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Overview

Hydrological drought explained
Anne F. Van Loon∗

Drought is a complex natural hazard that impacts ecosystems and society in many
ways. Many of these impacts are associated with hydrological drought (drought
in rivers, lakes, and groundwater). It is, therefore, crucial to understand the
development and recovery of hydrological drought. In this review an overview
is given of the current state of scientific knowledge of definitions, processes, and
quantification of hydrological drought. Special attention is given to the influence
of climate and terrestrial properties (geology, land use) on hydrological drought
characteristics and the role of storage. Furthermore, the current debate about
the use and usefulness of different drought indicators is highlighted and recent
advances in drought monitoring and prediction are mentioned. Research on
projections of hydrological drought for the future is summarized. This review also
briefly touches upon the link of hydrological drought characteristics with impacts
and the issues related to drought management. Finally, four challenges for future
research on hydrological drought are defined that relate international initiatives
such as the Intergovernmental Panel on Climate Change (IPCC) and the ‘Panta
Rhei’ decade of the International Association of Hydrological Sciences (IAHS).
© 2015 Wiley Periodicals, Inc.
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HYDROLOGICAL DROUGHT IN
CONTEXT

Hydrological drought refers to a lack of water
in the hydrological system, manifesting itself in

abnormally low stream�ow in rivers and abnormally
low levels in lakes, reservoirs, and groundwater.1 It is
part of the bigger drought phenomenon that denotes a
recurrent natural hazard.2 Societies around the world
are exposed to a multitude of natural hazards, such as
earthquakes, volcanic eruptions, hurricanes, storms,
tornadoes, �oods, and droughts.3,4 Hydrological
extremes (�oods and hydrological droughts) are nat-
ural hazards that are not con�ned to speci�c regions,
but occur worldwide and, therefore, impact a very
large number of people.5 Flooding events receive most
attention, both in the news and in scienti�c literature,
due to their fast, clearly visible, and dramatic con-
sequences. Drought events, also called ‘the creeping
disaster’,6,7 develop slower and often unnoticed and
have diverse and indirect consequences. Hydrological
droughts can, however, cover extensive areas and can
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last for months to years, with devastating impacts on
the ecological system and many economic sectors1,8

(Table 1). Examples of affected sectors are drink-
ing water supply, crop production (irrigation),
waterborne transportation, electricity production
(hydropower or cooling water), and recreation (water
quality) e.g., Refs 1, 6, 8–13. The ecosystem impacts
of drought differ between terrestrial ecosystems, in
which droughts in�uence tree mortality due to wild
�res,14,15 and aquatic ecosystems, where they affect
e.g., species composition, population density,16 and
food web structure.17 Examples of drought events
in the recent and distant past and their impacts are
provided in Box 1.

Currently, there is increasing awareness of
drought and related hazards (heat waves and wild-
�res), resulting in more research on the topic in inter-
national projects like WATCH (www.eu-watch.org),
DEWFORA (www.dewfora.net), DROUGHT-R&SPI
(www.eu-drought.org) and DrIVER (www.drought.
uni-freiburg.de), and national projects like
DROUGHT-CH (www.nfp61.ch/E/projects/cluster-
hydrology/droughts) and four recently started
projects in the UK, i.e., MarRIUS, IMPETUS, DRY,
and Historic Droughts (www.nerc.ac.uk/research/
funded/programmes/droughts). Additionally, there
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TABLE 1 Major Impacts of Drought in Relation to the Different Drought Categories

Drought Category

Impact Category Meteorological Drought Soil Moisture Drought Hydrological Drought

Agriculture Rainfed x x

Irrigated x x

Ecosystems Terrestrial x x

Aquatic x

Energy and industry Hydropower x

Cooling water x

Navigation x

Drinking water x

Recreation x

are increasing efforts to inform policy makers,
water managers, and the general public via, for
example, the European Drought Centre (EDC; www.
geo.uio.no/edc), the US Drought Monitor18 (www.
droughtmonitor.unl.edu), the European Drought
Observatory (EDO; edo.jrc.ec.europa.eu), and the
Global Integrated DroughtMonitoring and Prediction
System (GIDMaPS; www.drought.eng.uci.edu).

Recent research projects have signi�cantly
increased scienti�c understanding of the drought
phenomenon, its causing mechanisms, its impacts,
and changes in time and space. One of the most
important scienti�c developments is the growing view
that droughts cannot simply be characterized by a
lack of rainfall, and many recent papers show the
increased complexity of drought including hydrologi-
cal processes e.g., Refs 19–21. There are, however, still
many uncertainties and gaps in our knowledge about
hydrological drought. Mishra and Singh,7 Cloke and
Hannah,22 and Pozzi et al.23 argue that hydrological
drought deserves more attention due to its crucial link
with drought impacts. Also the recent IPCC report on
extremes24 points out the need for more attention to
the space–time development of hydrological drought.

In this paper, I therefore aim to give an overview
of the state-of-the-art, recent scienti�c �ndings, and
open questions related to hydrological drought. It
aims at students, practitioners, and researchers in var-
ious �elds. This paper is structured as follows. After a
section on the de�nitions of drought and related phe-
nomena (see section Drought De�nitions), I go into
the processes underlying hydrological drought devel-
opment and recovery, explaining drought propaga-
tion, climate and catchment control, and hydrological
drought types and scales (see section Hydrologi-
cal Drought Processes). Then, I discuss methods
for drought monitoring, modeling, and prediction

BOX 1

DROUGHT EVENTS

In recent years, many severe drought events
occurred. Currently, the state of California in the
USA is facing one of the most severe multiyear
droughts on record, resulting in extremely low
reservoir and groundwater levels and restricting
water use for irrigation and domestic use.25,26

In 2014, a winter drought in Scandinavia caused
severe wildfires. In 2013, drought disaster relief
was needed in Namibia and Angola, Brazil,
central Europe, and New Zealand. In 2012, a
simultaneous drought in central and southern
USA and Russia induced an increase in food
prices. In spring 2011, western Europe faced
severe water shortage and low water levels. In
2011, a long-lasting drought triggered hunger,
mass migration, and loss of life in the Horn
of Africa.27 In 2010 and 2011, Russia experi-
enced a drought and heat wave,28 resulting in
widespread forest fires.29 In 2010, large parts
of China were affected by drought, hamper-
ing food production on a large scale,30 and
in that same year Scandinavia faced drinking
water shortage and hydropower production
problems.31 In 2005 and 2010, the Amazon rain
forest was affected by a severe lack of precipita-
tion, resulting in a massive dying of vegetation
and release of CO2 into the atmosphere.32 In
2008, the Iberian peninsula had to cope with the
impacts of a multiyear drought that had reduced
groundwater levels and reservoir storage to a
minimum.33 A severe continent-wide multiyear
drought impacted Australia between 2002 and
2010.34 In 2003 and 2006, Europe was hit by
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droughts that caused crop failure, navigation
problems, cooling water restrictions, and loss
of life due to a heat wave35 (Figure 1). In 2003,
this amounted to 70,000 heat-related deaths in
Europe.36 This enumeration of recent droughts
is not exhaustive, but indicates the recurring and
worldwide nature of droughts.

Contrary to expectation (a common mis-
conception is that drought impacts on society
are limited to semiarid regions), droughts in wet
and cold regions can result in major damage.
Examples are problems with electricity produc-
tion and drinking water supply in Scandinavia
e.g., Ref 31 and livestock mortality and eco-
nomic loss in regions like Mongolia.37,38 It is not
a coincidence that people in Mongolia have a
local name for drought related to extremely low
temperatures, namely ‘Dzud’,39 and that special
aid programs exist for Mongolia because this
type of drought generally causes serious loss of
livestock.40,41

Drought is not a recent phenomenon.
Actually, some of the most devastating drought
events occurred in the previous century.
Examples are the 1976 drought in Europe,
the 1930s Dust Bowl in the USA,42 and the 1920s
food crisis in Russia and China (in which more
than 4 million people died, EM-DAT43). The
wider drought phenomenon is considered one
of the most damaging natural hazards in terms
of economic cost6 and, regionally, in terms of
societal problems, such as hunger, mass migra-
tion, and loss of life. In the period 1900–2010,
worldwide two billion people were affected and
more than 10 million people died due to the
impacts of drought.43,44

Also in the paleoclimatic record, many
severe ‘mega-droughts’ are reported that had
widespread ecological and socioeconomic conse-
quences and might even be related to the col-
lapse of civilisations e.g., Refs 8, 24, 45–48.

(see section Hydrological Drought Quanti�cation). I
brie�y mention research on drought impacts and man-
agement (see section Hydrological Drought Impacts
and Management), before going into de�ning some
challenges for the future (see section Challenges for
Hydrological Drought Research) and giving some con-
cluding remarks (see section Concluding Remarks).

DROUGHT DEFINITIONS

Drought is a complex phenomenon and is therefore
de�ned in many ways. No universal de�nition of

drought exists.49 Reviews of de�nitions can be found
in Dracup et al.,50 Wilhite and Glantz,2 Hisdal,51

Tallaksen and Van Lanen,1 Mishra and Singh,7 and
Shef�eld and Wood.8 The most simple de�nition of
drought is: a de�cit of water compared with normal
conditions.8 In applying this de�nition, the following
questions arise. What are normal conditions? Do we
consider water in all components of the hydrological
cycle or only in some? How large must a water de�cit
be, or how long is it to last, in order to be called
a drought? Does this de�nition only refer to natural
processes or do human in�uences play a role as well?

What should be regarded as the ‘normal’ situa-
tion strongly depends on what the water is used for.
For example, certain minimal water levels in rivers
are needed for navigation and ecosystems, whereas
in reservoir management deviations from the seasonal
in�ow cycle have serious impacts. Hence, the de�-
nition of drought is dependent on the objective of
a study, which is very important when quantifying
drought.49 In drought research, we generally focus
on the atmospheric and terrestrial components of the
water cycle and the linkages between them, i.e., pre-
cipitation, evapotranspiration, snow accumulation,
soil moisture, groundwater, lakes and wetlands, and
stream�ow.8 Furthermore, it is customary to de�ne
drought as a persistent and regionally extensive phe-
nomenon, although these terms are not easily quan-
ti�ed. It is also important to note that drought is a
relative, rather than absolute, condition of the hydro-
logical system.52

In this paper, I use the following de�nition of
drought, proposed by Tallaksen and Van Lanen1:

Drought is a sustained period of below-normal water
availability. It is a recurring and worldwide phe-
nomenon, with spatial and temporal characteristics
that vary signi�cantly from one region to another.

Droughts are generally classi�ed into four cate-
gories e.g., Ref 1, 2, 7, 8, visualized in Figure 2:

1. Meteorological drought refers to a precipitation
de�ciency, possibly combined with increased
potential evapotranspiration, extending over a
large area and spanning an extensive period of
time.

2. Soil moisture drought is a de�cit of soil moisture
(mostly in the root zone), reducing the supply
of moisture to vegetation. Soil moisture drought
is also called agricultural drought, because it is
strongly linked to crop failure. As soil moisture
de�cits have additional impacts on, for example,
natural ecosystems and infrastructure,24,56,57 I

© 2015 Wiley Per iodica ls, Inc.
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FIGURE 1 | Examples of impacts of the 2003 summer drought in Europe, including effects on agriculture, health, transport, energy, and ecology.

(Figure by A.J. Teuling, Wageningen University)

do not use the term agricultural drought for soil
moisture drought in this paper.

3. Hydrological drought is a broad term related
to negative anomalies in surface and subsurface
water. Examples are below-normal groundwater
levels or water levels in lakes, declining wetland
area, and decreased river discharge. Ground-
water drought and stream�ow drought are
sometimes de�ned separately as below-normal
groundwater levels7,53,58,59 and below-normal
river discharge,60–63 respectively.

4. Socioeconomic drought is associated with the
impacts of the three above-mentioned types. It
can refer to a failure of water resources sys-
tems to meet water demands and to ecological or
health-related impacts of drought. An overview
of the most important drought impacts is pro-
vided in Table 1. It can be noted that more types
of drought impacts are related to hydrological
drought than to meteorological drought.

Drought should not be confused with low �ow,
aridity, water scarcity, or deserti�cation, or with
related hazards such as heat waves and forest �res.

‘Low �ow’ is a frequently used term, denoting low
river discharge.61,64,65 Low �ows are often charac-
terized by annual minimum series, which do not in
all years re�ect a stream�ow drought. Hence, Hisdal
et al.58 propose to distinguish between low �ow
characteristics and stream�ow drought characteris-
tics. ‘Aridity’ is the general characteristic of an arid
climate and represents a (relatively) permanent condi-
tion, while drought is temporary.7 In an arid climate,
drought can still occur when local conditions are even
drier than normal.8,66 The term ‘water scarcity’ is
used to denote a water supply shortage or a situa-
tion in which anthropogenic in�uence on the water
system plays an important role in the development
of below-normal water availability. Water scarcity
is caused fully or in part by human activities24

and re�ects conditions with long-term imbalances
between available water resources and demands
e.g., Ref 1, 67. Water scarcity and drought are usu-
ally hard to distinguish as they are closely linked
and often occur simultaneously. Van Loon and Van
Lanen68 used an observation-modeling framework
to distinguish between drought and water scarcity.
Probably the worst situation with regard to water

© 2015 Wiley Per iodica ls, Inc.
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Meteorological

situation

Meteorological drought

Soil moisture drought

Hydrological drought

Anomalies in

precipitation 

Anomaliesin

temperature  

Precipitation

deficiency 

Low soil moisture

Low

discharge
low ground-

water storage

Socio-economic drought Impacts

FIGURE 2 | Scheme representing different categories of drought

and their development. (Derived from Peters,53 Van Loon,54 Stahl55).

management is a drought in the low-�ow season in
an arid climate that additionally suffers from water
scarcity.

The term ‘deserti�cation’ is related to misuse or
mismanagement of a region with a dry climate, leading
to a reduction in vegetation cover.69,70 Dry periods
can intensify deserti�cation. ‘Heat waves’ develop as
a result of high temperatures. Soil moisture drought
can aggravate heat waves, due to feedbacks of the
land surface with the atmosphere.71–74 The typical
time scale of heat waves is in the order of weeks,
whereas drought generally has durations of months to
years.7 ‘Forest �res’ are uncontrolled �res in a wooded
area. The risk of forest �re appears to increase with
drought,75 although in some regions human activities
were found to be the most important driving force for
forest �res.76

If hydrological drought is framed as a natural
hazard, terms for the hazard literature are often used,
e.g., ‘disaster’ for its negative impacts on society and
the environment,52 and ‘vulnerability’ to denote the
lack of capacity to cope with the ‘risk’ of drought.77,78

Alternatively, hydrological drought can be viewed as a
water resources issue, with emphasis on the imbalance
between water availability and demand e.g., Ref 79.
This view incorporates societal and ecological aspects
into the phenomenon. It also makes hydrological
drought less an external hazard, and more a normal
part of the hydrological system.

HYDROLOGICAL DROUGHT
PROCESSES

There are a multitude of relevant processes underlying
the development and also the recovery of hydrological

drought. In this section, an overview is provided of the
current knowledge of these processes.

Drought Propagation
Reasons for the occurrence of hydrological drought
are complex, because they are dependent not only on
the atmosphere, but also on the hydrological processes
that feedmoisture to the atmosphere and cause storage
of water and runoff to streams.7

The atmospheric processes that are the starting
point of hydrological drought development are a result
of climatic variability.8,66 Generally, a prolonged pre-
cipitation de�ciency generates less input to the hydro-
logical system (Figure 3). Causative mechanisms of
precipitation de�cits can be blocking high-pressure
systems81,82 and monsoon failure.83,84 Alternatively,
hydrological drought can be triggered by anoma-
lies in temperature, such as prolonged freezing con-
ditions in winter in snow-dominated catchments85

or low temperatures in summer in glacier-dominated
catchments.86 Both temperature and precipitation
anomalies can be associated with large-scale atmo-
spheric or ocean patterns like ENSO, NAO, and sea
surface temperatures e.g., Ref 87, 88.

Depletion of soil moisture storage is related to
its antecedent condition, evaporation from bare soil,
evapotranspiration through plants, drainage to the
groundwater, and runoff to streams. During a dry
spell, drainage and runoff are usually low, but poten-
tial evapotranspiration can increase due to increased
radiation, wind speed, or vapor pressure de�cit (e.g.,
caused by a decreased moisture availability or an
increased temperature). This can lead to increased
actual evapotranspiration, resulting in an extra loss
of water from the soil and open water bodies. In
extreme drought, a lack of available soil moisture
and wilting of plants can limit evapotranspiration,
thus limiting a further soil moisture depletion, but
possibly also limiting locally generated precipitation,
contributing to the maintenance of drought condi-
tions. Vegetation is an important factor in modifying
these feedbacks. Examples with evidence for strong
feedbacks are given in D’Odorico and Porporato,89

Teuling et al.,90 Bierkens and van den Hurk,91

Dekker et al.,92 Ivanov et al.,93 and Seneviratne
et al.94

The depletion of soil moisture storage causes
a decreased recharge to the groundwater system,
resulting in declining groundwater levels. Actual
groundwater levels are dependent on the pre-event
conditions and the rate of decline, which again
depends on the amount of recharge and discharge
and the storage characteristics of the aquifer. Since

© 2015 Wiley Per iodica ls, Inc.
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FIGURE 3 | Propagation of a precipitation anomaly through the terrestrial part of the hydrological cycle for various variables, (a) synthetic time

series80: 0, mean, +, positive anomaly, −, negative anomaly, (b) time series of the Pang catchment53 (UK): P, precipitation, Sr, soil moisture storage in

the root zone, H, groundwater level, and Q, streamflow. Propagation of drought events is indicated by the arrows. Note that the order of the variables

is different in (a) and (b).

the reaction of groundwater to climatic input is often
delayed and smoothed, a groundwater drought does
not always develop, but when it does it often shows
long periods of below-normal groundwater levels. As
discharge is strongly linked to storage, low ground-
water levels lead to decreased groundwater discharge,
which slows down the drying process of the aquifer,
but also causes decreased stream�ow e.g., Ref 95. Dur-
ing drought the main contribution to discharge is via
these slow pathways of groundwater discharge (base-
�ow). The fast pathways that contribute to discharge
during wetter periods (surface runoff, inter�ow) are
usually limited during drought. This chain of processes
is summarized with the term ‘drought propagation’,
which denotes the change of the drought signal as it
moves through the terrestrial part of the hydrological
cycle.

The relationship between precipitation, soil
moisture, runoff, recharge, groundwater, and dis-
charge is an old concept in hydrology, but the
application of this knowledge to drought is rela-
tively recent. The �rst research addressing changes
in the drought signal due to propagation through
the hydrological cycle was done in Illinois, USA, by
Changnon Jr80 and Eltahir and Yeh.96 The latter were

the �rst to use the word ‘propagation’ in the context
of the translation from meteorological to hydrological
drought. This work80,96 was continued by Peters53

who published a study on the propagation of drought
in groundwater. In recent years, drought propagation
has been studied by, among others, Tallaksen and
Van Lanen,1 Peters et al.,59 Van Lanen,97 Tallaksen
et al.,98 Tallaksen et al.,99 Di Domenico et al.,100

Vidal et al.,101 and Van Loon.54

Note that in the climate community the term
‘drought propagation’ is sometimes used for the
spatial migration of a drought event, due to atmo-
spheric transport of anomalously warm and dry
air.102 For example, in eastern China and west-
ern USA, a southward migration of meteorological
drought was found103 and in Europe, droughts
starting in southern Europe were found to spread
northwards.73,104 In this paper, I use the term
‘drought propagation’ strictly for the translation from
anomalous meteorological conditions to hydrological
drought.

Figure 3 shows the propagation of drought by
means of (1) synthetic time series of anomalies in
different hydrometeorological variables by Changnon
Jr,80 and (2) a real-world example from the Pang

© 2015 Wiley Per iodica ls, Inc.
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catchment (UK) by Peters.53 The general differences
between the variables (in both Figure 3(a) and (b)) are:
many anomalies in precipitation, fewer and smaller
anomalies in soil moisture, and fewer and longer
anomalies in groundwater. Stream�ow occupies an
intermediate position in this sequence, because it is
a composite of fast (direct runoff and inter�ow) and
slow (base�ow) �ow routes within a catchment. The
relative position of stream�ow in relation to soil
moisture and groundwater is different for different
areas, i.e., if a river is mainly discharging groundwater
(like the Pang catchment) the stream�ow drought
signal is comparable to the groundwater drought
signal. In Figure 3(a), it should also be noted that
the hydrological drought of year 1 is followed by a
long period with suf�cient recharge to let the system
recover to its original state, whereas the drought in
year 3 is not compensated by suf�cient recharge to
assure a complete recovery of the system. The positive
precipitation anomaly after the drought in year 3
is almost completely used to recover soil moisture
levels and little remains for recovering stream�ow and
groundwater levels. If the system does not recover
before the next meteorological drought develops it
turns into a multiyear drought, as is apparent in the
groundwater signal. This is also visible in the time
series of the Pang catchment (drought C and D in
Figure 3(b)).

Propagation of drought is characterized by a
number of features,95,96,105 which are related to the
fact that the terrestrial part of the hydrological
cycle acts as a low-pass �lter to the meteorological
forcing.106–108 Here, they are shortly summarized and
visualized in Figure 4.

• Pooling: meteorological droughts are combined
into a prolonged hydrological drought.

• Attenuation: meteorological droughts are atten-
uated in the stores, causing a smoothing of the
maximum negative anomaly.

• Lag: a lag occurs between meteorological, soil
moisture, and hydrological drought, i.e., the
timing of the onset is later when moving through
the hydrological cycle.

• Lengthening: droughts last longer when moving
from meteorological drought via soil moisture
drought to hydrological drought.

These features are controlled by catchment
characteristics and climate. Lag and attenuation are
governed by catchment control, and pooling and
lengthening by both catchment control and climate
control.95,54

Meteorological

drought(s)

Hydrological drought

Lag Lengthening

Level relative

to norm

Groundwater

Surface water

Time

F
lu

x
/s

ta
te

 v
a
ri

a
b
le

Attenuation

Pooling

FIGURE 4 | Features characterizing the propagation of

meteorological drought(s) to hydrological drought: pooling, lag,

attenuation, and lengthening. (Reprinted with permission from Hisdal

and Tallaksen109)

Climate Control on Hydrological Drought
Drought propagation is dependent on climate.8 Var-
ious authors examined the dependency of drought
characteristics on climate. In Stahl and Hisdal66

a broad overview is given of hydroclimatological
regimes and potential for drought development in dif-
ferent climates around the world. Recent global-scale
studies on the effect of climate on hydrological
drought are for example Van Lanen et al.110 and Van
Loon et al.111

In general, hydrological droughts develop dif-
ferently in relatively constant climates as compared
with climates with strong seasonality. In a constant
climate, the main factor for drought development is a
below-normal precipitation (possibly combined with
higher than normal potential evapotranspiration),
as described in section Drought Propagation. In a
seasonal climate, additional processes lead to the
development of summer or winter droughts. In warm
seasonal climates, most recharge occurs in a distinct
wet season. A drought in this wet season decreases
storage and can in�uence dry-season conditions.
During the dry season, potential evapotranspiration is
generally higher than precipitation, which potentially
gives evapotranspiration a larger role in drought
development. This type of hydrological drought is
termed wet-to-dry-season drought in Van Loon and
Van Lanen85 (see Table 2) and was found to occur
predominantly in Mediterranean, savannah, and
monsoonal climates.111

The role of evapotranspiration, however, is still
highly uncertain. For example, Kriaučiuniene et al.112

found that in Lithuanian rivers (based on data starting
in 1810) precipitation was more important than tem-
perature (re�ecting evapotranspiration) for the timing
of dry periods in summer. Teuling et al.,19 however,
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Overview wires.wiley.com/water

TABLE 2 Drought Propagation Processes (Including Development and Recovery) per Hydrological Drought Type and Subtype (based on Van Loon

and Van Lanen85 and Van Loon et al.86)

Hydrological Drought Type Governing Process(es) Development (Lack of) Recovery

Classical rainfall deficit drought Rainfall deficit (in any season) P control P control

Rain-to-snow-season drought Rainfall deficit in rain season, drought continues
into snow season

P control T control

Wet-to-dry-season drought Rainfall deficit in wet season, drought continues
into dry season

P control P and T control

Cold snow season drought Low temperature in snow season, leading to:

Subtype A Early beginning of snow season T control T control

Subtype B Delayed snow melt T control T control

Subtype C No recharge T control T control

Warm snow season drought High temperature in snow season, leading to:

Subtype A Early snow melt T control P control

Subtype B In combination with rainfall deficit, no recharge P and T control P control

Snowmelt drought Lack of snowmelt in spring due to low P or high
T in winter

P and/or T control P control

Glaciermelt drought Lack of glaciermelt in summer due to low T in
summer

T control P or T control

Composite drought Combination of a number of drought events over
various seasons

P and/or T control P control

P, precipitation; T, temperature.

argue in favor of a large contribution of anomalies in
evapotranspiration to anomalies in storage, based on
observational evidence from central andwestern Euro-
pean catchments.

In seasonal climates with below-zero tempera-
tures and snow accumulation in winter, snow-related
processes play a role in drought development. Snow
accumulation and frozen soils cause storage of water
and prevent recharge to the groundwater, result-
ing in decreasing groundwater levels and stream-
�ow throughout the winter. Early or late snow melt
in�uences hydrological processes, namely the timing
of recharge and discharge to streams.8,113 Barnett
et al.114 and Van Loon et al.86 found that not only the
timing of the snowmelt (or glaciermelt) is important,
but also the amount. A lack of snow or glaciermelt
can cause water de�ciencies in the high �ow season.
Frozen soils have a dual effect on drought develop-
ment. On the one hand they immobilize water in the
winter season, but on the other hand they can cause
a fast direct runoff when snow melt and rainfall dur-
ing the (early) melting period cannot in�ltrate into the
soil. This then leads to less recharge to the ground-
water system, which can eventually enhance a sum-
mer drought in groundwater. However, many studies
indicate that the effect of soil frost enhancing surface
runoff during snow melt is limited, at least in forested
catchments.115–117

In monsoon climates, dry and wet seasons alter-
nate, due to large-scale atmospheric processes. As this
is the normal situation in these climates, such a dry
season is normally not de�ned as a ‘drought’ (see
section Drought De�nitions). A drought occurs when
the onset of the monsoon is delayed or a complete
or partial failure of the monsoon takes place.84,118

This results in a lack of soil moisture replenishment
and recharge after the dry season, causing storage to
decrease to below-normal levels.

In arid climates, dry periods are irregular and can
last long due to erratic precipitation. Stream�ow in
these climates is highly dependent on groundwater dis-
charge, showing a long recession during periods with-
out rain.66 These differences in processes underlying
drought development in different climates pose chal-
lenges to drought quanti�cation, which are discussed
in section Hydrological Drought Quanti�cation.

Catchment Control on Hydrological
Drought
According to Van Lanen et al.110 catchment control
is as important for hydrological drought as climate
control. The propagation of a drought in a fast
responding catchment differs from that in a slow
responding catchment, i.e., pooling, lag, attenuation,
and lengthening of the drought signal are in�uenced
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by the catchment characteristics. Not only the hydro-
logical variables discharge and groundwater levels
themselves are related to catchment characteris-
tics e.g., Refs 119–122, but also the dry anomalies of
these variables, i.e., low �ow and drought, as has been
shown in many studies. For instance, Keyantash and
Dracup123 related drought severity to surface-water
storage, Engeland et al.124 determined regression
equations between low-�ow indices and catchment
characteristics, Tokarczyk and Jakubowski125 con-
cluded that different types of rock result in a different
development of low �ow. Eng and Milly126 evaluated
from previous studies which catchment parameters
show a signi�cant relation with low-�ow character-
istics and found that catchment area and soil type
are important. Van Lanen et al.95 provide a com-
prehensive overview of the mechanisms by which
hydrological processes and catchment characteristics
in�uence hydrological drought. Smakhtin,61 Demuth
and Young,127 and Laaha et al.65 do the same for low
�ows, showing the relationship between low-�ow
indices and catchment characteristics.

When the response time of a catchment is very
long, lag times between meteorological and hydrolog-
ical drought are very long as well, which can cause
a hydrological drought to occur in a different sea-
son than the meteorological drought that is causing it.
A lack of recharge in winter can then be an important
factor in causing a hydrological drought in summer
in some slow responding catchments. Peters et al.,59

for example, found that in a speci�c groundwater-fed
catchment in the UK a sequence of dry winters resulted
in a multiyear drought. Marsh et al.,128 Parry et al.129

and Kendon et al.130 put that study in a longer term
and wider spatial perspective by showing that mul-
tiyear droughts due to a number of dry winters in a
row are recurrent in northwestern Europe. Multiyear
droughts are also called composite droughts by Van
Loon and Van Lanen,85 because drought events with
different causing mechanisms are combined. Parry
et al.129 investigated characteristics, spatiotemporal
evolution, and synoptic climate drivers of multiyear
drought events in Europe and found considerable dif-
ferences between the events.

For hydrological drought development, the most
important catchment characteristic is the storage
capacity of a catchment. Major stores in a catchment
are: snow and glaciers, peat swamps and bogs, the
soil column (in particular when groundwater levels
are low), the groundwater system, and lakes and
reservoirs. These stores create a long memory in the
hydrological system, which determines the transfor-
mation of the drought signal.95,131 In general, storage
in a catchment is determined by factors such as the

climate (in case of snow and glaciers) and the geology
of the catchment (i.e., percentage of hard rock and
types of rock), topography, soil (e.g., soil texture and
structure), drainage network, land use, and vegeta-
tion. Van Loon and Laaha132 showed that none of
these factors is dominant in explaining stream�ow
drought severity. Only the combination of a large
number of storage factors could explain variability in
drought duration in a large number of catchments in
Austria.132

Aquifers are the dominant source of water stor-
age in many regions around the world.133,134 Aquifer
characteristics, therefore, have a strong in�uence on
hydrological drought development and recovery.135

Stoelzle et al.,21 for example, found that in Ger-
many karstic and fractured aquifers have a short-term
sensitivity to drought, whereas porous and complex
aquifers have a more long-term sensitivity to drought.
In porous and complex aquifers drought propaga-
tion is more catchment-controlled than in karstic and
fractured aquifers.21 For the UK, similar results were
found by Bloom�eld and Marchant135: in fractured
aquifers (e.g., chalk) groundwater drought character-
istics were determined by the recharge time series,
whereas in granular aquifers (e.g., sandstones) intrin-
sic saturated �ow and storage properties of the aquifer
were dominant.

Not all catchment characteristics are constant,
some change over time e.g., Ref 136. Some change
over geological time scales, some change on an inter-
annual of intraannual time scale (like a seasonal snow
cover), and some change within a drought event.
Eltahir and Yeh,96 for example, found that drainage
density is dependent on groundwater level and thus on
the drought state of the system. This nonlinear behav-
ior of storage factors results in an asymmetric response
of stream�ow to a drought signal.91,96,137

Hydrological Drought Types
Parallel to the �ood types ofMerz and Bloschl,138 clas-
sifying �oods into long-rain �oods, short-rain �oods,
�ash �oods, rain-on-snow �oods, and snowmelt
�oods, Van Loon and Van Lanen85 and Van Loon
et al.86 developed a hydrological drought typology.
They classi�ed hydrological droughts based on their
causing factors and propagation processes into clas-
sical rainfall de�cit drought, rain-to-snow-season
drought, wet-to-dry-season drought, cold snow sea-
son drought, warm snow season drought, snowmelt
drought, glaciermelt drought, and composite drought.
Table 2 summarizes the underlying processes for each
hydrological drought type, related to precipitation
(P control), temperature (T control), or a combination
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FIGURE 5 | Synthetic time series representing the propagation of a meteorological anomaly (precipitation and/or temperature) through the

terrestrial hydrological cycle for a selection of hydrological drought types (Reprinted with permission from Van Loon et al.86). The x-axis represents

one year and the tick marks indicate the months. The black lines are the time series of each hydrometeorological variable, the gray lines in the upper

two rows are long-term averages of air temperature and snow, the dashed lines represent the threshold levels, and the red surfaces indicate drought

events. Propagation of drought events is indicated by the arrows, dashed arrows represent a lack of recovery of the hydrological drought

(meteorological drought ceased). For description, see Table 1

of both. Above-normal evapotranspiration was not
found to be the cause of hydrological drought. Evapo-
transpiration can aggravate a drought event19 and, in a
dry season, can prevent recovery,85 but it has not been
found to be the sole cause of hydrological drought.

On the basis of this research, the examples
in Figure 5 have been developed as alternative
drought propagation graphs instead of Figure 3.
Temperature-based processes are important for the
development of hydrological drought just as they
are for �oods, as is re�ected by a number of �ood
types that are related to air temperature, such as
rain-on-snow and snowmelt �oods.138 In Merz and
Bloschl,138 two out of �ve �ood types were (partly)
governed by T control, whereas for the drought typol-
ogyT control played a role in �ve to six out of the eight
types (Table 1). And these temperature-controlled
drought types also ranked higher than the
precipitation-controlled drought types in the selection
of the most severe drought events in the case study
areas of Van Loon and Van Lanen.85 In an application

of the hydrological drought typology to global scale,
Van Loon et al.54 found that drought characteristics of
hydrological drought types can be distinctly different.

Making the distinction between hydrological
drought types is important for statistical analysis,
attribution of change, and prediction of hydrological
drought development and recovery. The different pro-
cesses underlying hydrological drought development
should not be confused in trend analysis139 or cli-
mate change impact assessment.63,140 The hydrolog-
ical drought typology is a recent development based
on a limited number of catchments85,86 and modeling
on the global scale.111 It urgently needs validation in
a wider range of catchments, especially to test its use
in more practical applications.

Hydrological Drought Scales and Spatial
Characteristics
As was mentioned previously, droughts occur on other
time and spatial scales than �oods. Figure 6 relates
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Hisdal66)

the scale of drought to typical scales of meteorolog-
ical and hydrological phenomena see also Ref 141.
Droughts typically occur on catchment to continental
scales, but there are also differences in scale between
meteorological and hydrological drought. Tallaksen
et al.99 found that, for a small (170 km2) and rela-
tively uniform catchment in the UK, meteorological
droughts are short (1–2 months) and frequently cover
the whole catchment, whereas hydrological droughts
have a longer duration (4–5 months) and cover a
smaller area. Meteorological droughts are dependent
on large-scale atmospheric drivers that usually cover a
large area. In contrast, the spatial pattern of hydrolog-
ical drought is more patchy, because it is more depen-
dent on local catchment characteristics and how they
change the drought signal when it propagates through
the terrestrial hydrological cycle. Zaidman et al.142

found the same for the 1976 drought in Europe
and concluded that there was a higher level of auto-
correlation in the stream�ow time series than in the
precipitation time series, resulting in a lower areal cov-
erage, but higher persistence in stream�ow droughts.

This was con�rmed by Hannaford et al.143 concluding
that also for other events meteorological droughts in
European regions were more coherent than hydro-
logical droughts. However, large differences existed
between regions and methodological differences in
the calculation of indices might have in�uenced this
conclusion.143 In regions where convective thun-
derstorms are the dominant precipitation type and
catchment conditions are relatively uniform, spatial
drought patterns might be reversed, with more patchy
meteorological droughts and spatially more coherent
hydrological droughts.141 Trambauer et al.,144 for
example, found a higher spatial variability in mete-
orological and soil moisture drought indices than in
a groundwater drought index for a speci�c drought
year in model results of the Limpopo basin in Africa.

Depending on the scale, different processes are
dominant. For example, in large catchments elevation
differences result in a large variation in precipitation
and temperature over the catchment. This leads to
high spatial variability, which dampens the spatial
development of hydrological drought. Also the travel
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time within the catchment needs to be taken into
account in large catchments, as it results in a different
response in upstream and downstream parts of the
catchment. Pandey et al.145 found that the upper
reaches of the Betwa river (43,000 km2) in India were
more prone to severe drought than the lower reaches.
Trambauer et al.144 also noted differences between the
subbasins and the total basin of the Limpopo basin
(415,000 km2) in Africa. Even in a small catchment
spatial variation can be important. Peters et al.,59 for
example, found that for the Pang catchment (170 km2)
in the UK short groundwater droughts are more severe
near the stream and are attenuated at greater dis-
tances. Long periods of below-normal recharge have
relatively more effect near the groundwater divide.

Other important spatial aspects of drought are
synchronicity, clustering and breaking up of drought
clusters. Most studies focused on spatial aspects of
meteorological drought e.g., Refs 146, 147; there has
been relatively limited research on the spatial aspects
of hydrological drought. One of the �rst clustering
methods suitable for hydrological drought is the algo-
rithm developed by Andreadis et al.148 for droughts
in soil moisture and runoff in the USA. This clustering
algorithm has subsequently been applied by Shef�eld
et al.149 and Wang150 for soil moisture drought anal-
ysis on a global scale and in China, respectively.
In these studies, severity-area-duration (SAD) curves
have been applied to identity severe drought events
and study their characteristics and trends.148–150 Fol-
lowing Andreadis et al.,148 Vidal et al.101 developed a
clustering algorithm for meteorological and agricul-
tural drought in France, which was applied by Vidal
et al.151 for the evaluation of the impacts of climate
projections on drought characteristics. Corzo Perez
et al.152 proposed a further methodological devel-
opment for the spatiotemporal characterization of
hydrological drought on the global scale, allowing
for runoff drought cluster evaluation at each time
step. Tallaksen and Stahl153 used the annual maximum
drought cluster area as a measure of drought severity
to compare large-scale model results and observations
for runoff drought in Europe. They concluded that dif-
ferent groups of models can be distinguished based on
their ability to estimate drought cluster area.153

Other drought studies that do not speci�cally
use clustering algorithms, but do include a spatial
dimension are Burn and DeWit,154 Changnon,155

Zaidman et al.,142 Peters et al.,59 Tallaksen et al.,99

Santos et al.,156 and Van Huijgevoort et al.157

Hydrological Drought Recovery
Research focusing speci�cally on hydrological drought
recovery is still limited. Andreadis et al.148 found that,

using model results for the USA, droughts in runoff
recover more quickly than droughts in soil moisture in
response to a precipitation event. Pan et al.158 found
signi�cant uncertainty in soil moisture drought recov-
ery using a probabilistic framework focusing on pre-
cipitation in central USA. Van Loon and Van Lanen85

stated that hydrological drought recovery can be ham-
pered by snow accumulation in cold seasonal climates
and by evapotranspiration in warm seasonal climates.
Parry et al.159 were the �rst to propose a quantita-
tive methodology speci�cally aimed at characteriz-
ing hydrological drought termination. They tested the
new methodology on long records of stream�ow and
groundwater levels for the Thames river in the UK and
argue for further application of the approach to better
understand the processes underlying drought termina-
tion in contrasting climates and catchment types.159

HYDROLOGICAL DROUGHT
QUANTIFICATION

For adequate drought management, quanti�cation of
hydrological drought is essential. This includes iden-
ti�cation of historical droughts and prediction of
future droughts. In this section, I will describe com-
monly used drought indices, discuss data availability
and modeling approaches, and give a short overview
of drought prediction, historical trends, and future
projections.

Drought Identi�cation and Indices
In order to understand hydrological drought processes
and impacts, drought characteristics such as the tim-
ing, duration, severity (or intensity), and spatial extent
of a drought event need to be identi�ed.1,6,7,24,160 Their
slow onset and slow recovery, the different drought
categories (Figure 2) and impacted sectors (Table 1)
make droughts very dif�cult to de�ne quantitatively,49

giving rise to a multitude of indices. Reviews of
drought indices can be found in Heim Jr.,161 Keyan-
tash andDracup,162 Hisdal et al.,58 Niemeyer et al.,163

Mishra and Singh,7 Wanders et al.,164 Dai,45 Shef�eld
and Wood,8 Seneviratne et al.,24 and Tsakiris et al.77

The choice of index and its implementation are impor-
tant as they can result in different conclusions, espe-
cially in the light of trends and global change.165–168

However, there seems to be scienti�c consensus that
there is no ‘best’ hydrological drought index and that
a quest for the ‘best’ index is useless.169 Every type
of index, focusing on a speci�c part of the hydrologi-
cal cycle or using a speci�c methodology, has its merit
for a speci�c application and multiple indices should
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FIGURE 7 | Methodology to determine the Standardized Precipitation Index (Reprinted with permission from Lloyd-Hughes and Saunders171).

be used to quantify the diversity of drought impacts
(Table 1).

In this section, I do not go into details on the
multitude of existing drought indices. Instead I focus
on a few widely used groups of indices for the char-
acterization of hydrological drought, including some
meteorological and soil moisture drought indices that
are frequently used in drought propagation studies
or to represent hydrological drought. Drought indices
can roughly be divided into standardized indices and
threshold-based indices.

Standardized Drought Indices
One group of drought indices are standardized
drought indices. They have in common that they
represent anomalies from a normal situation in a
standardized way. The advantage is that regional
comparison of drought values is possible.7 A draw-
back of standardized indices is that the severity of
a drought event is expressed only in relative terms,
while in water resources management absolute values
of the lacking amount of water with regard to ‘nor-
mal’ conditions (i.e., de�cit volume) are needed. The
set of standardized drought indices (including those
focusing on hydrological drought) originate from the
Standardized Precipitation Index (SPI).

SPI is the most-used standardized meteorolog-
ical drought index.170,171 It is based on long-term
precipitation records that are �tted to a probabil-
ity distribution (Figure 7). This distribution is then
transformed to a normal distribution, ensuring zero

mean and unit standard deviation. Because precip-
itation has a high spatial and temporal variability,
meteorological drought indices often use monthly val-
ues. SPI can be computed over several time scales
(e.g., 1, 3, 6, 12 months, or more) and thus indi-
rectly considers effects of accumulating precipitation
de�cits.

Experts participating in a WMO drought work-
shop in 2009 recommended that the SPI be used by
all NationalMeteorological andHydrological Services
(NMHSs) around the world to characterize meteo-
rological drought.172 Advantages of SPI are that its
calculation results in normalized values and that it
can be computed for different time scales.8 Disadvan-
tages of SPI are that only precipitation is considered,
while other meteorological drivers might be impor-
tant too.45 Additionally, the length of a precipitation
record and the �tted probability distribution have sig-
ni�cant impact on the SPI values.7,173,174 Finding the
most suitable distribution can be a challenge,101,175

especially in dry climates,164,176 which limits the use
of SPI on a global scale.

As precipitation is not the only meteoro-
logical variable in�uencing drought conditions,
some meteorological indices also include (a proxy
for) evapotranspiration. As an alternative for SPI,
Vicente-Serrano et al.177 developed the Standard-
ized Precipitation and Evapotranspiration Index
(SPEI). SPEI considers cumulated anomalies of the
climatic water balance (precipitation minus potential

© 2015 Wiley Per iodica ls, Inc.



Overview wires.wiley.com/water

evapotranspiration) and, like SPI, �ts a probability dis-
tribution and transforms it into a normal distribution.

In snow-in�uenced catchments, the SPI does
not always give suf�cient information for drought
management. To account for snowmelt explicitly,
Staudinger et al.178 introduced the Standardized Snow
Melt and Rain Index (SMRI). SMRI quanti�es both
rain and snowmelt de�cits.

Another index that re�ects both precipitation
and evapotranspiration and that is used in a stan-
dardized way179 is the Palmer Drought Severity Index
(PDSI). It has been developed by Palmer180 for the USA
as a tool for estimating agricultural drought damage.
The PDSI is applied mainly in the USA, both for scien-
ti�c and operational purposes e.g., Refs 161, 181, 182,
but also increasingly on global scale e.g., Refs 165,
166, 183. It measures the departure of the moisture
balance from normal conditions using a simple water
balance model and can be regarded as a hydrologi-
cal accounting system.45 PDSI is sometimes classi�ed
as a meteorological drought index45 and sometimes
as a soil moisture drought index.8 Despite its world-
wide application, PDSI has important shortcomings
that should limit its use on the global scale: i) the cal-
culation procedure is complex and non-transparent,8

ii) the time scale is �xed,7 iii) it uses a potential evapo-
ration method based on absolute temperature, which
in some regions can have large impact,166 iv) as it is
calibrated for the USA, re-calibration is needed for
application to other regions,45 and v) snow accu-
mulation is not accounted for and no soil mois-
ture or vegetation control on evapotranspiration is
included.24 Palmer also developed a soil moisture
drought index (Z-index) and a hydrological drought
index180 (PHDI), which have calculation procedures
similar to PDSI and, therefore, the same advantages
and disadvantages.

Various other standardized index for soil mois-
ture have been proposed. For example, Orlowsky and
Seneviratne167 calculated standardized soil-moisture
anomalies (SMA) by subtracting the mean and divid-
ing by the standard deviation. Shef�eld et al.184 and
Samaniego et al.185 took a different approach for their
soil moisture index and used a Beta probability distri-
bution and kernel density estimation, respectively, to
�t the data and calculate soil moisture quantiles.

Standardized indices for the characterization of
hydrological drought use different hydrological vari-
ables (from observed or simulated data) as input.Most
common is a focus on stream�ow, because stream-
�ow is most measured, most easily simulated, and of
most interest to water resources management. Other
variables used in hydrological drought indices include
groundwater levels and lake levels. The Standardized

Runoff Index186 (SRI) uses simulated runoff and the
Standardized Stream�ow Index187 (SSI) focuses on
(observed or simulated) stream�ow. Both have a calcu-
lation procedure similar to SPI, �tting a distribution to
the data and transforming it to a normal distribution.
Based on a similar principle, but using a nonparamet-
ric transformation instead of distribution �tting, is the
Standardized Groundwater level Index (SGI), recently
developed by Bloom�eld and Marchant.135 The limi-
tations of SPI also apply to SRI/SSI and SGI, i.e., the
length of the data record and the �tted distribution
strongly in�uence SRI/SSI and SGI values.

Another issue with these (and actually all)
indices is that a reference period has to be cho-
sen, which can cause dif�culties under multidecadal
climate variability, like Núñez et al.188 found for
the SSI. Sensitivity of drought indices for the cho-
sen reference period is large, similar to the sensi-
tivity of drought trend analysis to the selection of
periods.139

Since standardized indices with similar calcula-
tion procedures are available for all variables of the
terrestrial hydrological cycle (i.e., SPI, SPEI, SMRI,
SMA, SRI/SSI, SGI), they can be a useful tool in
drought propagation studies, in which droughts in
different compartments of the hydrological cycle are
compared.189 Standardized meteorological drought
indices (based on precipitation only, e.g., SPI), cal-
culated over long time scales are sometimes used
as an approximation of hydrological drought e.g.,
Refs 146, 187, 190–194. In other studies this is
not recommended as indices based on precipita-
tion alone cannot capture all relevant propagation
processes.19,111,135,144,195

Threshold Level Method
Drought characteristics can also be derived from time
series of observed or simulated hydrometeorological
variables using a pre-de�ned threshold level. When
the variable is below this level, the site is in drought.
Drought duration, severity, and frequency can easily
be calculated. This approach is called ‘threshold level
method’ e.g., Refs 58, 62, 196, 197, but the term
‘de�cit index’ is also used,65 because it measures the
‘lacking’ volume of water below a certain thresh-
old (de�cit volume). This is a big advantage of the
threshold level method, because de�cit volume is an
important drought characteristic in water resources
management. An example of the use of the threshold
level method in water management are the calcula-
tions of drought statistical characteristics of in�ows
into the Júcar water resource system performed by
Ochoa-Rivera et al.198 Thresholds are, however, more
often used as points for action when monitoring
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discharge or water volumes stored in natural and
arti�cial reservoirs. Examples are the use of thresh-
olds in water allocation discussions during drought
in the Netherlands,199 as reference values for dis-
charge to inform drought management (levels: alert,
alarm, and emergency) in the Po River in Italy,200

and for reservoir management during drought in
the UK.201

Calculation procedures for the threshold level
method are elaborated in Van Loon.54 Here, they will
shortly be summarized. When one uses the thresh-
old level method selection of a threshold level is
crucial.7 Ideally the threshold level should be related
to drought impacted sectors/systems, e.g., irrigation
water requirements, cooling water for industry, drink-
ing water supply, reservoir operation levels, minimum
water depth for navigation, or environmental �ows
to support stream ecology.49,58,202 Often, this infor-
mation is not available or the drought analysis aims
at a number of sectors/systems with different require-
ments and, therefore, different threshold levels. Con-
sequently, for practical reasons thresholds are often
derived from percentiles of the �ow duration curve,
commonly ranging between the 70th and 95th per-
centile for perennial rivers e.g., Refs 58, 62, 99, 139,
148, 203.

Either a �xed or a variable (seasonal, monthly,
or daily) threshold can be used. A variable thresh-
old can be chosen when seasonal patterns need to be
then taken into account. A variable threshold level has
been used by e.g., Stahl,55 Nyabeze,204 Hirabayashi
et al.,205 Vidal et al.,101 Hannaford et al.,143 Prud-
homme et al.,206 Van Huijgevoort et al.,157 Parry
et al.,129 Van Loon and Van Lanen,85 Sung and
Chung,207 Van Loon et al.,86 Prudhomme et al.208

Beyene et al.209 investigate how a variable threshold
can best be calculated in contrasting climates. A vari-
able threshold is most comparable to standardized
indices like SPI, because for SPI a distribution is �t-
ted for every month (or period of nmonths) separately
(section Standardized Drought Indices). According to
Fleig et al.,62 there is no single threshold level that is
preferable and the selection of a speci�c threshold level
remains a subjective decision.

Each drought event can be characterized by
its duration and by some measure of the severity of
the event. Drought duration and severity are related,
but not always linearly, as has been shown by Van
Loon et al.111 and Van Loon and Laaha.132 For �uxes
(i.e., precipitation and discharge) the most commonly
used severity measure is de�cit volume, calculated
by summing up the differences between the actual
�ux and the threshold level over the drought period
Hisdal et al.,58 Fleig et al.62 (Figure 8). This de�cit
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FIGURE 8 | Threshold level method with variable threshold for
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an illustration of pooling method and drought characteristics duration,

deficit volume, and maximum deviation.

can be standardized by dividing by the mean of the
hydrometeorological variable, resulting in a variable
denoting the number of days with mean �ow needed
to compensate for the de�cit.21,111 For state variables
(i.e., soil moisture and groundwater storage) the
maximum deviation from the threshold can be used
as the severity measure.

Like with standardized indices, all three cate-
gories of drought (meteorological, soil moisture, and
hydrological drought) can be analysed with the thresh-
old level method. This makes comparison between
variables possible, which is required when studying
drought propagation. Therefore, studies on drought
propagation commonly use the threshold level method
e.g., Refs 53, 59, 85, 99–101, 105, 110. Another
advantage of the threshold level method is that it stays
as close to the original time series as possible. It does
not need to �t a distribution to the data (like SPI) or
use water balance computations and calibration (like
PDSI).

A disadvantage of the threshold level method
is that no standard drought classes are calculated,
so that in global drought studies standardization is
needed to prevent large differences between climate
types and to enable comparison.111 Furthermore, sub-
jective choices cannot be avoided, for example on
the threshold level to use. This is comparable to
the choices of �tting a distribution when calculating
standardized indices. An additional disadvantage of
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the threshold level method (and actually almost all
drought analysis methods) for global analysis occurs
in extremely dry areas with ephemeral rivers. This
is due to long periods with almost no precipitation
and natural zero �ow, resulting in a threshold level of
zero.210 In arid climates, the use of a zero-stream�ow
day or zero-stream�ow month approach (compara-
ble to the Consecutive Dry Days method, or CDD,
which counts the number of consecutive days with
precipitation less than 1mm211) is more appropri-
ate than the threshold level method. Van Huijgevoort
et al.212 therefore developed a new method for the
characterization of stream�ow drought on large scales
based on a combination of the threshold level method
and the CDD method. In other global scale stud-
ies arid regions are removed from the analysis e.g.,
Refs 152, 208.

Recent Developments in Drought Indices
Besides at-site indices, some regional indices exist that
quantify the spatial aspect of drought e.g., Refs 59,
99, 148, 149. Most of these indices calculate the
portion or percentage of an area in drought. The
Regional De�ciency Index (RDI), for example, divides
the number of catchments in drought by the total
number of catchments143,55 and the Regional Drought
Area Index (RDAI) divides the drought area by the
total area of the region.82

For hydrological drought characterization often
composite drought indices are recommended.169

These should incorporate ‘stream�ow, precipita-
tion, reservoir levels, snowpack, and groundwater
levels’.169 The European Drought Observatory
(EDO), for example, uses a Combined Drought
Indicator213 (CDI). EDO provides 10-day updates
of the agricultural drought status in Europe by inte-
grating the meteorological index SPI (on 1, 3, and
12-month scales), simulated soil moisture anoma-
lies, and a vegetation stress indicator derived from
satellite information. Currently, no hydrological
drought information is incorporated in the CDI of
the European Drought Observatory yet. In contrast,
the US Drought Monitor uses stream�ow percentiles
and other hydrological indices to come to drought
intensity categories (www.droughtmonitor.unl.edu/
AboutUs/Classi�cationScheme.aspx).

Like CDI, some newly developed drought
indices are derived from or incorporate satellite
information. Advantages are that satellite data
provide a large spatial coverage and high spatial
resolution (see section The Use of Observational
Data in Hydrological Drought Quanti�cation).
Most of them, however, focus on soil moisture and
vegetation.214,215

The Use of Observational Data
in Hydrological Drought Quanti�cation
For the calculation of drought indices, availability of
long time series of undisturbed, good-quality obser-
vational data is essential.216,217 It is beyond the scope
of this paper to discuss all data sources that are or
can be used in hydrological drought research. Cur-
rently, the best description of observational data with
a focus on low �ow and drought is Rees et al.217 Here,
I give an overview of some recent developments and
approaches to deal with uncertainty and ungauged
catchments.

Observational data sources used in drought
studies are either station data (e.g., meteorological sta-
tions, discharge gauging stations, groundwater wells)
or gridded data (e.g., reanalysis data, satellite data).
In hydrological drought studies, most commonly used
data are stream�ow measurements. Large-scale river
�ow archives,218 like the Global Runoff Data Centre
(GRDC) and the EuropeanWater Archive (EWA), col-
lect and store discharge datasets from stations around
the world and in Europe, respectively. These archives
are important for low-�ow trend studies,219 compar-
ative stream�ow drought studies,129 and validation
of low-�ow simulations.63,140,220 For water balance
studies,19 the network of FLUXNET data221 is use-
ful. Unfortunately, no large-scale data archive exists
for timeseries of groundwater levels. The recently
started Global Groundwater Monitoring Network
(GGMN) initiative of the International Groundwa-
ter Resources Assessment Centre (IGRAC) might �ll
this gap.

Despite the availability of some large-scale
datasets, there is limited use of hydrological data
in large-scale drought monitoring systems.23,143 The
drought monitor of the European Drought Observa-
tory (EDO) is based on precipitation measurements,
modeled soil moisture, and remotely sensed vege-
tation state. The US Drought Monitor does include
stream�ow percentiles in its composite drought cat-
egories, but is dominated by meteorological and soil
moisture drought information.

Although there are indications that satellite
products using vegetation, evaporation, and soil
moisture relate to stream�ow drought,222 the use of
satellite data focusing on hydrological drought moni-
toring is still limited. One satellite product that can be
applied in hydrological drought monitoring is NASA’s
Gravity Recovery and Climate Experiment223,224

(GRACE). The GRACE satellite measures total ter-
restrial water storage on a 300–400 km resolution
at monthly intervals and drought indices based on
GRACE data have been proposed byHouborg et al.225

and Thomas et al.226 The US Drought Monitor offers
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GRACE-based drought information as an experimen-
tal product (www.drought.unl.edu/MonitoringTools/
NASAGRACEDataAssimilation.aspx). One of the
issues that currently limits the use of datasets like
GRACE is their coarse resolution compared with the
requirements of local water management. Assimila-
tion of GRACE data into a high-resolution model is
needed to overcome this scale gap.194

All observational data has uncertainty. In gen-
eral, discharge measurements are more uncertain
in the low-�ow range than for average �ow
conditions.217 This is important to take into account
in stream�ow drought analysis. Lack of available
data is generally a problem in water management, but
especially in drought management. The International
Association of Hydrological Sciences (IAHS) recently
concluded a decade on Prediction in Ungauged Basins
(PUB), which boosted research on this topic. Results
of this decade are summarized in Blöschl et al.227 In
the chapter on drought and low �ows, Laaha et al.65

give an overview of regionalization methods used for
transferring information about drought and low �ow
to ungauged basins and their results in a number of
case studies.228

Hydrological Drought Modeling
Often observational records are not long enough,
some variables are not monitored at all, data quality
is too low, or observations are in�uenced by human
activities. To overcome these problems hydrological
models can be used to extend data series, �ll gaps,
and naturalize disturbed time series.1,7,8,24,45 Model-
ing is current practice in hydrology, both in science
and in operational water management. Hydrological
models range from simple statistical models with a
few parameters via conceptual models with vary-
ing complexity to complex physically based models
(for an overview of current hydrological model-
ing approaches, see for example Wagener et al.,229

Matonse and Kroll,230 Beven,231 and for an overview
of drought modeling approaches, see for example
Wagener et al.,229 Matonse and Kroll,230 Beven,231

and for an overview of drought modeling approaches,
see Mishra and Singh232). For drought management,
which is primarily on catchment scale, conceptual
rainfall-runoff models are the main tool.

Hydrological models are usually designed to
simulate average and high �ows and have been shown
to give good results in catchments around the world.
Unfortunately, low �ows are often not captured
satisfactorily by models.124,233–238 Simulating low
�ows is a challenge. Smakhtin61 describes a num-
ber of dif�culties in the modeling of low �ows and

Staudinger et al.239 state that ‘low �ows are often
poorly reproduced by commonly used hydrological
models, which are traditionally designed to meet peak
�ow situations’.

Recently, various attempts have been made to
improve low-�ow modeling using existing models.
Perrin et al.240 improved a lumped rainfall-runoff
model to match both high and low �ows. Matonse
and Kroll230 used hillslope storage models (i.e., kine-
matic wave hillslope storage and hillslope storage
Boussinesq models) to improve groundwater �ow in
a small steep headwater catchment. Romanowicz241

used a combination of a physically based model (TOP-
MODEL) and stochastic transfer functions based on
a logarithmic transformation of �ows. Basu et al.237

focused on riparian zones to improve low-�ow mod-
eling in a simple threshold-based model. Pushpalatha
et al.242 added a routing reservoir to a concep-
tual rainfall-runoff model. These studies show some
improvement in the simulation of low �ows, but no
approach is explicitly the best.

The basic drought propagation processes, e.g.,
fewer and longer events moving from meteorologi-
cal drought via soil moisture drought to hydrolog-
ical drought, an attenuated de�cit in hydrological
drought compared with meteorological drought, as
well as differences between catchments with contrast-
ing climate and catchment characteristics, are gen-
erally reproduced by different model types, such as
catchment-scale conceptual models,85,101 an ensem-
ble of large-scale physically based models,243 and a
synthetic model.110 The large diversity of the pro-
cesses underlying drought propagation (e.g., related
to temperature and storage; section Drought Propa-
gation), however, is not always reproduced well by
all model approaches. Gudmundsson et al.,244 Stahl
et al.,245 Van Loon et al.,243 Van Huijgevoort et al.,157

and Tallaksen and Stahl153 tested a number of physi-
cally based, distributed, large-scale hydrological mod-
els and land surface models fromWaterMIP246 (Water
Model Intercomparison Project) on their suitability
to reproduce hydrological drought. The conclusions
from these studies were that: (1) there are large differ-
ences in hydrological drought simulation between the
models, (2) the ensemble mean/median is better than
any of the individual models, (3) the models’ represen-
tation of snow and groundwater storage and release
processes is problematic since it leads to a lack of per-
sistence. This is in agreement with Dadson et al.,247

who evaluated the role of land surface models for
water management decisions under global change.

Just like observational data, model outcomes
contain uncertainties. Uncertainty in hydrolog-
ical model results originates from input data
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uncertainty,248 calibration data uncertainty,249 and
model uncertainty.250 Model uncertainty can be
subdivided in structural uncertainty (i.e., related to
model structure), parametric uncertainty (i.e., related
to model parameters and their identi�cation), and
numeric uncertainty251 (i.e., related to numerical
techniques). There is little knowledge of the relative
importance of these different sources of uncertainty
during low �ow and drought, since most studies have
focused on average and high �ows e.g., Refs 248, 249.

Due to the multitude of sources of uncertainty
described above, the quanti�cation of hydrological
drought might be regarded as much more uncertain
than the quanti�cation of meteorological drought.
In contrast, the high temporal variation in precipi-
tation might result in erratic behavior that is appar-
ent in meteorological drought and is �ltered out in
hydrological drought. This is related to the differ-
ent scales mentioned previously (section Hydrological
Drought Scales and Spatial Characteristics). As hydro-
logical droughts generally occur on larger time scales
than meteorological droughts, whereby the terrestrial
hydrological cycle acts as a low-pass �lter of the highly
variable meteorological inputs, errors in the meteo-
rological forcing are �ltered out. This is especially
true during dry conditions (more than during �oods)
because the relative contribution of slow pathways in
a catchment to discharge is higher during drought.

Forecasting Hydrological Drought
In operational water management forecasts are impor-
tant. Knowledge about drought propagation is imper-
ative to various areas of prediction of hydrological
drought. Recent developments in drought prediction
and forecasting are described in Pozzi et al.23 The
authors explore the need for a global drought early
warning system and argue that current challenges are:
‘a lack of in situ measurement networks, modest sea-
sonal forecast skill in many regions, and the lack of
infrastructure to translate data into useable informa-
tion’. Pozzi et al.23 also explicitly mention the diversity
of variables that need to be monitored to capture the
development of hydrological drought and its impact
on different water-related sectors.

Improvement of the seasonal forecasting of
hydrological drought is a prerequisite for adequate
operational water management (e.g., reservoir oper-
ation, irrigation abstractions, or management of
wetlands).Most of the recent developments in drought
forecasting, however, focus onmeteorological drought
e.g., Refs 252, 253. Some seasonal forecasting of soil
moisture is done for agricultural drought in recent
studies e.g., Refs 254, 255, but forecasting of hydro-
logical drought variables is still limited.23 Luo and

Wood256 focus on seasonal forecasting of hydrolog-
ical variables using seasonal climate forecasts from
an ensemble of climate models and a hydrological
model in the Ohio River basin. Fundel et al.257 use a
combination of weather forecast and a hydrological
model to predict stream�ow drought in the Swiss
pre-alpine region. Demirel et al.258 quantify appro-
priate lags and temporal resolution for the prediction
of low �ow indicators in the Rhine River and Demirel
et al.259 found that for the Moselle River models
tend to over-predict runoff during low-�ow periods
and they are more sensitive to ensemble precipitation
forecasts than to ensemble PET forecasts. Trambauer
et al.260 review hydrological models for hydrological
drought forecasting in Africa.

Another approach is to predict ‘drought from
drought’, meaning the prediction of hydrological
drought from meteorological drought.143 Hannaford
et al.143 attempt to predict hydrological drought for
the UK based on meteorological drought indicators
of the target region and hydrological drought indica-
tors of other regions in Europe. Wong et al.261 simi-
larly apply drought propagation knowledge in predict-
ing hydrological drought from preceding meteorolog-
ical droughts using statistical methods in contrasting
catchments in Europe.

Other studies explore the use of the correlation
between hydrological drought indices and large-scale
ocean-atmospheric modes (like ENSO) for forecast-
ing of hydrological drought e.g., Refs 87, 144, 262,
263, but many conclude that the link is ‘not suf-
�ciently strong to consistently predict stream�ow
accurately’.23,264 More research on this issue is needed
before hydrological drought forecasting can be suc-
cessfully applied in operational water management.
Special focus is needed on the recovery of hydrological
drought during an ongoing event.

Trends and Projections for the Future
Some of the pressing questions are: have droughts
become more frequent or severe in recent decades?
And: will they become more frequent or severe in the
future? Several studies investigated trends in drought
occurrence, both on global and on regional scales e.g.,
Refs 24, 139, 265, but most focused on meteorologi-
cal and soil moisture drought. On a global scale, for
example, different studies on meteorological drought
trends yield con�icting results. Dai45 found increas-
ing drought using PDSI (see section Standardized
Drought Indices), whereas Shef�eld et al.166 did not
�nd a trend in global drought using the same drought
index, but different data and methodology. Overall,
there are still large uncertainties regarding observed
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global-scale trends in meteorological drought24 and
the applied methodology has a large in�uence on the
magnitude and sometimes also on the sign of observed
trends.166

Seneviratne et al.24 summarize the regional-scale
studies as follows: ‘there is medium con�dence that
since the 1950s some regions of the world have
experienced trends toward more intense and longer
droughts, in particular in southern Europe and West
Africa, but in some regions droughts have become
less frequent, less intense, or shorter, for example,
central North America and northwestern Australia’.
For Europe, Lloyd-Hughes and Saunders171 found no
signi�cant trends in the area under extreme and/or
moderate drought according to SPI and PDSI. How-
ever, when focusing on the Mediterranean, Sousa
et al.266 did �nd signi�cant drying trends in PDSI.
Stahl et al.219,245 found a coherent picture of annual
stream�ow trends in both observations and multi-
model ensemble results, with negative trends (lower
stream�ow) in southern and eastern regions and gen-
erally positive trends (higher stream�ow) in western
and northern regions. Additionally, a decrease in sum-
mer low �ows was observed in large parts of Europe,
including many regions in western Europe.245 Trends
in hydrological drought have only been studied byHis-
dal et al.139 In their analysis of stream�ow drought
severity and frequency in Europe over the period
1962–1990, no signi�cant changes were detected for
most stations. They did �nd trends toward increas-
ing drought de�cit volume in Spain, eastern Europe,
and the UK, and decreasing drought de�cit volume in
central Europe, but could not conclude that drought
conditions in general have become more severe or
frequent.139

There is some consistency in model projec-
tions for the future suggesting a dryer and warmer
Mediterranean region and a northward shift of cli-
matic regimes in Europe e.g., Refs 267–272. As a
result there will be an enhancement of interannual
variability in the European summer climate, associ-
ated with higher risks of heat waves and droughts
e.g., Refs 24, 63, 71, 235, 270, 273. In many regions
around the world, there is less con�dence about future
drought occurrence due to larger uncertainties in
model projections.24,270

Recent studies on future hydrological drought
include Vidal et al.,151 Orlowsky and Seneviratne,167

Forzieri et al.,274 Prudhomme et al.,208 Van Hui-
jgevoort et al.,140 Törnros and Menzel,275 and
Wanders et al.195 In these studies the topics of
choosing suitable hydrological models, reducing the
uncertainty, and selection of appropriate indices and
quanti�cation methods for the future are treated.

Orlowsky and Seneviratne167 found that, for the near
future, internal climate variability is the dominant
source of uncertainty in projections of soil moisture
drought and for the far future (end of the 21th century)
the differences between climate models become domi-
nant. Prudhomme et al.208 found similarly high uncer-
tainties in projections of stream�ow drought due to
the different representations of terrestrial water-cycle
processes in hydrological models. Van Huijgevoort
et al.,140 therefore, propose to reduce uncertainty in
stream�ow drought projections by selecting climate
model—hydrological model combinations that per-
formed best in the control period. Van Huijgevoort
et al.140 used the threshold level method, but noticed
that regime changes in snow-dominated catchments
can lead to unexpected increases in drought severity.
The unwanted in�uence of regime changes on drought
characteristics can be overcome by using a transient
reference period for the calculation of the drought
index. Wanders et al.195 applied a transient threshold
level into the future based on the assumption that soci-
ety and the environment adapt to changing drought
conditions. Vidal et al.151 used a similar approach
but distinguished between ‘retrospective adaptation’
and ‘prospective adaptation’. Both concluded that
adaptation reduces the expected changes in drought
severity. In a global-scale model comparison study,
Prudhomme et al.208 noted the strong in�uence of
including the adaptation of plants to increased levels
of CO2 in a hydrological model. In contrast to other
models, that particular model predicted little or no
increase in stream�ow drought frequency for the
future.208

Despite the uncertainties and the debates about
the best methodology for studying droughts in
the future, there are hotspots where models and
approaches agree on the projected changes in hydro-
logical drought. Hotspots of more frequent drought
are projected in South Africa and Central America167

and hotspots of increased drought severity in o.a. the
Middle East, the south-eastern United States, Chile,
and south-western Australia.208

Other, more qualitative approaches use drought
propagation knowledge for estimates of hydrologi-
cal drought occurrence in the future. Knowledge of
climate and catchment control on drought propa-
gation processes can assist in the assessment of the
effect of global change on drought patterns. For
example, a shift in climate leads to a shift in the occur-
rence of hydrological drought types.85 This might be
important in regions where winter droughts change
from drought types that always end with a snow
melt peak to drought types that continue into the
summer.
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HYDROLOGICAL DROUGHT IMPACTS
AND MANAGEMENT

Predictions and future projections of hydrological
drought are of little use when the link to the impacts of
drought on the ecosystem and society (Figure 1) is not
clear. Research on the relation between the physical
hazard of hydrological drought and its impacts is still
in its infancy. Information on drought impacts is now
being collected by the Drought Impact Reporter (DIR)
of the National Drought Mitigation Center (NDMC)
in the USA, by the European Drought Observatory
(EDO) of the Joint Research Centre (JRC), and by
the European Drought Impact report Inventory (EDII)
of the DROUGHT-R&SPI project in Europe. These
relatively new data sources are now starting to be
explored.86,276–280

Estimates of drought impacts in recent years
indicate that drought-related losses are increasing.12

It is dif�cult to isolate the impacts of climate change
from changes in, for example, land use and increas-
ing vulnerability.77 Important factors for increased
vulnerability are population growth, concentration of
people in urban areas and semiarid regions, globaliza-
tion of food markets, and water accessibility issues.
Impacts of drought are likely to increase with time as
society’s demands on water and environmental ser-
vices increase.281 Con�icts between water users have
emerged. Worldwide drought has been a stressor for
international relations in transboundary rivers282,283

and is expected to continue to be so in the future.284

Although droughts occur everywhere, it is important
to note that, in general, the most severe consequences
of drought for humans occur in arid or semiarid
regions where the availability of water is already
low under normal conditions, the demand often is
close to or even exceeds the natural availability and
society often lacks the ability to adapt to the drought
hazard.45 Therefore, drought management is and will
increasingly be crucial.

In the European Union, the Water Framework
Directive demands member states to preserve or
recover a ‘good status’ in all water bodies285 and
member states are encouraged to implement drought
management measures in River Basin Management
Plans.286 River basin management, which in many
places needs to balance between the two hydrolog-
ical extremes �ood and drought, needs information
and tools to take both extremes into account equally.
All around the world programs exist to save water, to
rely more on desalinated water, rainwater harvesting,
wastewater reuse, or water transfer,286–290 some of
which are quite controversial. The main issue is mov-
ing from short-term crisis management to long-term
planning including pro-active measures.6

CHALLENGES FOR HYDROLOGICAL
DROUGHT RESEARCH

On the basis of the state-of-the-art of hydrological
drought research presented in this paper and the cur-
rent discussion in the scienti�c community, a number
of research gaps and challenges can be de�ned:

1. Further our understanding of hydrological
drought;

2. Better quanti�cation of hydrological drought;

3. Moving to including the human aspects of
hydrological drought;

4. Application of drought research in water man-
agement and policy.

In this section these challenges will shortly be
discussed.

Challenge 1: Further Our Understanding
of Hydrological Drought
For long-term hydrological drought planning and
management, increased knowledge of the physical
processes governing hydrological drought is needed
so that forecasting, early warning, and the link with
the impacts of drought are improved. There are still
some issues in the hydrological processes underly-
ing drought propagation that remain to be under-
stood, especially in relation to catchment control.
How is a catchment modifying climate input through
storage and release processes? How does this effect
relate to catchment characteristics? How is it chang-
ing spatially and temporally? What is the role of
evapotranspiration? These questions still need to be
answered.

According to scientists in the �elds of large-scale
drought monitoring and forecasting, the terres-
trial processes of drought development require more
attention.7,22,23 In the recent IPCC report on extremes,
Seneviratne et al.24 write:

The space–time development of hydrological
drought as a response to a meteorological drought
and the associated soil moisture drought (drought
propagation e.g., Ref 53) needs more attention. There
is some understanding of these issues on the catchment
scale e.g., Ref 99, but these need to be extended
to the regional and continental scales. This would
lead to better understanding of the projections of
hydrological droughts, which would contribute to a
better identi�cation and attribution of droughts and
help to improve global hydrological models and land
surface models.
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Especially the spatial aspects of hydrological
drought and processes underlying the termination of
hydrological drought events deserve more attention in
research.232 Hydrological drought recovery is crucial
in water resources management. As drought is a
‘creeping disaster’ it is often only noticed when it is
already well developed and at that stage the single
most important question in water management is:
when will it end?

Challenge 2: Better Quanti�cation
of Hydrological Drought
In drought management indices are often used because
they reduce a complex problem to a single number.
However, water managers should be very careful in
choosing indicators. The Standardized Precipitation
Index (SPI) has an increasing popularity, because it
is relatively easy to apply, precipitation data are usu-
ally available, and results are given in classes rang-
ing from moderate drought to exceptional drought.
These are good characteristics for indicators to be
used on large scales and for the general public (they
are sometimes called ‘awareness’ indicators), but in
local water resources management often more spe-
ci�c information is needed. It should be noted that
many processes are not incorporated in indices that
use only precipitation or precipitation and temper-
ature. Teuling et al.19, for example, stress ‘the need
for a correct representation of evapotranspiration and
runoff processes in drought indices’ and Staudinger
et al.178 argue for incorporating snow processes into
drought indices. Since there is no single ‘best’ hydro-
logical drought indicator, the question of how to use
a multitude of drought indices or even a composite
index in hydrological drought monitoring is still to be
investigated.169

Large-scale data collection and consolidation
initiatives, including satellite data like GRACE e.g.,
Refs 291, 292, and large-scale river �ow archives,218

provide a wealth of observational data on larger
scales, of which the potential for drought research
should be explored more intensely. Continued
measurement of hydrometeorological variables is
important for quanti�cation and modeling of hydro-
logical drought, because models need to be forced
with observed meteorological data and hydrological
data are needed for calibration and validation. In the
�elds of hydrological drought modeling, forecasting,
and projections for the future, advances are being
made, but more research is needed to improve.160,293

For future hydrological drought studies, the ques-
tions of which model or model ensemble, which
indices, and which methodology to use is still topic of
debate.140,151,195,208

Challenge 3: Moving to Including
the Human Aspects of Hydrological
Drought
This paper focused on physical processes related
to drought, not on societal aspects. Anthropogenic
effects are, however, sometimes hard to neglect
because they affect observed hydrometeorological
variables. Anthropogenic effects on the water cycle
related to drought can be direct and indirect. Direct
effects are decreases of water availability by e.g.,
abstractions from surface water or groundwater,
water diversions, and construction of reservoirs.
Indirect effects are related to changes in the hydrom-
eteorological system, leading to a decrease in water
availability. For example, changes in land use can
result in a faster runoff to the stream and, therefore,
to lower groundwater levels. Global warming can
lead to increased evapotranspiration or changes in the
precipitation pattern, resulting in lower stream�ow.

Recently, Sivapalan et al.48 introduced the con-
cept of ‘socio-hydrology’, a new science of people
and water. The focus of socio-hydrology should be
on ‘observing, understanding and predicting future
trajectories of co-evolution of coupled human-water
systems’.48 The link between hydrological drought
and society is a new �eld of research that is high-
lighted by the International Association of Hydro-
logical Sciences (IAHS) in their new scienti�c decade
on Change in Hydrology and Society called ‘Panta
Rhei’.294 Analyses of the relation between the physi-
cal causes and dimensions of drought and its impacts
are a promising way forward, as was shown in Stahl
et al.,12 Van Loon et al.,86 and O’Brien et al.295 Other
recent studies looked at the other side of the spec-
trum, namely human in�uences as additional driver of
drought.220,296

Adding the human dimension to drought
research could be the right way to bridge the gap
between the social and the natural sciences,48 as
is also advocated for �oods by Di Baldassarre
et al.297 Vincent298 states that the interplay of
nature-technology-society is important both in the
light of generating knowledge and awareness, and in
order to resolve con�icts that may arise in situations
of water scarcity.299

Challenge 4: Application of Drought
Research in Water Management and Policy
One step further is bridging the gap between sci-
ence (both natural and social) and management and
policy.300 Quevauviller et al.285 put forward argu-
ments for the strengthening of the links between
the scienti�c and the policy-making communities by
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discussing the implementation of the EUWater Frame-
work Directive301 with a wide range of experts and
stakeholders. Quevauviller et al.285 see the interaction
between science and policy as a two-way process
on different levels (EU, national, and regional) that
requires a constant dialog and a mediator mecha-
nism to come to optimal results. Batubara et al.302

argue that a stronger interface between policy makers
and scientists in the EU is necessary to ensure that
research better addresses speci�c requests of the EU’s
Groundwater Directive. In other regions around
the world similar initiatives are needed to apply
recent scienti�c �nding in drought management and
policy.

CONCLUDING REMARKS

Hydrological drought is complex in terms of its caus-
ing factors and impacts on ecosystems and society.

It is a challenge to the scienti�c community to help
elucidate the phenomenon. In this review, the topics
of drought de�nition, drought processes, and drought
quanti�cation have been treated extensively. Never-
theless, this review does not pretend to be complete.
The most important objectives were to give a broad
overview of the topic of hydrological drought and
to provide advice for further reading on speci�c top-
ics within that. This could be of use to scientists in
other �elds of study who are interested in drought, for
water managers who have to include drought in river
basin management plans and want to get a grip on the
issue, for teachers and students at universities and high
schools who want to teach/learn about drought issues.
Hopefully, this will then contribute to a further under-
standing of hydrological drought in general, so that
the adverse impacts of drought mentioned in section
Hydrological Drought in Context could be prevented
or alleviated in the future.
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