takeaways can be made about32

the hydrologically similar characteristics across the 72 selected sub-basins for33

the Narmada River:34

1. The majority of width functions exhibit late peaks, with only one out35

of the six clusters exhibiting an early peak. Interestingly, the early peak36

cluster seems slightly concentrated near the outlet. Furthermore, a number37

of sub-basins that share cluster groups appear adjacent to each other.38

2. The majority of sub-basins exhibited concave up hypsometric curves, with39

only two sub-basins showing concave down curves. This could indicate that40

these sub-basins are surface runoff-dominant and highly eroded. While the41

hierarchical clustering approach performed well in classifying the overall42
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concavity of the curves, it was slightly less effective in classifying the head1

and the tail curvatures.2

3. There is a level of subjectivity in the choice of the number of clusters. The3

considerable degree of intra-cluster heterogeneity in the location of the4

peaks of width functions indicates the need for a relatively large number of5

clusters for width functions if a high degree of homogeneity is desired. On6

the other hand, a relatively lower number of hypsometric clusters might be7

sufficient due to the cumulative nature of the curve which tends to offer a8

lower variance.9

4. Two bivariate groups with similar width functions and hypsometric func-10

tions were identified with at least four members, one was identified with11

five members, and one with six members from a total sample size of 72.12

These represent sub-basins with similar hydrological response character-13

istics. This can easily be scaled to thousands of watersheds around the14

world.15

The lack of a definitive spatial pattern could indicate that spatial prox-16

imity alone might not be a strong predictor of basin hydrological response,17

especially at the chosen scale. The presence of pairs of sub-basins with similar18

width functions do indicate some spatial dependence. While spatial pattern is19

justifiably a good metric of hydrological similarity in most use cases, dynamic20

metrics such as the width function can serve as another strong measure in21

defining analogues.22

Modern data collection techniques such as satellite hydrology and crowd-23

sourcing tools have led to an explosion in data volume. The future of water sci-24

ences hinges on our ability to harness this big data to understand hydrological25

phenomena based on smart, data-driven computational techniques (Peters-26

Lidard et al., 2017; Sit et al., 2020). Our approach focuses on the efficient27

use of large volumes of elevation data to find hydrological analogues through28

dynamical properties of terrains and facilitates large scale applications. This29

approach is consistent with the growing recognition in the hydrological com-30

munity regarding the use of explainable AI (XAI) techniques that build upon31

conceptual and machine learning models to explain hydrological phenomenon32

(Maksymiuk et al., 2020; Althoff et al., 2021). An application of hydrological33

similarity study is to assist in improving our understanding of hydrological34

processes in watersheds (Blöschl et al., 2013) and future works can build upon35

this study by integrating the width function and elevation-based slope and36

velocity distribution to create a robust dynamical metric for hydrological re-37

sponse quantification and similarity assessment.38
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Supplementary materials1

Original width function clusters2

3

4

Figure S1 shows the width function clusters before the removal of outliers.5

Clusters 1, 5, and 6 have higher peaks in the right SN component while6

cluster 3 has a higher peak in the left SN component, potentially indicative of7

different location of peak flows in hydrographs. Furthermore, the high slopes8

on right sides of the curves for clusters 2 and 6 could be indicative of more9

rapidly falling recession limbs of hydrographs.10

Fig. S1 Width functions in each cluster.
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