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Abstract
Changing hydrological conditions due to climate, land use and infrastructure pose significant ongoing challenges
to the hydrological research and water management communities. While, traditionally, hydrological models
have assumed stationary conditions, there has been much progress since 2005 on model parameter
estimation under unknown or changed conditions and on techniques for modelling in those conditions.
There is an analogy between extrapolation in space (termed Prediction in Ungauged Basins, PUB), and
extrapolation in time (termed Prediction in Ungauged Climates, PUC) that can be exploited for estimating
model parameters. Methods for modelling changing hydrological conditions need to progress beyond the
current scenario approach, which is reliant upon precalibrated models. Top-down methods and analysis of spa-
tial gradients of a variable of interest, instead of temporal gradients (a method termed ‘Trading space for time’)
show much promise for validating more complex model projections. Understanding hydrological processes and
how they respond to change, along with quantification of parameter estimation and modelling process uncer-
tainty will continue to be active areas of research within hydrology. Contributions from these areas will not only
help inform future climate change impact studies about what will change and by how much, but also provide
insight into why any changes may occur, what changes we are able to predict in a realistic manner, and what
changes are beyond the current predictability of hydrological systems.
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I Introduction

Models used within hydrological research and

water management communities frequently

assume a stationary world. Statistical hydrologi-

cal analyses commonly assume data can be mod-

elled by a single probability distribution function

with temporally fixed parameters (mean, var-

iance, skewness, etc.). Water infrastructure crit-

ical to social and economic welfare has been

designed and managed under this assumption.

However, due to a combination of natural and

anthropogenic causes, Milly et al. (2008)

recommend that stationarity no longer serves

as the default assumption for water infrastruc-

ture planning and management. Similarly, echo-

ing some earlier themes identified by Clifford

(2002), Wagener et al. (2010: 1) have called for
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a paradigm shift in hydrology so that

‘predictions of system behaviour that are beyond

the range of previously observed variability or

that result from significant alterations of physi-

cal (structural) system characteristics become

the new norm’. While hydrological time series

may appear to be stationary at multi-annual

timescales, the true nature of a series becomes

more apparent over longer periods (Cohn and

Lins, 2005; Koutsoyiannis, 2010). Water infra-

structure designed under assumed stationarity

may become stranded by subsequent climatic

fluctuations, thus the issue of hydrological mod-

elling in a changing world requires more atten-

tion than it was given in the past.

Causes of hydrological change may, or may

not, be known. Although usually corrected for,

errors in collection or changes in instrumenta-

tion type, location or conditions can introduce

discontinuities into a data series. Teleconnection

with large-scale ocean-atmosphere fluctuations,

like the El Niño-Southern Oscillation, can influ-

ence hydroclimatic processes, often with vary-

ing strength over time. Largely natural climate

shifts also occur – for example, the reduction in

rainfall over the Sahel and southwestern Western

Australia during the late 1960s (Baines and

Folland, 2007). Anthropogenic causes include

modification of catchments through river regula-

tion, diversion, extractions, vegetation changes

(Andréassian, 2004; Brown et al., 2005; Peel,

2009; Peel et al., 2010) and urbanization. The

projected impact on hydroclimate of the

enhanced greenhouse effect (Kundzewicz et al.,

2008) adds another source of potential change.

From the perspective of water managers,

uncertain hydrological modelling of stable or

changing conditions forms part of the array of

variables assessed in their quest to operate in a

robust manner (Lins and Stakhiv, 1998; Power

et al., 2005). The fundamentally non-linear nature

of hydrological systems limits the scope for

accurate prediction (Blöschl and Zehe, 2005;

Koutsoyiannis, 2010). In light of this, Blöschl and

Montannari (2010) call for improvements in

understanding of hydrological processes and

uncertainty methods and recommend hydrologi-

cal climate change impact studies be framed

within the overall context of ongoing water man-

agement issues and focus more on what might

change and why, rather than on the exact magni-

tude of any change. As Montanari et al. (2010:

169) note: ‘Offering insightful explanations for

predicted changes may be more helpful than

perfecting the estimates of what are inherently

uncertain changes. Such a nuanced assessment

will gain wider acceptance in society and will

bring more credibility to the research community.’

Hydrological modelling under changing

conditions is a problem familiar to hydrology.

How well will a model perform when applied

to conditions different from those used to

estimate its parameters? This problem comes

in several well-known forms – model applica-

tion at: (1) the same location but under changed

conditions (land use, observed climate, future

climate projection); (2) a different location

(gauged or ungauged catchment); and (3) a

different location and time (gauged or ungauged

catchment under changed conditions). The Inter-

national Association of Hydrological Sciences

initiative ‘Prediction in Ungauged Basins’ (PUB)

is framed around these questions. Merz et al.

(2010) highlight the analogy between PUB and

the issue of modelling in a changing world. PUB

relates to extrapolation in space while modelling

in a changing world involves extrapolation in

time; thus they proposed the term ‘Prediction in

Ungauged Climates (PUC)’ to describe the tran-

sient prediction problem discussed in this paper.

In a changing world, model inputs, para-

meters and structure may all vary. This report’s

focus is primarily progress in the area of model

parameter estimation under unknown or chan-

ged conditions and techniques for modelling in

those conditions. Progress in uncertainty of

model inputs and structure will be addressed in

passing. We draw upon surface water quantity

research, rather than groundwater or water qual-

ity, although issues addressed here are relevant
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to those areas. The following sections comprise

a non-exhaustive report on progress since 2005

in estimating model parameters for ungauged

or changed conditions and techniques for model-

ling changing conditions.

II Estimating model parameters
for ungauged or changed
conditions

The significant ongoing research in the area of

model parameter estimation for ungauged or

changed conditions is testament to the difficulty

of the problem and the limited success to date.

Robust methodologies to estimate model para-

meters for changed conditions will be critical

to modelling a changing world successfully. In

this section we discuss fundamental issues limit-

ing success and highlight papers reporting prog-

ress in this area. This section largely focuses on

conceptual, rather than physically based, mod-

els, as the extra data requirements and complex-

ity of physically based models makes them an

inconvenient test bed for new methodologies.

1 Fundamental issues limiting success

The modelling process is beset by uncertainties

that conspire against successful robust para-

meter estimation. Uncertainties in input data

used to drive the model, output data against

which the model is calibrated (e.g. streamflow),

calibration method adopted, performance metric

(objective function) adopted, and the model

structure itself, all contribute to parameter

uncertainty. In the case of parameter regionali-

zation there are further uncertainties in the regio-

nalization model structure, whether catchment

characteristics utilized represent dominant

hydrological processes and the stability of the

established relationship beyond the conditions

upon which it was developed. Suggested reading

on the impact of these uncertainties on the mod-

elling process and progress therein include:

input data (Andréassian et al., 2004; Bárdossy

and Singh, 2008; Donohue et al., 2010; Oudin

et al., 2005a, 2005b, 2006); output data (Di

Baldassarre and Montanari, 2009; McMillan

et al., 2010; Seibert and Beven, 2009); calibration

and performance metrics (Efstratiadis and

Koutsoyiannis, 2010; Gupta et al., 2009; Schaefli

and Zehe, 2009); model structure (Andréassian

et al., 2009; Fenicia et al., 2008a, 2008b; Oudin

et al., 2006; Vogel and Sankarasubramanian,

2003); and parameter regionalization (Wagener

and Wheater, 2006; Wagener, 2007). Papers

dealing with methods for estimating predictive,

data and model uncertainties include Renard

et al. (2010), Thyer et al. (2009), Todini (2007)

and Winsemius et al. (2009).

Underlying the limited success of robust

parameter estimation is the equifinality concept

(reviewed by Beven, 2006). Equifinality sug-

gests a given level of model performance can

be reproduced by several, potentially quite dif-

ferent, parameter sets. Thus objective function

optimization may identify a single parameter set,

but other sets (potentially distant in parameter

space) may perform similarly. Where observed

input(s) and output(s) used to calibrate a model

contain errors, the model is subject to equi-

finality (Beven, 2006). During calibration the

objective function surface frequently contains

multiple local optima, one of which may

fractionally be the global optimum. This results

in highly variable calibration parameter sets

between catchments, which confound attempts

at regionalization or a priori parameter estima-

tion. Progress in the area of minimizing or

removing multiple objective function optima

during calibration can be found in Kavetski

et al. (2006a, 2006b) and Kavetski and Kuczera

(2007), while insights from calibrating in the

spectral domain are reported in Montanari and

Toth (2007) and Schaefli and Zehe (2009).

2 Progress in estimating model parameters
for ungauged or changed conditions

The inherent uncertainties associated with the

modelling process impact to varying extent on
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the success of methodologies actively being

pursued in the hydrological literature.

a Estimate model parameters a priori (without
calibration). A priori parameter estimation uses

relationships between model parameters and

catchment characteristics to estimate para-

meters for ungauged catchments. Physical

reasoning and/or analyses of calibrated para-

meters from other catchments are the basis of

these relationships. Duan et al. (2006) summar-

ize results from the 2nd and 3rd workshops of

the Model Parameter Estimation Experiment

(MOPEX). Detailed hydrometeorological and

land surface information for 12 US catchments

were provided to groups running eight different

models to estimate their model’s parameters a

priori. Model performance was assessed between

a priori parameter runs and calibrated parameter

runs. Overall, a priori runs indicated that existing

techniques have scope for improvement relative

to calibrated runs. Further work on assessing

how, or whether, model parameters are related

to observable catchment characteristics was

recommended.

b Regionalize calibrated model parameters. While

reviewing hydrological models and their appli-

cation to ungauged catchments, Blöschl (2005)

and Chiew (2010) note three common regiona-

lization techniques: (1) regression relationships

between individual calibrated parameters and

catchment characteristics (see previous subsec-

tion); (2) catchment spatial proximity; and

(3) catchment similarity of physical properties.

Regionalization by spatial proximity involves

either adopting a calibrated parameter set from

the nearest neighbour in terms of physical

distance or interpolating calibrated parameters

spatially. Similarity regionalization involves

adopting a calibrated parameter set from the most

physically similar catchment or interpolating

calibrated parameters in similarity space. Parakja

et al. (2005) compared 16 regionalization meth-

ods using an 11 parameter semi-distributed

conceptual model, calibrated to daily streamflow

and snow cover, across 320 Austrian catchments.

Regionalization methods tested were regional

averages of calibrated parameters (two methods),

spatial proximity techniques (four methods),

regression against catchment characteristics

(three methods) and physical similarity tech-

niques (seven methods). Overall differences

between methods were small, with Kriging

(spatial proximity) and combination physical

similarity methods performing best. Parakja

et al. (2007) used Kriging (spatial proximity)

within an iterative regional calibration frame-

work where iterations were conditioned by para-

meter spatial correlation. This method improved

ungauged prediction relative to Kriging regiona-

lization and generally reduced parameter uncer-

tainty relative to local calibration.

c Multi-objective and regional calibration. In multi-

objective and regional calibration the optimal

parameter set is usually obtained by constrain-

ing the calibration to satisfy multiple objective

functions for a catchment(s) or a single objective

function across many catchments. Constraining

calibration to satisfy multiple criteria, objective

functions or catchments aims to limit parameter

uncertainty and identify a robust set of para-

meters. Efstratiadis and Koutsoyiannis (2010)

provide a comprehensive review of progress

over the last decade in multi-objective calibra-

tion. Here we look at studies combining multi-

objective and regional calibration into a

single optimization. Hundecha et al. (2008)

regionalize model parameters by Kriging within

a physiographic-climatic space derived from

canonical correlation of model parameters and

catchment characteristics. The single optimi-

zation assessed model performance across

several catchments while seeking to obtain

well-defined spatial structures for the model

parameters within the physiographic-climatic

space. Zhang et al. (2008) combine multi-

objective calibration and regionalization with

ensemble and signature modelling (see later
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subsections) to provide ensemble predictions

of streamflow for three UK catchments. Relia-

bility of the ensemble range to enclose

observed streamflow at each catchment was

related to the quality of hydrological signature

regionalization achieved.

d Ensemble modelling. In response to the inherent

uncertainties in parameter identification, ensem-

ble modelling dispenses with finding an optimal

parameter set. Instead, multiple plausible realiza-

tions from one or more models are combined to

construct an ensemble of predictions. Plausible

realizations can be generated by varying the

input data, model initial conditions or parameter

set. Viney et al. (2009) note the climate and

atmospheric community have used ensemble

modelling for over a decade. Furthermore

ensemble modelling provides a way to assess

predictive uncertainty (Blöschl and Zehe, 2005;

Todini, 2007). Viney et al. (2009) report results

from a range of single and multi-model ensemble

combination techniques using 10 models of

differing complexity on the Dill catchment in

Germany as part of the ‘Assessing the impact

of land use change on hydrology by ensemble

modelling (LUCHEM)’ project (Breuer et al.,

2009). Ensemble combination techniques

were tested on calibration and validation runs.

Overall, single and multi-model ensembles

provided similar or better calibration and

validation predictions, in terms of bias and

Nash-Sutcliffe efficiency, than single realiza-

tions from each model. Weaker performing

models contributed positively toward ensem-

ble predictions and better performing models

did not necessarily combine to produce the best

ensembles. Many of the simple averaging com-

bination techniques tested performed as well

as, or better than, complex weighting, regres-

sion or conditional methods.

e Model (output) averaging. McIntyre et al. (2005)

combined ensemble modelling and model

averaging to estimate ungauged streamflow for

127 UK catchments with a catchment similarity

procedure. Streamflow was estimated as the

weighted average of ensemble model output for

the ungauged catchment using the 10 highest

performing complete parameter sets from the

10 most physically similar donor catchments.

Their similarity-based output average outper-

formed traditional regression regionalization

and a weighted ensemble average based on spatial

proximity. With 913 French catchments and two

hydrological models, Oudin et al. (2008) com-

pared regression-based regionalization against

model averaging using spatial proximity and

physical similarity. In their dense network of

catchments they found model averaging by spa-

tial proximity performed slightly better than

physical similarity and considerably better than

regression regionalization. For spatial proximity

and physical similarity, better streamflow esti-

mates were achieved through averaging stream-

flow, modelled using donor catchment

parameter sets (similar to McIntyre et al., 2005),

than averaging donor parameters to then model

streamflow. Oudin et al. (2008) noted a lack of

consistent spatial pattern between catchments

best predicted by spatial proximity or physical

similarity and suggested regionalization might

be improved by combining the methods. Using

95 Australian catchments, Reichl et al. (2009)

optimized a physical similarity metric to maxi-

mize streamflow prediction that generally outper-

formed spatial proximity (nearest neighbour and

model averaging of nearest neighbours) and

regional regression predictions at 89 independent

test catchments. Whereas Zhang and Chiew

(2009), using a larger data set of 210 Australian

catchments, found spatial proximity slightly out-

performed physical similarity model averaging.

Their combined spatial and physical similarity

model averaging, following the suggestion of

Oudin et al. (2008), achieved a further slight

improvement in ungauged streamflow prediction.

f Hydrological signature (indices) modelling. Like

ensemble modelling, hydrological signature
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modelling draws upon the concept of plausible

realizations to identify behavioural parameter

sets, rather than an optimized parameter set.

However, here a plausible realization is one that

adequately reproduces one or more hydro-

logical signatures of interest (e.g. runoff ratio,

baseflow index). Shamir et al. (2005) conducted

a series of three sequential Monte Carlo simula-

tions to identify parameter sets capable of

replicating hydrograph signatures at record

length, annual and monthly timescales, respec-

tively. Parameters identified in a prior simula-

tion were used to constrain the subsequent

simulation, with the final simulation identifying

parameter sets capable of replicating hydro-

graph signatures across the three timescales

better than calibrated parameters. Bárdossy

(2007) and Yadav et al. (2007) introduce regio-

nalization of hydrological signatures, rather

than model parameters, to estimate signatures

for ungauged catchments from catchment char-

acteristics. The estimated signatures are used to

constrain ensemble predictions into behavioural

(reproduces the signatures) or non-behavioural

parameter sets. Bárdossy (2007) identifies beha-

vioural parameter sets at donor catchments using

observed streamflow, transfers them to a recipi-

ent catchment and tests whether they replicate

the estimated signatures. Yadav et al. (2007) dis-

pense with the donor/recipient catchment step

and directly identify behavioural parameters for

the ungauged catchment using simulation. Zhang

et al. (2008) introduced a multi-objective optimi-

zation to identify behavioural parameters sets

and generally found more behavioural sets for

a given number of simulations than uniformly

distributed Monte Carlo simulation (Yadav

et al., 2007). Bulygina et al. (2009) constrained

randomly generated model parameter sets to

replicate modified signatures of baseflow

index and interception storage to assess the

likely impact on streamflow of afforestation

and increased grazing intensity. In summary,

relationships between catchment characteris-

tics and hydrological signatures were stronger

than between catchment characteristics and

model parameters. Hydrological signature

modelling is applicable to any model, is not

limited by model calibration or model error

issues (unless the model is unable to produce

behavioural sets), and does not rely upon

model parameter regionalization.

g Other methods. Bárdossy and Singh (2008)

introduce the concept of parameter set depth

to identify robust model parameter sets for three

gauged catchments in southwest Germany. They

identify randomly generated parameter sets with

the highest overall performance (e.g. highest

10% of Nash-Sutcliffe efficiency values), then

randomly generate new parameter sets based on

the depth of the high performing sets. In two-

dimensional space (a two-parameter model), a

parameter set with high depth has parameter

values near the middle of the cloud of better per-

forming sets. The resultant sets are run through

the model, and the process of parameter set iden-

tification, depth-based generation, and testing

iterates until the difference between subsequent

iteration performances is small. Bárdossy and

Singh (2008) note deeper parameter sets were

more robust in split sample tests and produce a

narrower range of discharge estimates. Whether

such sets regionalize well to ungauged condi-

tions remains to be seen. Buytaert and Beven

(2009) propose a learning process to inform

how model parameters from gauged catch-

ments should, or should not, be transformed for

use in ungauged catchments. Selecting gauged

catchments with different physical characteris-

tics, like vegetation cover, they treat one catch-

ment as gauged and the other ungauged. Based

on a literature review of expected differences

between the catchments (e.g. forested versus

grassland), they subjectively define a para-

meter transformation with uncertainty and

assess the transformation’s ability to produce

behavioural parameter sets in the ‘ungauged’

catchment with respect to observed flow or

hydrological signatures.
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III Modelling techniques for
changing conditions

The methodologies in the previous section

primarily aim to solve the classical ungauged

catchment problem of model application to a dif-

ferent location. In this section, we focus on the

time component of modelling changing condi-

tions, cases 1 and 3 from the Introduction, which

represent model application to a catchment for

which a model has, or has not, already been

calibrated that will experience a future change.

For simplicity the change covered here is hydro-

logical change due to a transient climate. Assess-

ments of hydrological impact of climate change

generally rely either on data-driven methods or

on hydrological models.

1 Scenario approach

Hydrological modelling techniques frequently

used to assess the impact of climate change on

runoff are reviewed by Chiew (2010). These

include scenario modelling, where a precali-

brated model is run with either of two types of

input: (1) observed inputs proportionally scaled

to reflect projected change (Chiew et al.,

2009b); or (2) downscaled and bias-corrected

global climate model (GCM) or regional climate

model (RCM) projections (Christensen and Let-

tenmaier, 2007; Vicuna et al., 2010; Xu et al.,

2005). For readers interested in the second type

of input, the following papers are suggested:

GCM reliability (Räisänen, 2007); methods for

utilizing GCM/RCM outputs as input to hydro-

logical models (Xu et al., 2005); and GCM

selection for impact assessment (Chiew et al.,

2009a; Macadam et al., 2010; Perkins and

Pitman, 2009; Pierce et al., 2009; Reifen and

Toumi, 2009). The issue of bias correction of

GCM/RCM output for use in hydrological stud-

ies has received particular attention in recent

years. In order to make climate projections more

similar to observations, the former are adjusted

by methods such as: (1) delta change, where only

differences between present and future climate

are considered, which may be suitable for water

balance estimates but might fail for extremes

and highly non-linear systems (Graham et al.,

2007); (2) quantile-based mapping (Li et al.,

2010); and (3) power transformation, which

non-linearly corrects the coefficient of variation

and mean precipitation separately (Driessen

et al., 2010; Leander and Buishand, 2007).

However, if biases are large it is hardly plausible

that bias correction methods will give realistic

results for impact studies.

2 Sensitivity methods

An alternative to the scenario approach is sensi-

tivity methods where a percentage change in

input is related to a percentage change in runoff.

While the scenario approach is model-based,

sensitivity methods can be either model- or

data-based. Model-based sensitivity methods are

similar to the scenario approach with the excep-

tion that the runoff response is calculated for a

spectrum of changed precipitation, air tempera-

ture, etc., values rather than for a given scenario.

Data-based sensitivity methods analyse how

past changes in runoff, precipitation and air tem-

perature are related. Rainfall elasticity of

streamflow, defined as the proportional change

in streamflow divided by the proportional

change in rainfall (Sankarasubramanian et al.,

2001), provides a simple estimate of long-term

streamflow sensitivity to changes in long-term

rainfall, which is particularly useful as an initial

estimate of likely climate change impact on

water resources (Chiew, 2010). Recently, Fu

et al. (2007) extended streamflow elasticity to

include temperature changes as well as rainfall.

The main strength of elasticity is that it is data-

based. Hence no assumptions about model para-

meters or model structure remaining invariant

under a changed climate are made. The Budyko

curve (Budyko, 1974), based on similar con-

cepts, can also be used to provide guidance on

potential climate change impacts on water
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resources. For example, McMahon et al.

(2010) provide a simple Budyko-like method

to estimate the mean and variability of annual

streamflow from the aridity index, variances and

covariance of annual precipitation and potential

evapotranspiration for present or future climates.

When combined with a simple storage-yield-

reliability relationship, this method facilitates a

quick assessment of the likely vulnerability of

water resources infrastructure to a changed cli-

mate, without needing to run uncertain complex

models or scenarios.

3 Trading space for time

This approach is based on analysis of spatial

gradients of a variable of interest, instead of

temporal gradients (i.e. trends). Under a changed

climate, hydrological processes in a catchment

may become similar to those experienced in

other catchments under the current climate. For

example, if winter rainfall increases under a

changed climate, associated changes in flood

characteristics may be similar to those cur-

rently observed in a neighbouring catchment

with higher winter precipitation. Gradient

methods are widely used in ecology (eg. Ter

Braak and Prentice, 1988) and the authors

believe they hold significant potential for ana-

lysing modified hydrological processes and

providing simple estimates of likely future

changes. However, using spatial gradients

clearly has limitations as other relevant catch-

ment characteristics may not be similar.

Despite this, trading space for time may be an

attractive alternative to the model-based sce-

nario approach as it is data-based and hence

likely to better account for possible interac-

tions between processes in the catchment.

4 Non-stationarity of model parameters
and model assumptions

Most modelling techniques implicitly assume

that model parameters calibrated on observed

data remain valid under future conditions.

This assumption is likely to be incorrect due to

the inherent uncertainties in the modelling pro-

cess and potential modification of interactions

between existing catchment processes and emer-

gence of processes not seen during calibration.

For example, in snow-dominated regions

warmer temperatures modify the amplitude and

timing of the runoff response, moving peak melt

runoff earlier into the year (Barnett et al., 2005;

Woo et al., 2008) and increase the importance of

processes like rain-on-snow runoff events (Sui

and Koehler, 2001). Change may also nudge a

catchment through a transition from one stable

state into a new unknown one (Peterson et al.,

2009). Merz et al. (2010) demonstrate the poten-

tial for biased runoff predictions from climate

impact analyses where hydrological model para-

meters, calibrated against observed runoff, are

assumed to be representative for future climate

scenarios. Merz et al. (2010) analysed the tem-

poral change in model parameters when a

conceptual rainfall-runoff model was calibrated

for six consecutive five-year periods between

1976 and 2006 for 273 catchments in Austria.

Parameters representing snow and soil moisture

processes showed significant temporal trends

that were related to recent changes in catchment

climatic conditions (eg. higher evapotrans-

piration and drier conditions). Their analyses

suggest the impact on simulated runoff of

assuming time invariant parameters can be

very significant, with biases in median and high

flows of about 15% and 35%, respectively.

Clearly hydrological models with parameters

that change with time are not accurate under

transient climate conditions.

5 Bringing parameter estimation and
changing condition modelling techniques
together

A significant challenge for future hydrological

research is to incorporate into modelling tempo-

rally changing conditions the model parameter
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estimation methods for ungauged or changed

conditions discussed in the previous section.

To what extent parameter estimation methods

like, a priori, regression-based regionalization,

multi-objective, and regional calibration can

overcome uncertainty issues (data, model struc-

ture, equifinality) to provide robust predictions

under changing conditions is unknown. With

future streamflow unavailable for model calibra-

tion at-site or in neighbouring catchments, the

issue of behavioural parameter set identification

required to use ensemble, model-output aver-

aging and signature modelling techniques

requires further research. The learning process

suggested by Buytaert and Beven (2009) using

observed catchments experiencing different

conditions presents one way forward. For signa-

ture modelling significant potential exists to esti-

mate future changes in signatures of interest

through simple top-down water-energy balance

models, increased understanding of how hydro-

logical indices vary in time and space (Lima and

Lall, 2010; Troch et al., 2009) and the develop-

ment of catchment classification schemes

(Wagener et al., 2007).

IV Conclusions

The increased importance of changing condi-

tions in hydrology poses significant ongoing

challenges to the hydrological research and

water infrastructure and management commu-

nity. Continued work to (1) develop techniques

for non-stationary stochastic data generation,

(2) increase understanding of hydrological pro-

cesses and how they and their signatures respond

to change, and (3) quantify uncertainty in the

parameter estimation and modelling process will

continue to be active areas of research within

hydrology. Methods for modelling changing

hydrological situations need to progress beyond

the current scenario approach. Alternative sim-

ple techniques like sensitivity methods and

trading space for time can provide validation

of more complex model projections, thus adding

credibility to those projections. Contributions

from these areas will not only help inform future

climate change impact studies about what will

change and by how much, but also provide

insight into why any changes may occur, what

changes we are able to predict in a realistic man-

ner, and what changes are beyond the current

predictability of hydrological systems.
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Jimenez B, Miller K, et al. (2008) The implications

of projected climate change for freshwater resources

and their management. Hydrological Sciences

Journal 53(1): 3–10.

Leander R and Buishand TA (2007) Resampling of

regional climate model output for the simulation of

extreme river flows. Journal of Hydrology 332:

487–496.

Li H, Sheffield J, and Wood EF (2010) Bias correction of

monthly precipitation and temperature fields from

Intergovernmental Panel on Climate Change AR4

models using equidistant quantile matching. Journal

of Geophysical Research 115: D10101.

Lima CHR and Lall U (2010) Spatial scaling in a changing

climate: A hierarchical bayesian model for non-

stationary multi-site annual maximum and monthly

streamflow. Journal of Hydrology 383: 307–318.

Lins HF and Stakhiv EZ (1998) Managing the nation’s

water in a changing climate. Journal of the American

Water Resources Association 34(6): 1255–1264.

Macadam I, Pitman AJ, Whetton PH, and Abramowitz G

(2010) Ranking climate models by performance using

actual values and anomalies: Implications for climate

change impact assessments. Geophysical Research Let-

ters 37: L16704.

McIntyre N, Lee H, Wheater H, Young A, and Wagener T

(2005) Ensemble predictions of runoff in ungauged

catchments. Water Resources Research 41: W12434.

McMahon TA, Peel MC, Pegram GGS, and Smith IN

(2010) A simple methodology for estimating mean

and variability of annual runoff and reservoir

yield under present and future climates. Journal of

Hydrometeorology. doi: 10.1175/2010JHM1288.1.

McMillan H, Freer J, Pappenberger F, Krueger T, and

Clark M (2010) Impacts of uncertain river flow data

on rainfall-runoff model calibration and discharge pre-

dictions. Hydrological Processes 24, 1270–1284.
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