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Abstract. Despite showing a great success of applications in many commercial fields, machine learning and data science 

models in general, show a limited use in scientific fields including hydrology. The approach is often criticized for lack of 

interpretability and physical consistency. This has led to the emergence of new paradigms, such as Theory Guided Data Science 

(TGDS) and physics informed machine learning. The motivation behind such approaches is to improve the physical 

meaningfulness of machine learning models by blending existing scientific knowledge with learning algorithms.  Following 10 

the same principles, in our prior work (Chadalawada et al., 2020), a new model induction framework was founded on Genetic 

Programming (GP) namely Machine Learning Rainfall-Runoff Model Induction Toolkit (ML-RR-MI). ML-RR-MI is cable of 

developing fully-fledged lumped conceptual rainfall-runoff models for a watershed of interest using the building blocks of two 

flexible rainfall-runoff modelling frameworks (FUSE and SUPERFLEX). In this study, we extend ML-RR-MI towards 

inducing semi-distributed rainfall-runoff models. This effort is motivated by the desire to address the decreasing 15 

meaningfulness of lumped models which tend to particularly deteriorate within large catchments where the spatial 

heterogeneity of forcing variables and watershed properties are significant. Henceforth, our machine learning approach for 

rainfall-runoff modelling titled Machine Induction Knowledge-Augmented System Hydrologique Asiatique (MIKA-SHA) 

captures spatial variabilities and automatically induces rainfall-runoff models for the catchment of interest without any 

subjectivity in model selection. Currently, MIKA-SHA learns models utilizing the model building components of FUSE and 20 

SUPERFLEX. However, the proposed framework can be coupled with any internally coherent collection of building blocks. 

MIKA-SHA’s model induction capabilities have been tested on the Red Creek catchment near Vestry, Mississippi, United 

States. The resulted model architectures through MIKA-SHA are compatible with previously reported research findings and 

fieldwork insights of the watershed and are readily interpretable by hydrologists.  

1 Introduction 25 

Understanding the underlying environmental dynamics occurring within watersheds is an essential and fundamental task in 

hydrology. Hydrological models play a key role in capturing the discharge signatures of watersheds. Irrespective of 

considerable advance over past decades, there is still some scope to advance state of art in hydrological knowledge to fully 

describe the functioning of a watershed upon a rainfall event owing to the highly complex, interdependent, and non-linear 
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behaviours of governing physical phenomena. So far, no hydrological model can perform equally well over the entire range of 30 

problems. This leads to different research directions seeking different hydrological models based on different modelling 

strategies. Hydrological models are expected not only to have good predictive power but also to be interpretable in capturing 

relationships among the forcing terms and catchment response which may lead to the advancement of scientific knowledge 

(Babovic, 2005, 2009; Karpatne et al., 2017). Therefore, the final goal of any successful hydrological model must be based on 

a physically meaningful model architecture along with a good predictive performance. 35 

Data science methods have shown limited success in many scientific fields including hydrology compared to the level of 

success in many commercial fields. Although the data-driven models are often performing better in terms of predictive 

capabilities than traditional physics-based, conceptual, and empirical hydrological models, they may contribute little towards 

the advancement of scientific discovery due to the lack of interpretability of the model configurations. Recently, a novel 

modelling paradigm called Theory Guided Data Science (TGDS) (Karpatne et al., 2017) or physics informed machine learning 40 

(Physics Informed Machine Learning Conference, 2016) has emerged to enhance the explainability of machine learning models 

or data science models in general.  Here, the existing body of knowledge is blended with machine learning algorithms to induce 

physically consistent models. 

In this contribution, following the above-mentioned modelling paradigm, we introduce a novel model induction engine called 

Machine Induction Knowledge-Augmented System Hydrologique Asiatique (MIKA-SHA) for automatic induction of semi-45 

distributed models for a catchment of interest. This work is motivated by the success of our previously introduced 

(Chadalawada et al., 2020) model induction toolkit titled Machine Learning Rainfall-Runoff Model Induction Toolkit (ML-

RR-MI). ML-RR-MI is capable of inducing fully-fledged lumped conceptual rainfall-runoff models for a watershed of interest. 

We use the term “hydrologically informed machine learning” to refer that the existing body of hydrological knowledge is used 

to govern the machine learning algorithms to induce physically consistent model configurations. The proposed framework 50 

uses Genetic Programming (GP) as its learning algorithm, whereas the model building modules of two flexible rainfall-runoff 

modelling frameworks (FUSE and SUPERFLEX) represent the elements of existing hydrological knowledge. The objectives 

of the current study involve 1) Incorporation of spatial heterogeneities of catchment properties and climate variables into the 

rainfall-runoff modelling while maintaining the model parsimony of induced models, 2) Adoption of a quantitative model 

selection approach to select an optimal model with appropriate complexity instead of “simpler the better” paradigm. The 55 

approach addresses the common hydrological issues, such as equifinality, subjectivity, and uncertainty, in the context of semi-

distributed modelling and machine learning. This study is a part of larger ongoing research effort of using hydrologically 

informed machine learning for automated model induction. 

The remaining of this text is arranged as follows. Section 2 provides a brief discussion on fundamental approaches in 

hydrological modelling. Section 3 discusses machine learning applications in water resources engineering. The proposed model 60 

induction framework is presented in Sect. 4. An application of the proposed framework is given in Sect. 5. The last two sections 
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(Sect. 6 and Sect. 7) summarise the results of the case study and the conclusions made through the research findings. Additional 

details are presented in the Appendix.   

2 Fundamental Approaches in Hydrological Modelling       

2.1 Physics-based Models Vs Data Science Models 65 

Physics-based or theory-based models are founded in scientific principles and theories to describe different hydrological 

processes. These models are following an approach where a hypothesis is assumed initially, and the observations are used to 

accept or reject it. The first reported physics-based model was introduced by Freeze and Harlan (1969). At the time, its usage 

was greatly limited due to computation demand and intensive data requirements.  

The ideal solution to understanding and prediction of any environmental dynamic would be through physics-based models if 70 

and only if the body of knowledge is sufficient enough to fully describe the behaviour of those environmental processes. 

However, this is not the situation in hydrology and water resources science in general. For example, the use of the Darcy-

Richards equation to represent subsurface flow may not be accurate if the soil properties are not uniform (Beven, 2012). On 

the other hand, with the advancement in the computer power and acquisition of data through remote sensing and geographical 

information systems, data science models gained more attraction in many fields. Especially, within the last two decades, there 75 

is an increase in data science model applications, such as machine learning models in hydrological modelling (Babovic and 

Abbott, 1997; Babovic, 2005; Yaseen et al., 2015). The data science models utilize the available data to build input-output 

relationships which provide actionable models with good predictive power. Both physics-based and data science models 

depend on data to a different extent. While physics-based models are frequently admired by the community due to its 

interpretability which may lead to better understand catchment dynamics, they often experience poorer predictive power than 80 

data science models. At the same time, simplistic applications of data-driven models which often result in higher prediction 

accuracies than the physics-based models may suffer serious difficulties with interpretation as they are unable to provide basic 

hydrological insights (Chadalawada et al., 2020). This dichotomy led to the evolution of two major communities in water 

resources engineering: those who work with physics-based modelling and those who deal with machine learning techniques, 

which appear to be working quite separately. Recently, a novel modelling paradigm called Theory Guided Data Science 85 

(TGDS) (Karpatne et al., 2017) or physics informed machine learning was emerged by combining the strengths of both physics-

based models and data science models (Keijzer and Babovic, 2002, Babovic, 2009). The key concept behind this approach is 

to incorporate the existing body of scientific knowledge into learning algorithms to come up with physically meaningful 

models with good predictive power. Further details of this paradigm and its application in water resources are described in 

Sect. 3.  90 
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2.2 Fixed Models Vs Flexible Models 

Another distinct modelling consideration in hydrology is related to the approach to conceptual modelling. Conceptual models 

consist of a collection of reservoir units that approximate the moisture storage within the basin. In earlier applications, 

conceptual models were also referred to as Explicit Soil Moisture Accounting (ESMA) models (O’Connell, 1991). Due to the 

conceptual representation instead of small-scale physics utilized in physics-based models, the complexities of conceptual 95 

models are largely reduced when compared to physics-based models. As the conceptual components are derived from known 

physics but in a simplified manner, conceptual models can provide good process representation and reasonable physical 

meaningfulness in the model configurations. However, the parameters of conceptual models are not directly linked to the 

physically measurable quantities as in physics-based models. Hence, it is often required to use calibration schemes to identify 

the appropriate combination of model parameter values. In practice, there might be different combinations of such parameter 100 

values which may result in the same level of model performance. This phenomenon is commonly known as equifinality which 

raises the important question of “are we getting the right results for the right reasons?” (Beven, 2012). Equifinality is one of 

the most crucial factors to be addressed in conceptual modelling. 

Two types of modelling approaches can be identified within the conceptual modelling: the models based on a single hypothesis 

(fixed models) and the models based on multiple hypotheses (flexible models). Fixed models are built around a general model 105 

architecture that gives satisfactory model performances over a fairly broad range of watersheds and meteorological conditions. 

Rainfall-runoff models, such as NAM (Nielsen, 1973), TOPMODEL (Beven et al., 1995), SACRAMENTO (Burnash, 1995), 

and ARNO (Todini, 1996) belong to this category. Computational efficiency due to standardization, easy interpretability of 

connections among model parameters and basin characteristics benefit in model explanation and regionalization.  These are 

the main reasons for the popularity of fixed models in hydrological modelling. At the same time, it is quite improbable for a 110 

model to perform equally well in completely different climates and geological regions. Further, the adaption of constitutive 

functions through the addition of specialized modules is often required in fixed models to facilitate the ensemble of processes 

over a range of watersheds. One alternative to handle this matter would be to test many fixed models on any single catchment 

to identify the most suitable, which, may be a considerable and cumbersome task. In addition to that, the unavailability of 

publicly available computer codes for most of the fixed models makes this approach challengeable. In a recent study (Knoben, 115 

2019), an open-source toolbox including computer codes of 46 fixed conceptual models has been developed to facilitate the 

above-mentioned approach.  

In contrast to fixed modelling, flexible modelling frameworks provide more granularity in model building by allowing the 

hydrologist to customize the model structure to suit the intended task. These flexible modelling frameworks provide model 

building blocks that can be arranged in different ways to test many hypotheses about catchment dynamics instead of the one 120 

fixed hypothesis in fixed models. Such robust quality of any modular modelling framework allows the modeller to consider 

the uniqueness of the area of his/her application. RRMT (Wagener et al., 2001), FUSE (Clark et al., 2008), MMS (Leavesley 
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et al., 2008), SUPERFLEX (Fenicia et al., 2011; Kavetski and Fenicia, 2011), SUMMA (Clark et al., 2015a, 2015b), and 

RAVEN (Craig et al., 2020) are some widely used flexible modelling frameworks. The high degree of transferability in flexible 

modelling frameworks is an aiding factor in proceeding in the direction of a unified hydrological theory at a watershed level. 125 

Simultaneously due to the dynamic modularity and high level of granularity, constructing a suitable model for the watershed 

of concern may require significant effort and expert knowledge. Hence, a hydrologist with novice knowledge would require 

to test many model structures beforehand selecting an optimal model which is time demanding and computationally intensive, 

in consequence, hinders the opportunity to use the flexible modelling frameworks in their full potential. Further, the selection 

of a model configuration without testing a large number of possible combinations may introduce a high level of subjectivity 130 

into the model building phase. Therefore, we find a requirement to automate the model building phase to remove the 

subjectivity and consider many configurations without direct human involvement. Two flexible modelling frameworks used 

in the current study are briefly described below.    

2.2.1 SUPERFLEX 

SUPERFLEX (Fenicia et al., 2011; Kavetski and Fenicia, 2011) framework facilitates hydrologists to test many different 135 

hypotheses about the functioning of the watershed of interest using the model building components (reservoirs, junctions, and 

lag functions) available in the framework. The water storages within the catchment, such as soil moisture, interception, 

groundwater, and snow along with their release of water are represented through reservoir units. Junction elements 

conceptualize the merging and splitting of different fluxes in catchment dynamics (e.g. Hortonian flow, evaporation). Channel 

routing (delays in flow transmission) is described using lag functions. A number of constitutive functions are available to 140 

describe lag function characteristics and storage-discharge relationships of storage units (reservoirs). SUPERFLEX 

applications in rainfall-runoff modelling are found in van Esse et al. (2013), Fenicia et al. (2014, 2016), and Molin et al. (2020). 

2.2.2 FUSE 

Clark et al. (2008) developed Framework for Understanding Structural Errors (FUSE) to examine the effect of model structural 

differences on rainfall-runoff modelling. FUSE conceptualizes the functioning of a catchment using a two-zone model 145 

architecture: an unsaturated zone (upper soil layer) and a saturated zone (lower soil layer). The model building modules of 

FUSE involve the choice of upper and lower soil configurations and parameterization for different hydrological processes, 

such as evaporation, percolation, interflow, surface runoff, and baseflow. The modeller has the freedom of selecting these 

model building modules from four rainfall-runoff models (TOPMODEL, ARNO/VIC, SACRAMENTO, and PRMS) which 

are known as parent models. For more details and applications of FUSE, please refer to Clark et al. (2010) and Vitolo (2015). 150 

2.3 Lumped Models Vs Distributed Models 

Hydrological models are broadly classified into lumped and distributed models based on how they treat the spatial variabilities 

of catchment properties and climate variables. Lumped models ignore the spatial heterogeneity and recognize the whole 
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watershed as a single unit. Such models use catchment average variable values as model inputs. Most of the present-day 

conceptual models belong to this category. Ease and simplicity of use have made them a popular hydrological modelling 155 

approach. However, especially when the catchment size increases, the meaningfulness of the lumped values decreases and 

hence the inferences made on the basis of a lumped model may be accurate but not be reasonable or realistic. Further, the 

observations reveal a lack of consistency among different watersheds which leads to having an insufficient understanding of 

macro-scale patterns in hydrological behaviours across basins. Namely, there is a possibility that macro-scale patterns of 

catchments are governed by the heterogeneity (Nearing et al., 2020).  In addition to that, if the modeller’s requirement lies 160 

within the catchment (e.g. discharge at a particular location within the catchment), then the only option would be to adopt a 

distributed model where the spatial variabilities are considered in its modelling process.  As stated in Fenicia et al. (2016), 

three distinct steps can be identified in any kind of distributed model building. The first step is to implement a spatial 

discretization scheme. Spatial discretization can be achieved by using either regular grids, irregular grids, and subcatchments, 

or Hydrological Response Units (HRUs). The next step is to define the model structure and the connections between the spatial 165 

elements. The final step is to achieve model parsimony through the specification of model parameters and state constraints.  

The majority of distributed models are theory-based models (physics-based). They discretize the watershed into regular or 

irregular grids and use small-scale physics to model the fluxes through the spatial elements (commonly attributed to as fully 

distributed models). In the early stages of development, researchers believed that more data about the catchment properties 

and climate variables would be available with the advancement of technology and hence thought of including such data into 170 

hydrological modelling with the intention of achieving improvements in model simulations. This helped fully distributed 

modelling to attract a lot of attention among hydrologists. From its earliest applications like System Hydrologique Europeen 

model (SHE) (Abbot et al., 1986a, 1986b) hydrological community has invested heavily in these fully distributed hydrological 

(physics-based) models (e.g. Development of US National Water Model (Salas et al., 2018)). 

One way of addressing the so-called uniqueness of the place as a major issue to deal with hydrological modelling (Beven, 175 

2020) is to use distributed models. At the early stages of distributed modelling, the approach was constrained due to the lack 

of data and computational power. Hence, it was thought that this approach will gain success with the advancement of 

technology. Until today, however, the distributed models have not achieved the expected outcome. This points out that the 

problem lies not only in the lack of local information but also due to the issues in how processes are represented within the 

distributed model (Beven, 2020). The high complexity and the huge demand for the input data, such as topography, geology, 180 

soil, and land use are the main limitations of fully distributed models. The more granular approach requires a large number of 

model parameters which often leads to over-parameterization. A comprehensive review of applications, challenges, and future 

trends of fully distributed modelling in hydrology is presented in Fatichi et al. (2016).  

An effective alternative for both lumped and fully distributed models would be the semi-distributed models where separate 

conceptual models are assigned to functionally distinguishable land segments (Boyle et al., 2001). In the semi-distributed 185 
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modelling approach, each model operates individually and there are no interconnections or dependencies with other models in 

the network. This and the use of conceptual models instead of small-scale physics make this approach several orders less 

complex than the fully distributed models. However, semi-distributed models are much more complex than lumped conceptual 

models, because they consider the spatial variabilities of catchment properties and climate variables, resulting in more 

meaningful inferences gained through the model. In early applications (Boyle et al., 2001), subcatchments were identified as 190 

functionally distinguishable land segments. But, with the popularity of the Hydrological Response Unit (HRU) concept, HRUs 

were used as functionally distinguishable land elements (e.g. Fenicia et al., 2016). In a semi-distributed model, the total 

catchment response consists of the routed sum of the individual model responses of each spatial element. Spatial Tools for 

River basins and Environment and Analysis of Management options (STREAM) (Aerts et al., 1999) and Soil and Water 

Assessment Tool (SWAT) (Arnold et al., 1998) can be categorized as semi-distributed models. 195 

3 Machine Learning in Water Resources 

Machine learning or data science in general, have become an irreplaceable tool, not only in commercials but also in many 

scientific fields. They have shown superior performances in many applications including language translation, object tracking, 

autonomous driving, and character recognition (Karpatne et al., 2017).  Data-driven techniques started to gain a lot of attention 

among the hydrologists within the last two decades. Artificial Neural Networks (ANN), Evolutionary Computation (EC), 200 

Wavelet-Artificial Intelligence models (W-AI), Support Vector Machines (SVM), and Fuzzy set are the most popular data 

science techniques in hydrological modelling (Yaseen et al., 2015). Each of these techniques has its strengths and weaknesses. 

The scope of this paper does not discuss different data-driven techniques in detail. Instead, interested readers are directed to 

review papers by Govindaraju (2000), Yaseen et al. (2015), Mehr et al. (2018), and the textbook by Hsieh (2009).  

Machine learning models have shown encouraging performances in a range of water resources applications, such as rainfall-205 

runoff modelling (Minns and Hall, 1996; Khu et al., 2001; Babovic and Keijzer, 2002; Chiang et al., 2004), streamflow 

forecasting (Nourani et al., 2009; Meshgi et al., 2014, 2015; Humphrey et al., 2016; Karimi et al., 2016), estimation of missing 

data (Elshorbagy et al., 2002), error correction (Sun et al., 2012), water quality modelling (Savic and Khu, 2005; Singh et al., 

2011; García-Alba et al., 2019), sediment transport modelling (Babovic and Abbott, 1997; Afan et al., 2014; Safari and Mehr, 

2018), reservoir management (Giuliani et al., 2015), prediction of climate variables (Dahamsheh and Aksoy, 2013; Ferreira et 210 

al., 2019), because of their potential to apprehend the noise complexity, non-linearity, non-stationarity and dynamism of data 

(Yaseen et al., 2015). Certainly, if we are only interested in better forecasting results then, the machine learning models might 

be the preferred choice over the conceptual or process-based models due to their better predictive capability. Another major 

advantage of a machine learning model is that it requires much less effort to develop and calibrate than a physics-based model.  

Data-driven techniques have made it possible to develop actionable models with high prediction accuracy without depending 215 

on scientific theories. At the same time, this very nature of data-driven models has become the main point of criticism 
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especially in scientific fields including hydrology. They are regularly quoted as black-box models where the user has little or 

no knowledge about how the model makes its predictions. Karpatne et al. (2017) offer two reasons for the limited success of 

data-driven models in scientific fields. The first reason is the limited availability of labelled instances for the model training 

which makes it harder to extrapolate model predictions beyond the available labelled data. The second reason is associated 220 

with the objectives of the scientific discovery where the final goal is not only to have actionable models but also to convey a 

mechanistic awareness of underlying operations which may lead to the advancement of scientific knowledge. Further, data 

science models, such as Deep Learning (DL) models have shown better performances in hydrograph predictions than the 

traditional approaches in ungauged catchments (Kratzert et al., 2019). At the same time, a recent paper (Beven, 2020), 

questions the performance of a DL model in ungauged catchments when the geological characteristics are not well defined 225 

within the model. According to this paper, DL models have not solved the ungauged catchment problem and they have just 

achieved higher efficiency values than the traditional approaches. 

Nearing et al. (2020) argue that there is a danger for the hydrologic community in not recognizing the potential of machine 

learning offers for the future of hydrological modelling. The authors argue that machine learning models can capture catchment 

similarities by providing good results even for the catchments which were not used for the training of those models. This 230 

implies the capability of machine learning models in developing catchment scale theories which traditional models were unable 

to do so well. Further, the authors reject the most common criticism on machine learning models (the lack of explainability) 

by stating that even the accuracy of process representation in physics-based models is questionable due to their poorer 

prediction accuracies, criticizing only on machine learning models is unfair and meaningless. Despite having a huge potential 

within machine learning models, the state of art machine learning capabilities have not been tested in hydrological modelling 235 

and they expect even distributed hydrological models are to be developed primarily on machine learning in near future. Beven 

(2020) highlights the importance of the interpretability of DL models and suggests more direct incorporation of process 

information into such models. Further, he points out that machine learning models should also need to pay attention to similar 

issues associated with traditional modelling approaches like data and parameter uncertainties and equifinality. A brief 

discussion of two widely used machine learning techniques in hydrology is presented below. 240 

3.1 Artificial Neural Networks (ANN) 

ANNs (McClelland and Rumelhart, 1986) are the most popular machine learning technique in many commercial and scientific 

fields including hydrology. ANN is a computing model transpired by the functionality of neurons in a human brain, that is 

widely used to compute and process complex functional units. A wide range of successful applications, such as clustering, 

pattern recognition, classification, and identifying non-linear relationships have made ANNs a popular data-driven modelling 245 

technique. Typically, ANN architecture consists of three components i) input layer with several input nodes ii) One or more 

hidden layers with the activation function iii) Output layer with several output nodes (Yaseen et al., 2015). Successful ANN 

applications in water resources engineering include rainfall-runoff modelling (Minns and Hall, 1996; Chiang et al., 2004), 
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streamflow estimation (Nourani et al., 2009; Humphrey et al., 2016), water quality modelling (Singh et al., 2011; García-Alba 

et al., 2019), groundwater modelling (Nayak et al., 2006; Gholami et al., 2015), data assimilation (Babovic et al., 2000; 250 

Vojinovic et al., 2003), estimation of climate variables (Dahamsheh and Aksoy, 2013; Ferreira et al., 2019), flood and drought 

forecasting (Chang et al., 2014; Dehghani et al., 2014) and sediment transport modelling (Afan et al., 2014). Most of the above 

applications use supervised learning ANN models, such as Feed Forward Back Propagation (FFBP), Radial Basis Function 

Neural Network (RBFNN), and Generalized Regression Neural Network (GRNN). High accuracy and tolerance for noisy data 

make ANN suitable for applications where conventional mathematical methods and statistical models are inadequate. The 255 

multi-layered architecture of an ANN can handle incomplete or erroneous data, highly complex and interdependent parameters. 

One of the key disadvantages of using ANN for data modelling is the fact that it produces overfitting results which make it 

difficult to extrapolate beyond witnessed train data. Furthermore, determining the efficient network architecture and tuning 

hyperparameters make it hard for the user to completely understand how the model makes its predictions. Thus, many scientists 

criticise the use of ANN as a black box which prohibits the interpretation and understanding of the model. Hence, the user 260 

must be cautious of the practical usage and limitations of the resultant model. 

Deep learning (DL) is a new direction in ANN research that is widely used for clustering and regression tasks in many 

disciplines including hydrology. There is no definite definition for DL models, but neural networks with large multilayer 

architectures (large depth) that work with big, raw data are generally referred to as DL models (Shen, 2018). DL models are 

capable of extracting abstract features from raw data automatically via the hidden layers. Two of the well-established classes 265 

in DL are Convolutional Neural Networks (CNNs) for clustering tasks, such as computer vision and image analysis, and 

Recurrent Neural Networks (RNNs) for regression tasks, like modelling sequential data and time series analysis (Hu et al., 

2018). Long Short-Term Memory (LSTM) is the most successful RNN architecture which utilizes gates and memory cells to 

retain state information of sequential data. Hence, LSTMs are more suitable for hydrological modelling applications, such as 

rainfall-runoff modelling. The state of art DL capabilities have not yet been tested in hydrological modelling and there are only 270 

a few DL applications so far (Shen et al., 2018). Successful DL applications in hydrology include rainfall-runoff modelling 

(Hu et al., 2018; Fan et al., 2020; Xiang et al., 2020), soil moisture modelling (Xiaodong et al., 2016), precipitation forecasting 

(Kumar et al., 2019), groundwater estimation (Afzaal et al., 2019) and uncertainty estimation (Gude et al., 2020). 

3.2 Genetic Programming (GP) 

Genetic Programming is an evolutionary computation algorithm (Koza, 1992) inspired through the basic principle of Darwin’s 275 

theory of evolution. GP is capable of automatic generation of computer programs and falls under the supervised machine 

learning category. The most distinct feature of GP over the other machine learning techniques is its ability to produce 

mathematical expressions of input-output relationships. As a result, GP is referred to as a grey box data-driven technique and 

differentiates it from the other black box data-driven approaches, like ANNs. Other than that, its conceptual simplicity, the 

ability of parallel computing, and the capability of obtaining the near-global or global solution make GP a powerful machine 280 
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learning technique. There are different variants of GP like Monolithic GP (MGP), Multigene genetic programming (MGGP), 

Gene expression programming (GEP), Linear GP (LGP), and Grammar-based GP (GGP) (Mehr et al., 2018). Despite variants, 

the fundamental operations are quite similar. GP generates the structure of its solutions (GP individuals) by arranging 

mathematical functions, input variables, and random constants. These are known as the building blocks of the GP algorithm. 

The algorithm starts with a randomly generated set of candidate solutions for the task at hand. The performance of each 285 

candidate is then assessed using a user-defined objective function. Individuals are selected by assigning higher chances of 

selection for better individuals (based on objective function value) to create offspring by apply genetic operators (crossover, 

mutation, and elitism). The new set of offspring becomes the candidate solutions in the next generation. This process is repeated 

until the algorithm meets its termination criteria (usually a maximum number of generations). The candidate solutions evolve 

towards the global optimum when the GP algorithm curtails the error margin between the simulated values of its individuals 290 

and measured observations (Babovic and Keijzer, 2000). Successful GP applications in water resources engineering can be 

found in rainfall-runoff modelling (Khu et al., 2001; Babovic and Keijzer, 2002; Babovic et al., 2020), streamflow prediction 

(Meshgi et al., 2014, 2015; Karimi et al., 2016), water quality modelling (Savic and Khu, 2005), groundwater modelling (Datta 

et al., 2014), reservoir management (Giuliani et al., 2015), sediment transport (Babovic and Abbott, 1997; Safari and Mehr, 

2018), climate variables and soil properties modelling (Bautu and Bautu, 2006; Elshorbagy and El-Baroudy, 2009).  295 

3.3 Physics Informed Machine Learning   

One promising way forward which may bridge the gap between physics-based and machine learning modelling communities 

would be to couple the existing hydrological knowledge to guide machine learning models (Babovic and Keijzer, 2002; 

Babovic, 2009). This recent paradigm is presently referred to as Theory Guided Data Science (TGDS) (Karpatne et al., 2017) 

or Physics Informed Machine Learning (Physics Informed Machine Learning Conference, 2016). This modelling paradigm 300 

aims to simultaneously address the limitations of data science and physics-based models and induce more generalizable and 

physically consistent models. There are five ways of incorporating basic scientific knowledge with data-driven models 

(Karpatne et al., 2017): (i) theory-guided design of data science models, (ii) theory-guided learning of data science models, 

(iii) theory-guided refinement of data science outputs, (iv) learning hybrid models of theory and data science and (v) 

augmenting theory-based models using data science. A typical physics informed machine learning model may follow one or 305 

more of the above mention approaches to bring together scientific knowledge and data science techniques. Although, there are 

few reported explainable artificial intelligence utilizations in hydrological modelling in past (e.g. Cannon and Mckendry, 2002; 

Keijzer & Babovic 2002; Fleming, 2007), there is an increasing trend of adopting theory-guided machine learning models for 

recent water resources applications (McGovern et al., 2019), such as hydroclimatic model building (Cannon and Mckendry, 

2002), automated model building (Chadalawada et al., 2020) and hydrologic process simulation (Fleming, 2007).  Even though 310 

there are attempts in almost every machine learning technique to incorporate existing hydrological knowledge into the basic 

frameworks, in the sequel, we only discuss such attempts in ANNs and GP. 
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ANNs suffer the most severe consequences of lack of interpretability of resulted models. An effective solution for this would 

be the use of augmented versions of neural networks where the existing theoretical knowledge is used to govern the learning 

algorithm to enhance the interpretability of induced models. Brunton et al. (2016), Raissi et al. (2017) and Rudy et al. (2017) 315 

used Physics Informed Neural Networks (PINN) in time series analysis to derive governing partial differential equations. 

Prediction of extreme rainfall events was carried out by Cannon (2018) using a neural network architecture constrained by 

physical laws.  Wang et al. (2020) introduced a deep learning framework called Theory Guided Neural Networks (TGNN) for 

subsurface flow modelling where the governing equations, physical constraints, engineering controls and expert knowledge 

are used to guide the ANN model. Please refer to Fleming et al. (2014) and Xu et al. (2019), for further theory-guided neural 320 

network utilization in water resources. 

Although the physics informed machine learning was only recently identified as a new modelling paradigm in the context of 

GP, there were attempts over past two decades to blend the hydrological knowledge into basic GP framework to induce more 

physically reliable hydrological models. To achieve physical consistency and dimensional accuracy of GP induced models, 

researches developed few enhanced versions of the GP algorithm by incorporating the existing hydrological knowledge. 325 

Declarative bias and preferential bias were incorporated with the model-building phase of GP to reduce physical contraventions 

and to achieve dimensional accuracy of induced equations (Babovic and Keijzer, 1999, 2002; Keijzer and Babovic, 2002). 

Authors have reported that this augmented version of GP resulted in fast convergence through the reduction of solution space 

and achieved more parsimonious and regularize expressions than traditional GP.  Dimensionally aware GP was utilized to 

extract hydraulic formulae from measurements by Babovic et al. (2001). The inclusion of high-level theoretical concepts in 330 

sediment transport modelling with GP resulted in equal or superior performances than the traditional modelling with human 

expert knowledge (Baptist et al., 2007; Babovic, 2009). Another augmented version of GP was used for the identification of 

predominant processes in hydrological system dynamics by Selle and Muttil (2011). A reservoir model, a cumulative sum and 

delay function, and a moving average operator were incorporated as basic hydrological insights into the GP function set by 

Havlicek et al. (2013), to develop a rainfall-runoff prediction programme called SORD. They were able to achieve superior 335 

performances in terms of prediction accuracy with SORD than to ANNs and GP without above-mentioned special functions. 

GP was used as a model induction algorithm in Chadalawada et al. (2017), to optimize both model architecture and parameters 

to automatically induce most appropriate Tank model structure for a watershed of interest. Here, the hydrological knowledge 

is incorporated as special functions inspired through the Sugawara Tank model template (Sugawara, 1979). In our prior work 

(Chadalawada et al., 2020), an automatic lumped conceptual rainfall-runoff model induction toolkit was developed using GP 340 

and the building blocks available in two modular modelling frameworks (FUSE and SUPERFLEX) were used as the 

components of hydrological insights. 

Considering the uniqueness of the place is an important aspect of hydrological modelling (Beven, 2020). The use of distributed 

modelling concepts and flexible modelling frameworks are two available toolsets to incorporate the spatial heterogeneity into 
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the model building phase. Due to the limited success and higher-order complexity of fully distributed models, the semi-345 

distributed modelling concept is used for the current study where a network of functionally distinguishable conceptual models 

from flexible modelling frameworks is developed to represent the watershed dynamics. As a result of the higher granularity 

and flexibility provided by the flexible modelling frameworks, even with a lumped application, one can try thousands of 

possible model architectures for a catchment of interest. This may rise to millions of possible model combinations in the 

context of semi-distributed modelling which makes it almost impossible to test them manually. Further, the selection of a 350 

model configuration without testing alternative model configurations would become highly subjective and may require 

considerable expert’s knowledge and time. Therefore, we see a necessity to automate the model building phase to overcome 

these limitations. Hence, in this work, a novel model induction toolkit called Machine Induction Knowledge Augmented-

System Hydrologique Asiatique (MIKA-SHA) is proposed to induce an optimal semi-distributed model for a catchment of 

interest. GP has been selected as the machine learning technique here due to its ability to optimize both model configuration 355 

and model parameters together. It is interesting to note that, most state of art GP utilizations in water resources (Oyebode and 

Adeyemo, 2014; Mehr et al., 2018), GP is still utilized as a short-term prediction mechanism which is analogous to ANN 

applications. In our contribution, we explore the full potential of GP by inducing fully-fledged rainfall-runoff models where 

the hydrological insights are introduced through the integration of process understanding by including model building 

components from existing flexible modelling frameworks into the function set of GP algorithm. Our earlier work 360 

(Chadalawada et al., 2020), presented the capacity of this modelling approach (ML-RR-MI) as a lumped conceptual model 

induction toolkit. In the current study, this framework is extended to induce semi-distributed rainfall-runoff models. As per 

the taxonomy defined in Karpatne et al. (2017), our framework falls under the hybrid TGDS category.  

4 MIKA-SHA 

Chadalawada et al. (2020) introduced a new hydrologically informed rainfall-runoff model induction toolkit (ML-RR-MI) 365 

capable of developing lumped conceptual hydrological models utilizing model building components of FUSE and 

SUPERFLEX frameworks. Successful application of ML-RR-MI toolkit motivated the present research to extend its modelling 

capabilities towards distributed hydrological modelling. Hence, we have developed an automatic model induction toolkit for 

semi-distributed rainfall-runoff models. In the present contribution, a new function called “DISTRIBUTED” has been 

incorporated to the GP function set along with “FUSE”, “SUPERFLEX” and other mathematical functions. The 370 

“DISTRIBUTED” function represents the semi-distributed models (GP individuals) within MIKA-SHA. The parse tree 

representation of the “DISTRIBUTED” function is shown in Fig. 1. As it can be seen, “DISTRIBUTED” function uses either 

“FUSE” or “SUPERFLEX” functions as its function arguments depending on the selected model inventory by the user. The 

length of the function arguments of “DISTRIBUTED” function depends on the number of Hydrological Response Units 

(HRUs) within the watershed. The last two arguments are the lag parameters which are used to route HRU’s outflow into 375 

subcatchment outlet (Lag_HRU) and subcatchment’s outflow into catchment outlet (Lag_Sub). Here, the routing module is 
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based on two-parameter Gamma distribution with shape parameter equals to 2.5. Nodes from depth = 2 to depth = maximum 

allowable tree depth, are the function arguments of either “FUSE” or “SUPERFLEX” functions. 

R (R Core Team, 2018) programming language has been used to implement MIKA-SHA. Further, MIKA-SHA consists of a 

performance measures library including the majority of the widely adopted performance matrices (Chadalawada and Babovic, 380 

2017). The multi-objective optimization scheme is founded on Non-dominated sorting genetic algorithm-II (NSGA-II) (Deb 

et al., 2002). The Pareto optimality concept in NSGA-II causes the output of the model induction stage of MIKA-SHA to be a 

set of non-dominated model configurations in terms of the chosen objective functions. To avoid subjectivity to the MIKA-

SHA framework, a quantitative optimal model selection scheme has been added to the current version. The workflow diagram 

of the MIKA-SHA is given in Fig. 2. More details about each module (data preprocessing, model identification, model 385 

selection, and uncertainty analysis) are given in Sect. 5. 

 

Figure 1: Parse tree representation of the DISTRIBUTED function in MIKA-SHA 
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Figure 2: Workflow diagram of MIKA-SHA 390 

5 Application of MIKA-SHA  

5.1 Data Preprocessing  

The Red Creek watershed near Vestry, Mississippi (Fig. 3) was selected to test the semi-distributed model induction 

capabilities of MIKA-SHA. Red Creek watershed is a Hydrologic Benchmark Network (HBN) station located in Eastern 

United States (Station 02479300). Basin details are summarized in Table 1. Soil and land use data of Red Creek catchment 395 

(resolution of 30 m x 30 m) were downloaded from the United States Department of Agriculture’s (USDA’s) Geospatial Data 

Gateway (USDA's Geospatial Data Gateway, 2020), whereas the Digital Elevation Data (DEM) at 30 m resolution were 

obtained from the Shuttle Radar Topography Mission (SRTM) data from United States Geological Survey (USGS) 

EarthExplorer (USGS EarthExplorer, 2020). Subsequently, soil, land use and DEM maps were prepared using QGIS software 

(QGIS, 2020). The SWAT+ plugin was used for the watershed delineation of Red Creek catchment. The whole watershed was 400 

divided into three subcatchments (Sub 1, Sub 2 and Sub 3) for the current application. HRUs were identified based on the 

topography of the area and three HRUs namely, Hill (slope band %> 10), Floodplain (slope position threshold = 0.1) and 

Plateau (slope band % < 10) were selected. The HRU details are given in Table 2. 
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 405 

Figure 3: Red Creek catchment, Vestry, Mississippi, United States (map was generated through SWAT+ plugin in QGIS 

software using Shuttle Radar Topography Mission (SRTM) DEM data and USDA’s Geospatial Data Gateway soil and land 

use data) 

Eleven years (from 1/1/2004 to 31/12/2014) of forcing terms (precipitation, potential evaporation and temperature) and 

discharge data of Red Creek catchment were used for model spin-up (1/1/2004 – 31/12/2004), model calibration (1/1/2005 – 410 

31/12/2009), model validation (1/1/2010 – 31/12/2012) and model testing (1/1/2013 – 31/12/2014). Catchment average daily 

data of potential evaporation, temperature and streamflow were downloaded from CAMELS dataset (Newman et al., 2015). 

The spatial distribution of daily precipitation data were considered and lumped at the subcatchment scale (three precipitation 

time series for the three subcatchments). Precipitation data were downloaded from the Dayment dataset (Dayment, 2020) 

which provides daily weather parameters (resolution: 1 km x 1 km), over North America. The time series diagrams of 415 

precipitation, potential evaporation, temperature and streamflow of Red Creek watershed are displayed in Fig. 4. Once the 

relevant data were processed, the user can set the algorithmic parameters of MIKA-SHA, which eventually decide the 

computation power and time required for the model induction. Table 3 summarizes the algorithmic setting of MIKA-SHA 

used in the current study. 
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Table 1: Catchment details 420 

Parameter Details  

Drainage area 1144.2 km2 

Outlet coordinates  30.736110, -88.781110 

Sub catchment area % Sub 1 – 39.0%, Sub 2 – 37.9%, Sub 3 – 23.1% 

Floodplain/ Upslope  23.6% / 76.4% 

Annual average discharge 1.755 mm/day 

Annual average potential evaporation 3.689 mm/day 

Annual average temperature 19.57 0C 

Annual average precipitation 4.201 mm/day 

Average slope 5.85 m/km 

Forest fraction 0.89 

 

Table 2: Area percentages of topography based HRUs 

Sub Catchment Hill Floodplain Plateau 

1 10.4% 22.4% 67.2% 

2 15.3% 23.3% 61.4% 

3 14.3% 26.1% 59.6% 

5.2 Model Identification  

At the model identification stage, a GP based optimization framework optimizes both model configuration and associated 

parameters of the GP individuals simultaneously. Here, the optimization algorithm is repeated for a user-specified number of 425 

iterations (independent runs) to cover the solution space to a greater extend. The output of the model identification stage 

consists of a bunch of non-dominated models (Pareto-optimal models) based on the selected objective criteria. More details 

about the basic steps involved at this stage are given in Chadalawada et al. (2020).   

As mentioned, MIKA-SHA relies on a multi-objective optimization framework at model identification stage, using desired 

objective functions from the objective function library. Having said that, identification of the best performing model from 430 

Pareto front of non-dominated solutions for a watershed of interest is not a trivial matter. The explanatory power of the 

performance measure used to assess the prediction accuracy of model simulations has a direct impact on the optimal model 

selection (Chadalawada and Babovic, 2017). In the present case, four objective functions are selected from the objective 

function library of MIKA-SHA to assess the fitness of GP derived individuals in model identification stage. The selected four 

objective functions are sensitive to different regions of measured and simulated runoff signatures and their details are given in 435 

Table 4. 
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Table 3: Algorithmic settings of MIKA-SHA  

Option Setting  

Number of independent Runs 20 

Size of population  2000 

Termination criteria Generation number = 50 

The randomized method used for initialization  Ramped Half and half  

Special functions/ Mathematical functions SUPERFLEX, FUSE, DISTRIBUTED/  +, -, /, * 

Input variables – SUPERFLEX Precipitation, temperature, potential evaporation 

Input variables – FUSE Precipitation, potential evaporation  

Dependent variable  Streamflow 

Number of objective functions used 4 

Normalized range of constants  0 to 1 

Depth of parse trees- initial/ maximum SUPERFLEX – 3/5, FUSE – 2/4 

The mating pool selection strategy  Tournament selection with 4 competitors at once 

Genetic operator probability: mutation  

          Constant/ Tree/ Separation/ Node 

 

0.5/0.5/0.3/0.3 

Genetic operator probability: crossover  0.7 

Count of CPUs used for parallel computation 40 units  

Level of parallel computation  Performance evaluation level  

MIKA-SHA was tested on the Red Creek basin data to derive representative semi-distributed model architectures for the 440 

watershed. Rainfall-runoff models were induced using SUPERFLEX and FUSE libraries independently along with the same 

multi-objective optimization scheme with topography based HRUs.  

5.3 Model Selection 

Model selection stage starts with the best models of each independent run (front 1 models of final generation) derived through 

the GP framework at the model identification stage. The optimal model selection process is streamlined as follows.  445 

1. Performance evaluation using the same four objective functions on validation data (2010/01/31-2012/12/31) for all 

identified models from the model identification stage. 

2. Re-identification of Pareto-optimal models based on both calibration and validation fitness values. 

3. Calculation of Standardized Signature Index Sum of each Pareto-optimal model. 
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Standardized Signature Index Sum (SIS) 450 

The Standardized Signature Index Sum value (Ley et al., 2016) is a relative performance measure which quantifies how well 

a model captures the observed flow duration curve (FDC) relative to the other competitive models. Models with negative SIS 

values indicate better than average performance in capturing observed FDC and vice versa. In SIS calculation, both observed 

and simulated FDCs are divided into four flow regimes based on flow exceeding probabilities and calculate the absolute 

difference in observed and simulated cumulative discharges in each region. Then, four separate Z-score values (representing 455 

4 regions) are assigned to each model based on the mean and standard deviation of all models considered. The algebraic sum 

of those four Z-score values becomes the SIS value of the model. 

𝑍𝑠𝑎 = |𝑥𝑠𝑎| − 𝑥𝑎̅̅ ̅𝜎𝑎                                                                                                                                                                                       (5)        𝑆𝐼𝑆𝑎 = 𝑍𝑠𝐹𝐻𝑉 + 𝑍𝑠𝐹𝑀𝑉 + 𝑍𝑠𝐹𝑀𝑆 + 𝑍𝑠𝐹𝐿𝑉                                                                                                                                             (6)       

where |𝑥𝑠𝑎| : modulus of the signature index where, s: model, a: FDC signature based on Flow Exceeding Probability (FEP) 460 

(FHV: FEP less than 2%, FMV: FEP between 2% and 20%, FMS: FEP between 20% and 70%, FLV: FEP greater than 70%) 

and x: value, 𝑥𝑎̅̅ ̅  and 𝜎𝑎 : average and standard deviation of |𝑥𝑠𝑎|, Z : standard score. 

 

4. Selection of Pareto-optimal models with SIS scores below zero over the calibration and validation period. 

5. Identify unique model structures (hereinafter referred to as competitive models) from the models in step 4. If there is 465 

more than one model with the same model structure, the model with the most negative SIS value is selected. 

6. Quantitative selection of the optimal model to represent catchment dynamics based on three relative measures: Cross 

sample entropy value (Cross-SampEn), Dynamic Time Warping (DTW) distance and the number of associated model 

parameters. Competitive models are ranked according to each measure and the model with the lowest sum up rank is 

selected as the optimal model for the watershed of concern. 470 

 

Cross sample entropy value (Cross-SampEn) 

Cross-SampEn value is a derivation from the commonly used Sample Entropy value (Richman and Moorman, 2000). Sample 

Entropy is a complexity measure of data series which has its origin in information theory. Sample Entropy value gives an idea 

about the complexity of the data series based on the information content in a mathematical way. Cross-SampEn value also 475 

follows the same concept but is used to measure the correlation between two series by matching patterns from one series with 

another. A low Cross-SampEn value indicates that the two series are more similar to each other. More details about Cross-

SampEn can be found in Delgado-Bonal and Marshak, (2019). 
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Dynamic Time Warping (DTW) distance 480 

Dynamic Time Warping (Sakoe and Chiba, 1978) is a similarity measure between two time series which includes warping of 

their time axes to find the optimal temporal alignment between the two. DTW distance is derived as an alternative to the 

commonly used Euclidean distance. Two identical time series with a small-time shift may ending up with a large Euclidean 

distance and may consider them as two dissimilar time series. The DTW method captures them as two similar time series as it 

ignores the shift in the time axes. A low DTW distance indicates more similarity between the two time series compared. Details 485 

and applications of the DTW method can be found in Salvador and Chan (2007), Giorgino (2009) and Vitolo (2015). 

 

Number of model parameters 

This measure simply calculates the number of associated model parameters of each competitive model and rank them in 

ascending order.  490 

 

Figure 4: Forcing terms and streamflow data of Red Creek catchment 
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Table 4: Objective functions used at the model identification stage  

Name Equation Sensitivity Optimum 

Volumetric Efficiency 

(VE) (Criss and Winston, 

2008) 

𝑉𝐸 = 1 − |∑ (𝑄𝑜𝑡 − 𝑄𝑠𝑡)𝑁𝑡=1 |∑ 𝑄𝑜𝑡𝑁𝑡=1     
N: Time steps, 𝑄𝑜𝑡 : Observed streamflow,  𝑄𝑠𝑡  : 

Simulated streamflow 

Water balance 1 

Kling-Gupta Efficiency 

(KGE) (Gupta et al., 2009) 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2     
r: Linear correlation coefficient,  𝛼 =  𝜎𝑠𝜎𝑜 , 𝛽 =  𝜇𝑠𝜇𝑜, 𝜎: Standard deviation, 𝜇: Mean 

Flow variability 1 

Nash-Sutcliffe Efficiency 

(NSE) (Nash and Sutcliffe, 

1970) 

𝑁𝑆𝐸 = 1 − ∑ (𝑄𝑜𝑡 − 𝑄𝑠𝑡)2𝑁𝑡=1∑ (𝑄𝑜𝑡 − 𝑄𝑜𝑡̅̅ ̅̅ )2𝑁𝑡=1          
 𝑄𝑜𝑡̅̅ ̅̅  : Mean of observed discharge values 

High flows 1 

Log Nash-Sutcliffe 

Efficiency (logNSE) 

(Krause et al., 2005) 

𝑙𝑜𝑔𝑁𝑆𝐸 = 1 − ∑ (𝑙𝑛𝑄𝑜𝑡 − 𝑙𝑛𝑄𝑠𝑡)2𝑁𝑡=1∑ (𝑙𝑛𝑄𝑜𝑡 − 𝑙𝑛𝑄𝑜𝑡̅̅ ̅̅ )2𝑁𝑡=1        
𝑙𝑛: Natural logarithm  

Low flows 1 

5.4 Uncertainty Analysis 495 

Once the optimal model was identified for the catchment of interest its uncertainty and sensitivity analysis were performed 

using Generalized Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992) as described below. 

 A random subset of model parameters of the selected optimal model structure is changed uniformly within their 

parameter range (in this case between 0 and 1 as all parameter ranges are normalized within MIKA-SHA framework) 

while keeping the remaining model parameters at their calibrated values. NSE is used as the likelihood estimation. If 500 

the model parameter set provides an NSE value greater than the likelihood threshold, (in the current study NSE = 0.6) 

the parameter set, its NSE value and the simulated discharge are recorded (known as behavioural models).  
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 Repeat the above step until the number of behavioural models reaches a user-defined value. Five thousand behavioural 

models are identified in the current study. 

 For each time step, simulated discharge values of all behavioural models are sorted in ascending order. Then, a weight 505 

is assigned to each model (NSE value itself is used as the weight). Finally, the Cumulative Probability Distribution 

Function (CDF) of the weights is calculated at each time step.  

 For each time step, a relationship diagram is obtained by taking CDF as the x-axis and simulated discharge at the y-

axis. From the diagram, corresponding simulated discharge values of 95% and 5% quantile of CDF are selected as 

the upper and lower bounds of the 90% confidence band.  510 

 Percentage of observed discharge values (both in calibration and validation period) which fall within the 90% 

confidence band is used to measure the uncertainty estimation capability of the selected optimal model.  

 If the uncertainty estimation capabilities are satisfactory, the model performance of the optimal model is tested for an 

independent time frame (2013/01/01 to 2014/12/31) which is not used in model selection or identification stages. If 

the uncertainty estimation is not satisfactory, then, all the above steps are to be repeated with the next best competitive 515 

model. 

 Sensitivity scatter plots are drawn for each model parameter using the parameter values of behavioural models. The 

shape of the scatter plot (the x-axis – normalized parameter range, the y-axis – NSE values) is used to identify the 

degree of sensitivity of each model parameter.   

6 Results 520 

Three topography based HRUs were identified for the Red Creek catchment (Table 2). Both SUPERFLEX and FUSE model 

building component libraries were implemented independently to induce representative semi-distributed rainfall-runoff models 

for the catchment. Results obtained through the application of MIKA-SHA with topography based HRUs are presented in this 

section. 

6.1 MIKA-SHA Models induced using SUPERFLEX Building Blocks 525 

Adhering to the methodology given in Sect. 5, three competitive models were identified. Their relative rank scores are 

presented in Table 5. Hence, model M2 (hereinafter referred to as SUPERFLEX_TOPO_M2) was identified as the optimal 

model architecture capturing the basin dynamics of Red Creek watershed. The model architecture of SUPERFLEX_TOPO_M2 

is given in Fig. 5. Hillside structure of the SUPERFLEX_TOPO_M2 consists of two reservoirs connected in parallel: a fast-

reacting soil reservoir (FR) and a riparian reservoir (RR). The model structure also consists of two half-triangular delay 530 

functions. The discharge of the FR incorporates a power function relationship with its storage. The model structure representing 

the floodplain differs from the hillside structure by the inclusion of a snow reservoir (WR).  Plateau area is based on one 
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reservoir configuration with an unsaturated soil reservoir (UR). The discharge storage relationship of UR is governed by the 

modified logistic function. Further, a lag function is connected with the base flow of the UR. 

The performance matrix for calibration, validation and testing periods of SUPERFLEX_TOPO_M2 is given in Table 6. The 535 

high values of all four absolute performance measures suggest that SUPERFLEX_TOPO_M2 is competent in capturing the 

catchment dynamics of Red Creek basin. The model shows consistent behaviour throughout the calibration, validation and 

testing periods. Hence, we may expect no overfitting issues with training data (calibration data). Figure 6 illustrates the 

simulated hydrograph of SUPERFLEX_TOPO_M2 along with the observed hydrograph of the watershed. As can be seen, the 

simulated discharge signature matches the observed discharge signature reasonably well. It is noteworthy that 540 

SUPERFLEX_TOPO_M2 underestimates the peak discharges in some instances. Figure 7 illustrates the observed FDC of the 

watershed and the simulated FDCs of SUPERFLEX_TOPO_M2 for calibration, validation and testing periods. As it can be 

observed modelled FDCs nearly follow the measured FDC both in medium and high flow regimes but diverge slightly at low 

flow regime. Uncertainty analysis reveals that 75% of the observed discharge data lie within the 90% uncertainty bounds of 

SUPERFLEX_TOPO_M2. The sensitivity scatterplots of the model parameters of SUPERFLEX_TOPO_M2 along with the 545 

model parameters details are provided in the Appendix. 

Table 5: Optimal model selection details (Library – SUPERFLEX) 

Model 

Rank 

Cross Sample 

Entropy 

Dynamic Time 

Warping 

Number of Model 

Parameters 

Sum 

M2 2 1 2 5.0 

M3 3 2 1 6.0 

M1 1 3 3 7.0 

Table 6: Performance matrix of SUPERFLEX_TOPO_M2 

                  Efficiency 

Period 
VE KGE NSE logNSE 

Calibration 0.748 0.911 0.922 0.845 

Validation 0.724 0.932 0.919 0.838 

Testing 0.759 0.933 0.879 0.881 
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 550 

Figure 5: SUPERFLEX_TOPO_M2 model configuration (P: precipitation, E: evaporation, QT: total discharge, WR: snow 

reservoir, RR: riparian reservoir, FR: fast-reacting soil reservoir, UR: unsaturated soil reservoir, L: half-triangular lag function) 

 

 

Figure 6: Hydrograph of SUPERFLEX_TOPO_M2 555 
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Figure 7: Flow Duration Curves of SUPERFLEX_TOPO_M2 

Other than the inclusion of a WR in the floodplain model structure, both floodplain and hillside model structures share the 

same model architecture. Although WR is present, it is activated only if the temperature falls below a certain threshold value 

(calibrated value equals to 20C). During all 11 years of data used in the current study only less than 1% of time temperature 560 

falls below this threshold value. Hence, the effect of WR in floodplain model structure may be considered as negligible. Model 

structural components and the calibrated values suggest that the runoff generation in both hillside and floodplain areas respond 

quickly to precipitation. This quick response is reasonable in both areas due to the higher slopes at hillside and widening of 

the river across the floodplain in high flow events. Further, the main soil type in the floodplain area of Red Creek catchment 

belongs to Smithton soil series which is characterized as soil with slow permeability and seasonally high-water table (Official 565 

Soil Series Descriptions, 2020). This may result in fast discharge generation dynamics, such as saturation excess overland 

flow. The constitutive function of the FR in both hillside and floodplain structure is the power function. This may help to 

capture the non-linear response of runoff generation. On the other hand, in plateau areas (around half of the total catchment 

area), one can expect higher residence times as the slopes are milder. This may lead to a delayed response in discharge to its 

forcing and may allow water to infiltrate more into subsurface layers. On top of that, the majority of the plateau area consists 570 

with McLaurin and Heidal soil types, which are characterized as sandy, well-drained soil types with moderate permeabilities 

(Official Soil Series Descriptions, 2020). Therefore, having an UR with a delayed base flow component as the plateau area 

model structure in SUPERFLEX_TOPO_M2 is meaningful. Finally, the choice of modified logistic function as the constitutive 

function may help the plateau area model structure to capture the threshold like behaviours (e.g. saturation excess overland 

flow) in catchment dynamics. 575 

Out of the 34 model parameters included in SUPERFLEX_TOPO_M2, 10 model sensitive parameters can be recognized by 

analysing the shapes of sensitivity scatterplots. They are D_R and D_S in floodplain model structure, Beta_Qq_UR, Ce, 
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Smax_UR, D_S, mu_Qq_UR and K_Qb_UR in plateau area model structure and two lag parameters (Lag_HRU and Lag_Sub). 

Please refer to the Appendix for more details about model parameters. Majority of the model sensitive parameters are connected 

with plateau area model structure. This is acceptable as the plateau area has the largest spatial coverage in terms of the 580 

catchment area of Red Creek catchment under topography based HRU classification. As reported earlier, obtaining a high 

percentage of measured data within the uncertainty bands (75%) suggests that the SUPERFLEX_TOPO_M2 is capable of 

estimating the total output uncertainty satisfactorily. 

6.2 MIKA-SHA Models induced using FUSE Building Blocks 

Application of MIKA-SHA with FUSE library resulted in five competitive model structures using topography based HRU 585 

classification. The relative rank scores are given in Table 7. Model M1 (hereinafter referred to as FUSE_TOPO_M1) was 

selected as the optimal model as it gave the lowest sum up rank. FUSE_TOPO_M1’s model configuration is shown in Fig. 8. 

Both the hillside model structure and the floodplain model structure have the same upper- and lower-layer architectures 

identical to ARNO-VIC model with a single state upper soil reservoir and a fixed size base flow reservoir. Plateau area model 

structure incorporates a lower zone configuration like ARNO-VIC model and an upper zone configuration similar to 590 

SACRAMENTO model with the upper layer broken up into tension and free storages. Surface flow from all three model 

structures is developed as saturation-excess overland flow and described using the flux equations in FUSE parent model 

TOPMODEL. Both hillside and floodplain model structures have the same percolation mechanism which allows water to 

percolate from the field capacity to saturation and described using the flux equations of PRMS model, whereas in plateau area 

percolation is controlled by the moisture amount in the saturated zone as in SACRAMENTO model. A root weighting 595 

evaporation model is used both in floodplain and plateau area model structures, while a sequential evaporation model is used 

in hillside model structure. Interflow is allowed only in the plateau area model structure and the routing is allowed only in 

hillside model structure.  

Table 7: Optimal model selection details (Library – FUSE) 

Model Rank 

Cross Sample 

Entropy 

Dynamic Time 

Warping 

Number of Model 

Parameters 

Sum 

M1 2 1 1.5 4.5 

M4 4 2 1.5 7.5 

M6 1 3 6 10.0 

M2 3 4 5 12.0 

M3 5 5 3 13.0 

M5 6 6 4 16.0 
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 600 

Figure 8: FUSE_TOPO_M1 model configuration (P: precipitation, E: evaporation, qb: base flow, qsx: surface flow, q12: 

percolation, qif: interflow, Zuz and Zlz: depth of unsaturated zone and saturated zone, S1 and S2: total water content in the 

unsaturated zone and saturated zone, S1
F: free water content in the unsaturated zone, S1

T: tension water content in the 

unsaturated zone, ϴwlt: soil moisture at the wilting point, ϴfld: soil moisture at field capacity, ϴsat: soil moisture at saturation) 

The performance matrix of FUSE_TOPO_M1 is given in Table 8. According to the high efficiency values, simulated discharge 605 

of FUSE_TOPO_M1 shows a good match with the observed discharge data and a consistent performance throughout the 

calibration, validation and testing periods. Further, simulated hydrograph (Fig. 9) can capture the observed flow signature of 

the watershed reasonably well. Simulated FDCs of FUSE_TOPO_M1 are presented in Fig. 10 along with observed FDC of 

the catchment. The simulated FDC at the calibration stage almost exactly follows the observed FDC and deviates slightly in 

validation and testing periods. Sensitivity scatterplots of model parameters of FUSE_TOPO_M1 and model parameter details 610 

are given in the Appendix. Ninety-four percent (94%) of the measured data fall between the 90% uncertainty bands of 

FUSE_TOPO_M1. 

Table 8: Performance matrix of FUSE_TOPO_M1 

                  Efficiency 

Period 
VE KGE NSE logNSE 

Calibration 0.785 0.967 0.935 0.896 

Validation 0.749 0.870 0.912 0.891 

Testing 0.744 0.826 0.891 0.882 
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Figure 9: Hydrograph of FUSE_TOPO_M1 615 

 

Figure 10: Flow Duration Curves of FUSE_TOPO_M1 

It is interesting to note that, as in SUPERFLEX_TOPO_M2, both floodplain and hillside model structures are based on the 

same model configuration, whereas plateau area model structure has a different model configuration in FUSE_TOPO_M1’s 

model architecture. This demonstrates the consistency of MIKA-SHA in capturing the similarities in runoff generation even 620 

with different model inventory libraries. Hillside model structure shows a delayed response compared to the floodplain as it 

allowed routing using two-parameter Gamma function. In the plateau area model structure, more subsurface type response in 

runoff generation can be expected as it incorporates an interflow component and its percolation is controlled by the moisture 
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amount in the saturated zone. This goes in line with the soil properties of the Red Creek catchment. The lower layer 

architectures of all three model components of FUSE_TOPO_M1 include non-linear storages functions which may help 625 

capture the non-linear catchment dynamics of Red Creek catchment. Out of the 33 model parameters only 5 parameters can 

be identified as sensitive parameters. They are maxwater_2, baserte and qb_power in plateau model structure and the two lag 

parameters (Lag_HRU and Lag_Sub). This demonstrates a lesser dependency on model parameters compared to the total 

model performance in semi-distributed modelling owing to the large number of model parameters. FUSE_TOPO_M1 results 

in high value (94%) for the percentage of measured streamflow data within the confidence interval bands and hence shows a 630 

significant capability of estimating associated uncertainty.  

Results of this study, such as achieving high efficiency values for the absolute performance measures and obtaining a good 

visual equivalent between measured and modelled hydrographs suggest that topography of the catchment may have a strong 

impact on runoff generation. Further, MIKA-SHA shows the capability of capturing catchment similarities even when using 

different model building blocks.  635 

One of the major issues with machine learning models is the overfitting of the model to its training dataset. The consistent 

performances over the calibration, validation and testing periods of all selected optimal models through MIKA-SHA show no 

such issues in this case. Deterministic semi-distributed modelling would require/ rely a large number of model parameters, by 

comparison, a smaller number of model parameters which are sensitive towards the total model performance. Further, the 

values of two lag parameters associated with “DISTRIBUTED” function (Lag_HRU and Lag_Sub) were found to be crucial 640 

in achieving high model performances. As the research findings of MIKA-SHA demonstrate a logical match with previously 

reported research findings and fieldwork insights, it may be safe to assume that MIKA-SHA is capable of handling equifinality 

phenomenon satisfactorily (i.e. selected optimal models perform for the right reasons). Additionally, the quantitative model 

selection scheme of MIKA-SHA ensures the selected optimal model has the appropriate complexity to describe the dominant 

runoff generation processes of the catchment instead of selecting an optimal model only based on model parsimony.  645 

7 Conclusions 

In this contribution, we introduce Model Induction Knowledge Augmented-System Hydrologique Asiatique (MIKA-SHA) for 

learning semi-distributed models where the spatial distributions of catchment properties and climate variables are taken into 

account. MIKA-SHA utilizes the existing hydrological knowledge to guide the machine learning algorithm which eventually 

results in physically meaningful hydrological models that can be readily interpretable by domain specialists. In the current 650 

study, background hydrological knowledge is blended with the machine learning algorithm through the model building 

components of flexible rainfall-runoff modelling frameworks. 
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Results of this study indicate that the consideration of spatial distributions of forcing data and catchment properties gives more 

meaningful insights regarding the environmental dynamics occurring within the watershed. The consistency demonstrated by 

the MIKA-SHA in capturing the similar runoff dynamics across different model inventories shows that the toolkit is smart 655 

enough to mine knowledge from data which makes it feasible to depend on the induced model configurations beyond just 

statistical confidence. The unique and distinct feature of MIKA-SHA is that it could be coupled with any internally coherent 

collection of building blocks representing the elements of hydrological knowledge and use genetic programming to optimize 

both model architecture and model parameters simultaneously. This approach enables hydrologists to utilize flexible modelling 

frameworks to their full potential by trying many hypotheses before selecting an optimal model. MIKA-SHA is expected to 660 

be most valuable in circumstances where there may be a lack of experimental insights regarding the catchment of interest or 

human expert’s knowledge.  

We recognize the potential offered by machine learning algorithms towards hydrological modelling. However, simplistic black 

box type data-driven models may contribute to the development of accurate yet pointless models with severe difficulties with 

interpretation may not serve towards the advancement of hydrological knowledge. Thus, the most promising way forward 665 

would be through the integration of existing hydrological knowledge with learning algorithms to induce more generalizable 

and physically consistent models. This was the motivation behind the development of the proposed MIKA-SHA framework 

which has been founded on both machine learning and hydrological theories. Therefore, we expect this work will strengthen 

the link between two leading, but historically, largely independent communities in water resource science and engineering: 

those working with physics-based process simulation modelling, and those working with machine learning. Finally, we expect 670 

more research studies on theory-guided machine learning to be directed towards the knowledge mining and automated model 

building in hydrological modelling.   

Appendix 

Table A1: SUPERFLEX_TOPO_M2’s model parameter details 

Model parameter Unit Range Symbol 
Model structure 

Hill Flood Plat. 

K in Q = K*(S) from RR t-1 5e-2 - 4 K_Qq_RR 0.050 0.050 - 

Fraction of inflow to RR No units 0 - 1 D_R  0.593 0.132 - 

K in Q = K ∗ Sα mmα
 t-1 1e-4 - 10 K_Qq_FR 0.019 0.019 - 

Smoothing parameter for Poten. Evapo. of FR No units 1e-2 - 2 m_E_FR  1.943 1.943 - 

α in Q = K ∗ Sa No units 1e-1 - 10 α_Qq_FR  2.369 2.226 - 

Portion of inflow from Qq to Qb  No units 0 - 1 D_F  0.657 0.633 - 
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Evaporation multiplying parameter No units 1e-1 - 3 Ce  2.060 2.536 1.418 

Base of rising limb t 1 - 10 Tlag  8.174 9.696 10 

Portion of rainfall to FR No units 0 - 1 D_S  0.850 0.802 0.012 

Correction factor for snow No units 5e-1 - 5 Cp_WR  - 0.711 - 

Melt rate smoothing parameter mm 1e-2 - 2 m_Q_WR  - 1.129 - 

Potential melt rate coefficient mm 0C-1 t-1 1e-2 - 10 Kq_WR  - 4.514 - 

Snow forming temperature 0C 0 - 10 Tp_WR  - 2.051 - 

Snow melting temperature 0C 0 - 4 Tm_WR  - 0.827 - 

Runoff coefficient parameter No units 1e-3 - 10 β_Qq_UR  - - 9.500 

Maximum reservoir capacity mm 1e-1 - 1e4 Smax_UR  - - 516.6 

Smoothing parameter for Poten. Evapo. of UR No units 1e-2 - 10 Beta_E_UR  - - 4.767 

State initial factor No units 0 - 1 SiniFR_UR  - - 0.894 

Percolation coefficient t-1 1e-6 - 2 K_Qb_UR  - - 1x10-6 

Parameter of Modified logistic curve  No units 1e-1 - 1 mu_Qq_UR  - - 1 

Max reservoir storage of IR mm 1e-1 - 20 Smax_IR  - - - 

Smoothing parameter for Poten. Evapo. of IR No units 1e-3 - 1 m_QE_IR  - - - 

Infiltration excess threshold mm t-1 1e-1 - 1e7 P_ED_max  - - - 

Infiltration excess flow smoothing factor mm t-1 1e-3 - 10 m_P_ED  - - - 

Time delay-HRU to subcatchment outlet t 1e-2 - 5 lag_HRU  3.074 

Time delay-Subcatchment to catchment outlet t 1e-2 - 5 lag_Sub  1.387 

  675 

Table A2: FUSE_TOPO_M1’s model parameter details 

Model parameter Unit Range Symbol 
Model structure 

Hill Flood Plat. 

Maximum total storage in upper soil layer  mm 25-500 maxwatr_1  192.9 375.1 500.0 

Maximum total storage in lower soil layer  mm 50-5e3 maxwatr_2  5000 5000 361.8 

Fraction total storage as tension storage  No units 0.05-0.95 fracten 0.399 0.189 0.082 

1st baseflow reservoir’s storage fraction No units 0.05-0.95 fprimqb  - - - 

Percolation rate  mm day-1 0.01-1e3 percrte  169.19 153.98 - 

Percolation exponent No units 1-20 percexp  20 19.24 - 

Fraction of percolation to tension storage  No units 0.05-0.95 percfrac  - - - 

Range of the baseflow rate  No units 1e-3-1e3 baserte 838.5 14.9 149.0 

Baseflow exponent  No units 1-10 qb_powr 4.369 1.188 8.993 
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Mean value:log-transformed topographic index  m 5-10 loglamb 8.306 9.184 9.683 

Shape para: topo index gamma distribution No units 2-5 tishape 2 5 4.1 

Time delay in runoff  day 0.01-5 timedelay  0.01 - - 

Range of the fraction of roots in the upper layer  No units 0.05-0.95 rtfrac1 - 0.563 0.148 

SAC percolation multiplier for dry soil layer  No units 1-250 sacpmlt  - - 109.5 

SAC percolation exponent for dry soil layer  No units 1-5 sacpexp  - - 4.266 

Interflow rate  mm day-1 0.01-1e3 iflwrte - - 711.5 

Baseflow depletion rate 1st reservoir  day-1 1e-3-0.25 qbrate_2a  - - - 

Baseflow depletion rate 2nd reservoir  day-1 1e-3-0.25 qbrate_2b  - - - 

Range of the maximum saturated area  No units 0.05-0.95 sareamax  - - - 

Time delay-HRU to subcatchment outlet  day 0.01-5 lag_HRU  2.918 

Time delay-Subcatchment to catchment outlet  day 0.01-5 lag_Sub  3.180 

Table A3: Model configurations of competitive models – SUPERFLEX 

Model WR IR RR UR FR SR CR Lag_RR Lag_FR Lag_SR 

M1 H, F  H H, F, P H H P F, P H - 

M2 F - H, F P H, F - - H, F - H, F,P 

M3   H, F P H, F   H, F, P H H, F, P 

H: Hill, F: Floodplain, P: Plateau  

Table A4: Model configurations of competitive models – FUSE 

Model 
Upper Architecture Lower Architecture Surface runoff Percolation Evaporation Interflow Routing 

H F P H F P H F P H F P H F P H F P H F P 

M1 T/V T/V S V V V T T T T/P T/P S T/P/S V V NA NA A A NA NA 

M2 T/V T/V S S V V V T T T/P T/P S T/P/S V V NA NA A A NA NA 

M3 T/V T/V T/V S V P T T V T/P T/P V T/P/S T/P/S T/P/S NA NA NA NA A A 

M4 T/V T/V T/V V V T V T V S T/P S V T/P/S T/P/S A NA NA NA NA NA 

M5 T/V T/V T/V S V T V T V S T/P S V T/P/S T/P/S A NA NA NA NA NA 

M6 T/V P T/V V P S V V T S S T/P T/P/S T/P/S T/P/S A NA NA A NA A 

As calculated in T: TOPMODEL, V: VIC, P: PRMS, S: SACRAMENTO. A: Allowed, NA: Not allowed 680 
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Figure A1: Sensitivity scatter plots of SUPERFLEX_TOPO_M2’s model parameters 
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Figure A2: Sensitivity scatter plots of FUSE_TOPO_M1’s model parameters 
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